JP2020129022A - Wide-angle lens system - Google Patents

Wide-angle lens system Download PDF

Info

Publication number
JP2020129022A
JP2020129022A JP2019020512A JP2019020512A JP2020129022A JP 2020129022 A JP2020129022 A JP 2020129022A JP 2019020512 A JP2019020512 A JP 2019020512A JP 2019020512 A JP2019020512 A JP 2019020512A JP 2020129022 A JP2020129022 A JP 2020129022A
Authority
JP
Japan
Prior art keywords
lens group
lens
focusing
wide
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019020512A
Other languages
Japanese (ja)
Other versions
JP7162883B2 (en
Inventor
了 塩田
Ryo Shioda
了 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2019020512A priority Critical patent/JP7162883B2/en
Publication of JP2020129022A publication Critical patent/JP2020129022A/en
Application granted granted Critical
Publication of JP7162883B2 publication Critical patent/JP7162883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a wide-angle lens system which is configured to suppress both image height fluctuation during wobbling and aberration variation due to change in in-focus position by appropriately placing a focusing group.SOLUTION: A wide-angle lens system consists of a first lens group G1 with negative refractive power, a focusing lens group GF with positive refractive power configured to move when focusing, a before-aperture-stop lens group GP with positive refractive power, an aperture stop S, and a succeeding lens group GR with positive refractive power, in order from the object side, and is configured to satisfy a specific conditional expression.SELECTED DRAWING: Figure 1

Description

本発明はスチルカメラ、ビデオカメラ等の撮像装置に用いる撮影レンズに好適な光学系に関し、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿う方向へ微少に振動させた際の像高変化率を抑制しながら、合焦位置の変化による非点収差や倍率色収差などの諸収差の変化を補正した、広角レンズ系に関するものである。 The present invention relates to an optical system suitable for a photographing lens used in an image pickup apparatus such as a still camera and a video camera, adopts an inner focus method suitable for an autofocus camera, and slightly vibrates the focus lens group in a direction along the optical axis. The present invention relates to a wide-angle lens system in which a change in various aberrations such as astigmatism and lateral chromatic aberration due to a change in a focus position is corrected while suppressing an image height change rate at the time of the change.

近年デジタルカメラ等の高画素化に伴い、用いられる光学系に対して諸収差を厳しく補正することが求められるようになってきている。 With the increase in the number of pixels of digital cameras and the like in recent years, it has been required to severely correct various aberrations in an optical system used.

また、近年台頭しているミラーレス一眼カメラのオートフォーカスのように、フォーカスレンズ群を光軸に沿う方向へ微少な振動(ウオブリング)をさせ続けることで、常にフォーカス駆動方向を判断し続ける形式のインナーフォーカス方式が開発されている。その際、ウオブリング時の像高変化率が大きいと、鑑賞者が画面に映る被写体の倍率変動を認識し、目障りに感じてしまう。そのためフォーカス変化に対して像高変化率が小さいフォーカス形式が望まれている。 In addition, like the autofocus of mirrorless single-lens cameras that have recently emerged, by continuously making the focus lens group vibrate in a direction along the optical axis, the focus drive direction is always determined. Inner focus method has been developed. At that time, if the rate of change in image height at the time of wobbling is large, the viewer recognizes a change in magnification of the subject on the screen and feels uncomfortable. Therefore, a focus type in which the image height change rate is small with respect to the focus change is desired.

しかし、従来提案されてきたウオブリングの際の像高変化率を抑制した光学系においては、合焦位置の変化による非点収差や色収差などの諸収差の変動が大きく、無限遠合焦時から近距離合焦時に至るまで良好な結像性能を維持することが困難であった。 However, in the previously proposed optical system that suppresses the image height change rate during wobbling, various aberrations, such as astigmatism and chromatic aberration, change greatly due to changes in the focus position, and when focusing at infinity, the focus changes from near to infinity. It was difficult to maintain good imaging performance until focusing on a distance.

特開2013−037080号公報JP, 2013-037080, A 国際公開第2016−056310号International Publication No. 2016-0556310

特許文献1において広画角を有しながらフォーカスレンズ群をウオブリングさせた際の像高変化率を抑制した変倍光学系が提案されている。しかし特許文献1における変倍光学系は、合焦位置の変化によるコマ収差や軸上色収差の変動が大きい。 Patent Document 1 proposes a variable power optical system having a wide angle of view and suppressing the image height change rate when the focus lens group is wobbled. However, the variable power optical system in Patent Document 1 has large fluctuations in coma and axial chromatic aberration due to changes in the focus position.

特許文献2において広画角を有しながら合焦位置の変化による収差の変動を抑制した変倍光学系が提案されている。しかし特許文献2における変倍光学系は、フォーカスレンズ群をウオブリングさせた際の像高変動が大きい。 Patent Document 2 proposes a variable power optical system which has a wide angle of view and suppresses variation of aberration due to change of a focus position. However, the variable power optical system in Patent Document 2 has a large image height variation when the focus lens group is wobbled.

本発明は、フォーカス群を適切に配置することで、ウオブリング時の像高変動と合焦位置の変化による収差の変動の両方が抑制された広角レンズ系を提供する事を目的とする。 It is an object of the present invention to provide a wide-angle lens system in which both the image height variation during wobbling and the aberration variation due to the focus position variation are suppressed by appropriately disposing the focus group.

上記課題を解決するための手段である第1の発明は、物体側より順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有し合焦に際して移動する合焦レンズ群GFと、正の屈折力を有する絞り前側レンズ群GPと、開口絞りSと、正の屈折力を有する後続レンズ群GRより構成され、以下の条件式を満足することを特徴とする広角レンズ系である。
(1)0.40 < DPS/HIM
ただし、
DPS:無限遠物体合焦時における、前記絞り前側レンズ群GPの像側主点の位置から前記開口絞りSまでの光軸上の距離
HIM:無限遠物体合焦時における最大像高
A first invention, which is a means for solving the above-mentioned problems, includes a first lens group G1 having a negative refracting power and a focusing lens group having a positive refracting power which move in order from the object side. A wide-angle lens system comprising GF, a front lens group GP having a positive refracting power, an aperture stop S, and a subsequent lens group GR having a positive refracting power, which satisfies the following conditional expression: Is.
(1) 0.40 <DPS/HIM
However,
DPS: distance on the optical axis from the position of the image-side principal point of the front lens group GP of the diaphragm to the aperture stop S when focusing an object at infinity HIM: maximum image height when focusing an object at infinity

また、第2の発明は、第1の発明においてさらに、以下の条件式を満足することを特徴とする広角レンズ系である。
(2)−1.00<MR^2×(1−MF^2)<−0.30
ただし、
MF:無限遠物体合焦時における前記合焦レンズ群GFの横倍率
MR:無限遠物体合焦時における前記絞り前側レンズ群GPから最も像側の光学面までの合成横倍率
A second aspect of the invention is a wide-angle lens system characterized by satisfying the following conditional expression in the first aspect of the invention.
(2)-1.00<MR^2*(1-MF^2)<-0.30
However,
MF: Lateral magnification of the focusing lens group GF when focusing on an object at infinity MR: Composite lateral magnification from the front lens group GP of the diaphragm to the image-side optical surface when focusing on an object at infinity

また、第3の発明は、第1または第2の発明においてさらに、以下の条件式を満足することを特徴とする広角レンズ系である。
(3)0.05 < f/fF < 0.30
(4)0.01 < f/fP < 0.20
ただし、
f:無限遠撮影時のレンズ全系の焦点距離
fF:前記合焦レンズ群GFの焦点距離
fP:前記絞り前側レンズ群GPの焦点距離
A third aspect of the invention is a wide-angle lens system characterized by satisfying the following conditional expression in the first or second aspect of the invention.
(3) 0.05 <f/fF <0.30
(4) 0.01 <f/fP <0.20
However,
f: focal length of the entire lens system at infinity shooting fF: focal length of the focusing lens unit GF fP: focal length of the front lens unit GP of the diaphragm

また、第4の発明は、第1乃至第3のいずれかの発明においてさらに、前記第1レンズ群G1は負の屈折力を有するレンズを4枚以上有し、その内3枚以上が物体側に凸の面を向けたメニスカスレンズであることを特徴とする広角レンズ系である。 Further, in a fourth invention according to any one of the first to third inventions, the first lens group G1 has four or more lenses having a negative refractive power, and three or more of them are on the object side. A wide-angle lens system characterized in that it is a meniscus lens with a convex surface facing inward.

また、第5の発明は、第1乃至第4のいずれかの発明においてさらに、前記後続レンズ群GRは、接合面が物体側に凸面を向けており、かつ物体側の媒質の屈折率が像面側の媒質の屈折率より高いような接合レンズを2組以上有することを特徴とする広角レンズ系である。 In addition, in a fifth aspect based on any one of the first to fourth aspects, in the succeeding lens group GR, the cemented surface is a convex surface facing the object side, and the refractive index of the medium on the object side is an image. A wide-angle lens system having two or more sets of cemented lenses having a refractive index higher than that of the medium on the surface side.

また、第6の発明は、第1乃至第5のいずれかの発明においてさらに、前記後続レンズ群GRは、その最も像面側のレンズが非球面を有することを特徴とする広角レンズ系である。 A sixth invention is a wide-angle lens system according to any one of the first to fifth inventions, wherein the lens at the most image plane side of the subsequent lens group GR has an aspheric surface. ..

本発明によれば、フォーカス群を適切に配置することで、ウオブリング時の像高変動と合焦位置の変化による収差の変動の両方が抑制された広角レンズ系を提供することができる。 According to the present invention, by appropriately disposing the focus group, it is possible to provide a wide-angle lens system in which both fluctuations in image height during wobbling and fluctuations in aberration due to changes in the focus position are suppressed.

実施例1の光学系の無限遠におけるレンズ断面図Sectional drawing of the lens of the optical system of Example 1 at infinity. 実施例1の光学系の無限遠における縦収差図Vertical aberration diagram of the optical system of Example 1 at infinity. 実施例1の光学系の撮影距離235mmにおける縦収差図Vertical aberration diagram of the optical system of Example 1 at a shooting distance of 235 mm. 実施例1の光学系の無限遠における横収差図Transverse aberration diagram of the optical system of Example 1 at infinity. 実施例1の光学系の撮影距離235mmにおける横収差図Lateral aberration diagram of the optical system of Example 1 at a shooting distance of 235 mm. 実施例2の光学系の無限遠におけるレンズ断面図Sectional drawing of the lens of the optical system of Example 2 at infinity. 実施例2の光学系の無限遠における縦収差図Vertical aberration diagram of the optical system of Example 2 at infinity. 実施例2の光学系の撮影距離250mmにおける縦収差図Longitudinal aberration diagram of the optical system of Example 2 at a shooting distance of 250 mm. 実施例2の光学系の無限遠における横収差図Transverse aberration diagram for the optical system of Example 2 at infinity. 実施例2の光学系の撮影距離250mmにおける横収差図Lateral aberration diagram of the optical system of Example 2 at a shooting distance of 250 mm. 実施例3の光学系の無限遠におけるレンズ断面図Sectional drawing of the lens at infinity of the optical system of Example 3. 実施例3の光学系の無限遠における縦収差図Longitudinal aberration diagram of the optical system of Example 3 at infinity. 実施例3の光学系の撮影距離200mmにおける縦収差図Vertical aberration diagram of the optical system of Example 3 at a shooting distance of 200 mm. 実施例3の光学系の無限遠における横収差図Lateral aberration diagram of the optical system of Example 3 at infinity. 実施例3の光学系の撮影距離200mmにおける横収差図Lateral aberration diagram of the optical system of Example 3 at a shooting distance of 200 mm.

以下に、本発明にかかる光学系の実施例について詳細に説明する。なお、以下の実施例の説明は本発明の光学系の一例を説明したものであり、本発明はその要旨を逸脱しない範囲において本実施例に限定されるものでない。 Examples of the optical system according to the present invention will be described in detail below. It should be noted that the following description of the embodiments is an example of the optical system of the present invention, and the present invention is not limited to the embodiments without departing from the scope of the invention.

本発明の広角レンズ系は、図1、図6、図11に示すレンズ構成図からわかるように、物体側より順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有し合焦に際して移動する合焦レンズ群GFと、正の屈折力を有する絞り前側レンズ群GPと、開口絞りSと、正の屈折力を有する後続レンズ群GRより構成される。 As can be seen from the lens configuration diagrams shown in FIGS. 1, 6 and 11, the wide-angle lens system of the present invention has, in order from the object side, a first lens group G1 having a negative refractive power and a positive refractive power. A focusing lens group GF that moves during focusing, a front lens group GP having a positive refracting power, an aperture stop S, and a subsequent lens group GR having a positive refracting power.

本発明はウオブリング時の像高変動と合焦位置の変化による収差の変動の両方が抑制された広角レンズ系の提供を目的としており、合焦レンズ群GFが光軸に沿って移動した際の収差係数の変化を適切に補正することが重要となる。 It is an object of the present invention to provide a wide-angle lens system in which both fluctuations in image height during wobbling and fluctuations in aberration due to changes in focusing position are suppressed, and when the focusing lens group GF moves along the optical axis. It is important to properly correct the change in the aberration coefficient.

前記合焦レンズ群GFから見た開口絞りSの像を遠方に形成することにより、ウオブリング時の像高変動を微小にすることが可能になる。また、前記合焦レンズ群GFから見た開口絞りSの像を遠方に形成するためには、前記合焦レンズ群GFと開口絞りSの間隔を広げるか、前記合焦レンズ群GFの正の屈折力を強くすることが有利となるが、いずれも前記合焦レンズ群GFで発生する収差を悪化させ、合焦位置の変化による収差の変動が大きくなる。 By forming the image of the aperture stop S viewed from the focusing lens group GF at a distance, it becomes possible to make the image height fluctuation during wobbling small. Further, in order to form the image of the aperture stop S viewed from the focusing lens group GF at a distant position, the interval between the focusing lens group GF and the aperture stop S should be widened or the focusing lens group GF should be positive. Although it is advantageous to increase the refracting power, in both cases, the aberration generated in the focusing lens group GF is aggravated, and the variation of the aberration due to the change of the focusing position becomes large.

そこで、前記合焦レンズ群GFと開口絞りSの間に正の屈折力を有する前記絞り前側レンズ群GPを配置することで、前記合焦レンズ群GFと開口絞りSの間隔および前記合焦レンズ群GFの正の屈折力を抑制しつつ、前記合焦レンズ群GFから見た開口絞りSの像を遠方に形成することが可能になる。 Therefore, by disposing the front lens group GP having positive refractive power between the focusing lens group GF and the aperture stop S, the distance between the focusing lens group GF and the aperture stop S and the focusing lens. It is possible to form the image of the aperture stop S viewed from the focusing lens group GF at a distance while suppressing the positive refractive power of the group GF.

ここで、合焦レンズ群GFから見た開口絞りSの像を遠方に形成射影すること、および合焦レンズ群GFの横倍率と、それ以降のレンズ群の合成横倍率を規定することにより、ウオブリング時の像高変動を微小にすることができる理由は以下のとおりである。 Here, by forming and projecting the image of the aperture stop S viewed from the focusing lens group GF in the distance, and defining the lateral magnification of the focusing lens group GF and the combined lateral magnification of the lens groups thereafter, The reason why the image height variation during wobbling can be made small is as follows.

ウオブリングによる像高変動はウオブリングによる歪曲収差の変動で表すことができる。松居吉哉著、レンズ設計法、共立出版P88によれば3次の歪曲収差係数Vは以下の式であらわされる。
V=J・IV
これを展開すると以下になり、3次の歪曲収差係数Vは近軸主光線高H’の3乗に比例する。
V=((H’・Q’)^3/(H・Q))・H^2・Δ(1/(n・s))+P・(H’・Q’)/(H・Q) 参考式(1)
The image height fluctuation due to the wobbling can be represented by the fluctuation of the distortion aberration due to the wobbling. According to Yoshiya Matsui, Lens Design Method, Kyoritsu Publishing P88, the third-order distortion aberration coefficient V is expressed by the following equation.
V=J·IV
When expanded, it becomes as follows, and the third-order distortion aberration coefficient V is proportional to the cube of the paraxial chief ray height H′.
V=((H'・Q')^3/(H・Q))・H^2・Δ(1/(n・s))+P・(H'・Q')/(H・Q) Reference Formula (1)

これより、ウオブリングによる歪曲収差の変動を少なくするには、ウオブリングによる合焦レンズ群の近軸主光線高の変動を少なくすればよい。ここで、物体距離無限遠時の合焦レンズ群GFの物体側の面を基準とした、絞り前側レンズ群GPによる開口絞りSの像の位置、および合焦レンズ群GFの横倍率、合焦レンズ群より後方のレンズ群である絞り前側レンズ群GPから最も像側の光学面までの合成横倍率、および合焦レンズ群における主光線高から、ウオブリングによる合焦レンズ群の主光線高の変動Δhは以下の式で表される。
Δh=h’−h=h・Δs/(FcEntp×MR^2×(1−MF^2)) 参考式(2)
ただし、
FcEntp:物体距離無限遠時の合焦レンズ群GFから開口絞りSの前までの面の合成光学系による開口絞りSの像位置
Δs:ウオブリング時の像面移動量
h:物体距離無限遠時の合焦レンズ群における主光線高
h’:ウオブリング時の合焦レンズ群における主光線高
MF:無限遠物体合焦時における前記合焦レンズ群GFの横倍率
MR:無限遠物体合焦時における前記絞り前側レンズ群GPから最も像側の光学面までの合成横倍率
Therefore, in order to reduce the fluctuation of the distortion aberration due to the wobbling, the fluctuation of the paraxial chief ray height of the focusing lens unit due to the wobbling may be reduced. Here, the position of the image of the aperture stop S by the front lens group GP of the diaphragm, the lateral magnification of the focusing lens group GF, and the focusing with reference to the object-side surface of the focusing lens group GF when the object distance is infinity. Variation of the chief ray height of the focusing lens group due to the wobbling from the composite lateral magnification from the front lens group GP of the diaphragm, which is a lens group behind the lens group, to the optical surface closest to the image side, and the chief ray height of the focusing lens group. Δh is represented by the following formula.
Δh=h′−h=h·Δs/(FcEntp×MR^2×(1-MF^2)) Reference formula (2)
However,
FcEntp: Image position Δs of the aperture stop S by the synthetic optical system of the surface from the focusing lens group GF to the front of the aperture stop S when the object distance is infinity: The amount of movement of the image plane during wobbling h: When the object distance is infinity Principal ray height h'in the focusing lens group: Principal ray height MF in the focusing lens group during wobbling MF: Lateral magnification MR of the focusing lens group GF during focusing on an object at infinity: The lateral magnification MR during focusing on an object at infinity Composite lateral magnification from the front lens group GP to the optical surface closest to the image side

さらに本発明の広角レンズ系は、さらに以下の条件式を満足することを特徴とする。
(1)0.40 < DPS/HIM
DPS:無限遠物体合焦時における、前記絞り前側レンズ群GPの像側主点の位置から前記開口絞りSまでの光軸上の距離
HIM:無限遠物体合焦時における最大像高
Furthermore, the wide-angle lens system of the present invention is further characterized by satisfying the following conditional expression.
(1) 0.40 <DPS/HIM
DPS: distance on the optical axis from the position of the image-side principal point of the front lens group GP of the diaphragm to the aperture stop S when focusing an object at infinity HIM: maximum image height when focusing an object at infinity

条件式(1)は無限遠物体合焦時における前記絞り前側レンズ群GPの像側主点と開口絞りSとの距離について好ましい範囲を規定するものである。 Conditional expression (1) defines a preferable range for the distance between the image-side principal point of the front lens group GP and the aperture stop S when the object is focused at infinity.

条件式(1)の下限値を超え、無限遠物体合焦時における前記絞り前側レンズ群GPの像側主点から開口絞りSまでの光軸上の距離が小さくなると、前記合焦レンズ群GFの屈折力を抑制しながら前記合焦レンズ群GFから見た開口絞りSの像を遠方に結像することが困難になり、ウオブリング時の像高変動と合焦位置の変化による収差の変動の両方を抑制することが不可能になる。 When the lower limit of conditional expression (1) is exceeded and the distance on the optical axis from the image-side principal point of the front lens group GP to the aperture stop S at the time of focusing on an object at infinity decreases, the focusing lens group GF It becomes difficult to form the image of the aperture stop S viewed from the focusing lens group GF at a distance while suppressing the refracting power of the lens, and the variation of the aberration due to the variation of the image height during the wobbling and the variation of the focusing position. It becomes impossible to suppress both.

また、条件式(1)の下限値を0.50にすることで、本発明の効果を確実に達成することができる。さらに、条件式(1)の下限値を0.60にすることで、本発明の効果をより確実に達成することができる。 Further, by setting the lower limit of conditional expression (1) to 0.50, the effect of the present invention can be reliably achieved. Furthermore, by setting the lower limit of conditional expression (1) to 0.60, the effect of the present invention can be achieved more reliably.

また本発明の広角レンズ系は、さらに以下の条件式を満足することが望ましい。
(2)−1.00<MR^2×(1−MF^2)<−0.30
MF:無限遠物体合焦時における前記合焦レンズ群GFの横倍率
MR:無限遠物体合焦時における前記絞り前側レンズ群GPから最も像側の光学面までの合成横倍率
Further, it is desirable that the wide-angle lens system of the present invention further satisfy the following conditional expression.
(2)-1.00<MR^2*(1-MF^2)<-0.30
MF: Lateral magnification of the focusing lens group GF when focusing on an object at infinity MR: Composite lateral magnification from the front lens group GP of the diaphragm to the optical surface closest to the image when focusing on an object at infinity

条件式(2)は無限遠物体合焦時における前記合焦レンズ群GFが移動する際の結像面の敏感度について好ましい範囲を規定するものである。 Conditional expression (2) defines a preferable range for the sensitivity of the image plane when the focusing lens group GF moves during focusing of an object at infinity.

条件式(2)の下限値を超え、無限遠物体合焦時における前記合焦レンズ群GFが移動する際の結像面の敏感度が大きくなると、合焦レンズ群の移動量が小さくなるため、合焦レンズ群の微少な動きで結像面が大きく動き、AF合焦範囲内に合焦レンズ群GFを駆動制御することが困難になる。 When the lower limit of conditional expression (2) is exceeded and the sensitivity of the image plane when the focusing lens group GF moves at the time of focusing an object at infinity increases, the moving amount of the focusing lens group decreases. A minute movement of the focusing lens group causes a large movement of the image plane, making it difficult to drive and control the focusing lens group GF within the AF focusing range.

条件式(2)の上限値を超え、無限遠物体合焦時における前記合焦レンズ群GFが移動する際の結像面の敏感度が小さくなると、合焦群の移動量が大きくなり、ウオブリングによる合焦レンズ群の主光線高の変動Δhが大きくなるため、像高変動を抑制する効果は弱くなり、ウオブリング時の像高変動を抑えることが困難になる。さらに、合焦レンズ群GF前後のスペースを確保しなければならず、光学系をコンパクトにすることが困難になる。 When the upper limit of conditional expression (2) is exceeded and the sensitivity of the image plane when the focusing lens group GF moves during focusing of an object at infinity decreases, the amount of movement of the focusing group increases, and the wobbling occurs. Since the fluctuation Δh of the chief ray height of the focusing lens group due to becomes large, the effect of suppressing the image height fluctuation becomes weak, and it becomes difficult to suppress the image height fluctuation during the wobbling. Further, it is necessary to secure a space before and after the focusing lens group GF, which makes it difficult to make the optical system compact.

また、条件式(2)の下限値を−0.80にすることで、本発明の効果を確実に達成することができる。さらに、条件式(2)の下限値を−0.60にすることで、本発明の効果をより確実に達成することができる。また、条件式(2)の上限値を−0.40にすることで、本発明の効果を確実に達成することができる。さらに、条件式(2)の上限値を−0.45にすることで、本発明の効果をより確実に達成することができる。 Further, by setting the lower limit of conditional expression (2) to -0.80, the effect of the present invention can be achieved with certainty. Furthermore, by setting the lower limit of conditional expression (2) to -0.60, the effect of the present invention can be achieved more reliably. Moreover, the effect of the present invention can be reliably achieved by setting the upper limit of conditional expression (2) to −0.40. Furthermore, by setting the upper limit of conditional expression (2) to −0.45, the effect of the present invention can be achieved more reliably.

また本発明の広角レンズ系は、さらに、以下の条件式を満足することが望ましい。
(3)0.05 < f/fF < 0.30
(4)0.01 < f/fP < 0.20
f:無限遠撮影時のレンズ全系の焦点距離
fF:前記合焦レンズ群GFの焦点距離
fP:前記絞り前側レンズ群GPの焦点距離
Further, the wide-angle lens system of the present invention preferably further satisfies the following conditional expression.
(3) 0.05 <f/fF <0.30
(4) 0.01 <f/fP <0.20
f: focal length of the entire lens system at infinity shooting fF: focal length of the focusing lens unit GF fP: focal length of the front lens unit GP of the diaphragm

条件式(3)は前記合焦レンズ群GFの屈折力について好ましい範囲を規定するものである。 Conditional expression (3) defines a preferable range of the refractive power of the focusing lens group GF.

条件式(4)は前記絞り前側レンズ群GPの屈折力について好ましい範囲を規定するものである。 Conditional expression (4) defines a preferable range for the refractive power of the front lens group GP.

条件式(3)の上限値を超え、前記合焦レンズ群GFの屈折力が強くなると、ウオブリングによる合焦レンズ群より物体側の群での近軸主光線高の変動が大きくなるほか、合焦レンズ群GF自体で発生する収差も悪化するため、ウオブリング時の像高変動と合焦位置の変化による収差の変動の両方を抑制することが困難になる。 When the upper limit of conditional expression (3) is exceeded and the refractive power of the focusing lens group GF becomes strong, the paraxial chief ray height fluctuation in the group closer to the object side than the focusing lens group due to wobbling becomes large, and Since the aberration generated in the focusing lens group GF itself also deteriorates, it becomes difficult to suppress both the image height variation at the time of wobbling and the aberration variation due to the focus position change.

条件式(3)の下限値を超え、前記合焦レンズ群GFの屈折力が弱くなると、合焦レンズ群が移動する際の結像面の敏感度が小さくなるため、条件式(2)の上限値を超えないようにすることが困難になる。 If the lower limit of conditional expression (3) is exceeded and the refracting power of the focusing lens group GF becomes weaker, the sensitivity of the image plane when the focusing lens group moves decreases. It will be difficult not to exceed the upper limit.

また、条件式(3)の下限値を0.10にすることで、本発明の効果をより確実に達成することができる。また、条件式(3)の上限値を0.20にすることで、本発明の効果をより確実に達成することができる。 Further, by setting the lower limit of conditional expression (3) to 0.10, the effect of the present invention can be achieved more reliably. Further, by setting the upper limit of conditional expression (3) to 0.20, the effect of the present invention can be achieved more reliably.

条件式(4)の上限値を超え、前記絞り前側レンズ群GPの屈折力が強くなると、広い画角を維持するためには前記第1レンズ群G1の負の屈折力を強くすることが必要となり、前記第1レンズ群G1内で発生する収差を抑制することが困難になる。 When the upper limit of conditional expression (4) is exceeded and the refractive power of the front lens group GP of the diaphragm becomes strong, it is necessary to strengthen the negative refractive power of the first lens group G1 in order to maintain a wide angle of view. Therefore, it becomes difficult to suppress the aberration generated in the first lens group G1.

条件式(4)の下限値を超え、前記絞り前側レンズ群GPの屈折力が弱くなると、前記合焦レンズ群GFと開口絞りの間隔および前記合焦レンズ群GFの正の屈折力を抑制しつつ、前記合焦レンズ群GFから見た開口絞りSの像を遠方に形成することが困難になる。 When the lower limit of conditional expression (4) is exceeded and the refractive power of the front lens group GP of the diaphragm becomes weak, the distance between the focusing lens group GF and the aperture stop and the positive refractive power of the focusing lens group GF are suppressed. At the same time, it becomes difficult to form the image of the aperture stop S viewed from the focusing lens group GF at a distance.

また、条件式(4)の下限値を0.015にすることで、本発明の効果をより確実に達成することができる。また、条件式(4)の上限値を0.15にすることで、本発明の効果をより確実に達成することができる。 Further, by setting the lower limit of conditional expression (4) to 0.015, the effect of the present invention can be achieved more reliably. Further, by setting the upper limit of conditional expression (4) to 0.15, the effect of the present invention can be achieved more reliably.

また本発明の広角レンズ系は、前記第1レンズ群G1は負の屈折力を有するレンズを4枚以上有し、その内3枚以上が物体側に正の屈折力を有する面を向けたメニスカスレンズであることが望ましい。 In the wide-angle lens system of the present invention, the first lens group G1 has four or more lenses having negative refractive power, and three or more of them have a meniscus with a surface having positive refractive power facing the object side. It is preferably a lens.

前記第1レンズ群G1が負の屈折力を有するレンズを4枚以上有することで、広画角を維持しながら必要なバックフォーカスを維持することが容易となる。また、前記負の屈折力を有するレンズの内3枚以上が物体側に凸の面を向けたメニスカスレンズであることで、周辺像高に入射する光線に対する入射面と出射面の偏角を小さくすることが可能となり、負の屈折力の面による歪曲収差の悪化を抑制することが容易となる。 Since the first lens group G1 has four or more lenses having negative refractive power, it becomes easy to maintain a necessary back focus while maintaining a wide angle of view. Further, since three or more of the lenses having the negative refracting power are meniscus lenses having a convex surface facing the object side, the deviation angle between the incident surface and the exit surface with respect to a light ray incident on the peripheral image height is small. It becomes possible to suppress the deterioration of the distortion aberration due to the surface of the negative refracting power.

また本発明の広角レンズ系は、前記後続レンズ群GRが、接合面が物体側に凸面を向けており、かつ物体側の媒質の屈折率が像面側の媒質の屈折率より高いような接合レンズを2組以上有することが望ましい。 In the wide-angle lens system of the present invention, the following lens group GR has a cemented surface with a convex surface facing the object side, and the refractive index of the object-side medium is higher than the refractive index of the image-side medium. It is desirable to have two or more sets of lenses.

前記後続レンズ群GRに、物体側に凸面を向けており、かつ物体側の媒質の屈折率が像面側の媒質の屈折率より高いような接合レンズの数が1組以下の場合、コマ収差と球面収差のどちらか一方を補正すると他方の補正が困難になる。しかしこのような接合レンズを2組以上配置することで、コマ収差と球面収差をバランスよく補正することが容易となる。 If the number of cemented lenses having a convex surface facing the object side toward the subsequent lens group GR and the refractive index of the medium on the object side is higher than the refractive index of the medium on the image surface side is one set or less, coma aberration If either one of spherical aberration and spherical aberration is corrected, it becomes difficult to correct the other. However, by disposing two or more sets of such cemented lenses, it becomes easy to correct coma and spherical aberration in a well-balanced manner.

また本発明の広角レンズ系は、前記後続レンズ群GRの最も像面側のレンズが非球面を有することが望ましい。 Further, in the wide-angle lens system of the present invention, it is desirable that the lens closest to the image plane in the subsequent lens group GR has an aspherical surface.

前記後続レンズ群GRの最も像面側のレンズに非球面を配置することで、軸上光束への非球面の影響を抑えながら周辺光束への効果を与えることが容易となり、球面収差への影響を抑えつつコマ収差や非点収差を補正することが容易となる。 By arranging the aspherical surface on the lens closest to the image plane in the subsequent lens group GR, it becomes easy to give an effect to the peripheral light flux while suppressing the effect of the aspherical surface to the axial light flux, and influence on the spherical aberration. It becomes easy to correct coma and astigmatism while suppressing the above.

次に、本発明の広角レンズ系に係る実施例の数値実施例と条件式対応値について説明する。なお、以下の説明ではレンズ構成を物体側から像面側の順番で記載する。また、実施例中のLnの表記は、物体側からn番目のレンズのことを示している。 Numerical examples of the wide-angle lens system according to the present invention and values corresponding to the conditional expressions will be described below. In the following description, the lens configurations will be described in order from the object side to the image plane side. In addition, the notation of Ln in the examples indicates the n-th lens from the object side.

[面データ]において、面番号は物体側から数えたレンズ面または開口絞りの番号、rは各レンズ面の曲率半径、dは各レンズ面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数、θgFはg線(波長435.84nm)とF線(波長486.13nm)の部分分散比を示している。 In [Surface data], the surface number is the lens surface or aperture stop number counted from the object side, r is the radius of curvature of each lens surface, d is the distance between the lens surfaces, and nd is for the d line (wavelength 587.56 nm). Refractive index, vd is the Abbe number for the d-line, and θgF is the partial dispersion ratio of the g-line (wavelength 435.84 nm) and the F-line (wavelength 486.13 nm).

面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面又は開口絞りに対する曲率半径には∞(無限大)を記入している。 The (diaphragm) attached to the surface number indicates that the aperture diaphragm is located at that position. ∞ (infinity) is entered in the radius of curvature for a plane or an aperture stop.

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。 The * (asterisk) attached to the surface number indicates that the lens surface shape is an aspherical surface.

[非球面データ]には、[面データ]において*を付したレンズ面の非球面形状を与える各係数の値を示している。非球面の形状は、下記の式で表される。以下の式において、光軸に直交する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をKで表している。また、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20次の非球面係数をそれぞれA3、A4、A5、A6、A7、A8、A9、A10、A11、A12、A13、A14、A15、A16、A17、A18、A19、A20で表している。

Figure 2020129022
In [Aspherical surface data], the value of each coefficient giving the aspherical shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspherical surface is represented by the following formula. In the following formula, y is the displacement from the optical axis in the direction orthogonal to the optical axis, z is the displacement (sag amount) from the intersection of the aspherical surface and the optical axis in the optical axis direction, and the radius of curvature of the reference spherical surface is r, The conic coefficient is represented by K. Further, the aspherical coefficients of the third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelve, thirteenth, fourteenth, fifteenth, seventeenth, eighteenth, nineteenth, and twentieth degree are respectively A3, A4, A5, It is represented by A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, and A20.
Figure 2020129022

[各種データ]には、各撮影距離合焦状態における焦点距離等の値を示している。 In [Various data], values such as the focal length in each shooting distance focused state are shown.

[可変間隔データ]には、各撮影距離合焦状態における可変間隔及びBFの値を示している。 [Variable interval data] shows the variable interval and the value of BF in each focusing distance focusing state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 The [lens group data] shows the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、△S、△Mはそれぞれサジタル像面、メリジオナル像面を表している。 Further, in the aberration diagrams corresponding to the respective examples, d, g, and C represent d line, g line, and C line, respectively, and ΔS and ΔM represent sagittal image plane and meridional image plane, respectively. ..

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the values of the following specifications, the units of the focal length f, the radius of curvature r, the lens surface distance d, and other lengths described are millimeters (mm) unless otherwise specified. The system is not limited to this because the same optical performance can be obtained in the proportional enlargement and the proportional reduction.

図1は、本発明の実施例1の広角レンズ系のレンズ構成図である。
実施例1は物体側から順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。特許請求の範囲において、第2レンズ群G2は合焦レンズ群GFに、第3レンズ群G3は絞り前側レンズ群GPに、第4レンズ群G4は後続レンズ群GRに、それぞれ相当する。第3レンズ群G3と第4レンズ群G4の間には開口絞りSが配置される。
FIG. 1 is a lens configuration diagram of a wide-angle lens system according to a first embodiment of the present invention.
In Example 1, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group having a positive refractive power are arranged in order from the object side. It is composed of a lens group G4. In the claims, the second lens group G2 corresponds to the focusing lens group GF, the third lens group G3 corresponds to the front lens group GP, and the fourth lens group G4 corresponds to the subsequent lens group GR. An aperture stop S is arranged between the third lens group G3 and the fourth lens group G4.

第1レンズ群G1は、物体側から順に物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凹レンズL4と、両凸レンズL5とから構成されており、負メニスカスレンズL1の物体側のレンズ面および負メニスカスレンズL3の両側のレンズ面は所定の非球面形状となっている。 The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the object side, a negative meniscus lens L2 having a convex surface directed toward the object side, and a negative meniscus lens L3 having a convex surface directed toward the object side. It is composed of a biconcave lens L4 and a biconvex lens L5, and the object-side lens surface of the negative meniscus lens L1 and the lens surfaces on both sides of the negative meniscus lens L3 have a predetermined aspherical shape.

第2レンズ群G2は、両凸レンズL6のみから構成されている。第2レンズ群G2は、無限遠物体距離から近距離へのフォーカシングに際して全体が像面側へ移動する。 The second lens group G2 is composed of only a biconvex lens L6. The entire second lens group G2 moves toward the image plane when focusing from an infinite object distance to a short distance.

第3レンズ群G3は、物体側から順に物体側に凸面を向けた負メニスカスレンズL7と両凸レンズL8からなる接合レンズのみから構成されている。 The third lens group G3 includes only a cemented lens including a negative meniscus lens L7 having a convex surface directed toward the object side and a biconvex lens L8 in order from the object side.

第4レンズ群G4は、両凸レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と両凸レンズL11からなる接合レンズと、両凹レンズL12と両凸レンズL13からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、像側に凸面を向けた正メニスカスレンズL16とから構成されており、正メニスカスレンズL16の両側のレンズ面は所定の非球面形状となっている。 The fourth lens group G4 includes a biconvex lens L9, a cemented lens including a negative meniscus lens L10 having a convex surface facing the object side and a biconvex lens L11, a cemented lens including a biconcave lens L12 and a biconvex lens L13, and a convex surface facing the object side. And a positive meniscus lens L15 having a convex surface facing the object side, and a positive meniscus lens L16 having a convex surface facing the image side. The positive meniscus lens L16 is provided on both sides of the positive meniscus lens L16. The lens surface has a predetermined aspherical shape.

続いて以下に実施例1に係る広角レンズ系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd θgF
物面 ∞ (d0)
1* 241.4024 3.2000 1.69350 53.18 0.5482
2 23.3123 8.2070
3 38.5643 1.7000 1.72916 54.67 0.5452
4 19.8275 8.8224
5* 200.0000 2.5434 1.59201 67.02 0.5357
6* 26.7842 7.5371
7 -118.3632 1.0000 1.59282 68.63 0.5441
8 42.8041 0.8159
9 40.5914 5.0760 1.84666 23.78 0.6191
10 -186.8107 (d10)
11 86.6211 3.2446 1.80809 22.76 0.6286
12 -197.9453 (d12)
13 54.5103 0.9000 1.94595 17.98 0.6544
14 25.2828 6.2870 1.49875 70.45 0.5306
15 -40.3893 16.1190
16(絞り) ∞ 1.2400
17 17.1340 4.2324 1.43700 95.10 0.5334
18 -83.8872 0.1500
19 44.1868 0.8000 1.88300 40.80 0.5654
20 11.4873 5.5038 1.59282 68.63 0.5441
21 -136.1840 1.0008
22 -30.5959 0.8000 1.95375 32.32 0.5901
23 16.2153 5.1387 1.92286 20.88 0.6388
24 -120.7700 0.1500
25 39.8254 0.8000 1.88300 40.80 0.5654
26 19.7672 5.5956 1.43700 95.10 0.5334
27 131.7214 1.9846
28* -36.8767 4.4373 1.55332 71.68 0.5402
29* -18.2688 (BF)
像面 ∞

[非球面データ]
1面 5面 6面
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 3.96084E-04 3.87545E-04
A4 1.39228E-05 -4.86369E-06 1.64723E-05
A5 0.00000E+00 -1.23114E-05 -1.41471E-05
A6 -1.96834E-08 1.92467E-06 2.11783E-06
A7 0.00000E+00 -7.83284E-08 -6.88454E-08
A8 2.14254E-11 -2.09159E-09 -4.78835E-09
A9 0.00000E+00 1.17517E-10 2.45388E-10
A10 -1.32950E-14 6.33871E-12 6.66772E-12
A11 0.00000E+00 -8.86848E-14 -3.83297E-13
A12 3.20944E-18 -1.80523E-14 -1.29749E-14
A13 0.00000E+00 2.41581E-16 9.47100E-16
A14 7.49790E-22 6.06966E-18 8.12948E-17
A15 0.00000E+00 6.95705E-19 -1.00422E-17
A16 -4.07573E-25 -2.41565E-20 2.66857E-19
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

28面 29面
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 -6.62860E-06 3.58590E-05
A5 0.00000E+00 0.00000E+00
A6 5.55257E-07 2.86133E-07
A7 0.00000E+00 0.00000E+00
A8 -7.70699E-09 -1.83812E-09
A9 0.00000E+00 0.00000E+00
A10 8.98065E-11 2.09716E-11
A11 0.00000E+00 0.00000E+00
A12 -6.20915E-13 -1.20711E-13
A13 0.00000E+00 0.00000E+00
A14 1.88154E-15 1.56035E-16
A15 0.00000E+00 0.00000E+00
A16 -1.64881E-18 2.89754E-19
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[各種データ]
INF 235mm
焦点距離 12.40 11.96
Fナンバー 2.93 2.92
全画角2ω 122.09 122.32
像高Y 21.63 21.63
レンズ全長 138.00 138.00

[可変間隔データ]
INF 235mm
d0 97.0000
d10 12.8474 15.1419
d12 7.2170 4.9225
BF 20.6500 20.6500

[レンズ群データ]
群 始面 焦点距離
G1 1 -16.09
G2 11 74.95
G3 13 87.94
G4 16 54.92
Next, the data values of the wide-angle lens system according to Example 1 are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Surface number rd nd vd θgF
Object ∞ (d0)
1* 241.4024 3.2000 1.69350 53.18 0.5482
2 23.3123 8.2070
3 38.5643 1.7000 1.72916 54.67 0.5452
4 19.8275 8.8224
5* 200.0000 2.5434 1.59201 67.02 0.5357
6* 26.7842 7.5371
7 -118.3632 1.0000 1.59282 68.63 0.5441
8 42.8041 0.8159
9 40.5914 5.0760 1.84666 23.78 0.6191
10 -186.8107 (d10)
11 86.6211 3.2446 1.80809 22.76 0.6286
12 -197.9453 (d12)
13 54.5103 0.9000 1.94595 17.98 0.6544
14 25.2828 6.2870 1.49875 70.45 0.5306
15 -40.3893 16.1190
16 (aperture) ∞ 1.2400
17 17.1340 4.2324 1.43700 95.10 0.5334
18 -83.8872 0.1500
19 44.1868 0.8000 1.88300 40.80 0.5654
20 11.4873 5.5038 1.59282 68.63 0.5441
21 -136.1840 1.0008
22 -30.5959 0.8000 1.95375 32.32 0.5901
23 16.2153 5.1387 1.92286 20.88 0.6388
24 -120.7700 0.1500
25 39.8254 0.8000 1.88300 40.80 0.5654
26 19.7672 5.5956 1.43700 95.10 0.5334
27 131.7214 1.9846
28* -36.8767 4.4373 1.55332 71.68 0.5402
29* -18.2688 (BF)
Image plane ∞

[Aspherical data]
1 side 5 sides 6 sides
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 3.96084E-04 3.87545E-04
A4 1.39228E-05 -4.86369E-06 1.64723E-05
A5 0.00000E+00 -1.23114E-05 -1.41471E-05
A6 -1.96834E-08 1.92467E-06 2.11783E-06
A7 0.00000E+00 -7.83284E-08 -6.88454E-08
A8 2.14254E-11 -2.09159E-09 -4.78835E-09
A9 0.00000E+00 1.17517E-10 2.45388E-10
A10 -1.32950E-14 6.33871E-12 6.66772E-12
A11 0.00000E+00 -8.86848E-14 -3.83297E-13
A12 3.20944E-18 -1.80523E-14 -1.29749E-14
A13 0.00000E+00 2.41581E-16 9.47100E-16
A14 7.49790E-22 6.06966E-18 8.12948E-17
A15 0.00000E+00 6.95705E-19 -1.00422E-17
A16 -4.07573E-25 -2.41565E-20 2.66857E-19
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

28 sides 29 sides
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 -6.62860E-06 3.58590E-05
A5 0.00000E+00 0.00000E+00
A6 5.55257E-07 2.86133E-07
A7 0.00000E+00 0.00000E+00
A8 -7.70699E-09 -1.83812E-09
A9 0.00000E+00 0.00000E+00
A10 8.98065E-11 2.09716E-11
A11 0.00000E+00 0.00000E+00
A12 -6.20915E-13 -1.20711E-13
A13 0.00000E+00 0.00000E+00
A14 1.88154E-15 1.56035E-16
A15 0.00000E+00 0.00000E+00
A16 -1.64881E-18 2.89754E-19
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[Various data]
INF 235mm
Focal length 12.40 11.96
F number 2.93 2.92
Full angle of view 2ω 122.09 122.32
Image height Y 21.63 21.63
Total lens length 138.00 138.00

[Variable interval data]
INF 235mm
d0 97.0000
d10 12.8474 15.1419
d12 7.2170 4.9225
BF 20.6500 20.6500

[Lens group data]
Focal length of front surface
G1 1 -16.09
G2 11 74.95
G3 13 87.94
G4 16 54.92

図6は、本発明の実施例2の広角レンズ系のレンズ構成図である。
実施例2は物体側から順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。特許請求の範囲において、第2レンズ群G2は合焦レンズ群GFに、第3レンズ群G3は絞り前側レンズ群GPに、第4レンズ群G4は後続レンズ群GRに、それぞれ相当する。第3レンズ群G3と第4レンズ群G4の間には開口絞りSが配置される。
FIG. 6 is a lens configuration diagram of a wide-angle lens system according to a second embodiment of the present invention.
In the second embodiment, in order from the object side, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group having a positive refractive power are arranged in order. It is composed of a lens group G4. In the claims, the second lens group G2 corresponds to the focusing lens group GF, the third lens group G3 corresponds to the front lens group GP, and the fourth lens group G4 corresponds to the subsequent lens group GR. An aperture stop S is arranged between the third lens group G3 and the fourth lens group G4.

第1レンズ群G1は、物体側から順に物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸レンズL4と両凹レンズL5からなる接合レンズとから構成されており、負メニスカスレンズL1の物体側のレンズ面および負メニスカスレンズL3の両側のレンズ面は所定の非球面形状となっている。 The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the object side, a negative meniscus lens L2 having a convex surface directed toward the object side, and a negative meniscus lens L3 having a convex surface directed toward the object side. The cemented lens includes a biconvex lens L4 and a biconcave lens L5, and the object-side lens surface of the negative meniscus lens L1 and the lens surfaces on both sides of the negative meniscus lens L3 have a predetermined aspherical shape.

第2レンズ群G2は、物体側から順に物体側に凸面を向けた負メニスカスレンズL6と物体側に凸面を向けた正メニスカスレンズL7からなる接合レンズのみから構成されている。第2レンズ群G2は、無限遠物体距離から近距離へのフォーカシングに際して全体が像面側へ移動する。 The second lens group G2 is composed of only a cemented lens including a negative meniscus lens L6 having a convex surface facing the object side and a positive meniscus lens L7 having a convex surface facing the object side in order from the object side. The entire second lens group G2 moves toward the image plane when focusing from an infinite object distance to a short distance.

第3レンズ群G3は、物体側から順に両凸レンズL8と像側に凸面を向けた負メニスカスレンズL9からなる接合レンズと、両凹レンズL10と物体側に凸面を向けた正メニスカスレンズL11からなる接合レンズとから構成されている。 The third lens group G3 includes, in order from the object side, a cemented lens including a biconvex lens L8 and a negative meniscus lens L9 having a convex surface facing the image side, and a biconcave lens L10 and a cemented lens including a positive meniscus lens L11 having a convex surface facing the object side. It is composed of a lens.

第4レンズ群G4は、両凸レンズL12と、物体側に凸面を向けた負メニスカスレンズL13と両凸レンズL14からなる接合レンズと、両凹レンズL15と両凸レンズL16からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL17と物体側に凸面を向けた正メニスカスレンズL18からなる接合レンズと、像側に凸面を向けた正メニスカスレンズL19とから構成されており、正メニスカスレンズL19の両側のレンズ面は所定の非球面形状となっている。 The fourth lens group G4 includes a biconvex lens L12, a cemented lens including a negative meniscus lens L13 having a convex surface facing the object side and a biconvex lens L14, a cemented lens including a biconcave lens L15 and a biconvex lens L16, and a convex surface facing the object side. And a positive meniscus lens L19 having a convex surface facing the object side, and a positive meniscus lens L19 having a convex surface facing the image side. The positive meniscus lens L19 is provided on both sides of the positive meniscus lens L19. The lens surface has a predetermined aspherical shape.

続いて以下に実施例2に係る広角レンズ系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd θgF
物面 ∞ (d0)
1* 195.9417 3.2000 1.69350 53.18 0.5482
2 23.7947 8.7009
3 41.6571 1.7000 1.59282 68.63 0.5441
4 20.3017 8.7661
5* 42.9707 1.8800 1.59201 67.02 0.5357
6* 18.6714 2.1615
7 25.9266 8.7879 1.73800 32.33 0.5900
8 -122.9122 2.5119 1.49700 81.61 0.5388
9 22.5008 (d9)
10 45.9713 0.7000 2.00100 29.13 0.5994
11 19.4356 4.9952 1.75211 25.05 0.6191
12 1135.1796 (d12)
13 39.2517 6.8231 1.91082 35.25 0.5821
14 -32.3189 0.8000 1.92286 20.88 0.6388
15 -63.4783 0.1500
16 -4228.6223 0.8997 2.00100 29.13 0.5994
17 17.2585 5.1050 1.59349 67.00 0.5367
18 102.0084 3.0465
19(絞り) ∞ 1.2401
20 26.6323 5.3875 1.55032 75.50 0.5400
21 -55.3972 0.1500
22 49.9222 0.8204 1.76200 40.10 0.5765
23 13.7704 7.0770 1.55032 75.50 0.5400
24 -206.3994 1.3536
25 -38.5692 0.8000 1.73800 32.33 0.5900
26 20.4418 6.2310 1.92286 20.88 0.6388
27 -104.7632 0.1500
28 46.4569 1.2000 1.88300 40.80 0.5654
29 17.3261 6.6073 1.49700 81.61 0.5388
30 67.9560 2.4996
31* -63.5168 2.1000 1.55332 71.68 0.5402
32* -36.4980 (BF)
像面 ∞

[非球面データ]
1面 5面 6面
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 1.53798E-05 7.71893E-06
A4 1.09498E-05 -8.33552E-06 -1.31340E-05
A5 0.00000E+00 -1.61120E-05 -1.58482E-05
A6 -1.49169E-08 2.19587E-06 2.03336E-06
A7 0.00000E+00 -7.53964E-08 -4.50230E-08
A8 1.81356E-11 -2.08522E-09 -5.10347E-09
A9 0.00000E+00 8.99634E-11 2.16944E-10
A10 -1.53311E-14 5.33609E-12 7.17284E-12
A11 0.00000E+00 -5.70633E-14 -4.89165E-13
A12 8.52650E-18 -1.43875E-14 -1.88852E-14
A13 0.00000E+00 2.85486E-16 1.02649E-15
A14 -2.74756E-21 5.23191E-18 1.17420E-16
A15 0.00000E+00 1.35835E-19 -7.93533E-18
A16 3.88255E-25 -9.19015E-21 1.10858E-19
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

31面 32面
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 -8.97086E-06 2.21736E-05
A5 0.00000E+00 0.00000E+00
A6 4.53591E-08 -1.34097E-07
A7 0.00000E+00 0.00000E+00
A8 1.36616E-09 5.05259E-09
A9 0.00000E+00 0.00000E+00
A10 -3.45161E-11 -7.01283E-11
A11 0.00000E+00 0.00000E+00
A12 2.64699E-13 4.54727E-13
A13 0.00000E+00 0.00000E+00
A14 -9.18965E-16 -1.43241E-15
A15 0.00000E+00 0.00000E+00
A16 1.27991E-18 1.77627E-18
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[各種データ]
INF 250mm
焦点距離 14.48 13.91
Fナンバー 2.07 2.07
全画角2ω 114.25 114.37
像高Y 21.63 21.63
レンズ全長 136.00 136.00

[可変間隔データ]
INF 250mm
d0 114.0000
d9 11.1145 14.3302
d12 8.4578 5.2422
BF 20.5832 20.5831

[レンズ群データ]
群 始面 焦点距離
G1 1 -16.26
G2 10 118.69
G3 13 99.56
G4 19 36.19
Next, the specifications of the wide-angle lens system according to Example 2 are shown below.
Numerical Example 2
Unit: mm
[Surface data]
Surface number rd nd vd θgF
Object ∞ (d0)
1* 195.9417 3.2000 1.69350 53.18 0.5482
2 23.7947 8.7009
3 41.6571 1.7000 1.59282 68.63 0.5441
4 20.3017 8.7661
5* 42.9707 1.8800 1.59201 67.02 0.5357
6* 18.6714 2.1615
7 25.9266 8.7879 1.73800 32.33 0.5900
8 -122.9122 2.5119 1.49700 81.61 0.5388
9 22.5008 (d9)
10 45.9713 0.7000 2.00100 29.13 0.5994
11 19.4356 4.9952 1.75211 25.05 0.6191
12 1135.1796 (d12)
13 39.2517 6.8231 1.91082 35.25 0.5821
14 -32.3189 0.8000 1.92286 20.88 0.6388
15 -63.4783 0.1500
16 -4228.6223 0.8997 2.00100 29.13 0.5994
17 17.2585 5.1050 1.59349 67.00 0.5367
18 102.0084 3.0465
19 (Aperture) ∞ 1.2401
20 26.6323 5.3875 1.55032 75.50 0.5400
21 -55.3972 0.1500
22 49.9222 0.8204 1.76200 40.10 0.5765
23 13.7704 7.0770 1.55032 75.50 0.5400
24 -206.3994 1.3536
25 -38.5692 0.8000 1.73800 32.33 0.5900
26 20.4418 6.2310 1.92286 20.88 0.6388
27 -104.7632 0.1500
28 46.4569 1.2000 1.88300 40.80 0.5654
29 17.3261 6.6073 1.49700 81.61 0.5388
30 67.9560 2.4996
31* -63.5168 2.1000 1.55332 71.68 0.5402
32* -36.4980 (BF)
Image plane ∞

[Aspherical data]
1 side 5 sides 6 sides
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 1.53798E-05 7.71893E-06
A4 1.09498E-05 -8.33552E-06 -1.31340E-05
A5 0.00000E+00 -1.61120E-05 -1.58482E-05
A6 -1.49169E-08 2.19587E-06 2.03336E-06
A7 0.00000E+00 -7.53964E-08 -4.50230E-08
A8 1.81356E-11 -2.08522E-09 -5.10347E-09
A9 0.00000E+00 8.99634E-11 2.16944E-10
A10 -1.53311E-14 5.33609E-12 7.17284E-12
A11 0.00000E+00 -5.70633E-14 -4.89165E-13
A12 8.52650E-18 -1.43875E-14 -1.88852E-14
A13 0.00000E+00 2.85486E-16 1.02649E-15
A14 -2.74756E-21 5.23191E-18 1.17420E-16
A15 0.00000E+00 1.35835E-19 -7.93533E-18
A16 3.88255E-25 -9.19015E-21 1.10858E-19
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

31 faces 32 faces
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 -8.97086E-06 2.21736E-05
A5 0.00000E+00 0.00000E+00
A6 4.53591E-08 -1.34097E-07
A7 0.00000E+00 0.00000E+00
A8 1.36616E-09 5.05259E-09
A9 0.00000E+00 0.00000E+00
A10 -3.45161E-11 -7.01283E-11
A11 0.00000E+00 0.00000E+00
A12 2.64699E-13 4.54727E-13
A13 0.00000E+00 0.00000E+00
A14 -9.18965E-16 -1.43241E-15
A15 0.00000E+00 0.00000E+00
A16 1.27991E-18 1.77627E-18
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[Various data]
INF 250mm
Focal length 14.48 13.91
F number 2.07 2.07
Full angle of view 2ω 114.25 114.37
Image height Y 21.63 21.63
Total lens length 136.00 136.00

[Variable interval data]
INF 250mm
d0 114.0000
d9 11.1145 14.3302
d12 8.4578 5.2422
BF 20.5832 20.5831

[Lens group data]
Focal length of front surface
G1 1 -16.26
G2 10 118.69
G3 13 99.56
G4 19 36.19

図11は、本発明の実施例3の広角レンズ系のレンズ構成図である。
実施例3は物体側から順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。特許請求の範囲において、第2レンズ群G2は合焦レンズ群GFに、第3レンズ群G3は絞り前側レンズ群GPに、第4レンズ群G4は後続レンズ群GRに、それぞれ相当する。第3レンズ群G3と第4レンズ群G4の間には開口絞りSが配置される。
FIG. 11 is a lens configuration diagram of a wide-angle lens system according to a third embodiment of the present invention.
In the third embodiment, in order from the object side, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group having a positive refractive power are arranged. It is composed of a lens group G4. In the claims, the second lens group G2 corresponds to the focusing lens group GF, the third lens group G3 corresponds to the front lens group GP, and the fourth lens group G4 corresponds to the subsequent lens group GR. An aperture stop S is arranged between the third lens group G3 and the fourth lens group G4.

第1レンズ群G1は、物体側から順に物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた正メニスカスレンズL4と両凹レンズL5からなる接合レンズとから構成されており、負メニスカスレンズL1の物体側のレンズ面および負メニスカスレンズL3の両側のレンズ面は所定の非球面形状となっている。 The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the object side, a negative meniscus lens L2 having a convex surface directed toward the object side, and a negative meniscus lens L3 having a convex surface directed toward the object side. The cemented lens is composed of a positive meniscus lens L4 having a convex surface directed toward the object side and a biconcave lens L5. The object side lens surface of the negative meniscus lens L1 and the lens surfaces on both sides of the negative meniscus lens L3 have a predetermined non-surface. It has a spherical shape.

第2レンズ群G2は、両凸レンズL6のみから構成されている。第2レンズ群G2は、無限遠物体距離から近距離へのフォーカシングに際して全体が像面側へ移動する。 The second lens group G2 is composed of only a biconvex lens L6. The entire second lens group G2 moves toward the image plane when focusing from an infinite object distance to a short distance.

第3レンズ群G3は、物体側から順に両凸レンズL7と像側に凸面を向けた負メニスカスレンズL8からなる接合レンズと、物体側から順に物体側に凸面を向けた負メニスカスレンズL9と物体側に凸面を向けた正メニスカスレンズL10からなる接合レンズとから構成されている。 The third lens group G3 includes a cemented lens including a biconvex lens L7 and a negative meniscus lens L8 having a convex surface facing the image side in order from the object side, a negative meniscus lens L9 having a convex surface facing the object side in order from the object side, and an object side. And a cemented lens made up of a positive meniscus lens L10 having a convex surface facing toward.

第4レンズ群G4は、両凸レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸レンズL13からなる接合レンズと、両凹レンズL14と物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL16と物体側に凸面を向けた正メニスカスレンズL17からなる接合レンズと、像側に凸面を向けた正メニスカスレンズL18とから構成されており、正メニスカスレンズL18の両側のレンズ面は所定の非球面形状となっている。 The fourth lens group G4 includes a biconvex lens L11, a cemented lens including a negative meniscus lens L12 having a convex surface facing the object side and a biconvex lens L13, a biconcave lens L14, and a positive meniscus lens L15 having a convex surface facing the object side. It is composed of a cemented lens, a cemented lens including a negative meniscus lens L16 having a convex surface facing the object side and a positive meniscus lens L17 having a convex surface facing the object side, and a positive meniscus lens L18 having a convex surface facing the image side. The lens surfaces on both sides of the positive meniscus lens L18 have a predetermined aspherical shape.

続いて以下に実施例3に係る広角レンズ系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd θgF
物面 ∞ (d0)
1* 849.1163 2.8000 1.69350 53.18 0.5482
2 19.6236 7.4707
3 35.9667 1.4000 1.59282 68.63 0.5441
4 19.7210 6.0194
5* 59.3395 1.6000 1.59201 67.02 0.5357
6* 25.4051 2.5047
7 25.0260 5.2707 1.85478 24.80 0.6122
8 96.5171 1.0000 1.49700 81.61 0.5388
9 21.9259 (d9)
10 96.0477 2.3841 1.85478 24.80 0.6122
11 -242.6398 (d11)
12 74.6974 3.7509 1.91082 35.25 0.5821
13 -33.6505 0.8000 1.92286 20.88 0.6388
14 -676.6977 0.1500
15 43.0699 0.8000 2.00100 29.13 0.5994
16 14.2265 3.9907 1.62588 35.70 0.5893
17 63.3228 6.8770
18(絞り) ∞ 1.3823
19 27.5631 4.4716 1.59282 68.63 0.5441
20 -38.3697 0.1533
21 33.3900 0.8026 1.65412 39.68 0.5737
22 12.3351 7.2043 1.43700 95.10 0.5334
23 -54.2903 0.1500
24 -84.0632 0.8000 1.91650 31.60 0.5911
25 15.3996 5.6836 1.92286 20.88 0.6388
26 182.8948 1.8864
27 44.2530 0.9287 1.88300 40.80 0.5654
28 18.1279 5.5388 1.49700 81.61 0.5388
29 72.9406 2.7236
30* -41.5691 2.1000 1.55332 71.68 0.5402
31* -26.8676 (BF)
像面 ∞

[非球面データ]
1面 5面 6面
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 3.59687E-04 3.63449E-04
A4 2.10702E-05 -1.93430E-05 -8.55151E-06
A5 0.00000E+00 -1.58772E-05 -1.62058E-05
A6 -4.16087E-08 1.97981E-06 2.03396E-06
A7 0.00000E+00 -5.14786E-08 -4.15225E-08
A8 6.51551E-11 -2.04742E-09 -4.92964E-09
A9 0.00000E+00 3.84799E-11 2.24165E-10
A10 -6.80917E-14 4.79188E-12 6.87069E-12
A11 0.00000E+00 -3.09444E-14 -5.43308E-13
A12 4.40973E-17 -1.12272E-14 -2.32099E-14
A13 0.00000E+00 6.16816E-17 9.69892E-16
A14 -1.55863E-20 1.70673E-17 1.25320E-16
A15 0.00000E+00 7.12006E-19 -6.17303E-18
A16 2.22773E-24 -4.65080E-20 5.64750E-20
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

30面 31面
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 5.93702E-06 3.90522E-05
A5 0.00000E+00 0.00000E+00
A6 -1.67148E-07 -9.34398E-08
A7 0.00000E+00 0.00000E+00
A8 -2.72131E-10 5.75285E-10
A9 0.00000E+00 0.00000E+00
A10 -4.83247E-12 -2.41802E-11
A11 0.00000E+00 0.00000E+00
A12 2.07742E-13 3.26236E-13
A13 0.00000E+00 0.00000E+00
A14 -1.51310E-15 -1.64233E-15
A15 0.00000E+00 0.00000E+00
A16 3.48428E-18 2.80959E-18
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[各種データ]
INF 200mm
焦点距離 14.48 13.61
Fナンバー 2.91 2.91
全画角2ω 114.26 115.28
像高Y 21.63 21.63
レンズ全長 120.00 120.00

[可変間隔データ]
INF 200mm
d0 80.0000
d9 10.9444 14.3558
d11 8.0122 4.6008
BF 20.4000 20.4000

[レンズ群データ]
群 始面 焦点距離
G1 1 -16.40
G2 10 80.76
G3 12 750.71
G4 18 30.97
Next, the data values of the wide-angle lens system according to Example 3 are shown below.
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd θgF
Object ∞ (d0)
1* 849.1163 2.8000 1.69350 53.18 0.5482
2 19.6236 7.4707
3 35.9667 1.4000 1.59282 68.63 0.5441
4 19.7210 6.0194
5* 59.3395 1.6000 1.59201 67.02 0.5357
6* 25.4051 2.5047
7 25.0260 5.2707 1.85478 24.80 0.6122
8 96.5171 1.0000 1.49700 81.61 0.5388
9 21.9259 (d9)
10 96.0477 2.3841 1.85478 24.80 0.6122
11 -242.6398 (d11)
12 74.6974 3.7509 1.91082 35.25 0.5821
13 -33.6505 0.8000 1.92286 20.88 0.6388
14 -676.6977 0.1500
15 43.0699 0.8000 2.00100 29.13 0.5994
16 14.2265 3.9907 1.62588 35.70 0.5893
17 63.3228 6.8770
18 (aperture) ∞ 1.3823
19 27.5631 4.4716 1.59282 68.63 0.5441
20 -38.3697 0.1533
21 33.3900 0.8026 1.65412 39.68 0.5737
22 12.3351 7.2043 1.43700 95.10 0.5334
23 -54.2903 0.1500
24 -84.0632 0.8000 1.91650 31.60 0.5911
25 15.3996 5.6836 1.92286 20.88 0.6388
26 182.8948 1.8864
27 44.2530 0.9287 1.88300 40.80 0.5654
28 18.1279 5.5388 1.49700 81.61 0.5388
29 72.9406 2.7236
30* -41.5691 2.1000 1.55332 71.68 0.5402
31* -26.8676 (BF)
Image plane ∞

[Aspherical data]
1 side 5 sides 6 sides
K 0.00000E+00 0.00000E+00 0.00000E+00
A3 0.00000E+00 3.59687E-04 3.63449E-04
A4 2.10702E-05 -1.93430E-05 -8.55151E-06
A5 0.00000E+00 -1.58772E-05 -1.62058E-05
A6 -4.16087E-08 1.97981E-06 2.03396E-06
A7 0.00000E+00 -5.14786E-08 -4.15225E-08
A8 6.51551E-11 -2.04742E-09 -4.92964E-09
A9 0.00000E+00 3.84799E-11 2.24165E-10
A10 -6.80917E-14 4.79188E-12 6.87069E-12
A11 0.00000E+00 -3.09444E-14 -5.43308E-13
A12 4.40973E-17 -1.12272E-14 -2.32099E-14
A13 0.00000E+00 6.16816E-17 9.69892E-16
A14 -1.55863E-20 1.70673E-17 1.25320E-16
A15 0.00000E+00 7.12006E-19 -6.17303E-18
A16 2.22773E-24 -4.65080E-20 5.64750E-20
A17 0.00000E+00 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00 0.00000E+00

30 side 31 side
K 0.00000E+00 0.00000E+00
A3 0.00000E+00 0.00000E+00
A4 5.93702E-06 3.90522E-05
A5 0.00000E+00 0.00000E+00
A6 -1.67148E-07 -9.34398E-08
A7 0.00000E+00 0.00000E+00
A8 -2.72131E-10 5.75285E-10
A9 0.00000E+00 0.00000E+00
A10 -4.83247E-12 -2.41802E-11
A11 0.00000E+00 0.00000E+00
A12 2.07742E-13 3.26236E-13
A13 0.00000E+00 0.00000E+00
A14 -1.51310E-15 -1.64233E-15
A15 0.00000E+00 0.00000E+00
A16 3.48428E-18 2.80959E-18
A17 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A19 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00

[Various data]
INF 200mm
Focal length 14.48 13.61
F number 2.91 2.91
Full angle of view 2ω 114.26 115.28
Image height Y 21.63 21.63
Total lens length 120.00 120.00

[Variable interval data]
INF 200mm
d0 80.0000
d9 10.9444 14.3558
d11 8.0122 4.6008
BF 20.4000 20.4000

[Lens group data]
Focal length of front surface
G1 1 -16.40
G2 10 80.76
G3 12 75 0.71
G4 18 30.97

以下に上記の各実施例に対応する条件式対応値を示す。
条件式/実施例 EX1 EX2 EX3
(1) 0.40<DPS/HIM 0.77 0.89 2.78
(2)−1.00<MR^2×(1−MF^2)<−0.30 -0.56 -0.46 -0.60
(3) 0.05<f/fF<0.30 0.17 0.12 0.18
(4) 0.01<f/fP<0.20 0.14 0.15 0.02
The values corresponding to the conditional expressions corresponding to the above embodiments are shown below.
Conditional expression/Example EX1 EX2 EX3
(1) 0.40<DPS/HIM 0.77 0.89 2.78
(2)-1.00 <MR^2 x (1-MF^2) <-0.30 -0.56 -0.46 -0.60
(3) 0.05<f/fF<0.30 0.17 0.12 0.18
(4) 0.01<f/fP<0.20 0.14 0.15 0.02

S:開口絞り
I:像面
G1:第1レンズ群
GF:合焦レンズ群
GP:絞り前側レンズ群
GR:後続レンズ群
C C線(波長λ=656.3nm)
d d線(波長λ=587.6nm)
g g線(波長λ=435.8nm)
Y 像高
ΔS サジタル像面
ΔM メジオナル像面

S: Aperture stop I: Image plane G1: First lens group GF: Focusing lens group GP: Front lens group GR: Subsequent lens group C C line (wavelength λ=656.3 nm)
d d line (wavelength λ=587.6 nm)
g g line (wavelength λ=435.8 nm)
Y Image height ΔS Sagittal image plane ΔM Mesional image plane

Claims (6)

物体側より順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有し合焦に際して移動する合焦レンズ群GFと、正の屈折力を有する絞り前側レンズ群GPと、開口絞りSと、正の屈折力を有する後続レンズ群GRより構成され、
以下の条件式を満足することを特徴とする広角レンズ系。
(1)0.40 < DPS/HIM
ただし、
DPS:無限遠物体合焦時における、前記絞り前側レンズ群GPの像側主点の位置から前記開口絞りSまでの光軸上の距離
HIM:無限遠物体合焦時における最大像高
In order from the object side, a first lens group G1 having a negative refractive power, a focusing lens group GF having a positive refractive power and moving at the time of focusing, and a diaphragm front lens group GP having a positive refractive power, It is composed of an aperture stop S and a subsequent lens group GR having a positive refractive power,
A wide-angle lens system characterized by satisfying the following conditional expression.
(1) 0.40 <DPS/HIM
However,
DPS: distance on the optical axis from the position of the image-side principal point of the front lens group GP of the diaphragm to the aperture stop S when focusing an object at infinity HIM: maximum image height when focusing an object at infinity
以下の条件式を満足することを特徴とする請求項1に記載の広角レンズ系。
(2)−1.00<MR^2×(1−MF^2)<−0.30
ただし、
MF:無限遠物体合焦時における前記合焦レンズ群GFの横倍率
MR:無限遠物体合焦時における前記絞り前側レンズ群GPから最も像側の光学面までの合成横倍率
The wide-angle lens system according to claim 1, wherein the following conditional expression is satisfied.
(2)-1.00<MR^2*(1-MF^2)<-0.30
However,
MF: Lateral magnification of the focusing lens group GF when focusing on an object at infinity MR: Composite lateral magnification from the front lens group GP of the diaphragm to the optical surface closest to the image when focusing on an object at infinity
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の広角レンズ系。
(3)0.05 < f/fF < 0.30
(4)0.01 < f/fP < 0.20
ただし、
f:無限遠撮影時のレンズ全系の焦点距離
fF:前記合焦レンズ群GFの焦点距離
fP:前記絞り前側レンズ群GPの焦点距離
The wide-angle lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
(3) 0.05 <f/fF <0.30
(4) 0.01 <f/fP <0.20
However,
f: focal length of the entire lens system at infinity shooting fF: focal length of the focusing lens unit GF fP: focal length of the front lens unit GP of the diaphragm
前記第1レンズ群G1は負の屈折力を有するレンズを4枚以上有し、その内3枚以上が物体側に凸の面を向けたメニスカスレンズであることを特徴とする請求項1乃至請求項3のいずれかに記載の広角レンズ系。
The first lens group G1 has four or more lenses having a negative refractive power, and three or more of them are meniscus lenses having a convex surface facing the object side. Item 4. The wide-angle lens system according to any one of items 3.
前記後続レンズ群GRは、接合面が物体側に凸面を向けており、かつ物体側の媒質の屈折率が像面側の媒質の屈折率より高いような接合レンズを2組以上有することを特徴とする請求項1乃至請求項4のいずれかに記載の広角レンズ系。
The subsequent lens group GR has a cemented surface with a convex surface facing the object side, and has two or more cemented lenses in which the refractive index of the object-side medium is higher than the refractive index of the image-side medium. The wide-angle lens system according to any one of claims 1 to 4.
前記後続レンズ群GRは、その最も像面側のレンズが非球面を有することを特徴とする請求項1乃至請求項5のいずれかに記載の広角レンズ系。 The wide-angle lens system according to any one of claims 1 to 5, wherein the lens closest to the image plane of the subsequent lens group GR has an aspherical surface.
JP2019020512A 2019-02-07 2019-02-07 Wide-angle lens system Active JP7162883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019020512A JP7162883B2 (en) 2019-02-07 2019-02-07 Wide-angle lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019020512A JP7162883B2 (en) 2019-02-07 2019-02-07 Wide-angle lens system

Publications (2)

Publication Number Publication Date
JP2020129022A true JP2020129022A (en) 2020-08-27
JP7162883B2 JP7162883B2 (en) 2022-10-31

Family

ID=72174535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020512A Active JP7162883B2 (en) 2019-02-07 2019-02-07 Wide-angle lens system

Country Status (1)

Country Link
JP (1) JP7162883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755806A (en) * 2022-06-10 2022-07-15 深圳市雷影光电科技有限公司 Large-aperture telephoto lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121945A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2016184136A (en) * 2015-03-27 2016-10-20 株式会社シグマ Fish-eye lens
JP2017122743A (en) * 2014-05-19 2017-07-13 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
JP2018010219A (en) * 2016-07-15 2018-01-18 株式会社ニコン Variable power optical system, optical instrument, and manufacturing method for variable power optical system
WO2019131748A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device
WO2019131749A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122743A (en) * 2014-05-19 2017-07-13 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
WO2016121945A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2016184136A (en) * 2015-03-27 2016-10-20 株式会社シグマ Fish-eye lens
JP2018010219A (en) * 2016-07-15 2018-01-18 株式会社ニコン Variable power optical system, optical instrument, and manufacturing method for variable power optical system
WO2019131748A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device
WO2019131749A1 (en) * 2017-12-28 2019-07-04 株式会社nittoh Lens system and imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755806A (en) * 2022-06-10 2022-07-15 深圳市雷影光电科技有限公司 Large-aperture telephoto lens
CN114755806B (en) * 2022-06-10 2022-09-02 深圳市雷影光电科技有限公司 Large-aperture telephoto lens

Also Published As

Publication number Publication date
JP7162883B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
US11520127B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US7551367B2 (en) Wide-angle lens, optical apparatus and method for focusing
CN109425973B (en) Zoom lens and imaging device
US20080019018A1 (en) Zoom lens system, imaging apparatus, method for vibration reduction, and method for varying focal length
JP2008304765A (en) Zoom lens and image projection device using the same
US20230258907A1 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
US20160202457A1 (en) Wide-Angle Zoom Lens and Image Pickup Apparatus
US20230324657A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US9477070B2 (en) Zoom lens and imaging apparatus
US11415787B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US20150153549A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP2016164629A (en) Zoom lens and image capturing device
JP2005084649A (en) Wide angle zoom lens
JP5006637B2 (en) Zoom lens and image projection apparatus having the same
JP2018005099A (en) Large-aperture lens
JP6173975B2 (en) Zoom lens and imaging device
WO2013031180A1 (en) Zoom lens and imaging device
JP5787999B2 (en) Zoom lens and imaging device
JP7039010B2 (en) Macro lens
JP2010122536A (en) Zoom lens
JP6150302B2 (en) Zoom lens and imaging device
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP7160326B2 (en) Wide-angle lens system
JP2005084647A (en) Zoom lens
JP2005084648A (en) Wide angle zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R150 Certificate of patent or registration of utility model

Ref document number: 7162883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150