JP7123383B2 - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP7123383B2
JP7123383B2 JP2018138099A JP2018138099A JP7123383B2 JP 7123383 B2 JP7123383 B2 JP 7123383B2 JP 2018138099 A JP2018138099 A JP 2018138099A JP 2018138099 A JP2018138099 A JP 2018138099A JP 7123383 B2 JP7123383 B2 JP 7123383B2
Authority
JP
Japan
Prior art keywords
lens
object side
refractive power
lens element
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138099A
Other languages
Japanese (ja)
Other versions
JP2019215510A (en
Inventor
健太 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Publication of JP2019215510A publication Critical patent/JP2019215510A/en
Application granted granted Critical
Publication of JP7123383B2 publication Critical patent/JP7123383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、デジタルカメラ、銀塩カメラ及びビデオカメラ等に最適であり、特に、画角が48°~77°程度で、F値がF1.2程度の、バックフォーカスの短いミラーレスカメラに最適な結像光学系に関する。 The present invention is most suitable for digital cameras, film cameras, video cameras, and the like, and is particularly suitable for mirrorless cameras with a field angle of about 48° to 77° and an F value of about F1.2, and with a short back focus. image forming optical system.

一般的にF1.2程度のF値が明るい大口径レンズは、F値の暗いレンズに比べ入射瞳径が大きくなるため、球面収差や軸上色収差の補正が難しくなる。一方、昨今のデジタルカメラはイメージセンサーが高画素化しているため、特に軸上色収差が補正不足な結像光学系の場合、結像面での像の色付きや、アウトフォーカス部でのボケ像への色付きがより顕著なものとなってしまう。このような問題を解決するためには軸上色収差をより小さくなるよう補正することが重要となる。 In general, a large-aperture lens with a bright F-number of about F1.2 has a larger entrance pupil diameter than a lens with a darker F-number, making it difficult to correct spherical aberration and longitudinal chromatic aberration. On the other hand, since the image sensors of recent digital cameras have increased the number of pixels, especially in the case of an imaging optical system in which axial chromatic aberration is insufficiently corrected, the image on the imaging plane becomes colored and the out-of-focus part becomes blurred. becomes more conspicuous. In order to solve such a problem, it is important to correct axial chromatic aberration so as to reduce it.

以下の特許文献において従来の結像光学系が開示されている。 The following patent documents disclose conventional imaging optical systems.

特許文献1では、画角が45°程度で、F値がF1.2程度の光学系が開示されている。 Patent Document 1 discloses an optical system having an angle of view of about 45° and an F value of about F1.2.

また、特許文献2では、画角が49°程度で、F値がF1.4程度の光学系が開示されている。 Further, Patent Document 2 discloses an optical system having an angle of view of about 49° and an F value of about F1.4.

特開2007ー333790号公報JP-A-2007-333790 特開2016-38418号公報JP 2016-38418 A

しかしながら、特許文献1で開示されている結像光学系は、軸上色収差補正が不十分であり、また、バックフォーカスが長く、ミラーレスカメラに最適な結像光学系とはなっていない。 However, the imaging optical system disclosed in Patent Literature 1 is insufficient in longitudinal chromatic aberration correction and has a long back focus, and is not an optimal imaging optical system for mirrorless cameras.

また、特許文献2で開示されている結像光学系は、バックフォーカスが短く、ミラーレスカメラには最適な結像光学系である。しかし、F値がF1.4程度であるため、F値をF1.2程度まで明るくしようとした場合、開示されている結像光学系では、球面収差や軸上色収差の補正が困難である。 Further, the imaging optical system disclosed in Patent Document 2 has a short back focus and is an optimum imaging optical system for mirrorless cameras. However, since the F-number is about F1.4, it is difficult to correct spherical aberration and axial chromatic aberration with the disclosed imaging optical system when trying to increase the F-number to about F1.2.

そこで、本発明は、従来の結像光学系の課題を解決し、F値がF1.2程度の、バックフォーカスを短くすることで、光学系の全長を抑えつつ、軸上色収差が良好に補正され、ミラーレスカメラに最適な結像光学系を提供することを目的とする。 Therefore, the present invention solves the problem of the conventional imaging optical system, and by shortening the back focus of the F value of about F1.2, it is possible to suppress the overall length of the optical system and satisfactorily correct axial chromatic aberration. It is an object of the present invention to provide an optimal imaging optical system for a mirrorless camera.

上記の課題を解決するために、本発明の結像光学系は、物体側から像側へ順に、正の屈折力を有する第1レンズ群L1と、正の屈折力を有する第2レンズ群L2と、負の屈折力を有する第3レンズ群L3と、からなり、前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負レンズ素子を配し、物体側に凸面を向けた正レンズ素子を前記負レンズ素子の像側に隣接するよう配し、前記第2レンズ群L2は、開口絞りSを含み、フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1と、前記第3レンズ群L3とが像面に対して固定であり、レンズ全系のうち、前記開口絞りSより物体側に配される全てのレンズ素子群をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、以下の条件式を満足することを特徴とした。
Y/Bf > 0.70 (1)

Figure 0007123383000001
1.0 < fsf/f < 2.7 (6)
但し、
Yは最大像高、
Bfは第3レンズ群L3の最も像側面の面頂から像面までの距離
fsfは前記レンズ群Lsfの無限遠合焦時の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。
In order to solve the above problems, the imaging optical system of the present invention comprises, in order from the object side to the image side, a first lens unit L1 having positive refractive power and a second lens unit L2 having positive refractive power. and a third lens group L3 having negative refractive power, wherein the first lens group L1 has at least one cemented lens, has a negative lens element closest to the object side, and has a convex surface facing the object side. a positive lens element directed toward the image side of the negative lens element, and the second lens group L2 includes an aperture stop S, and the second lens group L2 moves toward the object side during focusing. In addition, the first lens group L1 and the third lens group L3 are fixed with respect to the image plane, and all the lens element groups arranged on the object side of the aperture stop S in the entire lens system are The lens group Lsf has a positive refractive power and satisfies the following conditional expression.
Y/Bf > 0.70 (1)
Figure 0007123383000001
1.0 < fsf/f < 2.7 (6)
however,
Y is the maximum image height,
Bf is the distance from the vertex of the surface closest to the image side of the third lens unit L3 to the image plane ;
fsf is the focal length of the lens group Lsf when focusing on infinity;
f is the focal length of the entire lens system when focusing at infinity ,
Aci is represented by the following formula.
Aci = φcpi/νdcpi + φcmi/νdcmi
however,
φcpi is the refractive power of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
νdcpi is the Abbe number of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
φcmi is the refractive power of the negative lens element of the i-th cemented lens from the object side included in the first lens group L1;
νdcmi is the Abbe number of the negative lens element of the i-th cemented lens from the object side included in the first lens unit L1.

また、第2の発明は、第1の発明においてさらに、前記第1レンズ群L1の最も像側に位置する正レンズ素子L1pが以下の条件式を満足することを特徴とする結像光学系である。
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p ― 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
A second invention is an imaging optical system according to the first invention, wherein the positive lens element L1p located closest to the image side of the first lens unit L1 further satisfies the following conditional expression: be.
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
however,
ΔPgfL1p is the anomalous dispersion of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 x vdL1p - 0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p;
PgfL1p is the partial dispersion ratio Pgf for the g-line and the F-line of the positive lens element L1p.

また、第3の発明は、第1乃至第2の発明においてさらに、前記第1レンズ群L1の最も物体側の面から、像側に凹面を向けた負レンズ素子の像側の面までをレンズ成分L1fとし、前記レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする結像光学系である。
-3.53 < f1f/f < -0.60 (5)
但し、
f1fは前記レンズ成分L1fの焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
The third invention is based on the first and second inventions, and further includes a lens element extending from the most object-side surface of the first lens unit L1 to the image-side surface of the negative lens element having a concave surface facing the image side. The imaging optical system is characterized in that the lens component L1f has a negative refractive power and satisfies the following conditional expression.
-3.53 < f1f/f < -0.60 (5)
however,
f1f is the focal length of the lens component L1f;
f is the focal length of the entire lens system when focusing on infinity.

また、第の発明は、第1乃至第3の発明においてさらに、以下の条件式を満足することを特徴とする結像光学系である。
1.0 < f2/f < 2.1 (7)
但し、
f2は前記第2レンズ群L2の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
A fourth invention is an imaging optical system according to the first to third inventions, characterized by further satisfying the following conditional expression.
1.0 < f2/f < 2.1 (7)
however,
f2 is the focal length of the second lens group L2;
f is the focal length of the entire lens system when focusing on infinity.

また、第の発明は、第1乃至第の発明においてさらに、以下の条件式を満足することを特徴とする結像光学系である。
β1b < 0.37 (8)
但し、
β1bは無限遠合焦時の前記第1レンズ群L1よりも像側に位置するレンズ素子群の横倍率である。
A fifth aspect of the invention is an imaging optical system according to the first to fourth aspects of the invention, characterized by further satisfying the following conditional expression.
β1b < 0.37 (8)
however,
β1b is the lateral magnification of the lens element group located closer to the image side than the first lens group L1 when focusing on infinity.

本発明によれば、従来の結像光学系の課題であった球面収差や軸上色収差を良好に補正し、バックフォーカスの短い、F値がF1.2程度のミラーレスカメラに最適な結像光学系を提供することができる。 According to the present invention, spherical aberration and axial chromatic aberration, which have been problems of conventional imaging optical systems, are satisfactorily corrected, and imaging is optimal for a mirrorless camera with a short back focus and an F value of about F1.2. An optical system can be provided.

本発明の実施例1に係る無限遠合焦時のレンズ構成図である。FIG. 2 is a lens configuration diagram when focusing on infinity according to Example 1 of the present invention; 本発明の実施例1に係る無限遠合焦時の縦収差図である。FIG. 4 is a longitudinal aberration diagram when focusing on infinity according to Example 1 of the present invention; 本発明の実施例1に係る撮影距離2059mmにおける縦収差図である。FIG. 4 is a longitudinal aberration diagram at a shooting distance of 2059 mm according to Example 1 of the present invention; 本発明の実施例1に係る無限遠合焦時の横収差図である。FIG. 4 is a lateral aberration diagram during focusing at infinity according to Example 1 of the present invention; 本発明の実施例1に係る撮影距離2059mmにおける横収差図である。FIG. 4 is a lateral aberration diagram at a shooting distance of 2059 mm according to Example 1 of the present invention; 本発明の実施例2に係る無限遠合焦時のレンズ構成図である。FIG. 10 is a lens configuration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る撮影距離2058mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a shooting distance of 2058 mm according to Example 2 of the present invention; 本発明の実施例2に係る無限遠合焦時の横収差図である。FIG. 10 is a lateral aberration diagram when focusing on infinity according to Example 2 of the present invention; 本発明の実施例2に係る撮影距離2058mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at a shooting distance of 2058 mm according to Example 2 of the present invention; 本発明の実施例3に係る無限遠合焦時のレンズ構成図である。It is a lens configuration diagram at the time of infinity focusing according to Example 3 of the present invention. 本発明の実施例3に係る無限遠合焦時の縦収差図である。FIG. 10 is a longitudinal aberration diagram during focusing at infinity according to Example 3 of the present invention; 本発明の実施例3に係る撮影距離1774mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at a shooting distance of 1774 mm according to Example 3 of the present invention; 本発明の実施例3に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram at the time of focusing at infinity according to Example 3 of the present invention; 本発明の実施例3に係る撮影距離1774mmにおける横収差図である。It is a lateral aberration diagram at a shooting distance of 1774 mm according to Example 3 of the present invention. 本発明の実施例4に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 4 of the present invention; 本発明の実施例4に係る無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram during focusing at infinity according to Example 4 of the present invention; 本発明の実施例4に係る撮影距離1774mmにおける縦収差図である。It is a longitudinal aberration diagram at a shooting distance of 1774 mm according to Example 4 of the present invention. 本発明の実施例4に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram during focusing at infinity according to Example 4 of the present invention; 本発明の実施例4に係る撮影距離1774mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a shooting distance of 1774 mm according to Example 4 of the present invention; 本発明の実施例5に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 5 of the present invention; 本発明の実施例5に係る無限遠合焦時の縦収差図である。FIG. 11 is a longitudinal aberration diagram during focusing at infinity according to Example 5 of the present invention; 本発明の実施例5に係る撮影距離1754mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at a shooting distance of 1754 mm according to Example 5 of the present invention; 本発明の実施例5に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram at the time of focusing on infinity according to Example 5 of the present invention; 本発明の実施例5に係る撮影距離1754mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a shooting distance of 1754 mm according to Example 5 of the present invention; 本発明の実施例6に係る無限遠合焦時のレンズ構成図である。FIG. 11 is a lens configuration diagram when focusing on infinity according to Example 6 of the present invention; 本発明の実施例6に係る無限遠合焦時の縦収差図である。FIG. 12 is a longitudinal aberration diagram during focusing at infinity according to Example 6 of the present invention; 本発明の実施例6に係る撮影距離1281mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at a photographing distance of 1281 mm according to Example 6 of the present invention; 本発明の実施例6に係る無限遠合焦時の横収差図である。FIG. 11 is a lateral aberration diagram during focusing at infinity according to Example 6 of the present invention; 本発明の実施例6に係る撮影距離1281mmにおける横収差図である。FIG. 11 is a lateral aberration diagram at a photographing distance of 1281 mm according to Example 6 of the present invention;

以下に、本発明にかかる光学系の実施例について詳細に説明する。なお、以下の実施例の説明は本発明の光学系の一例を説明したものであり、本発明はその要旨を逸脱しない範囲において本実施例に限定されるものではない。 Examples of the optical system according to the present invention will be described in detail below. It should be noted that the following description of the embodiment is an example of the optical system of the present invention, and the present invention is not limited to the present embodiment without departing from the scope of the invention.

本実施例の結像光学系は、物体側から像側へ順に、正の屈折力を有する第1レンズ群L1と、正の屈折力を有する第2レンズ群L2と、負の屈折力を有する第3レンズ群L3と、からなり、前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負レンズ素子を配し、物体側に凸面を向けた正レンズ素子を前記負レンズ素子の像側に隣接するよう配し、前記第2レンズ群L2は、開口絞りSを含み、フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1と、前記第3レンズ群L3とが像面に対して固定であり、以下の条件式を満足することを特徴とする。
Y/Bf > 0.70 (1)

Figure 0007123383000002
但し、
Yは最大像高、
Bfは第3レンズ群L3の最も像側面の面頂から像面までの距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。 The imaging optical system of this embodiment has, in order from the object side to the image side, a first lens group L1 having positive refractive power, a second lens group L2 having positive refractive power, and a negative refractive power. The first lens unit L1 has at least one cemented lens, has a negative lens element closest to the object side, and has a positive lens element with a convex surface facing the object side. The second lens unit L2 is arranged adjacent to the image side of the negative lens element, and includes an aperture stop S. During focusing, the second lens unit L2 moves toward the object side and the first lens unit L1 moves toward the object side. and the third lens unit L3 are fixed with respect to the image plane, and the following conditional expression is satisfied.
Y/Bf > 0.70 (1)
Figure 0007123383000002
however,
Y is the maximum image height,
Bf is the distance from the apex of the surface closest to the image side of the third lens unit L3 to the image plane;
Aci is represented by the following formula.
Aci = φcpi/νdcpi + φcmi/νdcmi
however,
φcpi is the refractive power of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
νdcpi is the Abbe number of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
φcmi is the refractive power of the negative lens element of the i-th cemented lens from the object side included in the first lens group L1;
νdcmi is the Abbe number of the negative lens element of the i-th cemented lens from the object side included in the first lens unit L1.

なお、F線、d線、C線、の屈折率をそれぞれ、NF、Nd、NCとした場合、アッベ数νdは以下の式で表す。
νd = (Nd-1)/(NF-NC)
When the refractive indices of the F-line, d-line, and C-line are NF, Nd, and NC, respectively, the Abbe number νd is expressed by the following equation.
νd = (Nd-1)/(NF-NC)

第1レンズ群L1の最も物体側に負レンズ素子を配し、物体側に凸面を向けた正レンズ素子を前記負レンズ素子の像側に隣接するよう配することで、レンズ全系の像面湾曲補正、及びコマ収差補正を効果的に行うことができる。またさらに、第1レンズ群L1内に少なくとも1つの接合レンズを配することで、レンズ全系の軸上色収差補正を効果的に行うことができる。 By arranging a negative lens element closest to the object side in the first lens unit L1 and arranging a positive lens element having a convex surface facing the object side so as to be adjacent to the image side of the negative lens element, the image plane of the entire lens system is Curvature correction and coma aberration correction can be effectively performed. Furthermore, by arranging at least one cemented lens in the first lens unit L1, it is possible to effectively correct longitudinal chromatic aberration of the entire lens system.

条件式(1)は、小型化のために、レンズ全系のバックフォーカスを規定したものである。 Conditional expression (1) defines the back focus of the entire lens system for miniaturization.

条件式(1)の下限値を超え、レンズ全系のバックフォーカスが長くなると、レンズ全系の全長が増大するため、小型化に不利となる。 If the lower limit of conditional expression (1) is exceeded and the back focus of the entire lens system becomes long, the total length of the entire lens system increases, which is disadvantageous for downsizing.

なお、上述した条件式(1)について、下限値を0.75に規定することで、前述の効果をより確実にすることができる。 By setting the lower limit of conditional expression (1) to 0.75, the above effect can be more reliably obtained.

条件式(2)は、高性能化のため、第1レンズ群L1に含まれる接合レンズの1次の色消し条件の和を規定したものである。 Conditional expression (2) defines the sum of primary achromatic conditions of the cemented lens included in the first lens unit L1 for high performance.

条件式(2)の上限値を超え、第1レンズ群L1に含まれる接合レンズの色消し条件の和が大きくなると、1次の色消しが不十分となるため、軸上色収差が悪化してしまう。 When the upper limit of conditional expression (2) is exceeded and the sum of the achromatic conditions of the cemented lenses included in the first lens unit L1 becomes large, the first-order achromatization becomes insufficient, and longitudinal chromatic aberration worsens. put away.

なお、条件式(2)の上限値は0.0016に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit of conditional expression (2) to 0.0016, the aforementioned effect can be more reliably obtained.

さらに、第1レンズ群L1の最も像側に位置する正レンズ素子L1pが以下の条件式を満足することを特徴とする。
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p ― 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
Further, the positive lens element L1p located closest to the image side in the first lens unit L1 satisfies the following conditional expression.
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
however,
ΔPgfL1p is the anomalous dispersion of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 x vdL1p - 0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p;
PgfL1p is the partial dispersion ratio Pgf for the g-line and the F-line of the positive lens element L1p.

条件式(3)及び(4)は、高性能化のため、正レンズ素子L1pのアッベ数νdと異常分散性ΔPgfを規定したものである。 Conditional expressions (3) and (4) define the Abbe number νd and the anomalous dispersion ΔPgf of the positive lens element L1p for high performance.

なお、g線、F線、d線、C線、の屈折率をそれぞれ、Ng、NF、Nd、NCとした場合、部分分散比Pgfは以下の式で表す。
Pgf = (Ng-NF)/(NF-NC)
When the refractive indices of g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC, respectively, the partial dispersion ratio Pgf is expressed by the following equation.
Pgf = (Ng-NF)/(NF-NC)

条件式(3)の上限値を超えると共に条件式(4)の下限値を超え、正レンズ素子L1pのアッベ数νdが大きくなると共に異常分散性ΔPgfが小さくなると、特に、2次スペクトルの補正が不足することで、軸上色収差が悪化してしまう。 If the upper limit of conditional expression (3) is exceeded and the lower limit of conditional expression (4) is exceeded, and the Abbe number νd of the positive lens element L1p increases and the anomalous dispersion ΔPgf decreases, correction of the secondary spectrum is particularly difficult. If it is insufficient, axial chromatic aberration will be worsened.

なお、条件式(3)の上限値は23、条件式(4)の下限値を0.0260、に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit of conditional expression (3) to 23 and the lower limit of conditional expression (4) to 0.0260, the above effect can be more reliably achieved.

さらに、前記第1レンズ群L1の最も物体側の面から、像側に凹面を向けた負レンズ素子の像側の面までをレンズ成分L1fとし、前記レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする。
-3.53 < f1f/f < -0.60 (5)
但し、
f1fは前記レンズ成分L1fの焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Further, a lens component L1f is defined from the most object-side surface of the first lens unit L1 to the image-side surface of the negative lens element having a concave surface facing the image side, and the lens component L1f has negative refractive power. , is characterized by satisfying the following conditional expressions.
-3.53 < f1f/f < -0.60 (5)
however,
f1f is the focal length of the lens component L1f;
f is the focal length of the entire lens system when focusing on infinity.

条件式(5)は、小型化のため、レンズ成分L1fの屈折力を規定したものである。 Conditional expression (5) defines the refractive power of the lens component L1f for miniaturization.

条件式(5)の上限値を超え、レンズ成分L1fの屈折力が強くなると、レンズ成分L1fでの発散作用が強くなるため、第1レンズ群L1のうちレンズ成分L1fよりも像側に配するレンズ素子での光線高が高くなり、レンズ径が増大するため、製品径の増加を招いてしまう。 If the upper limit of conditional expression (5) is exceeded and the refractive power of the lens component L1f becomes stronger, the divergence action of the lens component L1f becomes stronger. Since the height of the light rays at the lens element increases and the lens diameter increases, the diameter of the product increases.

条件式(5)の下限値を超え、レンズ成分L1fの屈折力が弱くなると、レンズ成分L1fでの発散作用が弱くなるため、第1レンズ群L1のうちレンズ成分L1fよりも像側に配するレンズ成分での光線高は高くならないが、レンズ成分L1f自体での光線高が高くなり、レンズ径が増大するため、製品径の増大を招いてしまう。 If the lower limit of conditional expression (5) is exceeded and the refractive power of the lens component L1f becomes weak, the divergence effect of the lens component L1f becomes weak. Although the height of light rays at the lens component does not increase, the height of light rays at the lens component L1f itself increases and the diameter of the lens increases, resulting in an increase in the diameter of the product.

なお、条件式(5)上限値を―0.70、下限値を―3.20に限定することで、前述の効果をより確実にすることができる。 By restricting the upper limit of conditional expression (5) to -0.70 and the lower limit to -3.20, the above effects can be more reliably achieved.

さらに、レンズ全系のうち、前記開口絞りSより物体側に配される全てのレンズ素子群をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、以下の条件式を満足することを特徴とする。
1.0 < fsf/f < 2.7 (6)
但し、
fsfは前記レンズ群Lsfの無限遠合焦時の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Further, in the entire lens system, all lens element groups arranged on the object side of the aperture stop S are defined as a lens group Lsf, and the lens group Lsf has a positive refractive power and satisfies the following conditional expression: It is characterized by
1.0 < fsf/f < 2.7 (6)
however,
fsf is the focal length of the lens group Lsf when focusing on infinity;
f is the focal length of the entire lens system when focusing on infinity.

条件式(6)は、小型化と高性能化のため、前記レンズ群Lsfの屈折力を規定したものである。 Conditional expression (6) defines the refractive power of the lens group Lsf for miniaturization and high performance.

条件式(6)の上限値を超え、レンズ群Lsfの屈折力が弱くなると、開口絞りSでのF値光束径が増大するため、F値を維持しようとした場合に絞り径が増大し、絞りユニット径の増大、ひいては製品径の増大に繋がり、小型化に不利となる。 When the upper limit of conditional expression (6) is exceeded and the refractive power of the lens unit Lsf becomes weak, the diameter of the F-number luminous flux at the aperture stop S increases, so the diameter of the aperture increases when trying to maintain the F-number. This leads to an increase in the diameter of the diaphragm unit, which leads to an increase in the diameter of the product, which is disadvantageous for miniaturization.

条件式(6)の下限値を超え、レンズ群Lsfの屈折力が強くなると、開口絞りSでのF値光束径は減少するため、絞りユニット径が減少し、小型化には有利になる。一方、主にレンズ群Lsfで発生する像面湾曲が悪化し、これをレンズ全系で良好に補正することが困難となるため、高性能化に不利となる。 If the lower limit of conditional expression (6) is exceeded and the refractive power of the lens unit Lsf becomes strong, the diameter of the F-number luminous flux at the aperture stop S will decrease, so the diameter of the stop unit will decrease, which is advantageous for miniaturization. On the other hand, the curvature of field, which mainly occurs in the lens unit Lsf, becomes worse, and it becomes difficult to satisfactorily correct this in the entire lens system, which is disadvantageous in achieving high performance.

なお、条件式(6)下限値を1.2、上限値を2.2に限定することで、前述の効果をより確実にすることができる。 By restricting the lower limit of conditional expression (6) to 1.2 and the upper limit to 2.2, the above effect can be more assured.

さらに、以下の条件式を満足することを特徴とする。
1.0 < f2/f < 2.1 (7)
但し、
f2は前記第2レンズ群L2の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
Furthermore, it is characterized by satisfying the following conditional expressions.
1.0 < f2/f < 2.1 (7)
however,
f2 is the focal length of the second lens group L2;
f is the focal length of the entire lens system when focusing on infinity.

条件式(7)は、高性能化と小型化のため、第2レンズ群L2の屈折力を規定したものである。 Conditional expression (7) defines the refractive power of the second lens unit L2 for high performance and miniaturization.

条件式(7)の下限値を超え、第2レンズ群L2の屈折力が強くなると、フォーカシングに際する移動量が小さくなるため、小型化には有利になるが、フォーカシングに際する非点収差や球面収差等、諸収差の変動が増大するだけでなく、製造誤差敏感度が大きくなるため、高性能化に不利となる。 When the lower limit of conditional expression (7) is exceeded and the refractive power of the second lens unit L2 becomes strong, the amount of movement during focusing becomes small, which is advantageous for miniaturization, but astigmatism during focusing. , spherical aberration, etc., and the sensitivity to manufacturing errors increases, which is disadvantageous for achieving high performance.

条件式(7)の上限値を超え、第2レンズ群L2の屈折力が弱くなると、フォーカシングに際する諸収差の変動は軽減するため、高性能化には有利になるが、フォーカシングに際する移動量が増大するため、小型化には不利となる。 If the upper limit of conditional expression (7) is exceeded and the refracting power of the second lens unit L2 is weakened, fluctuations in various aberrations during focusing are reduced, which is advantageous for high performance. Since the amount of movement increases, it is disadvantageous for miniaturization.

なお、上述した条件式(7)について、その下限値は1.1、また上限値は1.8に限定することで、前述の効果をより確実にすることができる。 By restricting the lower limit of conditional expression (7) to 1.1 and the upper limit to 1.8, the above effect can be more reliably achieved.

さらに、以下の条件式を満足することを特徴とする。
β1b < 0.37 (8)
但し、
β1bは無限遠合焦時の前記第1レンズ群L1よりも像側に位置するレンズ素子群の横倍率である。
Furthermore, it is characterized by satisfying the following conditional expressions.
β1b < 0.37 (8)
however,
β1b is the lateral magnification of the lens element group located closer to the image side than the first lens group L1 when focusing on infinity.

条件式(8)は、高性能化のため、第1レンズ群L1よりも像側に位置するレンズ素子群の横倍率を規定したものである。 Conditional expression (8) defines the lateral magnification of the lens element group located closer to the image side than the first lens group L1 in order to improve performance.

条件式(8)の上限値を超え、第1レンズ群L1よりも像側に位置するレンズ素子群の横倍率が大きくなると、第1レンズ群L1で発生した収差が拡大されるため、高性能化には不利となる。 When the lateral magnification of the lens element group located closer to the image side than the first lens unit L1 exceeds the upper limit of conditional expression (8), the aberration generated in the first lens unit L1 is magnified. unfavorable for conversion.

なお、条件式(8)の上限値は0.31、に限定することで、前述の効果をより確実にすることができる。 By limiting the upper limit of conditional expression (8) to 0.31, the aforementioned effect can be more reliably achieved.

以下、本発明にかかる結像光学系の実施例1乃至6の数値データを示す。 Numerical data of Examples 1 to 6 of the imaging optical system according to the present invention are shown below.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。また、BFはバックフォーカスを表し、空気の屈折率n=1.0000はその記載を省略する。 In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between each surface, and nd is the d line (wavelength λ = 587.56 nm) A refractive index and νd indicate the Abbe number for the d-line. Also, BF represents back focus, and the description of the refractive index n=1.0000 of air is omitted.

面番号を付した(絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。 The surface numbered (aperture) indicates the radius of curvature ∞ (infinity) with respect to a plane or an aperture stop.

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10、12次の非球面係数をそれぞれA4、A6、A8、A10、A12と置くとき、非球面の座標が以下の式で表わされるものとする。

Figure 0007123383000003
[Aspheric surface data] shows each coefficient value that gives the aspheric shape of the lens surface marked with * in [Surface data]. As for the shape of the aspherical surface, y is the displacement in the direction orthogonal to the optical axis, z is the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, and K, 4, 6, 8 is the conic coefficient. Let A4, A6, A8, A10, and A12 be the 10th and 12th order aspherical coefficients, respectively, and the coordinates of the aspherical surface are represented by the following equations.
Figure 0007123383000003

[各種データ]には、各焦点距離状態における焦点距離等の値を示している。 [Various data] shows values such as the focal length in each focal length state.

[可変間隔データ]には、各焦点距離状態における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable distance data] shows the variable distance and BF (back focus) values in each focal length state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 [Lens group data] indicates the number of the surface closest to the object side constituting each lens group and the combined focal length of the entire group. In addition, in the values of all the specifications below, unless otherwise specified, millimeters (mm) are used for the focal length f, radius of curvature r, distance between lens surfaces d, and other lengths. The system is not limited to this because the same optical performance can be obtained in both proportional enlargement and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。
さらに図1、6、11、16、21、26に示すレンズ構成図において、Sは開口絞り、Iは像面、LPFはローパスフィルター、中心を通る一点鎖線は光軸である。
In the aberration diagrams corresponding to each example, d, g, and C represent the d-line, g-line, and C-line, respectively, and .DELTA.S and .DELTA.M represent the sagittal image plane and the meridional image plane, respectively.
1, 6, 11, 16, 21, and 26, S is an aperture stop, I is an image plane, LPF is a low-pass filter, and a dashed line passing through the center is an optical axis.

図1は、実施例1に係る結像光学系の無限遠におけるレンズ構成図である。実施例1の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 at infinity. The imaging optical system of Example 1 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing and a second lens unit L1 having a positive refractive power that moves toward the object side during focusing. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズと両凹レンズとで構成されるレンズ成分L1fと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 includes, in order from the object side to the image side, a lens component L1f composed of a concave meniscus lens with a convex surface facing the object side, a convex meniscus lens with a convex surface facing the object side, and a biconcave lens. It is composed of a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、絞りSと、両凹レンズと物体側に凸面を向けた凸メニスカスレンズの接合レンズと両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens whose surface R2 is aspheric, a cemented lens composed of a biconvex lens and a biconcave lens, a diaphragm S, a biconcave lens, and a convex surface facing the object side. It is composed of a cemented meniscus lens, a biconvex lens, and a convex meniscus lens in which both the R1 and R2 surfaces are aspheric and the concave surface faces the object side.

第3レンズ群L3は、物体側から像側へ順に、両凸レンズと、両凹レンズとから構成される。 The third lens unit L3 is composed of a biconvex lens and a biconcave lens in order from the object side to the image side.

続いて、以下に実施例1に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 1 are shown below.

数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 259.2005 3.9656 1.49700 81.61
2 36.0489 1.8284
3 40.4512 6.7840 2.00069 25.46
4 48.7346 13.5960
5 -50.0535 2.0000 1.49700 81.61
6 444.9340 0.1500
7 102.4616 9.9748 1.77250 49.62
8 -57.2347 0.7113
9 -52.7837 1.5000 1.80518 25.46
10 62.5000 11.0746 1.77250 49.62
11 -70.2116 3.1864
12 -72.1569 1.5000 1.92119 23.96
13 90.1742 5.8741 1.77250 49.62
14 -1000.0000 0.1500
15 132.7624 7.8334 1.98612 16.48
16 -112.3961 d16
17 42.1510 10.6553 1.69350 53.20
18* -192.5256 0.4054
19 2870.6010 7.9394 1.59349 67.00
20 -41.6908 1.0000 1.67300 38.26
21 43.2474 6.3397
22(絞り) ∞ 6.8810
23 -30.4885 1.0000 1.69895 30.05
24 152.7244 2.8633 1.55032 75.50
25 683.1561 0.2000
26 72.4204 8.5969 1.77250 49.62
27 -45.9138 3.9524
28* -442.9462 4.3093 1.77250 49.50
29* -68.8452 d29
30 71.3653 4.3854 2.00069 25.46
31 -244.4417 0.7125
32 -146.9124 0.8000 1.78470 26.29
33 41.7634 20.9913
34 ∞ 2.5000 1.51680 64.20
35 ∞ BF
像面 ∞

[非球面データ]
18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 1.7905E-06 -4.1058E-06 1.9868E-06
A6 -1.7282E-09 -7.3230E-09 -5.1825E-09
A8 9.5181E-13 3.9434E-11 3.9444E-11
A10 -5.0029E-16 -5.8666E-14 -5.0984E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 48.30
Fナンバー 1.26
全画角2ω 48.80
像高Y 21.63
レンズ全長 165.00

[可変間隔データ]
INF 撮影距離2059mm
d0 ∞ 1894.2816
d16 8.8392 7.7209
d29 1.5000 2.6183
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 187.14
L2 17 64.05
L3 30 -200.77
L1f 1 -54.52
Lsf 1 69.94
Numerical example 1
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1 259.2005 3.9656 1.49700 81.61
2 36.0489 1.8284
3 40.4512 6.7840 2.00069 25.46
4 48.7346 13.5960
5 -50.0535 2.0000 1.49700 81.61
6 444.9340 0.1500
7 102.4616 9.9748 1.77250 49.62
8 -57.2347 0.7113
9 -52.7837 1.5000 1.80518 25.46
10 62.5000 11.0746 1.77250 49.62
11 -70.2116 3.1864
12 -72.1569 1.5000 1.92119 23.96
13 90.1742 5.8741 1.77250 49.62
14 -1000.0000 0.1500
15 132.7624 7.8334 1.98612 16.48
16 -112.3961 d16
17 42.1510 10.6553 1.69350 53.20
18* -192.5256 0.4054
19 2870.6010 7.9394 1.59349 67.00
20 -41.6908 1.0000 1.67300 38.26
21 43.2474 6.3397
22 (Aperture) ∞ 6.8810
23 -30.4885 1.0000 1.69895 30.05
24 152.7244 2.8633 1.55032 75.50
25 683.1561 0.2000
26 72.4204 8.5969 1.77250 49.62
27 -45.9138 3.9524
28* -442.9462 4.3093 1.77250 49.50
29* -68.8452 d29
30 71.3653 4.3854 2.00069 25.46
31 -244.4417 0.7125
32 -146.9124 0.8000 1.78470 26.29
33 41.7634 20.9913
34 ∞ 2.5000 1.51680 64.20
35∞BF
Image plane ∞

[Aspheric Data]
18 faces 28 faces 29 faces
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 1.7905E-06 -4.1058E-06 1.9868E-06
A6 -1.7282E-09 -7.3230E-09 -5.1825E-09
A8 9.5181E-13 3.9434E-11 3.9444E-11
A10 -5.0029E-16 -5.8666E-14 -5.0984E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 48.30
F number 1.26
Full angle of view 2ω 48.80
Image height Y 21.63
Lens length 165.00

[Variable interval data]
INF shooting distance 2059mm
d0 ∞ 1894.2816
d16 8.8392 7.7209
d29 1.5000 2.6183
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 187.14
L2 17 64.05
L3 30 -200.77
L1f1-54.52
Lsf 1 69.94

図6は、実施例2に係る結像光学系の無限遠におけるレンズ構成図である。実施例2の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 6 is a lens configuration diagram of the imaging optical system according to Example 2 at infinity. The imaging optical system of Example 2 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing and a second lens unit L1 having a positive refractive power that moves toward the object side during focusing. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズと両凹レンズとで構成されるレンズ成分L1fと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 includes, in order from the object side to the image side, a lens component L1f composed of a concave meniscus lens with a convex surface facing the object side, a convex meniscus lens with a convex surface facing the object side, and a biconcave lens. It is composed of a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、絞りSと、両凹レンズと両凸レンズの接合レンズと両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens having an aspheric R2 surface, a cemented lens composed of a convex meniscus lens with a concave surface facing the object side and a biconcave lens, an aperture stop S, and a biconcave lens. It is composed of a cemented double convex lens, a double convex lens, and a convex meniscus lens in which both the R1 and R2 surfaces are aspheric and the concave surface faces the object side.

第3レンズ群L3は、物体側から像側へ順に、両凸レンズと、両凹レンズとから構成される。 The third lens unit L3 is composed of a biconvex lens and a biconcave lens in order from the object side to the image side.

続いて、以下に実施例2に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 2 are shown below.

数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 329.2217 2.5000 1.49700 81.61
2 37.8223 1.5392
3 41.4152 6.6962 2.00069 25.46
4 49.9917 13.5883
5 -57.1815 2.0000 1.49700 81.61
6 754.3452 0.1500
7 98.1553 9.5005 1.77250 49.62
8 -69.9522 0.5964
9 -64.9402 1.5000 1.80518 25.46
10 62.5000 12.1207 1.77250 49.62
11 -80.2691 7.6735
12 -67.4612 1.5000 1.92119 23.96
13 90.1864 5.5629 1.77250 49.62
14 -1000.0000 0.1500
15 113.4358 7.4188 1.98612 16.48
16 -131.3073 d16
17 46.3689 9.9520 1.77377 47.17
18* -197.7804 1.2969
19 -303.0475 7.7510 1.62041 60.34
20 -36.9798 1.0000 1.63980 34.46
21 44.2758 4.8849
22(絞り) ∞ 6.9054
23 -30.1848 1.0000 1.69895 30.05
24 194.4879 3.3785 1.55032 75.50
25 -270.8956 0.2000
26 74.8673 8.0566 1.77250 49.62
27 -50.0318 5.7227
28* -845.2086 4.2281 1.77250 49.50
29* -74.7984 d29
30 68.2901 4.4272 2.00069 25.46
31 -257.0025 0.7402
32 -148.0556 0.8000 1.78470 26.29
33 38.8678 19.3766
34 ∞ 2.5000 1.51680 64.20
35 ∞ BF
像面 ∞

[非球面データ]
18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 1.4731E-06 -5.4481E-06 1.1966E-06
A6 -1.3492E-09 -5.6829E-09 -3.8825E-09
A8 8.1394E-13 3.2756E-11 3.3851E-11
A10 -4.5812E-16 -4.5885E-14 -4.1154E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 48.30
Fナンバー 1.26
全画角2ω 48.26
像高Y 21.63
レンズ全長 165.00

[可変間隔データ]
INF 撮影距離2058mm
d0 ∞ 1892.8607
d16 7.7833 6.6929
d29 1.5000 2.5904
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 209.80
L2 17 60.78
L3 30 -173.23
L1f 1 -60.78
Lsf 1 71.87
Numerical example 2
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1 329.2217 2.5000 1.49700 81.61
2 37.8223 1.5392
3 41.4152 6.6962 2.00069 25.46
4 49.9917 13.5883
5 -57.1815 2.0000 1.49700 81.61
6 754.3452 0.1500
7 98.1553 9.5005 1.77250 49.62
8 -69.9522 0.5964
9 -64.9402 1.5000 1.80518 25.46
10 62.5000 12.1207 1.77250 49.62
11 -80.2691 7.6735
12 -67.4612 1.5000 1.92119 23.96
13 90.1864 5.5629 1.77250 49.62
14 -1000.0000 0.1500
15 113.4358 7.4188 1.98612 16.48
16 -131.3073 d16
17 46.3689 9.9520 1.77377 47.17
18* -197.7804 1.2969
19 -303.0475 7.7510 1.62041 60.34
20 -36.9798 1.0000 1.63980 34.46
21 44.2758 4.8849
22 (Aperture) ∞ 6.9054
23 -30.1848 1.0000 1.69895 30.05
24 194.4879 3.3785 1.55032 75.50
25 -270.8956 0.2000
26 74.8673 8.0566 1.77250 49.62
27 -50.0318 5.7227
28* -845.2086 4.2281 1.77250 49.50
29* -74.7984 d29
30 68.2901 4.4272 2.00069 25.46
31 -257.0025 0.7402
32 -148.0556 0.8000 1.78470 26.29
33 38.8678 19.3766
34 ∞ 2.5000 1.51680 64.20
35∞BF
Image plane ∞

[Aspheric data]
18 faces 28 faces 29 faces
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 1.4731E-06 -5.4481E-06 1.1966E-06
A6 -1.3492E-09 -5.6829E-09 -3.8825E-09
A8 8.1394E-13 3.2756E-11 3.3851E-11
A10 -4.5812E-16 -4.5885E-14 -4.1154E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 48.30
F number 1.26
Full angle of view 2ω 48.26
Image height Y 21.63
Lens length 165.00

[Variable interval data]
INF shooting distance 2058mm
d0 ∞ 1892.8607
d16 7.7833 6.6929
d29 1.5000 2.5904
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 209.80
L2 17 60.78
L3 30 -173.23
L1f1-60.78
Lsf 1 71.87

図11は、実施例3に係る結像光学系の無限遠におけるレンズ構成図である。実施例11の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 11 is a lens configuration diagram of the imaging optical system according to Example 3 at infinity. The imaging optical system of Example 11 includes, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having positive refractive power. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズの接合レンズと物体側に凸面を向けた凹メニスカスレンズとで構成されるレンズ成分L1fと、物体側に凹面を向けた凸メニスカスレンズと、両凹レンズと両凸レンズの接合レンズと、物体側に凸面を向けた凹メニスカスレンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 includes, in order from the object side to the image side, a cemented lens composed of a concave meniscus lens with a convex surface facing the object side, a convex meniscus lens with a convex surface facing the object side, and a concave meniscus lens with a convex surface facing the object side. A lens component L1f composed of a convex meniscus lens with a concave surface facing the object side, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a concave meniscus lens with a convex surface facing the object side and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、絞りSと、両凹レンズと両凸レンズの接合レンズと両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens having an aspheric R2 surface, a cemented lens composed of a convex meniscus lens with a concave surface facing the object side and a biconcave lens, an aperture stop S, and a biconcave lens. It is composed of a cemented double convex lens, a double convex lens, and a convex meniscus lens in which both the R1 and R2 surfaces are aspheric and the concave surface faces the object side.

第3レンズ群L3は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The third lens unit L3 is composed of a cemented lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

続いて、以下に実施例3に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 3 are shown below.

数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 200.9822 1.8000 1.49700 81.61
2 43.4726 6.5224 1.85026 32.27
3 70.0835 4.0432
4 126.2598 2.0000 1.51742 52.15
5 39.8554 9.8773
6 -158.2148 3.1251 1.77250 49.62
7 -79.5276 2.9894
8 -45.6289 1.5000 1.85478 24.80
9 37.7292 12.5622 1.77250 49.62
10 -632.3971 0.4149
11 2107.4248 1.0000 1.63980 34.46
12 93.2276 5.4458 1.77250 49.62
13 -1000.0000 0.1500
14 98.7068 8.1636 1.92286 20.88
15 -112.0714 d15
16 50.4845 9.5645 1.77377 47.17
17* -137.8916 0.2961
18 -1734.9315 9.1393 1.62041 60.34
19 -45.1824 1.0000 1.63980 34.46
20 43.0199 9.1027
21(絞り) ∞ 11.6205
22 -26.9583 1.0000 1.69895 30.05
23 53.1245 5.2119 1.55032 75.50
24 -132.8172 0.2000
25 86.7699 7.0512 1.77250 49.62
26 -40.0307 0.2000
27* -324.7949 2.8048 1.77250 49.50
28* -65.1019 d28
29 83.6872 4.6258 2.00069 25.46
30 -230.4316 1.5000 1.78470 26.29
31 45.1994 22.9280
32 ∞ 2.5000 1.51680 64.20
33 ∞ BF
像面 ∞

[非球面データ]
17面 27面 28面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.4425E-06 -3.4754E-06 2.8623E-06
A6 -1.3075E-09 -2.8304E-09 -1.9050E-09
A8 6.1584E-13 3.3147E-11 3.3778E-11
A10 -2.2459E-16 -7.6000E-14 -7.1102E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 41.35
Fナンバー 1.26
全画角2ω 57.17
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1774mm
d0 ∞ 1617.3263
d15 6.1614 5.2301
d28 1.5000 2.4313
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 347.73
L2 16 56.46
L3 29 -261.51
L1f 1 -104.33
Lsf 1 67.09
Numerical example 3
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1 200.9822 1.8000 1.49700 81.61
2 43.4726 6.5224 1.85026 32.27
3 70.0835 4.0432
4 126.2598 2.0000 1.51742 52.15
5 39.8554 9.8773
6 -158.2148 3.1251 1.77250 49.62
7 -79.5276 2.9894
8 -45.6289 1.5000 1.85478 24.80
9 37.7292 12.5622 1.77250 49.62
10 -632.3971 0.4149
11 2107.4248 1.0000 1.63980 34.46
12 93.2276 5.4458 1.77250 49.62
13 -1000.0000 0.1500
14 98.7068 8.1636 1.92286 20.88
15 -112.0714 d15
16 50.4845 9.5645 1.77377 47.17
17* -137.8916 0.2961
18 -1734.9315 9.1393 1.62041 60.34
19 -45.1824 1.0000 1.63980 34.46
20 43.0199 9.1027
21 (Aperture) ∞ 11.6205
22 -26.9583 1.0000 1.69895 30.05
23 53.1245 5.2119 1.55032 75.50
24 -132.8172 0.2000
25 86.7699 7.0512 1.77250 49.62
26 -40.0307 0.2000
27* -324.7949 2.8048 1.77250 49.50
28* -65.1019 d28
29 83.6872 4.6258 2.00069 25.46
30 -230.4316 1.5000 1.78470 26.29
31 45.1994 22.9280
32 ∞ 2.5000 1.51680 64.20
33∞BF
Image plane ∞

[Aspheric data]
17 planes 27 planes 28 planes
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.4425E-06 -3.4754E-06 2.8623E-06
A6 -1.3075E-09 -2.8304E-09 -1.9050E-09
A8 6.1584E-13 3.3147E-11 3.3778E-11
A10 -2.2459E-16 -7.6000E-14 -7.1102E-14
A12 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 41.35
F number 1.26
Full angle of view 2ω 57.17
Image height Y 21.63
Lens length 157.00

[Variable interval data]
INF shooting distance 1774mm
d0 ∞ 1617.3263
d15 6.1614 5.2301
d28 1.5000 2.4313
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 347.73
L2 16 56.46
L3 29-261.51
L1f1-104.33
Lsf 1 67.09

図16は、実施例4に係る結像光学系の無限遠におけるレンズ構成図である。実施例4の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 16 is a lens configuration diagram of the imaging optical system according to Example 4 at infinity. The imaging optical system of Example 4 comprises, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing and a second lens unit L1 having a positive refractive power that moves toward the object side during focusing. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズと両凹レンズとで構成されるレンズ成分L1fと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 includes, in order from the object side to the image side, a lens component L1f composed of a concave meniscus lens with a convex surface facing the object side, a convex meniscus lens with a convex surface facing the object side, and a biconcave lens. It is composed of a convex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、絞りSと、両凹レンズと両凸レンズの接合レンズと両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens having an aspheric R2 surface, a cemented lens composed of a convex meniscus lens with a concave surface facing the object side and a biconcave lens, an aperture stop S, and a biconcave lens. It is composed of a cemented double convex lens, a double convex lens, and a convex meniscus lens in which both the R1 and R2 surfaces are aspheric and the concave surface faces the object side.

第3レンズ群L3は、物体側から像側へ順に、両凸レンズと両凹レンズの接合レンズで構成される。 The third lens unit L3 is composed of a cemented lens of a biconvex lens and a biconcave lens in order from the object side to the image side.

続いて、以下に実施例4に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 4 are shown below.

数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 222.3721 1.8000 1.49700 81.61
2 34.3733 1.5298
3 37.6422 3.8385 2.00069 25.46
4 42.1300 14.1236
5 -51.5735 2.0000 1.58144 40.89
6 122.0687 0.1500
7 70.9733 10.7653 1.80610 40.93
8 -61.1105 0.7239
9 -55.6180 1.5000 1.85478 24.80
10 40.8062 15.5122 1.77250 49.62
11 -61.0719 1.5640
12 -54.5483 1.0000 1.63980 34.46
13 76.3102 6.3012 1.77250 49.62
14 -981.9588 0.1500
15 85.3542 6.6457 1.98612 16.48
16 -433.5515 d16
17 52.3247 9.1585 1.77377 47.17
18* -141.5547 0.6202
19 -593.8396 5.9536 1.62041 60.34
20 -55.2310 4.2677 1.63980 34.46
21 47.8028 5.4564
22(絞り) ∞ 11.1877
23 -27.4538 1.0000 1.69895 30.05
24 48.7275 4.8646 1.55032 75.50
25 -194.7129 0.2000
26 79.5877 6.5984 1.77250 49.62
27 -39.6483 1.3762
28* -702.3955 3.9400 1.77250 49.50
29* -66.0217 d29
30 248.0233 3.3994 2.00069 25.46
31 -178.8404 1.5000 1.78470 26.29
32 61.7251 19.1129
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.5132E-06 -2.8168E-06 5.0736E-06
A6 -1.7612E-09 -1.2444E-08 -1.0663E-08
A8 1.2109E-12 5.7415E-11 5.4065E-11
A10 -5.5710E-16 -1.1822E-13 -1.0223E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 41.35
Fナンバー 1.26
全画角2ω 57.17
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1774mm
d0 ∞ 1616.8603
d16 5.5884 4.7640
d29 1.6726 2.4970
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 157.05
L2 17 53.18
L3 30 -136.32
L1f 1 -37.66
Lsf 1 53.87
Numerical example 4
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1 222.3721 1.8000 1.49700 81.61
2 34.3733 1.5298
3 37.6422 3.8385 2.00069 25.46
4 42.1300 14.1236
5 -51.5735 2.0000 1.58144 40.89
6 122.0687 0.1500
7 70.9733 10.7653 1.80610 40.93
8 -61.1105 0.7239
9 -55.6180 1.5000 1.85478 24.80
10 40.8062 15.5122 1.77250 49.62
11 -61.0719 1.5640
12 -54.5483 1.0000 1.63980 34.46
13 76.3102 6.3012 1.77250 49.62
14 -981.9588 0.1500
15 85.3542 6.6457 1.98612 16.48
16 -433.5515 d16
17 52.3247 9.1585 1.77377 47.17
18* -141.5547 0.6202
19 -593.8396 5.9536 1.62041 60.34
20 -55.2310 4.2677 1.63980 34.46
21 47.8028 5.4564
22 (Aperture) ∞ 11.1877
23 -27.4538 1.0000 1.69895 30.05
24 48.7275 4.8646 1.55032 75.50
25 -194.7129 0.2000
26 79.5877 6.5984 1.77250 49.62
27 -39.6483 1.3762
28* -702.3955 3.9400 1.77250 49.50
29* -66.0217 d29
30 248.0233 3.3994 2.00069 25.46
31 -178.8404 1.5000 1.78470 26.29
32 61.7251 19.1129
33 ∞ 2.5000 1.51680 64.20
34∞BF
Image plane ∞

[Aspheric Data]
18 faces 28 faces 29 faces
K 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.5132E-06 -2.8168E-06 5.0736E-06
A6 -1.7612E-09 -1.2444E-08 -1.0663E-08
A8 1.2109E-12 5.7415E-11 5.4065E-11
A10 -5.5710E-16 -1.1822E-13 -1.0223E-13
A12 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 41.35
F number 1.26
Full angle of view 2ω 57.17
Image height Y 21.63
Lens length 157.00

[Variable interval data]
INF shooting distance 1774mm
d0 ∞ 1616.8603
d16 5.5884 4.7640
d29 1.6726 2.4970
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 157.05
L2 17 53.18
L3 30 -136.32
L1f1 -37.66
Lsf 1 53.87

図21は、実施例5に係る結像光学系の無限遠におけるレンズ構成図である。実施例5の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 21 is a lens configuration diagram of the imaging optical system according to Example 5 at infinity. The imaging optical system of Example 5 comprises, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having positive refractive power. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、R1面が非球面で物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズと両凹レンズとで構成されるレンズ成分L1fと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 is composed of, in order from the object side to the image side, a concave meniscus lens whose R1 surface is aspheric and whose convex surface faces the object side, a convex meniscus lens whose convex surface faces the object side, and a biconcave lens. It is composed of a lens component L1f, a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、両凸レンズと両凹レンズの接合レンズと、絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens whose R2 surface is aspheric, a cemented lens composed of a biconvex lens and a biconcave lens, an aperture stop S, and a convex meniscus lens with a concave surface facing the object side. It is composed of a cemented double-concave lens, a double-convex lens, and a convex meniscus lens in which both the R1 and R2 surfaces are aspheric and the concave surface faces the object side.

第3レンズ群L3は、物体側から像側へ順に、物体側に凸面を向けた凸メニスカスレンズと物体側に凸面を向けた凹メニスカスレンズの接合レンズで構成される。 The third lens unit L3 is composed of a cemented lens of a convex meniscus lens with a convex surface facing the object side and a concave meniscus lens with a convex surface facing the object side in order from the object side to the image side.

続いて、以下に実施例5に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 5 are shown below.

数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1* 139.6509 1.8000 1.55332 71.72
2 31.3080 3.3519
3 40.1764 3.0537 2.00069 25.46
4 42.3174 14.1738
5 -41.6381 2.0000 1.75520 27.53
6 382.0476 0.1500
7 111.9078 9.4662 1.96300 24.11
8 -57.1565 2.0984
9 -44.8777 1.5000 1.69895 30.05
10 47.2106 13.4687 1.77250 49.62
11 -52.4616 1.3809
12 -48.0680 1.0000 1.85478 24.80
13 214.4413 6.4438 1.77250 49.62
14 -86.3080 0.1500
15 99.2021 5.5781 1.98612 16.48
16 -1000.0000 d16
17 49.7362 9.5105 1.77250 49.50
18* -139.0619 0.1500
19 3282.6280 5.8767 1.60311 60.69
20 -60.6030 4.4210 1.69895 30.05
21 44.8147 5.8050
22(絞り) ∞ 11.1520
23 -34.6547 3.8628 1.45860 90.20
24 -20.6907 1.0000 1.73800 32.33
25 1885.5546 0.2000
26 90.5393 6.6762 1.78590 43.93
27 -35.7077 1.5067
28* -765.1479 2.6780 1.88202 37.11
29* -75.0558 d29
30 98.7964 3.2313 1.77250 49.62
31 548.6746 1.5000 1.63980 34.46
32 55.0055 20.4705
33 ∞ 2.5000 1.51680 64.20
34 ∞ BF
像面 ∞

[非球面データ]
1面 18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 9.0624E-07 2.5314E-06 -4.0336E-06 1.9377E-06
A6 -4.6241E-11 -1.6401E-09 -1.1965E-08 -9.6277E-09
A8 9.1123E-13 9.1729E-13 8.4262E-11 8.4381E-11
A10 -1.3268E-15 -2.8599E-16 -1.8017E-13 -1.6731E-13
A12 9.0487E-19 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 36.19
Fナンバー 1.25
全画角2ω 64.18
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1754mm
d0 ∞ 1416.9900
d16 8.3439 7.5156
d29 1.5000 2.3283
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 163.04
L2 17 57.63
L3 30 -262.85
L1f 1 -27.86
Lsf 1 53.74
Numerical example 5
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1* 139.6509 1.8000 1.55332 71.72
2 31.3080 3.3519
3 40.1764 3.0537 2.00069 25.46
4 42.3174 14.1738
5 -41.6381 2.0000 1.75520 27.53
6 382.0476 0.1500
7 111.9078 9.4662 1.96300 24.11
8 -57.1565 2.0984
9 -44.8777 1.5000 1.69895 30.05
10 47.2106 13.4687 1.77250 49.62
11 -52.4616 1.3809
12 -48.0680 1.0000 1.85478 24.80
13 214.4413 6.4438 1.77250 49.62
14 -86.3080 0.1500
15 99.2021 5.5781 1.98612 16.48
16 -1000.0000 d16
17 49.7362 9.5105 1.77250 49.50
18* -139.0619 0.1500
19 3282.6280 5.8767 1.60311 60.69
20 -60.6030 4.4210 1.69895 30.05
21 44.8147 5.8050
22 (Aperture) ∞ 11.1520
23 -34.6547 3.8628 1.45860 90.20
24 -20.6907 1.0000 1.73800 32.33
25 1885.5546 0.2000
26 90.5393 6.6762 1.78590 43.93
27 -35.7077 1.5067
28* -765.1479 2.6780 1.88202 37.11
29* -75.0558 d29
30 98.7964 3.2313 1.77250 49.62
31 548.6746 1.5000 1.63980 34.46
32 55.0055 20.4705
33 ∞ 2.5000 1.51680 64.20
34∞BF
Image plane ∞

[Aspheric data]
1 side 18 side 28 side 29 side
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 9.0624E-07 2.5314E-06 -4.0336E-06 1.9377E-06
A6 -4.6241E-11 -1.6401E-09 -1.1965E-08 -9.6277E-09
A8 9.1123E-13 9.1729E-13 8.4262E-11 8.4381E-11
A10 -1.3268E-15 -2.8599E-16 -1.8017E-13 -1.6731E-13
A12 9.0487E-19 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 36.19
F number 1.25
Full angle of view 2ω 64.18
Image height Y 21.63
Lens length 157.00

[Variable interval data]
INF shooting distance 1754mm
d0 ∞ 1416.9900
d16 8.3439 7.5156
d29 1.5000 2.3283
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 163.04
L2 17 57.63
L3 30 -262.85
L1f1 -27.86
Lsf 1 53.74

図26は、実施例6に係る結像光学系の無限遠におけるレンズ構成図である。実施例6の結像光学系は、物体側から像側へ順に、フォーカシング時に固定の正の屈折力を有する第1レンズ群L1と、フォーカシング時に物体側に移動し正の屈折力を有する第2レンズ群L2と、フォーカシング時に固定の負の屈折力を有する第3レンズ群L3とから構成される。 FIG. 26 is a lens configuration diagram of the imaging optical system according to Example 6 at infinity. The imaging optical system of Example 6 comprises, in order from the object side to the image side, a first lens unit L1 having a fixed positive refractive power during focusing, and a second lens unit L1 moving toward the object side during focusing and having positive refractive power. It consists of a lens group L2 and a third lens group L3 having a fixed negative refractive power during focusing.

第1レンズ群L1は、物体側から像側へ順に、R1面とR2面両面が非球面で物体側に凸面を向けた凹メニスカスレンズと両凸レンズと両凹レンズとで構成されるレンズ成分L1fと、両凸レンズと、両凹レンズと両凸レンズの接合レンズと、両凹レンズと両凸レンズの接合レンズと、両凸レンズ素子L1pとから構成される。 The first lens unit L1 includes, in order from the object side to the image side, a lens component L1f composed of a concave meniscus lens whose surfaces R1 and R2 are both aspherical surfaces and whose convex surface faces the object side, a biconvex lens, and a biconcave lens. , a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, and a biconvex lens element L1p.

第2レンズ群L2は、物体側から像側へ順に、R2面が非球面の両凸レンズと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、絞りSと、物体側に凹面を向けた凸メニスカスレンズと両凹レンズの接合レンズと、両凸レンズと、R1面とR2面両面が非球面で物体側に凹面を向けた凸メニスカスレンズとから構成される。 The second lens unit L2 includes, in order from the object side to the image side, a biconvex lens whose R2 surface is an aspherical surface, a cemented lens composed of a convex meniscus lens with a concave surface facing the object side and a biconcave lens, an aperture stop S, and a It consists of a cemented lens composed of a convex meniscus lens with a concave surface and a biconcave lens cemented, a biconvex lens, and a convex meniscus lens with both R1 and R2 surfaces being aspheric and concave to the object side.

第3レンズ群L3は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと物体側に凹面を向けた凹メニスカスレンズとから構成される。 The third lens unit L3 is composed of, in order from the object side to the image side, a concave meniscus lens with a convex surface facing the object side and a concave meniscus lens with a concave surface facing the object side.

続いて、以下に実施例6に係る結像光学系の諸元値を示す。 Next, the specification values of the imaging optical system according to Example 6 are shown below.

数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1* 497.7501 3.8955 1.55332 71.72
2* 27.0268 9.5737
3 177.2296 3.5743 2.00069 25.46
4 -1650.6743 8.5003
5 -35.1153 5.0986 1.75520 27.53
6 3650.2461 0.1500
7 91.8368 9.0944 1.96300 24.11
8 -62.8278 1.4724
9 -49.5290 1.5000 1.69895 30.05
10 39.9398 13.0709 1.77250 49.62
11 -54.6718 5.2590
12 -42.4436 1.0000 1.85478 24.80
13 217.0651 5.5505 1.77250 49.62
14 -79.6234 0.1500
15 82.6353 5.2089 1.98612 16.48
16 -1000.0000 d16
17 55.2793 7.4436 1.77250 49.50
18* -104.7961 0.9456
19 -243.8387 4.1503 1.60311 60.69
20 -62.2588 1.0000 1.69895 30.05
21 43.1707 4.7727
22(絞り) ∞ 8.8160
23 -668.0246 7.3315 1.45860 90.20
24 -20.2908 2.5051 1.73800 32.33
25 271.3960 0.2000
26 74.4126 7.9008 1.78590 43.93
27 -38.5560 1.9168
28* -957.5724 4.1375 1.88202 37.22
29* -82.1503 d29
30 33.6124 1.0000 1.53172 48.84
31 25.7096 8.1281
32 -80.2924 1.0000 1.49700 81.61
33 -253.4720 12.5001
34 ∞ 2.5000 1.51680 64.20
35 ∞ BF
像面 ∞

[非球面データ]
1面 2面 18面 28面 29面
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.2184E-06 -1.9337E-06 4.3977E-06 -6.9997E-06 -1.6405E-06
A6 -2.0858E-09 -6.2114E-09 -3.3590E-09 -1.6027E-09 8.1756E-11
A8 3.4379E-12 5.5145E-12 2.7509E-12 4.1894E-11 4.5542E-11
A10 -3.1012E-15 -1.4533E-14 -2.0239E-15 -7.8139E-14 -7.1688E-14
A12 1.5381E-18 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[各種データ]
INF
焦点距離 28.90
Fナンバー 1.25
全画角2ω 76.94
像高Y 21.63
レンズ全長 157.00

[可変間隔データ]
INF 撮影距離1281mm
d0 ∞ 1124.3538
d16 5.1534 4.5949
d29 1.5000 2.0585
BF 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
L1 1 101.14
L2 17 44.54
L3 30 -111.36
L1f 1 -24.83
Lsf 1 59.09
Numerical Example 6
Unit: mm
[Surface data]
Face number rd nd vd
Object plane ∞ (d0)
1* 497.7501 3.8955 1.55332 71.72
2* 27.0268 9.5737
3 177.2296 3.5743 2.00069 25.46
4 -1650.6743 8.5003
5 -35.1153 5.0986 1.75520 27.53
6 3650.2461 0.1500
7 91.8368 9.0944 1.96300 24.11
8 -62.8278 1.4724
9 -49.5290 1.5000 1.69895 30.05
10 39.9398 13.0709 1.77250 49.62
11 -54.6718 5.2590
12 -42.4436 1.0000 1.85478 24.80
13 217.0651 5.5505 1.77250 49.62
14 -79.6234 0.1500
15 82.6353 5.2089 1.98612 16.48
16 -1000.0000 d16
17 55.2793 7.4436 1.77250 49.50
18* -104.7961 0.9456
19 -243.8387 4.1503 1.60311 60.69
20 -62.2588 1.0000 1.69895 30.05
21 43.1707 4.7727
22 (Aperture) ∞ 8.8160
23 -668.0246 7.3315 1.45860 90.20
24 -20.2908 2.5051 1.73800 32.33
25 271.3960 0.2000
26 74.4126 7.9008 1.78590 43.93
27 -38.5560 1.9168
28* -957.5724 4.1375 1.88202 37.22
29* -82.1503 d29
30 33.6124 1.0000 1.53172 48.84
31 25.7096 8.1281
32 -80.2924 1.0000 1.49700 81.61
33 -253.4720 12.5001
34 ∞ 2.5000 1.51680 64.20
35∞BF
Image plane ∞

[Aspheric Data]
1 side 2 side 18 side 28 side 29 side
K 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
A4 2.2184E-06 -1.9337E-06 4.3977E-06 -6.9997E-06 -1.6405E-06
A6 -2.0858E-09 -6.2114E-09 -3.3590E-09 -1.6027E-09 8.1756E-11
A8 3.4379E-12 5.5145E-12 2.7509E-12 4.1894E-11 4.5542E-11
A10 -3.1012E-15 -1.4533E-14 -2.0239E-15 -7.8139E-14 -7.1688E-14
A12 1.5381E-18 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

[Various data]
INF
Focal length 28.90
F number 1.25
Full angle of view 2ω 76.94
Image height Y 21.63
Lens length 157.00

[Variable interval data]
INF shooting distance 1281mm
d0 ∞ 1124.3538
d16 5.1534 4.5949
d29 1.5000 2.0585
BF 1.0000 1.0000

[Lens group data]
Group Starting surface Focal length
L1 1 101.14
L2 17 44.54
L3 30 -111.36
L1f1 -24.83
Lsf 1 59.09

次の[条件式対応値]には、各条件式に対応する各実施例の対応値の一覧を示す。 [Conditional Expression Corresponding Values] below shows a list of corresponding values of each embodiment corresponding to each conditional expression.

[条件式対応値]
条件式1 条件式2 条件式3 条件式4
実施例 Y/Bf |ΣAci| νdL1p ΔPgfL1p
1 0.88 0.0014 16.48 0.0470
2 0.95 0.0014 16.48 0.0470
3 0.82 0.0011 20.88 0.0283
4 0.96 0.0012 16.48 0.0470
5 0.90 0.0011 16.48 0.0470
6 1.35 0.0011 16.48 0.0470

条件式5 条件式6 条件式7 条件式8
実施例 f1f/f fsf/f f2/f β1b
1 -1.13 1.4 1.3 0.26
2 -1.26 1.5 1.3 0.23
3 -2.52 1.6 1.4 0.12
4 -0.91 1.3 1.3 0.26
5 -0.77 1.5 1.6 0.22
6 -0.86 2.0 1.5 0.29
[Value corresponding to conditional expression]
Conditional expression 1 Conditional expression 2 Conditional expression 3 Conditional expression 4
Example Y/Bf |ΣAci| νdL1p ΔPgfL1p
1 0.88 0.0014 16.48 0.0470
2 0.95 0.0014 16.48 0.0470
3 0.82 0.0011 20.88 0.0283
4 0.96 0.0012 16.48 0.0470
5 0.90 0.0011 16.48 0.0470
6 1.35 0.0011 16.48 0.0470

Conditional expression 5 Conditional expression 6 Conditional expression 7 Conditional expression 8
Example f1f/f fsf/f f2/f β1b
1 -1.13 1.4 1.3 0.26
2 -1.26 1.5 1.3 0.23
3 -2.52 1.6 1.4 0.12
4 -0.91 1.3 1.3 0.26
5 -0.77 1.5 1.6 0.22
6 -0.86 2.0 1.5 0.29

各実施例の諸収差図から明らかなとおり、本発明によれば、従来の結像光学系の課題であった軸上色収差を良好に補正し、ミラーレスカメラに最適な結像光学系を提供することができる。 As is clear from the various aberration diagrams in each example, the present invention provides an optimal imaging optical system for mirrorless cameras by satisfactorily correcting longitudinal chromatic aberration, which has been a problem with conventional imaging optical systems. can do.

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L1f レンズ成分L1f
Lsf レンズ群Lsf
L1p レンズ素子L1p
S 開放絞り
LPF ローパスフィルター
I 像面

L1 First lens group L2 Second lens group L3 Third lens group L1f Lens component L1f
Lsf lens group Lsf
L1p lens element L1p
S open aperture LPF low pass filter I image plane

Claims (5)

物体側から像側へ順に、
正の屈折力を有する第1レンズ群L1と、
正の屈折力を有する第2レンズ群L2と、
負の屈折力を有する第3レンズ群L3と、
からなり、
前記第1レンズ群L1は、少なくとも一つの接合レンズを有すると共に、最も物体側に負レンズ素子を配し、物体側に凸面を向けた正レンズ素子を前記負レンズ素子の像側に隣接するよう配し、
前記第2レンズ群L2は、開口絞りSを含み、
フォーカシングに際して、前記第2レンズ群L2が物体側に移動するとともに、前記第1レンズ群L1と、前記第3レンズ群L3とが像面に対して固定であり、
レンズ全系のうち、前記開口絞りSより物体側に配される全てのレンズ素子群をレンズ群Lsfとし、前記レンズ群Lsfは正の屈折力を有し、
以下の条件式を満足することを特徴とする結像光学系。
Y/Bf > 0.70 (1)
Figure 0007123383000004
1.0 < fsf/f < 2.7 (6)
但し、
Yは最大像高、
Bfは第3レンズ群L3の最も像側面の面頂から像面までの距離
fsfは前記レンズ群Lsfの無限遠合焦時の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離であり、
Aciは以下の式で表される。
Aci = φcpi/νdcpi + φcmi/νdcmi
但し、
φcpiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子の屈折力、
νdcpiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの正レンズ素子のアッベ数、
φcmiは、前記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子の屈折力、
νdcmiは、記第1レンズ群L1に含まれる物体側からi番目の接合レンズの負レンズ素子のアッベ数である。
From the object side to the image side,
a first lens group L1 having positive refractive power;
a second lens group L2 having positive refractive power;
a third lens group L3 having negative refractive power;
consists of
The first lens unit L1 has at least one cemented lens, has a negative lens element closest to the object side, and has a positive lens element having a convex surface facing the object side so as to be adjacent to the image side of the negative lens element. arranged,
The second lens group L2 includes an aperture stop S,
During focusing, the second lens group L2 moves toward the object side, and the first lens group L1 and the third lens group L3 are fixed with respect to the image plane,
In the entire lens system, all lens element groups arranged on the object side of the aperture stop S are referred to as a lens group Lsf, and the lens group Lsf has a positive refractive power,
An imaging optical system characterized by satisfying the following conditional expression.
Y/Bf > 0.70 (1)
Figure 0007123383000004
1.0 < fsf/f < 2.7 (6)
however,
Y is the maximum image height,
Bf is the distance from the vertex of the surface closest to the image side of the third lens unit L3 to the image plane ;
fsf is the focal length of the lens group Lsf when focusing on infinity;
f is the focal length of the entire lens system when focusing at infinity ,
Aci is represented by the following formula.
Aci = φcpi/νdcpi + φcmi/νdcmi
however,
φcpi is the refractive power of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
νdcpi is the Abbe number of the positive lens element of the i-th cemented lens from the object side included in the first lens unit L1;
φcmi is the refractive power of the negative lens element of the i-th cemented lens from the object side included in the first lens group L1;
νdcmi is the Abbe number of the negative lens element of the i-th cemented lens from the object side included in the first lens unit L1.
前記第1レンズ群L1の最も像側に位置する正レンズ素子L1pが以下の条件式を満足することを特徴とする請求項1に記載の結像光学系。
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
但し、
ΔPgfL1pは前記正レンズ素子L1pの異常分散性であり、以下の式で表される。
ΔPgfL1p = PgfL1p + 0.0018×νdL1p - 0.64833
但し、
νdL1pは前記正レンズ素子L1pのアッベ数νd、
PgfL1pは前記正レンズ素子L1pのg線とF線に関する部分分散比Pgfである。
2. An imaging optical system according to claim 1, wherein the positive lens element L1p located closest to the image side in said first lens unit L1 satisfies the following conditional expression.
νdL1p < 27 (3)
0.0220 < ΔPgfL1p (4)
however,
ΔPgfL1p is the anomalous dispersion of the positive lens element L1p and is expressed by the following equation.
ΔPgfL1p = PgfL1p + 0.0018 x vdL1p - 0.64833
however,
νdL1p is the Abbe number νd of the positive lens element L1p;
PgfL1p is the partial dispersion ratio Pgf for the g-line and the F-line of the positive lens element L1p.
前記第1レンズ群L1の最も物体側の面から、像側に凹面を向けた負レンズ素子の像側の面までをレンズ成分L1fとし、前記レンズ成分L1fは負の屈折力を有し、以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の結像光学系。
-3.53 < f1f/f < -0.60 (5)
但し、
f1fは前記レンズ成分L1fの焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
A lens component L1f is defined from the most object-side surface of the first lens unit L1 to the image-side surface of the negative lens element having a concave surface facing the image side, and the lens component L1f has negative refractive power. 3. The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
-3.53 < f1f/f < -0.60 (5)
however,
f1f is the focal length of the lens component L1f;
f is the focal length of the entire lens system when focusing on infinity.
以下の条件式を満足することを特徴とする請求項1乃至請求項のいずれかに記載の結像光学系。
1.0 < f2/f < 2.1 (7)
但し、
f2は前記第2レンズ群L2の焦点距離、
fはレンズ全系の無限遠合焦時の焦点距離である。
4. An imaging optical system according to claim 1 , wherein the following conditional expression is satisfied.
1.0 < f2/f < 2.1 (7)
however,
f2 is the focal length of the second lens group L2;
f is the focal length of the entire lens system when focusing on infinity.
以下の条件式を満足することを特徴とする請求項1乃至請求項のいずれかに記載の結像光学系。
β1b < 0.37 (8)
但し、
β1bは無限遠合焦時の前記第1レンズ群L1よりも像側に位置するレンズ素子群の横倍率である。
5. An imaging optical system according to claim 1 , wherein the following conditional expression is satisfied.
β1b < 0.37 (8)
however,
β1b is the lateral magnification of the lens element group located closer to the image side than the first lens group L1 when focusing on infinity.
JP2018138099A 2018-06-12 2018-07-24 Imaging optical system Active JP7123383B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111508 2018-06-12
JP2018111508 2018-06-12

Publications (2)

Publication Number Publication Date
JP2019215510A JP2019215510A (en) 2019-12-19
JP7123383B2 true JP7123383B2 (en) 2022-08-23

Family

ID=68917947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138099A Active JP7123383B2 (en) 2018-06-12 2018-07-24 Imaging optical system

Country Status (1)

Country Link
JP (1) JP7123383B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048521B2 (en) * 2019-01-31 2022-04-05 富士フイルム株式会社 Imaging lens and imaging device
JP7350600B2 (en) 2019-10-04 2023-09-26 キヤノン株式会社 Optical system and imaging device having the same
JP7425616B2 (en) 2020-02-06 2024-01-31 株式会社タムロン Optical system and imaging device
WO2023176513A1 (en) * 2022-03-17 2023-09-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098891A (en) 2000-09-25 2002-04-05 Minolta Co Ltd Finite distance zoom optical system
JP2015001641A (en) 2013-06-17 2015-01-05 富士フイルム株式会社 Image capturing lens and image capturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032126B2 (en) * 1994-11-17 2000-04-10 株式会社リコー Large aperture zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098891A (en) 2000-09-25 2002-04-05 Minolta Co Ltd Finite distance zoom optical system
JP2015001641A (en) 2013-06-17 2015-01-05 富士フイルム株式会社 Image capturing lens and image capturing device

Also Published As

Publication number Publication date
JP2019215510A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP4959236B2 (en) High magnification zoom lens
EP2309308B1 (en) Optical system and optical device including the same
JP4890090B2 (en) Zoom lens system
JP6490115B2 (en) Imaging lens
JP7123383B2 (en) Imaging optical system
JP5362757B2 (en) High zoom ratio zoom lens system
US8970968B2 (en) Photographing lens system
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
JP7074985B2 (en) Imaging optical system
US8107174B2 (en) Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
WO2014129149A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP5426353B2 (en) Zoom lens with anti-vibration function
JP6540052B2 (en) Imaging optical system
US11415787B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JP6749632B2 (en) Large aperture lens
JP5006637B2 (en) Zoom lens and image projection apparatus having the same
JP2010176015A (en) Wide-angle lens, imaging apparatus, and method for manufacturing the wide angle-lens
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP7106099B2 (en) Imaging optical system
JP4929902B2 (en) Single focus lens and imaging apparatus having the same
JP2014142520A (en) Imaging lens system
CN110687666B (en) Optical system and image pickup apparatus
JP2014160098A (en) Optical system, optical device, and method for manufacturing optical system
JP2020134570A (en) Observation optical system and image display device having the same
JP5714350B2 (en) Viewfinder optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7123383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150