JP2019219368A - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
JP2019219368A
JP2019219368A JP2018126383A JP2018126383A JP2019219368A JP 2019219368 A JP2019219368 A JP 2019219368A JP 2018126383 A JP2018126383 A JP 2018126383A JP 2018126383 A JP2018126383 A JP 2018126383A JP 2019219368 A JP2019219368 A JP 2019219368A
Authority
JP
Japan
Prior art keywords
probe
row
card according
probe assembly
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018126383A
Other languages
Japanese (ja)
Inventor
軍生 木本
Isao Kimoto
軍生 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018126383A priority Critical patent/JP2019219368A/en
Publication of JP2019219368A publication Critical patent/JP2019219368A/en
Pending legal-status Critical Current

Links

Abstract

To obtain a probe card which can simultaneously cope with an inspection of a semiconductor chip having multi-row narrow pitches and a multi-pin alignment, a simultaneous inspection of a plurality of semiconductor chips, an inspection of a semiconductor chip having a high-frequency signal path, an inspection in a wide-range temperature environment and so forth, and to provide the inexpensive probe card which has been solved in a problem of connection with a probe and wiring.SOLUTION: A wiring film in which a plurality of conductive conductor patterns are formed on one insulation film has, at one end of the conductor pattern, single-row probe aggregate alignment means, and direction conversion means for folding a single-row probe aggregate to a substantially-vertical direction with respect to an XY-plane, and placing it. Since the wiring film also has external terminal connection means and conductor pattern expansion means at the other end, a probe card having the same conductor pattern, and serving as a function of a probe and a function of a wiring pattern can be obtained. Furthermore, there is arranged a multilayer wiring film which is formed by laminating a plurality of wiring films, thus coping with a complicated semiconductor chip terminal alignment such as a staggered alignment, a lattice alignment or the like.SELECTED DRAWING: Figure 1

Description

本発明は、半導体ウエハ上に形成された複数の半導体チップの回路検査に使用するプローブカードに関するものである。  The present invention relates to a probe card used for circuit inspection of a plurality of semiconductor chips formed on a semiconductor wafer.

半導体回路の検査に用いるプローブカードは、半導体チップ上の端子パッド数の増加、パッド面積の縮小化、パッド間ピッチの狭小化に対応すべくプローブ配列の高密度化が要求されている。現在、最も狭ピッチパッドであり、かつ多くの端子数を有するICの例としては、主として液晶パネル駆動用に使用されるIC(以下、LCDドライバIC)である。特に、液晶の全画素に対応して信号を出力する端子パッド列においては、複数列の千鳥配列を用いた15μm以下のパッド間ピッチで2000端子を超える端子数のICが開発され、さらなる高画質化に応じて狭ピッチかつ多ピン化の傾向にある。  Probe cards used for testing semiconductor circuits are required to have a higher density of probe arrangements in order to cope with an increase in the number of terminal pads on a semiconductor chip, a reduction in pad area, and a reduction in the pitch between pads. At present, an example of an IC having the narrowest pitch pad and a large number of terminals is an IC mainly used for driving a liquid crystal panel (hereinafter, LCD driver IC). In particular, for terminal pad rows that output signals corresponding to all pixels of the liquid crystal, ICs with more than 2,000 terminals with a pad pitch of 15 μm or less using a plurality of rows of staggered arrangements have been developed, resulting in higher image quality. There is a tendency for the pitch to be narrower and the number of pins to be increased in accordance with the trend toward more pins.

又、デバイス特性の向上及び消費電力低減効果並びに省スペース化を目的として、シリコン貫通電極(TSV)を使用して複数のICチップを三次元に実装する技術が開発されている。代表的な例として、スマートフォンや画像機器等に使用される中央処理装置(CPU)用ICと複数の半導体メモリ(例えばDRAM)をTSVにて三次元実装したものが実用化されつつある。TSVを使用した三次元実装ICでは、40μmピッチレベルの狭ピッチ格子状配列が特徴であり、ますます配列が困難なものとなってくる。  In addition, for the purpose of improving device characteristics, reducing power consumption, and saving space, a technology for three-dimensionally mounting a plurality of IC chips using through silicon vias (TSVs) has been developed. As a typical example, an IC for a central processing unit (CPU) and a plurality of semiconductor memories (for example, DRAMs) used for a smartphone or an image device and the like, which are three-dimensionally mounted by TSV, are being put to practical use. A three-dimensional mounting IC using a TSV is characterized by a narrow pitch lattice-like arrangement at a pitch of 40 μm, which makes the arrangement more and more difficult.

プローブカードは、狭ピッチで配列された多ピンのプローブ組立における各プローブ端子部から、プローブカード周辺部に比較的粗いピッチで設置された外部テスター接続用端子へ効率良く配線しなければならず、プローブ端子部のピッチが小さい程、又、プローブ端子数が多い程、配線基板が多層構造となる。  The probe card must be efficiently wired from each probe terminal in a multi-pin probe assembly arranged at a narrow pitch to an external tester connection terminal installed at a relatively coarse pitch around the probe card, The smaller the pitch of the probe terminals and the greater the number of probe terminals, the more the wiring board has a multilayer structure.

又、メモリーIC等の検査では、検査コストの低減のため、半導体ウエハ上の複数又は全数のチップを同時に検査することが一般的である。このためには、半導体ウエハ全体の広範囲に相当するプローブの配置と、その検査環境温度変化を含めた相互配置精度向上が課題となっている。  In the inspection of a memory IC or the like, it is general to inspect a plurality or all of the chips on a semiconductor wafer at the same time in order to reduce the inspection cost. For this purpose, it is necessary to dispose probes corresponding to a wide area of the entire semiconductor wafer and to improve mutual arrangement accuracy including a change in temperature of the inspection environment.

さらに、ICの動作速度の高速化に伴い、高機能化されたICでは、特定の入出力ピンの信号周波数が増加する傾向にあり、高周波特性の優れたプローブカードが必要となってくる。従来のプローブカードに使用されている印刷配線板における高周波用パターンとしては、マイクロストリップライン構造やストリップライン構造が一般的であり、各々の信号線の上下のグランド層又は電源層と共に多層化構造となっている。また、特に信号周波数の高い信号ラインにおいては、特性インピーダンスが確保されたシールド付き同軸線を使用する場合が多く、プローブ針直近まで、如何にインピーダンス整合を維持できるかが課題となっている。  Further, as the operating speed of the IC increases, the signal frequency of a specific input / output pin tends to increase in a sophisticated IC, and a probe card having excellent high-frequency characteristics is required. As a high-frequency pattern on a printed wiring board used in a conventional probe card, a microstrip line structure or a strip line structure is generally used, and a multi-layered structure is formed together with a ground layer or a power supply layer above and below each signal line. Has become. Particularly, in a signal line having a high signal frequency, a shielded coaxial line having a characteristic impedance is often used in many cases, and there is a problem how to maintain the impedance matching right up to the probe needle.

このように、小型かつ高機能となる次世代の半導体デバイスの共通課題である、端子の多ピン狭ピッチ化、信号の高速化等の多岐の要求に対応可能なプローブカード技術が要求されている。  As described above, there is a demand for a probe card technology that can respond to a variety of requirements, such as narrowing the number of pins of pins and increasing the speed of signals, which are common issues of next-generation semiconductor devices that are small and have high functionality. .

狭ピッチ千鳥配列を含むパッド配列に対し効率的なプローブ組立及び狭ピッチのプローブ配列から配線基板への効率的配線方法としては、例えば特開2016−206160号公報で開示されているように、主基板の表層に、銅箔シートを加工してプローブとインターフェース部とを接続する配線パターンを形成した1枚又は複数枚の配線パターンシートを設け、配線パターンの片端がプローブ端子部と電気的に接続する手段を有し、また、プローブの製造において、垂直プローブ部とプローブ変形部プローブ導体パターン部とプローブ端子部とを含む複数のプローブが導電性金属箔から一括微細加工され絶縁性フィルムに貼り付けて同一平面上に配置されたプローブ集合体であって、プローブ集合体のプローブ垂直部先端の間隔が、検査パッド列の何れかのパッド間隔と同一であり、一つのプローブ集合体における全てのプローブ外形が、一つの導電性金属箔から連続して加工される手段を有するものである。  As an efficient probe assembly for a pad arrangement including a narrow pitch staggered arrangement and an efficient wiring method from a narrow pitch probe arrangement to a wiring board, for example, as disclosed in JP-A-2006-206160, One or more wiring pattern sheets are provided on the surface layer of the substrate, in which a copper foil sheet is processed to form a wiring pattern for connecting the probe and the interface section, and one end of the wiring pattern is electrically connected to the probe terminal section. In the manufacture of a probe, a plurality of probes including a vertical probe part, a probe deformation part, a probe conductor pattern part and a probe terminal part are collectively micro-processed from a conductive metal foil and attached to an insulating film. A probe assembly arranged on the same plane, and the distance between the tips of the probe vertical portions of the probe assembly is Is identical to either the pad spacing of de row, all probes contour in one of the probe assemblies, those having a unit to be processed continuously from one conductive metal foil.

又、特開2016−206160号公報では、プローブ導体パターン部の片面又は両面にポリイミド等の絶縁層を介して金属導体シートを貼り付け、導体シートに接地用垂直プローブ部と接地用プローブ端子部を設ける手段と、配線パターンシートの片面又は両面に、ポリイミド等の絶縁層を介して銅箔シートを貼り付け接地用配線パターンを設ける手段と、接地用プローブ端子部が接地用配線パターンの一部と接続する手段とを有することにより、信号線パターンと接地用パターンとの組合せをプローブと配線パターンとの両方に施すことができるため、高周波信号等の電気的特性に優れた構造とすることが可能となっている。  In JP-A-2006-206160, a metal conductor sheet is adhered to one or both surfaces of a probe conductor pattern portion via an insulating layer of polyimide or the like, and a grounding vertical probe portion and a grounding probe terminal portion are attached to the conductor sheet. Means for providing, means for attaching a copper foil sheet on one or both sides of the wiring pattern sheet via an insulating layer of polyimide or the like to provide a wiring pattern for grounding, and the grounding probe terminal portion is part of the wiring pattern for grounding. By having the connecting means, a combination of the signal line pattern and the grounding pattern can be applied to both the probe and the wiring pattern, so that a structure having excellent electrical characteristics such as a high-frequency signal can be obtained. It has become.

さらに、特開2014−202739号公報で開示されているように、基板内の配線を介さず、基板表面にてワイヤ配線を行い、プローブ端子部とワイヤ片端部を接続することにより、少ない層数基板にて配線接続を容易にしたものがある。  Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2014-202739, the number of layers can be reduced by performing wire wiring on the surface of the substrate without connecting the wiring inside the substrate and connecting the probe terminal portion and one end of the wire. There is a substrate that facilitates wiring connection.

特開2016−206160号公報JP-A-2006-206160 特開2014−202739号公報JP 2014-202739 A

しかしながら、特開2016−206160号公報で開示されている方法によれば、狭ピッチ化したプローブ群と基板上パターンとの接続が困難となり非接続箇所の増加の原因となることや、接続部の電気的な不連続個所が生じることにより抵抗値のバラツキや高周波特性の反射による劣化に繋がるという問題が生じる。又、特開2014−202739号公報で開示されている方法によれば、ワイヤ接続工程に時間がかかるという問題が生じてくる。さらにこれらの問題は、半導体チップの端子配列数又は半導体ウエハ上での同時に検査を行う半導体チップ数が増加するほど、顕著に表れてくるものである。  However, according to the method disclosed in JP-A-2006-206160, it is difficult to connect the narrow-pitch probe group and the pattern on the substrate, which causes an increase in non-connection portions, A problem arises in that the occurrence of electrical discontinuities leads to variations in resistance values and deterioration due to reflection of high-frequency characteristics. Further, according to the method disclosed in JP-A-2014-202739, there is a problem that it takes time for the wire connection process. Further, these problems become more conspicuous as the number of terminal arrangements of semiconductor chips or the number of semiconductor chips to be inspected simultaneously on a semiconductor wafer increases.

本発明は、上記プローブカードにおける共通的な問題点を同時に解決するためになされたもので、複数列の狭ピッチかつ多ピン配列を有する半導体チップ検査、複数の半導体チップの同時検査、高周波信号路を有する半導体チップ検査、広範囲な温度環境下における検査等に対応可能なプローブカードを実現すると共にプローブと配線との接続問題を解決した安価なプローブカードを提供するものである。  The present invention has been made in order to simultaneously solve the common problems in the probe card, and has been made in order to simultaneously inspect a semiconductor chip having a plurality of rows of a narrow pitch and a multi-pin array, a simultaneous inspection of a plurality of semiconductor chips, and a high-frequency signal path. It is intended to provide a probe card which can cope with a semiconductor chip inspection having inspection, an inspection under a wide temperature environment, and the like, and also provides an inexpensive probe card which solves a problem of connection between a probe and a wiring.

本発明は、複数の導電性導体パターンを1つの絶縁フィルム上に設置した配線フィルムであって、前記配線フィルム平面(XY平面)上に、前記導体パターンの一端におけるプローブ集合体整列手段と、前記プローブ集合体の方向転換手段と、前記導体パターンの他端における外部端子接続手段と、前記プローブ集合体と前記外部接続端子との間における導体パターン拡張手段を有しているため、狭ピッチ化したプローブ群と配線パターンとの接続工程が不要であり、電気的に安定した安価なプローブカードを供給することが可能となる。  The present invention is a wiring film in which a plurality of conductive conductor patterns are provided on one insulating film, and a probe assembly alignment means at one end of the conductor pattern on the wiring film plane (XY plane); Since the probe assembly has a direction changing means, an external terminal connection means at the other end of the conductor pattern, and a conductor pattern expansion means between the probe assembly and the external connection terminal, the pitch is reduced. A connection step between the probe group and the wiring pattern is not required, and an electrically stable and inexpensive probe card can be supplied.

又、本発明は、前記プローブ集合体における一部又は全部のプローブ先端が、前記配線フィルム平面(XY平面)内において任意の直線上に配置された単列プローブ集合体であって、前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であり、前記プローブ先端を結ぶ直線軸から任意の距離における導体パターン上の直線を中心軸として、前記単列プローブ集合体をXY平面に対し概略垂直方向に折り曲げて設置する方向転換手段を有しているため、高精度のプローブ先端配列を実現することができる。  The present invention also provides a single-row probe assembly in which a part or all of the probe tips in the probe assembly are arranged on an arbitrary straight line in the wiring film plane (XY plane). Is the same as the arrangement interval of the target semiconductor electrode terminal to be inspected in the XY plane coordinates, and the center axis is a straight line on the conductor pattern at an arbitrary distance from the straight axis connecting the probe tips. Since the single-row probe assembly has direction changing means for bending and installing the single-row probe assembly in a direction substantially perpendicular to the XY plane, a highly accurate probe tip arrangement can be realized.

又、本発明は、第1の前記単列プローブ集合体と概略平行に直線状に配置した第2の単列プローブ集合体と、前記第1の単列プローブ集合体と概略直角方向に直線状に配置した第3又は第4の単列プローブ集合体であって、前記第1乃至第4の単列プローブ集合体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一である手段を有するため、如何なる配列の半導体デバイスの電極端子にも容易に対応可能なプローブ組立を実現させることができる。  The present invention also provides a second single-row probe assembly, which is linearly arranged substantially in parallel with the first single-row probe assembly, and a straight-line shape substantially perpendicular to the first single-row probe assembly. , The third or fourth single-row probe assembly, wherein the arrangement intervals in the XY plane coordinates of the tips of some or all of the first to fourth single-row probe assemblies are of interest. Since there is a means that is the same as the arrangement interval of the semiconductor electrode terminals to be inspected on the XY plane coordinates, it is possible to realize a probe assembly that can easily correspond to the electrode terminals of the semiconductor device in any arrangement.

又、本発明は、一端を前記単列プローブにおける1つ又は複数の任意のプローブとし、他端を1つ又は複数の外部接続端子として前記導体パターンを形成する手段を有するため、同一の前記導体パターンでプローブの機能と配線パターンの機能を兼ね備えることが可能となり、電気抵抗が少なく配線層数の少ないプローブカードを実現することが可能である。  Further, the present invention has a means for forming the conductor pattern as one or more arbitrary probes in the single-row probe and one or more external connection terminals at the other end, so that the same conductor The pattern can have both the function of the probe and the function of the wiring pattern, so that a probe card having a small electric resistance and a small number of wiring layers can be realized.

又、本発明は、前記導体パターンが直線の集合体で形成され、前記プローブから前記外部接続端子に至るまで段階的に前記導体パターン間ピッチ又は前記導体パターン幅が大きくなること、又は、前記導体パターンの一部又は全部の形状が連続した曲線であり、前記プローブから前記外部接続端子に至るまで連続的に前記導体パターン間ピッチ又は前記導体パターン幅が大きくなる手段を有するため、電気抵抗が少なく配線層数の少ない配線パターンを実現することが可能となる。  Further, according to the present invention, the conductor pattern is formed of a linear assembly, and the pitch between the conductor patterns or the conductor pattern width increases stepwise from the probe to the external connection terminal, or Part or the entire shape of the pattern is a continuous curve, and since there is means for continuously increasing the pitch between the conductor patterns or the width of the conductor pattern from the probe to the external connection terminal, the electric resistance is low. It is possible to realize a wiring pattern with a small number of wiring layers.

又、本発明は、1つの前記配線フィルムの一部又は全部に、1つ又は複数の前記配線フィルムを積層した多層配線フィルムにより、2つ以上のプローブ集合体を配置する手段を有し、前記多層配線フィルムであって、前記単列プローブ集合体を2つ以上積層したプローブ組立体において、一部又は全てのプローブ先端の垂直方向(Z方向)位置が同一であり、前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一である手段を有するため、如何なる配列の半導体デバイスの電極端子にも容易に対応可能なプローブ組立を実現させることができる。  Further, the present invention has means for arranging two or more probe assemblies by a multilayer wiring film obtained by laminating one or more of the wiring films on a part or all of one of the wiring films, In a multilayer wiring film, in a probe assembly in which two or more single-row probe assemblies are stacked, a part or all of the probe tips have the same vertical position (Z direction), and the probe tip has an XY plane. Since the arrangement interval in the coordinates is the same as the arrangement interval of the target semiconductor electrode terminals to be inspected in the XY plane coordinates, a probe assembly that can easily correspond to the electrode terminals of the semiconductor device in any arrangement is realized. be able to.

又、本発明は、前記配線フィルムの一部又は全部の導体パターンと前記絶縁層と接地用パターン層との断面方向の寸法関係(例えば導体パターン幅、厚さ、絶縁層厚さ等)及び各々の電気的特性(例えば比誘電率等)が、予め所定の特性インピーダンス値となるべく設定する手段を有するため、プローブ先端から配線パターンの終端部まで不連続点がなく、優れた高周波特性を有するプローブカードを実現することが可能となる。  Also, the present invention provides a dimensional relationship (for example, conductor pattern width, thickness, insulation layer thickness, etc.) in a cross-sectional direction between a part or all of the conductor pattern of the wiring film, the insulating layer, and the ground pattern layer, and Has a means for setting the electrical characteristics (e.g., relative permittivity, etc.) of the probe to a predetermined characteristic impedance value in advance, so that there is no discontinuity from the probe tip to the end of the wiring pattern, and the probe has excellent high-frequency characteristics. A card can be realized.

又、本発明は、一部又は全部の前記導体パターンの同一平面上に、空気層又はポリイミド等の絶縁層を介して前記導体パターンの近傍に接地用配線パターンを設ける手段を有するため、微小電流測定に必要な漏れ電流の極めて少ないプローブカードを実現することが可能となる。  In addition, the present invention has a means for providing a ground wiring pattern near the conductor pattern via an air layer or an insulating layer such as polyimide on the same plane as part or all of the conductor pattern. It is possible to realize a probe card having extremely small leakage current required for measurement.

又、本発明は、1つの絶縁フィルム上に、1つ又は複数の導体パターンと前記導体パターンの両端に中継用電極端子を設置した中継用配線フィルムであって、前記中継用電気端子の一端を前記配線フィルム上に設置した接続端子と接続し、他端を前記配線フィルム上に設置した他の前記接続端子と接続する手段を有するため、XY平面上で複数の配線パターンが交差するものであっても、少ない枚数の配線フィルムで効率的な配線パターンを構成することが可能となる。  Further, the present invention is a relay wiring film in which one or a plurality of conductor patterns and a relay electrode terminal are provided at both ends of the conductor pattern on one insulating film, and one end of the relay electric terminal is provided. Since it has means for connecting to the connection terminal provided on the wiring film and connecting the other end to the other connection terminal provided on the wiring film, a plurality of wiring patterns intersect on the XY plane. However, it is possible to form an efficient wiring pattern using a small number of wiring films.

さらに、本発明は、前記配線フィルムの前記単列プローブ集合体において、プローブ配置面(XZ平面)と平行に前記プローブ配置方向(X方向)に沿って支持体を設置し、前記プローブの一部又は全部のX方向位置が、前記支持体の熱収縮に伴うX方向変位に追従する手段を有し、前記支持体の線膨張係数が被検査半導体ウエハの線膨張係数に近似である材料を選定することにより、広範囲な温度環境下における検査に対応可能なプローブカードを実現することが可能となる。  Further, in the present invention, in the single-row probe assembly of the wiring film, a support is provided along the probe placement direction (X direction) in parallel with a probe placement surface (XZ plane), and a part of the probe is provided. Alternatively, a material is provided in which all X-direction positions have a means for following the X-direction displacement caused by thermal contraction of the support, and a material whose linear expansion coefficient of the support is close to the linear expansion coefficient of the semiconductor wafer to be inspected is selected. By doing so, it is possible to realize a probe card that can support inspection under a wide range of temperature environments.

本発明のプローブカードによれば、複数の導電性導体パターンを1つの絶縁フィルム上に設置した配線フィルムであって、前記配線フィルム平面(XY平面)上に、前記導体パターンの一端におけるプローブ集合体整列手段と、前記プローブ集合体の方向転換手段と、前記導体パターンの他端における外部端子接続手段と、前記プローブ集合体と前記外部接続端子との間における導体パターン拡張手段とを有することにより、複数列の狭ピッチかつ多ピン配列を有する半導体チップ検査、複数の半導体チップの同時検査、高周波信号路を有する半導体チップ検査、広範囲な温度環境下における検査等に対応可能なプローブカードを実現すると共にプローブと配線との接続問題を解決した安価なプローブカードを提供するものである。  According to the probe card of the present invention, there is provided a wiring film in which a plurality of conductive conductive patterns are provided on one insulating film, and a probe assembly at one end of the conductive pattern on the wiring film plane (XY plane). Alignment means, direction change means of the probe assembly, external terminal connection means at the other end of the conductor pattern, by having a conductor pattern expansion means between the probe assembly and the external connection terminal, In addition to realizing a probe card capable of responding to a semiconductor chip inspection having a plurality of rows of a narrow pitch and a multi-pin array, a simultaneous inspection of a plurality of semiconductor chips, a semiconductor chip inspection having a high-frequency signal path, an inspection in a wide temperature environment, and the like. An object of the present invention is to provide an inexpensive probe card which solves the problem of connection between a probe and wiring.

本発明の実施形態であるプローブカードの基本構成を示す斜視図である。  FIG. 1 is a perspective view illustrating a basic configuration of a probe card according to an embodiment of the present invention. 本発明の実施形態である配線フィルムの基本構造を示す平面図である。  It is a top view showing the basic structure of the wiring film which is an embodiment of the present invention. 本発明の実施形態である配線フィルムの部分詳細図である。  FIG. 2 is a partial detailed view of a wiring film according to an embodiment of the present invention. 本発明の実施形態であるプローブ集合体の配置関係を示す図である。  FIG. 3 is a diagram illustrating an arrangement relationship of a probe assembly according to an embodiment of the present invention. 本発明の実施形態である配線フィルムの複数積層構造を示す図である。  It is a figure which shows the multiple lamination structure of the wiring film which is embodiment of this invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である多層配線フィルムにおけるプローブ組立体の例を示す図である。  It is a figure showing the example of the probe assembly in the multilayer wiring film which is an embodiment of the present invention. 本発明の実施形態である高周波信号用プローブ集合体の構成を示す図である。  It is a figure showing composition of a probe aggregate for high frequency signals which is an embodiment of the present invention. 本発明の実施形態である高周波信号用配線フィルムの積層状態を示す図である。  It is a figure showing the lamination state of the wiring film for high frequency signals which is an embodiment of the present invention. 本発明の実施形態である微小電流測定用配線フィルムの構造を示す図である。  It is a figure showing the structure of the wiring film for microcurrent measurement which is an embodiment of the present invention. 本発明の実施形態である導体パターンの製造方法と構造を示す図である。  It is a figure showing a manufacturing method and structure of a conductor pattern which is an embodiment of the present invention. 本発明の実施形態である配線フィルムのプローブ変形部構造を示す図である。  It is a figure showing the probe deformation part structure of the wiring film which is an embodiment of the present invention. プローブ組立体における熱膨張によるプローブ集合体の挙動を説明する図である。  FIG. 4 is a diagram illustrating behavior of a probe assembly due to thermal expansion in the probe assembly. 本発明の実施形態である熱収縮追従構造によるプローブ組立体について説明する図である。  It is a figure explaining the probe assembly by the heat shrink following structure which is the embodiment of the present invention.

次に、本発明の実施の形態について図面を参照して詳細に説明する。図1は、本発明の実施の形態におけるプローブカードの基本構成を示す斜視図である。図1において、1は本発明の実施の形態におけるプローブカードで、半導体ウエハ50に作製された被検査半導体チップ5の検査に使用するためのものである。前記プローブカード1は、主としてプローブ組立体2と主基板3と配線フィルム4で構成され、前記主基板3は、一般的には絶縁材(例えばFR−4等)を基材とした多層配線基板であり、図示例の如く円形型のものや矩形型のものがある。前記主基板3の周辺部に外部接続端子311が設置され、主基板3内のスルーホールを経由して外部検査装置(図示せず)との検査信号の授受を行うため、テスター接続端子312とのインターフェース部301を構成するものである。  Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a basic configuration of a probe card according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a probe card according to an embodiment of the present invention, which is used for inspection of a semiconductor chip 5 to be inspected manufactured on a semiconductor wafer 50. The probe card 1 is mainly composed of a probe assembly 2, a main board 3, and a wiring film 4, and the main board 3 is generally a multilayer wiring board made of an insulating material (for example, FR-4 or the like). There are a circular type and a rectangular type as shown in the illustrated example. An external connection terminal 311 is provided at a peripheral portion of the main board 3 and transmits and receives an inspection signal to and from an external inspection device (not shown) via a through hole in the main board 3. Of the interface unit 301 of FIG.

又、前記配線フィルム4は、前記主基板3の表層(上面)31に、前記プローブ組立体2と、前記外部接続端子311、又は前記主基板3上の電気端子302若しくは電気部品305若しくはコネクター306と接続する導電材による配線パターン42を形成した1枚又は複数枚の前記配線フィルム4を、前記主基板3に形成された表層(上面)31、中間層35又は表層(下面)32における配線パターンと独立して前記主基板3に設置している。  In addition, the wiring film 4 is provided on the surface layer (upper surface) 31 of the main board 3 with the probe assembly 2 and the external connection terminals 311 or the electric terminals 302 or the electric components 305 or the connectors 306 on the main board 3. One or a plurality of the wiring films 4 on which a wiring pattern 42 made of a conductive material connected to the wiring board 42 are formed, are connected to a wiring pattern on a surface layer (upper surface) 31, an intermediate layer 35 or a surface layer (lower surface) 32 formed on the main substrate 3. And is installed on the main board 3 independently.

図2は、1つの前記配線フィルム4の基本構成を詳細に示す図である。図2(a)は前記配線フィルム4の全体構成を、図2(b)は前記導体パターン41の一つの形態を示す。図2(a)、(b)において、40は絶縁フィルム(例えばポリイミドフィルム)、41は前記絶縁フィルム40上に設置した導電材から成る複数の導体パターンであり、一端をプローブ部20、他端を端子接続部43とする。前記プローブ部20は、少なくとも1つの単列プローブ集合体を含むプローブ集合体210を形成し、本図では、4つの前記単列プローブ集合体211乃至214が向かい合って配列された例を示す。  FIG. 2 is a diagram showing the basic configuration of one wiring film 4 in detail. FIG. 2A shows the overall configuration of the wiring film 4, and FIG. 2B shows one form of the conductor pattern 41. 2A and 2B, reference numeral 40 denotes an insulating film (for example, a polyimide film); 41, a plurality of conductor patterns made of a conductive material provided on the insulating film 40; Is a terminal connection part 43. The probe unit 20 forms a probe assembly 210 including at least one single-row probe assembly, and the figure shows an example in which four single-row probe assemblies 211 to 214 are arranged to face each other.

本発明において前記プローブ部20は、前記導体パターン41の一部として、前記配線パターン4と継続し一体化したことに特徴を有する。  The present invention is characterized in that the probe section 20 is continuously integrated with the wiring pattern 4 as a part of the conductor pattern 41.

前記配線フィルム4は、前述のように主として前記絶縁フィルム40上の複数の前記導体パターン41で構成され、一端は、ウエハ上の被検査半導体チップ5の電極端子の位置に合致すべく配置された前記プローブ集合体210に接続され、他端は前記外部接続端子311に接続するための接続端子431等を構成する。前記接続端子431と前記外部接続端子311との半田接続308を可能にするために、前記絶縁フィルム40には切り欠き401を設けてある。  The wiring film 4 is mainly composed of the plurality of conductor patterns 41 on the insulating film 40 as described above, and one end is arranged to match the position of the electrode terminal of the semiconductor chip 5 to be inspected on the wafer. The other end constitutes a connection terminal 431 for connecting to the external connection terminal 311 and the like. A cutout 401 is provided in the insulating film 40 to enable a solder connection 308 between the connection terminal 431 and the external connection terminal 311.

前記導体パターン41の前記プローブ部20の他端の構成としては、前記主基板3上の電気端子302(例えば前記主基板3の前記表層(下面)32や前記中間層35に接続するスルーホール等)に接続する接続端子432が、切り欠き402と共に設置され、チップ抵抗やチップコンデンサー等(図示せず)と接続するための接続端子434、又はコネクター等(図示せず)と接続するための接続端子433を同時に形成することが可能である。前記接続端子431乃至434は、前記外部接続端子311、前記電気端子302等の前記主基板3平面のXY平面座標における配置間隔と同一の位置に予め配置することにより、各々の前記接続端子431乃至434の位置合わせを不要としている。  The configuration of the other end of the probe portion 20 of the conductor pattern 41 includes an electric terminal 302 on the main substrate 3 (for example, a through hole connected to the surface layer (lower surface) 32 or the intermediate layer 35 of the main substrate 3). ) Is provided together with the notch 402, and is provided with a connection terminal 434 for connecting to a chip resistor, a chip capacitor, etc. (not shown), or a connection for connecting to a connector, etc. (not shown). The terminals 433 can be formed at the same time. The connection terminals 431 to 434 are arranged in advance at the same positions as the external connection terminals 311, the electric terminals 302, and the like on the XY plane coordinates of the plane of the main substrate 3 so that each of the connection terminals 431 to 434 is provided. The alignment of 434 is unnecessary.

前記プローブカード1において、一般的に前記プローブ部20は狭ピッチ(例えば数十μm間隔)で構成され、一方、前記主基板3における前記インターフェース部301では、比較的粗いピッチ(例えば数mm間隔)で構成されている。  In the probe card 1, the probe units 20 are generally formed at a narrow pitch (for example, at intervals of several tens of μm), while at the interface unit 301 of the main board 3, a relatively coarse pitch (for example, at intervals of several mm) is used. It is composed of

一方、図2(a)では、前記導体パターン41は幾つかの曲線の集合体で構成された例を示す。図2(b)は、2つの隣接した前記導体パターン41を示すものであるが、図2(b)に示すように、前記プローブ部20から前記インターフェース部311に接続する前記接続端子431に至るまで、複数の点を結ぶ連続した曲線(例えばスプライン曲線)とし、導体パターン幅Wp及び導体パターン間ピッチPpを連続的に増加する設定が可能である。このように、導体パターン幅Wp及び導体パターン間隔Ppを段階的又は連続的に増加させることにより電気抵抗の少ないパターンを実現し、それ故に高周波信号における反射損失等を低減し易いといった効果がある。  On the other hand, FIG. 2A shows an example in which the conductor pattern 41 is constituted by an aggregate of several curves. FIG. 2B shows two adjacent conductor patterns 41. As shown in FIG. 2B, the conductor pattern 41 extends from the probe unit 20 to the connection terminal 431 connected to the interface unit 311. Up to this point, it is possible to set a continuous curve (for example, a spline curve) connecting a plurality of points, and to continuously increase the conductor pattern width Wp and the conductor pattern pitch Pp. As described above, by increasing the conductor pattern width Wp and the conductor pattern interval Pp stepwise or continuously, a pattern having a small electric resistance is realized, and therefore, there is an effect that the reflection loss or the like in a high-frequency signal is easily reduced.

前記配線フィルム4は、前記絶縁フィルム40上に導電性金属(例えば銅、ニッケル等又はそれらの合金)による前記導体パターン41を形成したものである。前記導体パターン41の作製方法は、導電性金属シートをエッチング又はレーザ加工により作製する方法、又は、後述する電極基板上で導電性金属材料からなるパターンを電鋳により形成し、前記絶縁フィルム40を貼り付ける方法等がある。  The wiring film 4 is obtained by forming the conductive pattern 41 of a conductive metal (for example, copper, nickel, or an alloy thereof) on the insulating film 40. The method of manufacturing the conductive pattern 41 is a method of manufacturing a conductive metal sheet by etching or laser processing, or a method of forming a pattern made of a conductive metal material on an electrode substrate, which will be described later, by electroforming. There is a method of attaching.

図3は、図2における前記配線フィルム4の部分詳細図を示すものである。図3(a)は、前記プローブ部20を示すもので、4つの前記単列プローブ集合体211乃至214が向かい合って配列された例で示す。前記単列プローブ集合体211及び212は、各々のプローブ先端部21で構成されるプローブ先端列21−1、21−2が前記配線フィルム4平面(XY平面)上でX方向に直線となるべく配置され、前記単列プローブ集合体213及び214は、各々のプローブ先端列21−3、21−4がXY平面上でY方向に直線となるべく配置され、概略四辺形を構成するものである。このとき、前記プローブ先端21は、図4にて後述するように、各々の配置間隔が、対象となる被検査半導体チップ5の電極端子パッド51のXY平面座標における配置間隔と同一となるべく設置される。すなわち、前記プローブ部20は、対象となる被検査半導体の電極端子パッド配列に基づき、プローブ本数及びプローブ間ピッチが決定される。  FIG. 3 is a partial detailed view of the wiring film 4 in FIG. FIG. 3A shows the probe unit 20, which is an example in which four single-row probe assemblies 211 to 214 are arranged to face each other. The single-row probe assemblies 211 and 212 are arranged such that the probe tip rows 21-1 and 21-2 formed by the respective probe tip portions 21 are linear in the X direction on the wiring film 4 plane (XY plane). The single-row probe assemblies 213 and 214 are arranged such that the probe tip rows 21-3 and 21-4 are linear in the Y direction on the XY plane, and constitute a substantially quadrilateral. At this time, as described later with reference to FIG. 4, the probe tips 21 are installed so that the respective arrangement intervals are the same as the arrangement intervals in the XY plane coordinates of the electrode terminal pads 51 of the target semiconductor chip 5 to be inspected. You. That is, in the probe unit 20, the number of probes and the pitch between probes are determined based on the electrode terminal pad arrangement of the target semiconductor to be inspected.

図2において、45は中継用配線フィルムを示す。また、S1−1等は前記外部接続端子311の端子番号を示すものである。前記端子番号S「m」−「n」の「m」は前記外部接続端子311の列番号を、「n」は前記外部接続端子311の任意の列における前記主基板3の内側からの番号を示す。S1列からS17列までは、前記プローブ集合体210の各プローブから順番にS1−1乃至S17−5に割り当てられた例を示した。  In FIG. 2, reference numeral 45 denotes a relay wiring film. S1-1 and the like indicate the terminal numbers of the external connection terminals 311. In the terminal numbers S “m” to “n”, “m” indicates a column number of the external connection terminal 311, and “n” indicates a number of the arbitrary column of the external connection terminal 311 from the inside of the main substrate 3. Show. Rows S1 to S17 show an example in which the probes of the probe assembly 210 are sequentially assigned to S1-1 to S17-5.

図3(b)は、前記中継用配線フィルム45を含む詳細図である。前記中継用配線フィルム45は、1つの絶縁フィルム453上に、複数の配線パターン452と前記配線パターン452の両端に中継用接続端子451を設置したものである。  FIG. 3B is a detailed view including the relay wiring film 45. The relay wiring film 45 has a configuration in which a plurality of wiring patterns 452 and relay connection terminals 451 are provided on both ends of the wiring pattern 452 on one insulating film 453.

導体パターン41−2乃至41−5は、順番に前記外部接続端子311の端子番号S18−2乃至18−5に接続しているが、導体パターン41−1は端子番号S21−1に接続されるべきものとする。このとき、前記中継用配線フィルム45において、前記配線パターン452の一端に設置した中継用接続端子451aと導体パターン41−1の接続端子435aとを接続し、前記配線パターン452の他端に設置した前記中継用接続端子451bと前記端子番号S21−1へ連絡する接続端子435bとを接続した。この前記中継用配線フィルム45を設置することにより、導体パターン同士が交差する場合の効率的な配線手段とすることができる。  The conductor patterns 41-2 to 41-5 are sequentially connected to the terminal numbers S18-2 to 18-5 of the external connection terminals 311. The conductor pattern 41-1 is connected to the terminal number S21-1. Should be. At this time, in the relay wiring film 45, the relay connection terminal 451a installed at one end of the wiring pattern 452 and the connection terminal 435a of the conductor pattern 41-1 were connected, and installed at the other end of the wiring pattern 452. The relay connection terminal 451b and the connection terminal 435b communicating with the terminal number S21-1 were connected. By installing the relay wiring film 45, an efficient wiring means when the conductor patterns cross each other can be provided.

図4は、前記プローブ集合体211乃至214における前記プローブ先端列21−1乃至21−4と、前記被検査半導体チップ5における電極端子パッド51との配置関係を説明するものである。  FIG. 4 illustrates the positional relationship between the probe tip rows 21-1 to 21-4 in the probe assemblies 211 to 214 and the electrode terminal pads 51 in the semiconductor chip 5 to be inspected.

図3(a)にて示したXY平面上に設置した前記プローブ先端列21−1乃至21−4において、各々の前記プローブ先端を結ぶ直線軸から一定の距離dにおける導体パターン上の直線を中心軸として、前記単列プローブ集合体211乃至214をXY平面に対し概略垂直方向に折り曲げることにより、前記プローブ先端列21−1乃至21−4の方向転換を行った状態を図4に示した。前記プローブ先端列21−1乃至21−4は、前記被検査半導体チップ5上の端子と前記主基板3平面に対して概略垂直方向に接触するため、少なくとも前記プローブ先端部21並びに前記プローブ変形部22、及び前記プローブ導体パターン部23の一部又は全部を、前記主基板3平面に対し概略垂直方向に配置している。  In the probe tip rows 21-1 to 21-4 installed on the XY plane shown in FIG. 3A, a straight line on the conductor pattern at a fixed distance d from a linear axis connecting the probe tips is centered. FIG. 4 shows a state in which the single-row probe assemblies 211 to 214 are bent in a direction substantially perpendicular to the XY plane as axes, thereby changing the direction of the probe tip rows 21-1 to 21-4. Since the probe tip rows 21-1 to 21-4 come into contact with the terminals on the semiconductor chip 5 to be inspected in a direction substantially perpendicular to the plane of the main substrate 3, at least the probe tip 21 and the probe deforming section 22 and a part or all of the probe conductor pattern portion 23 are arranged in a direction substantially perpendicular to the plane of the main substrate 3.

図4において、前記単列プローブ集合体211は、前記電極端子パッド51の1つのパッド列51−1と、前記単列プローブ集合体212はパッド列51−2と、前記単列プローブ集合体213はパッド列51−3と、前記単列プローブ集合体214はパッド列51−4と対応すべく、前記プローブ先端列21−1乃至21−4のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一とした。これにより、電極端子パッド51の配列に対応する、いわゆる周辺配列プローブ組立体251を形成することができる。  In FIG. 4, the single-row probe assembly 211 includes one pad row 51-1 of the electrode terminal pad 51, the single-row probe assembly 212 includes a pad row 51-2, and the single-row probe assembly 213. In order to correspond to the pad row 51-3 and the single-row probe assembly 214 to the pad row 51-4, the arrangement interval of the probe tip rows 21-1 to 21-4 in the XY plane coordinates is set as a target object. The arrangement interval of the inspection semiconductor electrode terminals was the same as the arrangement interval in the XY plane coordinates. Thereby, a so-called peripheral array probe assembly 251 corresponding to the array of the electrode terminal pads 51 can be formed.

図5は、前記プローブ集合体210を複数積層した多層配線フィルム構成を示したものである。図5において、前記単列プローブ集合体211の上にさらに2つの単列プローブ集合体を積層し、3枚構成の単列プローブ集合体211−1、211−2、211−3とした。本構成による効果について、図6に示す。  FIG. 5 shows a multilayer wiring film configuration in which a plurality of the probe assemblies 210 are stacked. In FIG. 5, two single-row probe assemblies are further laminated on the single-row probe assembly 211 to form three-row single-row probe assemblies 211-1, 211-2, and 211-3. FIG. 6 shows the effect of this configuration.

図6において、52は、4列の電極端子パッド列52−1乃至52−4を有する被検査半導体である。本例は、液晶駆動(LCDドライバ)IC等に多く見られる電極端子パッド配列である。前記電極端子パッド列52−4を画像信号入力等の信号を司る電極端子列に対し、前記電極端子パッド列52−1乃至52−3は、液晶画素への出力を司る電極端子パッド列であり、数十μmの狭ピッチに数百個配列された電極端子パッド列を2〜3段設置し、各々の電極端子パッド列を、概ねパッド幅pだけ相互にずれた位置関係にて平行に配置され、いわゆる千鳥配列を形成し、液晶画面への出力信号の狭ピッチ多ピン化に対応しているものである。  In FIG. 6, reference numeral 52 denotes a semiconductor to be inspected having four electrode terminal pad rows 52-1 to 52-4. This example is an electrode terminal pad arrangement often found in a liquid crystal drive (LCD driver) IC or the like. The electrode terminal pad row 52-4 is an electrode terminal pad row that controls output to a liquid crystal pixel, whereas the electrode terminal pad row 52-1 to 52-3 is an electrode terminal pad row that controls output to a liquid crystal pixel. A few hundreds of electrode terminal pad rows arranged in a narrow pitch of several tens μm are installed in two or three stages, and the respective electrode terminal pad rows are arranged in parallel in a positional relationship mutually shifted by a pad width p substantially. In other words, a so-called staggered arrangement is formed to cope with the narrow pitch multi-pin output signal to the liquid crystal screen.

図6の下部は、前記プローブ集合体211−1乃至211−3のX方向の相互の位置関係を示すものである。前記プローブ集合体211−1乃至211−3には、ダミーパターン部270を設置し、前記ダミーパターン部270に基準穴271、272を設けている。前記ダミーパターン部270は、前記プローブ211−1乃至211−3の各々の同一面に同一金属材料で同一の製造方法で作製してもよい。  The lower part of FIG. 6 shows the mutual positional relationship of the probe assemblies 211-1 to 211-3 in the X direction. A dummy pattern portion 270 is provided in each of the probe assemblies 211-1 to 211-3, and reference holes 271 and 272 are provided in the dummy pattern portion 270. The dummy pattern unit 270 may be manufactured on the same surface of each of the probes 211-1 to 211-3 by the same manufacturing method using the same metal material.

前記プローブ集合体211−1乃至211−3の各々のプローブ左端から前記基準穴271までの距離を各々、Xr0+2p、Xr0+p、Xr0、と設置することにより、前記プローブ集合体211−1乃至211−3の各々のプローブ間距離と、前記電極端子パッド列52−1乃至52−3の各々のパッド間距離のX方向における相対的位置関係が決定される。  By setting the distances from the left ends of the probes of the probe assemblies 211-1 to 211-3 to the reference holes 271 as Xr0 + 2p, Xr0 + p, and Xr0, respectively, the probe assemblies 211-1 to 211-3 are provided. And the relative positional relationship in the X direction between the inter-probe distances and the inter-pad distances of the electrode terminal pad rows 52-1 to 52-3.

図7は、前記プローブ集合体211−1乃至211−3、及び211−4のY方向の位置決め手段を示すものである。前記電極端子パッド列52−1乃至52−4の各々のパッド列間距離、Yr1、Yr2,Yr3に合致すべくスペーサ280−1、280−2、280−3を挿入し、前記プローブ集合体211−1乃至211−3の各前記基準穴271、272に固定ピン282を貫通させ、ハウジング260と共に前記主基板3に固定ネジ281にて固定する。  FIG. 7 shows a means for positioning the probe assemblies 211-1 to 211-3 and 211-4 in the Y direction. The spacers 280-1, 280-2, and 280-3 are inserted into the electrode terminal pad rows 52-1 to 52-4 so as to match the distances between the respective pad rows, Yr 1, Yr 2, and Yr 3. A fixing pin 282 is passed through each of the reference holes 271 and 272 of -1 to 211-3, and is fixed to the main board 3 together with the housing 260 by a fixing screw 281.

これにより、前記電極端子パッド列52−1乃至52−4に対し、例えば、前記プローブ集合体211−1の先端が前記パッド列52−1に、前記プローブ211−2の先端が前記パッド列52−2に、前記プローブ211−3の先端が前記パッド列52−3に、前記プローブ211−4の先端が前記パッド列52−4に、一括して高精度に接触可能となる。  Thus, for the electrode terminal pad rows 52-1 to 52-4, for example, the tip of the probe assembly 211-1 is in the pad row 52-1 and the tip of the probe 211-2 is in the pad row 52-1. -2, the tip of the probe 211-3 can contact the pad row 52-3 and the tip of the probe 211-4 can contact the pad row 52-4 with high accuracy.

図8は、前記プローブ集合体210を複数積層した多層配線フィルム構成による格子配列用プローブ組立体254を構成する手段を示すものである。54は格子型電極端子パッド配列であり、パッド列54−11〜54−88から成るX方向ピッチがPx、Y方向ピッチがPyの8×8の格子状のパッド列で構成されている。  FIG. 8 shows a means for constructing a grid-arranged probe assembly 254 having a multilayer wiring film structure in which a plurality of the probe assemblies 210 are stacked. Reference numeral 54 denotes a grid-type electrode terminal pad array, which is composed of an 8 × 8 grid-like pad row composed of pad rows 54-11 to 54-88, the pitch in the X direction being Px and the pitch in the Y direction being Py.

前記電極端子パッド配列54に対応する前記プローブ組立体254は、8個の単列プローブ集合体215−1〜215−8で構成され、前記プローブ集合体215−1〜215−8は、各々8個のプローブから成り、例えば、前記プローブ集合体215−1はPxのピッチのプローブ先端部21−11〜21−18を有するものである。  The probe assembly 254 corresponding to the electrode terminal pad arrangement 54 includes eight single-row probe assemblies 215-1 to 215-8, and each of the probe assemblies 215-1 to 215-8 has 8 For example, the probe assembly 215-1 has probe tips 21-11 to 21-18 at a pitch of Px.

さらに前記プローブ集合体215−1〜215−8は、図7にて説明した方法と同様に、各々のプローブ集合体の間隔を決定するスペーサ(図示せず)等により各々Pyの間隔に設置され、前記プローブ集合体215−1は前記パッド列54−11〜54−18に、前記プローブ集合体215−2は前記パッド列54−21〜54−28に、同様に前記プローブ集合体215−3〜215−8は、前記パッド列54−31〜54−81の列に対応している。  Further, the probe assemblies 215-1 to 215-8 are provided at Py intervals by a spacer (not shown) for determining the interval between the probe assemblies, similarly to the method described with reference to FIG. The probe assembly 215-1 corresponds to the pad rows 54-11 to 54-18, the probe assembly 215-2 corresponds to the pad rows 54-21 to 54-28, and similarly the probe assembly 215-3. 215-8 correspond to the rows of the pad rows 54-31 to 54-81.

以上で構成された前記プローブ組立体254により、全ての前記プローブ先端部21−11〜21−88が全ての前記パッド54−11〜54−88に、一括して高精度に接触することができる。  With the probe assembly 254 configured as described above, all of the probe tips 21-11 to 21-88 can contact all of the pads 54-11 to 54-88 at once with high accuracy. .

前記プローブ集合体215−1〜215−8と継続する導体パターン41−11〜41−18等の片端(図示せず)は、前記接続端子431等を形成し、前記主基板3の各接続部に接続することが可能である。  One ends (not shown) of the conductor patterns 41-11 to 41-18 and the like continuing from the probe aggregates 215-1 to 215-8 form the connection terminals 431 and the like, and the connection portions of the main substrate 3 are formed. It is possible to connect to

図9は、半導体ウエハ上における複数の被検査半導体チップ53−1乃至53−3を、同時に検査を行うためのプローブ集合体の構成手段を示すものである。半導体ウエハ検査では検査時間短縮の有力な手段として、複数の被検査半導体チップを同時に検査する方法が多く採用されている。  FIG. 9 shows a constitutional means of a probe assembly for simultaneously inspecting a plurality of semiconductor chips 53-1 to 53-3 to be inspected on a semiconductor wafer. In semiconductor wafer inspection, a method of simultaneously inspecting a plurality of semiconductor chips to be inspected is often employed as an effective means for shortening the inspection time.

図9において、216−1は、一つの絶縁フィルム上に形成された導体パターンによるプローブ集合体で、216−2は、他の絶縁フィルム上に形成された導体パターンによるプローブ集合体であり、各々積層することにより多層配線フィルムを形成している。前記プローブ集合体216−1のプローブ先端部21−21乃至21−23は、前記被検査半導体チップ53−1乃至53−3の一方の全ての電極端子パッドを含む列53Aと、前記プローブ集合体216−2のプローブ先端部21−21乃至21−23は、前記被検査半導体チップ53−1乃至53−3の他方の全ての電極端子パッドを含む列53Bと合致すべく積層されている。この手段により、同一の配線フィルム上に複数の被検査半導体の電極端子パッドと接触可能なプローブ集合体を設置することができ、高精度なプローブ配列を一括して製造することが可能となる。  In FIG. 9, reference numeral 216-1 denotes a probe assembly formed by a conductor pattern formed on one insulating film, and 216-2 denotes a probe assembly formed by a conductor pattern formed on another insulating film. The multilayer wiring film is formed by laminating. The probe tip 21-21 to 21-23 of the probe assembly 216-1 includes a row 53A including all the electrode terminal pads of one of the semiconductor chips 53-1 to 53-3 to be inspected, and the probe assembly 21A. The probe tips 21-21 to 21-23 of 216-2 are stacked so as to match the row 53B including all the other electrode terminal pads of the semiconductor chips 53-1 to 53-3 to be inspected. By this means, a probe assembly capable of contacting a plurality of electrode terminal pads of the semiconductor to be inspected can be installed on the same wiring film, and a high-precision probe array can be manufactured collectively.

図10は、図9にて説明した複数の被検査半導体チップを同時に検査することが可能なプローブ集合体を含む配線フィルム4−10を示したものである。図9にて示した方法では、前記プローブ集合体216−1及び216−2の導体パターンが同一方向に伸長した場合の例であるが、図10の方法では、前記プローブ集合体216−1及び216−2の導体パターンが相対する方向へ伸長した例を示す。この手段によれば、一つの配線フィルムで1列の被検査半導体チップ53−1乃至53−4の電極端子パッド列に接触可能な配線フィルムを構成することができる。  FIG. 10 shows a wiring film 4-10 including a probe assembly capable of simultaneously inspecting a plurality of semiconductor chips to be inspected described in FIG. The method shown in FIG. 9 is an example in which the conductor patterns of the probe assemblies 216-1 and 216-2 extend in the same direction. However, the method of FIG. An example in which the conductor pattern of No. 216-2 extends in the opposite direction is shown. According to this means, it is possible to form a wiring film that can contact the electrode terminal pad rows of the semiconductor chips 53-1 to 53-4 in one row with one wiring film.

図11は、半導体ウエハ50上における全ての被検査半導体チップを同時に検査するためのプローブ集合体の構成手段を示すものである。図11において、53−11乃至53−29は、X方向の被検査半導体チップ列を示す。例えば、半導体ウエハ中央部の前記半導体チップ列53−11の全ての電極端子パッドに対応する配線フィルムを4−11とし、一つの絶縁フィルム上に、前記半導体チップ列53−11の電極端子パッド列のX方向ピッチと合致させたプローブ部と、+Y方向に伸長した導体パターンを構成している。同様に、前記半導体チップ列53−12乃至53−20の各々の全ての電極端子パッド列に対応する配線フィルムを4−12乃至4−20とし、多層配線フィルムを構成している。  FIG. 11 shows a constitutional means of a probe assembly for simultaneously inspecting all the semiconductor chips to be inspected on the semiconductor wafer 50. In FIG. 11, reference numerals 53-11 to 53-29 denote semiconductor chip arrays to be inspected in the X direction. For example, the wiring film corresponding to all the electrode terminal pads of the semiconductor chip row 53-11 at the center of the semiconductor wafer is designated as 4-11, and the electrode terminal pad row of the semiconductor chip row 53-11 is placed on one insulating film. And a conductor pattern extending in the + Y direction. Similarly, the wiring films corresponding to all the electrode terminal pad rows of the semiconductor chip rows 53-12 to 53-20 are referred to as 4-12 to 4-20 to constitute a multilayer wiring film.

一方、前記半導体チップ列53−12乃至53−29の各々の全ての電極端子パッド列に対応する配線フィルムを4−21乃至4−29(4−21と4−22のみ図示)とし、各々の電極端子パッド列のX方向ピッチと合致させたプローブ部と、−Y方向に伸長した導体パターンにて多層配線フィルムを構成している。  On the other hand, wiring films corresponding to all the electrode terminal pad rows of the semiconductor chip rows 53-12 to 53-29 are designated as 4-21 to 4-29 (only 4-21 and 4-22 are shown). A multilayer wiring film is constituted by a probe portion that matches the pitch in the X direction of the electrode terminal pad row and a conductor pattern extending in the −Y direction.

この手段によれば、半導体ウエハ50上における全ての被検査半導体チップを同時に検査するためのプローブ集合体を、配線フィルムの複数構成で安価に作製することができる。各々の配線フィルム4−11乃至4−29のプローブ部の他端は、主基板3上の接続端子への接続であっても、また、主基板3と独立にコネクターにて外部接続端子と接続することが可能である。  According to this means, a probe assembly for simultaneously inspecting all the semiconductor chips to be inspected on the semiconductor wafer 50 can be manufactured at low cost with a plurality of wiring films. The other end of the probe portion of each of the wiring films 4-11 to 4-29 is connected to a connection terminal on the main board 3 or connected to an external connection terminal by a connector independently of the main board 3. It is possible to do.

本例では、フラッシュメモリーIC検査に見られるような、一つの半導体チップにおける電極端子パッド列が片側1列の例を示したが、一つの半導体チップにおける電極端子パッド列が複数列であっても、対応する配線フィルムを増やすことによって実現可能となる。  In this example, as shown in the flash memory IC inspection, an example is shown in which the electrode terminal pad row in one semiconductor chip is one row on one side. However, even if the electrode terminal pad row in one semiconductor chip is plural rows, This can be realized by increasing the number of corresponding wiring films.

図12は、高周波信号用プローブ集合体及び配線パターンシートの構成を説明する図である。図12において、高周波信号用プローブ集合体220は、信号層プローブ集合体221、接地層プローブ集合体222と223、及び絶縁フィルム40−2と40−3で構成される。前記信号層プローブ集合体221は、絶縁フィルム40−1上にプローブ201−1〜201−6が設置され、本例では、前記プローブ201−1、201−2、201−4、201−5をそれぞれ信号線用とし、前記プローブ201−3、201−6をそれぞれ接地用とした例を示した。  FIG. 12 is a diagram illustrating the configuration of a high-frequency signal probe assembly and a wiring pattern sheet. 12, a high-frequency signal probe assembly 220 includes a signal layer probe assembly 221, ground layer probe assemblies 222 and 223, and insulating films 40-2 and 40-3. In the signal layer probe assembly 221, probes 201-1 to 201-6 are provided on an insulating film 40-1, and in this example, the probes 201-1, 201-2, 201-4, and 201-5 are provided. An example is shown in which the probes 201-3 and 201-6 are used for grounding, respectively, for the signal lines.

一方、前記接地層プローブ集合体222は、銅箔シート410から、接地層プローブ202−1乃至202−4を一体形成し、前記接地層プローブ202乃至1乃至202−4を含む全ての前記接地用プローブ集合体222を接地用とする。  On the other hand, the ground layer probe assembly 222 integrally forms the ground layer probes 202-1 to 202-4 from the copper foil sheet 410, and includes all the grounding probes including the ground layer probes 202 to 1 to 202-4. The probe assembly 222 is used for grounding.

同様に、前記接地層プローブ集合体223は、同様に前記銅箔シート410から前記接地層プローブ203−1乃至203−4を形成し、前記接地層プローブ203−1乃至203−4を含む全ての前記接地層プローブ集合体223を接地用とする。  Similarly, the ground layer probe assembly 223 similarly forms the ground layer probes 203-1 to 203-4 from the copper foil sheet 410, and includes all the ground layer probes 203-1 to 203-4. The ground layer probe assembly 223 is used for grounding.

又、前記信号層プローブ集合体221は、配線フィルム上に設置した導体パターン42−1乃至42−6を継続設置し、前記導体パターン42−1、42−2、42−4、42−5を信号線用とし、前記導体パターン42−3、42−6を接地用とした。  Also, the signal layer probe assembly 221 continuously installs the conductor patterns 42-1 to 42-6 installed on the wiring film, and connects the conductor patterns 42-1, 42-2, 42-4, and 42-5. The conductor patterns 42-3, 42-6 were used for signal lines, and the conductor patterns 42-3, 42-6 were used for grounding.

上記で構成される前記信号層プローブ集合体221、接地層プローブ集合体222、223を含む配線フィルムを重ね合わせると、図13のようになる。図13(a)で示すように、前記接地層プローブ202−1と203−1及び前記接地層プローブ202−2と203−2は、前記信号層プローブ201−1と201−2の両側に位置するように予め配置作製する。又、前記接地層プローブ202−3と203−3及び前記接地層プローブ202−4と203−4は、前記信号層プローブ201−3と201−6のX方向位置と一致する位置に予め配置作製する。以上のように構成された前記高周波信号用プローブ集合体220の各々のプローブは、図13(a)の電極端子パッド列53−31乃至53−38の黒丸で示す如き位置に接触するものである。  When the wiring films including the signal layer probe assembly 221 and the ground layer probe assemblies 222 and 223 configured as described above are overlapped, the result is as shown in FIG. As shown in FIG. 13A, the ground layer probes 202-1 and 203-1 and the ground layer probes 202-2 and 203-2 are located on both sides of the signal layer probes 201-1 and 201-2. And make them in advance. Further, the ground layer probes 202-3 and 203-3 and the ground layer probes 202-4 and 203-4 are previously arranged and manufactured at positions corresponding to the X direction positions of the signal layer probes 201-3 and 201-6. I do. Each probe of the high-frequency signal probe assembly 220 configured as described above comes into contact with a position indicated by a black circle in the electrode terminal pad rows 53-31 to 53-38 in FIG. .

図13(a)の断面A−A図において、前記高周波信号用プローブ集合体220の構造による効果を説明する。断面A−A(1)は、前記プローブ201−1、201−2、202−1、202−2、203−1、203−2で構成される部分の前記信号層プローブ201−1、201−2における断面図を示すものである。前記信号層プローブ201−1、201−2の幅w、厚さt、間隔c及び前記銅箔シート410間の距離hを適切に選択することにより、本例では、差動ストリップラインの特性インピーダンスが確保された配線構造にすることが可能となる。  The effect of the structure of the high-frequency signal probe assembly 220 will be described with reference to the cross-sectional view taken along the line AA of FIG. The cross section AA (1) shows the signal layer probes 201-1 and 201- of a portion composed of the probes 201-1, 201-2, 202-1, 202-2, 203-1 and 203-2. 2 is a sectional view of FIG. In this example, by appropriately selecting the width w, the thickness t, the distance c, and the distance h between the copper foil sheets 410 of the signal layer probes 201-1 and 201-2, the characteristic impedance of the differential strip line is obtained. Can be provided in the wiring structure.

又、断面A−A(2)は、前記プローブ201−3乃至201−6、202−3、202−4、203−3、203−4で構成される部分の前記信号層プローブ201−3乃至201−6における断面図を示すものである。前記信号層プローブ201−3乃至201−6の幅w、厚さt、間隔c1、c2及び前記銅箔シート410間の距離hを適切に選択することにより、本実施例では、コプレナー差動ストリップラインの特性インピーダンスが確保された配線構造にすることが可能となる。  Also, the cross section AA (2) shows the signal layer probes 201-3 to 201-3 of the portion composed of the probes 201-3 to 201-6, 202-3, 202-4, 203-3, and 203-4. FIG. 20 shows a cross-sectional view at 201-6. In the present embodiment, by appropriately selecting the width w, the thickness t, the intervals c1, c2, and the distance h between the copper foil sheets 410 of the signal layer probes 201-3 to 201-6, the coplanar differential strip is used. It is possible to provide a wiring structure in which the characteristic impedance of the line is secured.

図13(b)は、図13(a)で説明した前記高周波信号用プローブ集合体220を含む高周波用配線フィルム420を示したものである。図13(b)において、前記高周波信号用プローブ集合体220から継続伸長した信号線用前記配線パターン42−1と42−2又は42−4と42−5は、主基板3上の信号線用接続端子307に半田付け(308)され、スルーホール303等を介して他の回路等に接続される。又、接地用前記配線パターン42−3と42−6、及び接地層を構成する銅箔410は、主基板3上の接地用接続端子317に半田付け(308)される。  FIG. 13B shows a high-frequency wiring film 420 including the high-frequency signal probe assembly 220 described in FIG. 13A. In FIG. 13B, the signal line wiring patterns 42-1 and 42-2 or 42-4 and 42-5 continuously extended from the high-frequency signal probe assembly 220 are used for signal lines on the main board 3. It is soldered (308) to the connection terminal 307 and connected to another circuit or the like via the through hole 303 or the like. The wiring patterns 42-3 and 42-6 for grounding and the copper foil 410 forming the grounding layer are soldered (308) to the grounding connection terminals 317 on the main substrate 3.

以上のように、前記高周波信号用プローブ集合体220或いは前記高周波用配線フィルム420構造によれば、プローブ先端から主基板上の接続部まで不連続点の少ないインピーダンス整合された配線を容易に構成することができ、高周波信号に適した構造とすることが可能となる。  As described above, according to the high-frequency signal probe assembly 220 or the high-frequency wiring film 420 structure, the impedance-matched wiring with few discontinuous points from the probe tip to the connection portion on the main board can be easily configured. And a structure suitable for a high-frequency signal can be obtained.

図14は、微小電流測定用のプローブ集合体を含む配線フィルムの構成を説明する図である。図14において、微小電流測定用プローブ集合体230は、信号線プローブ205−1乃至205−8が設置され、前記信号線プローブ205−1乃至205−8の各々の両側近傍に平行して接地用パターン206aと206bが設置されている。例えば、前記信号線プローブ205−1の両側に、前記接地用パターン206−1aと206−1bが設置されている。  FIG. 14 is a diagram illustrating a configuration of a wiring film including a probe assembly for measuring a minute current. In FIG. 14, a probe assembly 230 for measuring a small current is provided with signal line probes 205-1 to 205-8, and grounded in parallel near both sides of each of the signal line probes 205-1 to 205-8. Patterns 206a and 206b are provided. For example, the ground patterns 206-1a and 206-1b are provided on both sides of the signal line probe 205-1.

又、前記配線フィルム上には、導体パターン46−1乃至46−8が設置され、片端は各々前記信号線プローブ205−1乃至205−8と継続し、他端は、例えばスルーホール46−11で主基板(図示せず)等に接続される。さらに、前記導体パターン46−1乃至46−8の各々の概略全周近傍に、接地用パターン47−1乃至47−8が設置され、片端は各々前記接地用パターン206a、206bと継続している。前記接地用パターン47−1乃至47−8は、スルーホール47−11で主基板(図示せず)等の接地パターンに接続される。前記スルーホール47−11は、例えば前記前記接地用パターン47−1の裏面に設けたバンプを熱圧着等の手段で主基板上の接地用パターンと接続することも可能である。  On the wiring film, conductor patterns 46-1 to 46-8 are provided, one end of which is connected to the signal line probes 205-1 to 205-8, respectively, and the other end is, for example, a through hole 46-11. To a main board (not shown). Further, grounding patterns 47-1 to 47-8 are provided in the vicinity of substantially the entire circumference of each of the conductor patterns 46-1 to 46-8, and one ends thereof are connected to the grounding patterns 206a and 206b, respectively. . The ground patterns 47-1 to 47-8 are connected to ground patterns such as a main board (not shown) through through holes 47-11. The through hole 47-11 can be connected to the ground pattern on the main substrate by means such as thermocompression bonding of a bump provided on the back surface of the ground pattern 47-1.

以上のように、前記微小電流測定用プローブ集合体230を含む配線フィルム構造によれば、隣接した信号線間における漏れ電流を小さくすることができ、例えば半導体ウエハ検査の初期工程におけるパラメトリックテストのような、微小電流を測定する際の漏れ電流の極めて小さい配線構造を有するプローブカードが実現可能となる。  As described above, according to the wiring film structure including the microcurrent measurement probe assembly 230, the leakage current between the adjacent signal lines can be reduced, for example, as in a parametric test in an initial step of semiconductor wafer inspection. In addition, a probe card having a wiring structure with extremely small leakage current when measuring a very small current can be realized.

図15は、2つ以上の金属材料からなる前記導体パターン41を電鋳により形成する方法及び構成を説明する図である。図15(a)において、490は電鋳形成のための電極である導電性基板で、前記電極490上でまず、第1の導電性金属411を形成し、前記第1の導電性金属411上に第2の導電性金属412を形成するものである。  FIG. 15 is a view for explaining a method and configuration for forming the conductor pattern 41 made of two or more metal materials by electroforming. In FIG. 15A, reference numeral 490 denotes a conductive substrate which is an electrode for electroforming, on which a first conductive metal 411 is first formed, and a first conductive metal 411 is formed on the first conductive metal 411. Then, a second conductive metal 412 is formed.

前記配線フィルム4を形成するために、図15(b)に示すように、前記第1及び第2の導電性金属411、412を前記電極490から取り外し、前記絶縁フィルム40上に貼り付けたものである。  In order to form the wiring film 4, the first and second conductive metals 411 and 412 are removed from the electrode 490 and attached on the insulating film 40, as shown in FIG. It is.

プローブカードにおいて、プローブは半導体電極パッドとの安定した電気的接触を保持するため、適切なストロークに対する十分な接触力を有する金属材料でなければならない。一方、プローブを含むプローブカード上の配線パターンは電気的抵抗の低減のため、優れた導電性を有する金属材料であることが望ましい。又、電源ライン等を司るプローブ及び配線パターンでは、十分な厚さを有する導体で構成されなければならない。  In the probe card, the probe must be made of a metal material having a sufficient contact force for an appropriate stroke in order to maintain stable electrical contact with the semiconductor electrode pad. On the other hand, the wiring pattern on the probe card including the probe is desirably a metal material having excellent conductivity in order to reduce electric resistance. Further, a probe and a wiring pattern that control a power supply line and the like must be formed of a conductor having a sufficient thickness.

図15(b)に示すように、前記導体パターン41の前記プローブ変形部22を有する前記プローブ20においては、十分な弾性変形領域を有する材料から成る前記第1の導電性金属411のみとし、前記導体パターン41におけるその他の部分(主として前記配線パターン42を構成する部分)には、良好な導電性を有する材料から成る前記第2の導電性金属412を積層する構造とした。前記第1の導電性金属411の例としては、ベリリウム銅合金、ニッケル−コバルト合金、鉄−ニッケル合金等が可能である。又、前記第2の導電性金属412の例としては、銅又は金等が可能である。本構成とすることにより、前記プローブ部20ではバネ特性の優れたプローブ特性を有し、前記配線パターン42では優れた導電性を有する前記導体パターン41を形成することが可能となる。  As shown in FIG. 15B, in the probe 20 having the probe deformation portion 22 of the conductor pattern 41, only the first conductive metal 411 made of a material having a sufficient elastic deformation region is used. The second conductive metal 412 made of a material having good conductivity is laminated on other portions of the conductive pattern 41 (mainly, the portions constituting the wiring pattern 42). Examples of the first conductive metal 411 include a beryllium copper alloy, a nickel-cobalt alloy, and an iron-nickel alloy. Further, as an example of the second conductive metal 412, copper or gold can be used. With this configuration, it is possible to form the conductor pattern 41 having excellent probe characteristics in the probe section 20 and excellent conductivity in the wiring pattern 42.

又、図15(c)は、前記プローブ先端部21の先端厚さTpを増加させる方法を示した図であり、前記第2の導電性金属412を前記プローブ部20の範囲を形成し、その後エッチングにてTpの厚さまで制御することが可能である。  FIG. 15C is a view showing a method of increasing the tip thickness Tp of the probe tip portion 21. The second conductive metal 412 forms the area of the probe portion 20, and thereafter, It is possible to control the thickness up to Tp by etching.

さらに、図15(d)は、バネ特性及び導電性の両方を兼ね備える第3の導電性金属413による構成を示した図であり、前記導体パターン41の全域に前記第3の導電性金属413を形成し、その後エッチングにて所望の厚さまで制御することも可能である。前記第3の導電性金属413の例としては、鉄−ニッケル合金等が可能である。  Further, FIG. 15D is a diagram showing a configuration of the third conductive metal 413 having both the spring characteristics and the conductivity, and the third conductive metal 413 is provided over the entire area of the conductive pattern 41. It is also possible to form the film and then control it to a desired thickness by etching. As an example of the third conductive metal 413, an iron-nickel alloy or the like can be used.

図16は、前記プローブ変形部22のバネ特性をより有効にするための実施例を示す。図16(a)は、少なくとも前記プローブ先端部21及び前記プローブ変形部22を、角度設定用スペーサ263により、垂直軸(Z軸)に対して予めθ°傾斜を持たせて前記絶縁フィルム40を介してハウジング261に設置したものである。これにより、前記プローブ先端部21が電極パッド55と接触を開始した後、前記プローブ変形部22の変形をより確実にすることができる。  FIG. 16 shows an embodiment for making the spring characteristics of the probe deforming portion 22 more effective. FIG. 16A shows that at least the probe distal end portion 21 and the probe deforming portion 22 are inclined by θ ° with respect to a vertical axis (Z axis) by an angle setting spacer 263 in advance to form the insulating film 40. This is installed in the housing 261 through the intermediary. Thus, after the probe tip 21 starts to contact the electrode pad 55, the deformation of the probe deforming portion 22 can be made more reliable.

又、図16(b)は、前記プローブ変形部22に予め変形を生じさせた後、ハウジング262に設置したものである。同様に、前記プローブ先端部21が前記電極パッド55と接触を開始した後、前記プローブ変形部22の変形をより確実にすることができる。  FIG. 16B shows a state in which the probe deforming section 22 has been deformed in advance and then installed in the housing 262. Similarly, after the probe tip 21 starts to contact the electrode pad 55, the deformation of the probe deforming portion 22 can be more reliably performed.

図16(c)〜(d)は、前記プローブ先端部21の偏心荷重による変形の動作を示す図である。図16(c)は、前記電極パッド55と接触する前の状態を示す図である。前記プローブ部20を構成する前記プローブ20の導体と前記絶縁フィルム40が前記絶縁フィルム40−6を介してハウジング264に固定設置されたものである。また、前記絶縁フィルム40は前記ハウジング264からL2の長さだけ前記ハウジング264から露出し、さらに前記プローブ部20の導体がL1の長さだけ前記絶縁フィルム40から露出した状態にある。前記プローブ部20の導体と前記絶縁フィルム40は貼付けているため一体と看做した場合、前記プローブ部20のL1とL2部を合成した重心を通るプローブ中心軸Cpに対し、前記電極パッド55と接触する前記プローブ先端部21を通るプローブ先端中心軸C21はΔCpだけ偏心していることになる。従って、前記プローブ先端部21が前記電極パッド55と接触を開始すると、前記プローブ部20のL1とL2部は偏心荷重としての動作を行うことになる。  FIGS. 16C to 16D are views showing the deformation operation of the probe tip 21 due to the eccentric load. FIG. 16C is a diagram showing a state before contact with the electrode pad 55. The conductor of the probe 20 constituting the probe unit 20 and the insulating film 40 are fixedly installed on the housing 264 via the insulating film 40-6. The insulating film 40 is exposed from the housing 264 by the length of L2 from the housing 264, and the conductor of the probe unit 20 is exposed from the insulating film 40 by the length of L1. When the conductor of the probe unit 20 and the insulating film 40 are attached to each other and considered to be integrated, the electrode pad 55 and the probe center axis Cp passing through the center of gravity obtained by combining the L1 and L2 portions of the probe unit 20 are considered. The center axis C21 of the probe tip passing through the contacting probe tip 21 is eccentric by ΔCp. Therefore, when the probe tip 21 starts to contact the electrode pad 55, the L1 and L2 portions of the probe unit 20 operate as eccentric loads.

図16(c)にて、前記プローブ先端部21の偏心荷重による変形動作を説明する。前記プローブ先端部21が前記電極パッド55と接触を開始すると、ΔCpだけ軸偏心しているため前記プローブ先端部21に反時計方向の回転モーメントが働く。これにより、前記電極パッド55との接触が進行すると前記プローブ先端部21が−Y方向に向かって変形し、前記プローブ部20のL1とL2部が前記プローブ変形部22として図示のように変形する。  The deformation operation of the probe tip 21 due to the eccentric load will be described with reference to FIG. When the probe tip 21 comes into contact with the electrode pad 55, a counterclockwise rotational moment acts on the probe tip 21 because it is eccentric by ΔCp. Accordingly, when the contact with the electrode pad 55 progresses, the probe tip portion 21 is deformed in the −Y direction, and the L1 and L2 portions of the probe portion 20 are deformed as the probe deforming portion 22 as illustrated. .

前記電極パッド55との接触がさらに進行すると、前記プローブ先端部21が−Y方向に向かってさらに変形し、前記プローブ先端中心軸C21と前記プローブ先端部21との距離Sc、すなわちスクラブ長が増加し前記プローブ先端部21が前記電極パッド55から外れてしまうという問題が生じる。これを防ぐため、図16(e)に示すように、前記プローブ先端部21の変形方向(図において左側)のハウジング264aを、前記プローブ先端部21の近傍まで伸長させることにより、必要以上のスクラブ動作を抑止することが可能である。  When the contact with the electrode pad 55 further proceeds, the probe tip 21 is further deformed in the −Y direction, and the distance Sc between the probe tip central axis C21 and the probe tip 21, that is, the scrub length increases. Then, there arises a problem that the probe tip 21 comes off the electrode pad 55. To prevent this, as shown in FIG. 16 (e), the housing 264 a in the direction of deformation of the probe tip 21 (left side in the figure) is extended to the vicinity of the probe tip 21, thereby making the scrub more than necessary. It is possible to suppress the operation.

プローブカードは一般的に、被検査半導体ウエハと共にプローバー装置内に設置され検査が実施される。プローバー装置内は、検査時において比較的高温状態(例えば85℃前後)となり、従って被検査半導体及びプローブカードも同等温度の環境下となる。又、製品化された半導体チップの使用環境温度も高温下(例えば100℃以上)で使用される場合が多く、実環境温度に則した検査も要求される。この時、プローブカードとして問題になるのは、温度変化に伴う半導体の熱膨張による電極パッド間の位置変動に対し、プローブ先端位置が追従出来なければならないということにある。  Generally, the probe card is installed in a prober device together with the semiconductor wafer to be inspected, and the inspection is performed. The inside of the prober device is in a relatively high temperature state (for example, around 85 ° C.) at the time of inspection, so that the semiconductor to be inspected and the probe card are also in an environment of the same temperature. In addition, the commercialized semiconductor chips are often used at high operating temperatures (for example, 100 ° C. or higher), and inspections in accordance with actual environmental temperatures are also required. At this time, the problem as a probe card is that the tip of the probe must be able to follow the positional fluctuation between the electrode pads due to the thermal expansion of the semiconductor due to the temperature change.

図17は、本発明の実施の形態における前記プローブ集合体210における、前記プローブ部20の熱膨張による挙動の例を示したものである。図17(c)に示す前記プローブ集合体210において、前記ダミーパターン部270に設置した前記基準穴273を基準として、前記プローブ集合体210の両端を前記固定ピン282によりハウジング265に少なくともX方向を固定した場合について説明する。  FIG. 17 shows an example of a behavior due to thermal expansion of the probe unit 20 in the probe assembly 210 according to the embodiment of the present invention. In the probe assembly 210 shown in FIG. 17C, both ends of the probe assembly 210 are moved at least in the X direction to the housing 265 by the fixing pins 282 with reference to the reference hole 273 provided in the dummy pattern portion 270. A description will be given of the case where the fixing is performed.

図17(a)において、電極パッド列53を有する被検査半導体チップ5が、常温時(i)(例えば25℃)における前記電極パッド#1−#16間距離がLt0で、高温時(ii)(例えば125℃)に前記被検査半導体チップ5の熱膨張に伴い、前記電極パッド#16が前記電極パッド#1を基準として常温時における位置よりΔt1移動したとすると、前記電極パッド#1−#16間距離はLt1=Lt0+Δt1となる。  In FIG. 17A, when the semiconductor chip 5 to be inspected having the electrode pad row 53 is at normal temperature (i) (for example, at 25 ° C.), the distance between the electrode pads # 1 and # 16 is Lt0, and at high temperature (ii). Assuming that the electrode pad # 16 moves Δt1 from a position at normal temperature with respect to the electrode pad # 1 with respect to the electrode pad # 1 due to thermal expansion of the semiconductor chip 5 to be inspected (for example, at 125 ° C.), the electrode pads # 1- # The distance between 16 is Lt1 = Lt0 + Δt1.

図17(b)は、前記温度変化に伴う前記プローブ集合体210のプローブ先端部21の挙動を示したものである。図17(b)(i)に示すように、常温時の前記電極パッド53の#1−#16間距離Lt0に合致すべく前記プローブ先端部21の#1−#16間距離をLp0として設置した前記プローブ集合体210において、高温時での前記プローブ先端21の挙動を図17(b)(ii)にて説明する。  FIG. 17B shows the behavior of the probe tip 21 of the probe assembly 210 due to the temperature change. As shown in FIGS. 17B and 17I, the distance between # 1 and # 16 of the probe tip 21 is set as Lp0 so as to match the distance Lt0 between # 1 and # 16 of the electrode pad 53 at normal temperature. The behavior of the probe tip 21 at a high temperature in the probe assembly 210 described above will be described with reference to FIGS.

前記プローブ集合体210の前記絶縁フィルム40はポリイミド等の材料が一般的であるが、ポリイミドの線膨張係数は約40〜54(×10−6/℃)であり、半導体ウエハの材料であるシリコンの線膨張係数約2.5(×10−6/℃)と比較して約20倍の線膨張係数を有する。そのため、前記絶縁フィルム40に搭載した前記プローブ部20単体における先端移動量Δp2は、前記電極パッド53の#16の移動量と比較し、非常に大きなものとなってしまう。又、図17(b)(ii)に示すように、前記固定ピン282により、前記ハウジング265に前記プローブ部20の両端を固定した場合に、前記ハウジング265の熱膨張による移動量(ハウジングの右端としてΔeh1移動)に対し、前記プローブ部20が前記絶縁フィルム40と共に歪んでしまい、プローブ先端が電極パッドから外れるといった問題が生じる。The insulating film 40 of the probe assembly 210 is generally made of a material such as polyimide. The linear expansion coefficient of polyimide is about 40 to 54 (× 10 −6 / ° C.), and silicon as a material of a semiconductor wafer is used. Has a linear expansion coefficient of about 20 times that of about 2.5 (× 10 −6 / ° C.). Therefore, the tip movement amount Δp2 of the probe unit 20 mounted on the insulating film 40 alone is much larger than the movement amount of the electrode pad 53 by # 16. Further, as shown in FIGS. 17 (b) and (ii), when both ends of the probe section 20 are fixed to the housing 265 by the fixing pins 282, the amount of movement due to thermal expansion of the housing 265 (right end of the housing) In this case, the probe section 20 is distorted together with the insulating film 40, and the probe tip comes off the electrode pad.

図18は、本発明の実施の形態における熱収縮追従構造によるプローブ組立体を説明する図である。図18(a)は、図17(a)同様、電極パッド列53を有する被検査半導体チップ5の、常温時と高温時との温度変化に対する、前記電極パッド53の#1−#16間距離(Lt1=Lt0+Δt1)の関係を示すものである。又、図18(b)(c)は、熱収縮追従型プローブ組立体256の構造と、常温時と高温時との温度変化に対する、前記プローブ部20と前記プローブ部20に継続する前記配線パターン42の挙動を示すものである。  FIG. 18 is a diagram for explaining a probe assembly having a heat shrink following structure according to the embodiment of the present invention. FIG. 18A shows a distance between # 1 and # 16 of the electrode pads 53 of the semiconductor chip 5 having the electrode pad rows 53 with respect to a temperature change between a normal temperature and a high temperature, similarly to FIG. It shows the relationship (Lt1 = Lt0 + Δt1). FIGS. 18B and 18C show the structure of the probe assembly 256 and the wiring pattern continuing to the probe unit 20 with respect to a temperature change between normal temperature and high temperature. 42 shows the behavior of the second embodiment.

図18(b)(c)において、240は、熱収縮追従型プローブ組立体256を構成するプローブ集合体で、絶縁フィルム40−4上に前記プローブ部20と前記配線パターン42を有する。266aと266bは支持体で、前記プローブ集合体240を絶縁フィルム40−5と共に機械的に挟み、前記固定ピン282で固定している。又、前記絶縁フィルム40−4及び40−5は、図18(c)に示すように、前記プローブ部20の各々のプローブ間に応力緩和用スリット404を設置し、複数のプローブ毎(図の例では8個毎)に絶縁フィルム保持用スリット405を設置している。一方、前記支持体266a又は266bには突起部266sを設け、それぞれ前記絶縁フィルム保持用スリット405と勘合し、前記絶縁フィルム保持用スリット405が少なくともX方向に前記突起部266sに拘束すべく位置、大きさを設定している。  In FIGS. 18B and 18C, reference numeral 240 denotes a probe assembly constituting the heat shrinkable probe assembly 256, which has the probe unit 20 and the wiring pattern 42 on an insulating film 40-4. 266a and 266b are supports, and the probe assembly 240 is mechanically sandwiched together with the insulating film 40-5, and fixed by the fixing pins 282. As shown in FIG. 18 (c), the insulating films 40-4 and 40-5 are provided with a stress relaxation slit 404 between each probe of the probe unit 20 to provide a plurality of probes (see FIG. 18). The slit 405 for holding the insulating film is provided at every eight in the example. On the other hand, the supporting body 266a or 266b is provided with a protrusion 266s, and each is fitted with the insulating film holding slit 405, and the position of the insulating film holding slit 405 to be restrained by the protrusion 266s in at least the X direction. The size is set.

以上の構成による前記熱収縮追従型プローブ組立体256の動作を、図18を用いて説明する。前記プローブ集合体240における前記プローブ先端部21の#1−#16間距離Lp0は、常温時(i)における前記電極パッド53の#1−#16間距離Lt0と合致すべく設置されている。温度が上昇し高温時(ii)においては、前記支持体266a及び266bがX方向に膨張移動する(支持体右端としてΔeh2移動)と共に、前記支持体266a及び266bに設けた突起部266sが、前記絶縁フィルム保持用スリット405と勘合しているため、各々の前記絶縁フィルム保持用スリット405において前記絶縁フィルム40−4及び40−5がX方向に拘束され、前記支持体266a及び266bのX方向への伸び量に追従しながら移動することになる(絶縁フィルムとしてΔep2移動)。  The operation of the heat shrinkable probe assembly 256 having the above configuration will be described with reference to FIG. The distance Lp0 between # 1 and # 16 of the probe tip portion 21 in the probe assembly 240 is set to match the distance Lt0 between # 1 and # 16 of the electrode pad 53 at normal temperature (i). When the temperature rises and the temperature is high (ii), the supports 266a and 266b expand and move in the X direction (movement Δeh2 as the right ends of the supports), and the protrusions 266s provided on the supports 266a and 266b Since the slits 405 are fitted with the slits 405 for holding the insulating film, the slits 405 for holding the insulating film restrain the insulating films 40-4 and 40-5 in the X direction, and the support members 266a and 266b move in the X direction. (The Δep2 movement as an insulating film).

一方、図17(b)にて前述したようなポリイミドの熱膨張による内部の歪みは、前記支持体266aと266bによる前記プローブ部20への機械的押し付け力と、前記プローブ部20の各プローブ間に設置した前記応力緩和用スリット404により、各プローブ間でのたわみ40bを生じ易くすることになり、熱膨張による内部応力を緩和することができる。前記配線パターン42においては、前記プローブ部20のようなX方向の高精度な位置精度は必要としないためX方向の拘束は不要であり、前記配線パターン42の熱膨張による拡張Lp2が生じるが、前記プローブ部20への影響はない。  On the other hand, the internal distortion due to the thermal expansion of the polyimide as described above with reference to FIG. 17B is caused by the mechanical pressing force of the supports 266a and 266b against the probe unit 20 and the distance between the probes of the probe unit 20. The stress relaxation slits 404 installed in each of the above-described components facilitate the generation of the bending 40b between the probes, and can alleviate internal stress due to thermal expansion. The wiring pattern 42 does not need high-precision position accuracy in the X direction as in the probe unit 20, and thus does not need to be restricted in the X direction, and the expansion Lp 2 due to thermal expansion of the wiring pattern 42 occurs. There is no effect on the probe unit 20.

以上のような前記熱収縮追従型プローブ組立体256の構成により、前記プローブ先端部21のX方向位置が、前記支持体266a及び266bの熱膨張に伴うX方向変位に追従する手段とすることができる。又、前記支持体266a及び266bの材料としては、線膨張係数が被検査半導体シリコンウエハの線膨張係数に近似である鉄ニッケル合金(ニッケル含有量36%:インバー、線膨張係数約2(×10−6/℃))が最も適切である。With the configuration of the probe assembly 256 as described above, the X-direction position of the probe tip 21 can follow the X-direction displacement accompanying the thermal expansion of the supports 266a and 266b. it can. Further, as a material of the supports 266a and 266b, an iron-nickel alloy whose linear expansion coefficient is close to the linear expansion coefficient of the semiconductor silicon wafer to be inspected (nickel content: 36%: invar, linear expansion coefficient about 2 (× 10 −6 / ° C.)) is most appropriate.

メモリーIC等のウエハ検査では、検査コストの低減のため半導体ウエハ上の複数又は全数のチップを同時に検査することが一般的である。このためには、半導体ウエハ全体の広範囲に相当する電極パッド間の距離(例えば直径300mmウエハにおける概略直径相当距離)について、対応するプローブが電極パッドの移動量に追従しなければならない。前記鉄ニッケル合金(ニッケル含有量36%:インバー)を適用すると、電極パッド間の距離が300mmで相対温度変化100℃のとき、半導体シリコンウエハ上の電極パッド(線膨張係数約2.5(×10−6/℃))の最大移動量が約0.075mmであるのに対し、対応するプローブの最大移動量は約0.06mmとすることができ、一般的な電極パッド幅寸法50〜80μmにおいては十分に追従可能である。従って、前記熱収縮追従型プローブ組立体256の構成が、広範囲面積における半導体ウエハ検査に非常に有効である。In wafer inspection of a memory IC or the like, it is common to inspect a plurality or all of the chips on a semiconductor wafer simultaneously in order to reduce the inspection cost. For this purpose, the probe corresponding to the distance between the electrode pads corresponding to a wide range of the entire semiconductor wafer (for example, the approximate diameter corresponding to a wafer having a diameter of 300 mm) must follow the movement amount of the electrode pads. When the iron-nickel alloy (nickel content: 36%: Invar) is applied, when the distance between the electrode pads is 300 mm and the relative temperature change is 100 ° C., the electrode pads on the semiconductor silicon wafer (linear expansion coefficient about 2.5 (× 10 −6 / ° C.)) is about 0.075 mm, while the corresponding probe can have a maximum movement of about 0.06 mm, which is a typical electrode pad width dimension of 50 to 80 μm. Can be sufficiently followed. Therefore, the configuration of the probe assembly 256 following the heat shrinkage is very effective for semiconductor wafer inspection over a wide area.

以上説明した実施形態により、本発明のプローブカードによれば、複数の導電性導体パターンを1つの絶縁フィルム上に設置した配線フィルムであって、前記配線フィルム平面(XY平面)上に、前記導体パターンの一端におけるプローブ集合体整列手段と、前記プローブ集合体の方向転換手段と、前記導体パターンの他端における外部端子接続手段と、前記プローブ集合体と前記外部接続端子との間における導体パターン拡張手段とを有することにより、複数列の狭ピッチかつ多ピン配列を有する半導体チップ検査、複数の半導体チップの同時検査、高周波信号路を有する半導体チップ検査、広範囲な温度環境下における検査等に対応可能なプローブカードを実現すると共にプローブと配線との接続問題を解決した安価なプローブカードを提供するものである。  According to the embodiment described above, according to the probe card of the present invention, it is a wiring film in which a plurality of conductive conductor patterns are provided on one insulating film, and the conductive film is provided on the wiring film plane (XY plane). Probe assembly alignment means at one end of the pattern, direction change means of the probe assembly, external terminal connection means at the other end of the conductor pattern, and conductor pattern expansion between the probe assembly and the external connection terminal Means for testing semiconductor chips with multiple rows of narrow pitches and multiple pins, simultaneous testing of multiple semiconductor chips, testing of semiconductor chips with high-frequency signal paths, testing in a wide temperature environment, etc. Probe card that realizes a simple probe card and solves the problem of connection between probe and wiring. It is intended to provide.

半導体ウエハにおける高周波帯域の信号を含む多ピン狭ピッチ検査端子を有する半導体の電気的検査に使用するプローブカードに利用することができる。  The present invention can be applied to a probe card used for electrical inspection of a semiconductor having a multi-pin narrow-pitch inspection terminal including a high-frequency band signal on a semiconductor wafer.

1 プローブカード
2 プローブ組立体
20 プローブ部
21 プローブ先端部
21−1〜4、21−11〜88、21−21,22 プローブ先端列
22 プローブ変形部
23 プローブ導体パターン部
201−1,2,4,5 信号線プローブ
201−3,6 接地用プローブ
202−1,4 接地用プローブ
203−1,4 接地用プローブ
205−1〜8 信号線プローブ
206−1〜8 接地用パターン
210 プローブ集合体
211、212、213、214 単列プローブ集合体
211−1〜3 単列プローブ集合体
215−1〜8 単列プローブ集合体
216−1,2 単列プローブ集合体
220 高周波信号用プローブ集合体
221 信号層プローブ集合体
222,223 接地層プローブ集合体
230 微小電流測定用プローブ集合体
240 熱収縮追従型プローブ集合体
251 周辺配列プローブ組立体
252 千鳥配列プローブ組立体
254 格子配列プローブ組立体
256 熱収縮追従型プローブ組立体
260、261、262、264、265 ハウジング
263 角度設定用スペーサ
266a、266b 支持体
266s 突起部
270 ダミーパターン部
271、272、273 基準穴
280、280−1〜3 スペーサ
281 固定ネジ
282 固定ピン
3 主基板
31 表層(上面)
32 表層(下面)
35 中間層
301 インターフェース部
311 外部接続端子
312 テスター接続端子
302 電気端子
303 スルーホール
305 電気部品
306 コネクター
307、317 電気端子
308 半田
311 外部接続端子
4 配線フィルム
4−10、4−11〜22 配線フィルム
40、40−1〜6 絶縁フィルム
40b たわみ部
41、41−1〜5、41−11〜18 導体パターン
42 配線パターン部
42−1〜6 配線パターン
45 中継用配線フィルム
46−1〜8 導体パターン
46−11〜18 スルーホール
47−1〜8 接地用パターン
47−11〜18 接地用スルーホール
401、402 切り欠き
404 応力緩和用スリット
405 絶縁フィルム保持スリット
410 銅箔
411 第1の導電性金属
412 第2の導電性金属
413 第3の導電性金属
420 高周波信号用配線フィルム
431〜434 接続端子
435 接続端子(中継用配線フィルム)
436 スルーホール
451 接続端子
452 配線パターン
453 絶縁フィルム
490 電極板
5 被検査半導体
50 半導体ウエハ
51 電極端子パッド
51−1〜4 電極端子パッド列
52 被検査半導体
52−1〜4 電極端子パッド列
53 電極端子パッド列
53A、B 電極端子パッド列
53−1〜4 被検査半導体
53−11〜22 被検査半導体列
54 被検査半導体
54−11〜88 電極端子パッド列
55 電極端子パッド
DESCRIPTION OF SYMBOLS 1 Probe card 2 Probe assembly 20 Probe part 21 Probe tip parts 21-1-4, 21-11-88, 21-21, 22 Probe tip row 22 Probe deformation part 23 Probe conductor pattern parts 201-1, 2, 4 , 5 signal line probe 201-3,6 grounding probe 202-1,4 grounding probe 203-1,4 grounding probe 205-1-8 signal line probe 206-1-8 grounding pattern 210 probe assembly 211 , 212, 213, 214 Single row probe assembly 211-1-3 Single row probe assembly 215-1-8 Single row probe assembly 216-1, 2 Single row probe assembly 220 High frequency signal probe assembly 221 signal Layer probe assembly 222, 223 Ground layer probe assembly 230 Microcurrent measurement probe assembly 240 Type probe assembly 251 Peripheral array probe assembly 252 Staggered array probe assembly 254 Grid array probe assembly 256 Heat shrinkable probe assembly 260, 261, 262, 264, 265 Housing 263 Angle setting spacer 266a, 266b Support 266s Projecting portion 270 Dummy pattern portion 271, 272, 273 Reference hole 280, 280-1 to 3 Spacer 281 Fixing screw 282 Fixing pin 3 Main substrate 31 Surface layer (top surface)
32 surface layer (lower surface)
35 Intermediate layer 301 Interface unit 311 External connection terminal 312 Tester connection terminal 302 Electric terminal 303 Through hole 305 Electric component 306 Connector 307, 317 Electric terminal 308 Solder 311 External connection terminal 4 Wiring film 4-10, 4-11-22 Wiring film 40, 40-1-6 Insulating film 40b Flexures 41, 41-1-5, 41-11-18 Conductive pattern 42 Wiring pattern 42-1-6 Wiring pattern 45 Relay wiring film 46-1-8 Conductive pattern 46-11-18 Through-holes 47-1-8 Grounding patterns 47-11-18 Grounding through-holes 401, 402 Notch 404 Stress relaxation slit 405 Insulating film holding slit 410 Copper foil 411 First conductive metal 412 Second conductive metal 413 Third Conductive metal 420 high-frequency signal wiring film 431 to 434 connecting terminal 435 connection terminal (junction interconnection film)
436 Through hole 451 Connection terminal 452 Wiring pattern 453 Insulating film 490 Electrode plate 5 Semiconductor 50 to be inspected Semiconductor wafer 51 Electrode terminal pad 51-1 to 4 Electrode terminal pad row 52 Semiconductor to be inspected 52-1 to 4-4 Electrode terminal pad row 53 Electrode Terminal pad rows 53A, B Electrode terminal pad rows 53-1-4 Semiconductors under test 53-11-22 Semiconductor rows under test 54 Semiconductors under test 54-11-88 Electrode terminal pad rows 55 Electrode terminal pads

Claims (36)

被検査半導体端子に接触するプローブ群と外部検査装置とのインターフェース部とを有するプローブカードが、複数の導電性導体パターンを1つの絶縁フィルム上に設置した配線フィルムから成り、前記配線フィルム平面(XY平面)上に、
前記導体パターンの一端におけるプローブ集合体整列手段と、
前記プローブ集合体の方向転換手段と、
前記導体パターンの他端における外部端子接続手段と、
前記プローブ集合体と前記外部接続端子との間における導体パターン拡張手段と、
を有することを特徴とするプローブカード。
A probe card having a probe group in contact with a semiconductor terminal to be inspected and an interface unit with an external inspection device is composed of a wiring film in which a plurality of conductive conductor patterns are provided on one insulating film, and the wiring film plane (XY) On the plane)
Probe assembly alignment means at one end of the conductor pattern,
Turning means of the probe assembly,
External terminal connection means at the other end of the conductor pattern,
Conductive pattern extending means between the probe assembly and the external connection terminal,
A probe card comprising:
前記プローブ集合体における一部又は全部のプローブ先端が、前記配線フィルム平面(XY平面)内において任意の直線上に配置された単列プローブ集合体から成り、
前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。
A part or all of the probe tips in the probe assembly are composed of a single row probe assembly arranged on an arbitrary straight line in the wiring film plane (XY plane),
2. The probe card according to claim 1, wherein an arrangement interval in the XY plane coordinates of the probe tip is the same as an arrangement interval in the XY plane coordinates of the target semiconductor electrode terminal to be inspected.
前記配線フィルム平面(XY平面)内において、第1の前記単列プローブ集合体と概略平行に直線状に配置した第2の単列プローブ集合体を有し、
前記第1及び第2の単列プローブ集合体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体端子のXY平面座標における配列間隔と同一であることを特徴とする請求項1記載のプローカード。
In the wiring film plane (XY plane), there is provided a second single-row probe assembly which is linearly arranged substantially parallel to the first single-row probe assembly,
The arrangement interval in the XY plane coordinates of a part or all of the probe tips of the first and second single-row probe assemblies is the same as the arrangement interval in the XY plane coordinates of the target semiconductor terminal to be inspected. The pro-card according to claim 1, wherein
前記配線フィルム平面(XY平面)内において、第1の前記単列プローブ集合体と概略平行に直線状に配置した第2の単列プローブ集合体と、前記第1の単列プローブ集合体と概略直角方向に直線状に配置した第3又は第4の単列プローブ集合体により概略四辺形を構成するプローブ集合体を有し、
前記第1乃至第4の単列プローブ集合体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。
In the wiring film plane (XY plane), a second single-row probe assembly, which is linearly arranged substantially parallel to the first single-row probe assembly, and the first single-row probe assembly. A probe assembly that forms a substantially quadrilateral by a third or fourth single-row probe assembly arranged linearly in a perpendicular direction,
The arrangement interval in the XY plane coordinates of a part or all of the probe tips of the first to fourth single-row probe assemblies is the same as the arrangement interval in the XY plane coordinates of the target semiconductor terminal to be inspected. The pro-card according to claim 1, wherein
XY平面上の一つ又は全部の前記単列プローブ集合体において、前記プローブ先端を結ぶ直線軸から任意の距離における導体パターン上の直線を中心軸として、前記単列プローブ集合体をXY平面に対し概略垂直方向に折り曲げることにより
前記プローブ集合体の方向転換手段としたこと特徴とする請求項1記載のプローカード。
In one or all of the single-row probe assemblies on the XY plane, the single-row probe assembly is moved with respect to the XY plane, with a straight line on the conductor pattern at an arbitrary distance from a linear axis connecting the probe tips as a central axis. 2. The probe card according to claim 1, wherein the probe assembly is turned in a substantially vertical direction so as to change the direction of the probe assembly.
1つ又は複数の前記単列プローブ集合体を組み合わせたプローブ組立体であって、前記プローブ組立体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。A probe assembly in which one or a plurality of the single-row probe assemblies are combined, wherein the arrangement intervals in the XY plane coordinates of some or all of the probe tips of the probe assembly are the target semiconductor electrode terminals to be inspected. 2. The probe card according to claim 1, wherein the arrangement interval is the same as the arrangement interval in the XY plane coordinates. 前記プローブ組立体における前記プローブの一部又は全部を、前記配線フィルムの垂直方向に対し予め傾斜を設けたことを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein a part or the entirety of said probe in said probe assembly is provided in advance with respect to a vertical direction of said wiring film. 前記プローブ組立体における前記プローブに予め変形部を設けたことを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein said probe in said probe assembly is provided with a deformation portion in advance. 前記プローブ組立体における前記プローブにおいて、前記プローブ先端部の被検査半導体端子との接触部を通過する中心軸と、プローブ変形部の重心を通過する中心軸との間に偏心があることを特徴とする請求項1記載のプローカード。In the probe of the probe assembly, there is an eccentricity between a central axis passing through a contact portion of the probe tip with the semiconductor terminal to be inspected and a central axis passing through the center of gravity of the probe deforming portion. The pro-card according to claim 1, wherein 一端を前記単列プローブにおける1つ又は複数の任意のプローブとし、他端を1つ又は複数の外部接続端子として前記導体パターンを形成したことを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein one end is formed as one or more arbitrary probes in the single-row probe, and the other end is formed as one or more external connection terminals to form the conductor pattern. 前記導体パターンにおける前記外部接続端子が、コネクター装置であることを特徴とする請求項1記載のプローカード。The probe card according to claim 1, wherein the external connection terminal in the conductor pattern is a connector device. 前記導体パターンにおける前記外部接続端子が、半田付けを可能とする導体パッドであることを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein the external connection terminals in the conductor pattern are conductor pads that enable soldering. 前記導体パターンにおける前記外部接続端子が、前記絶縁フィルムの裏面に伝達するスルーホールであることを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein the external connection terminal in the conductor pattern is a through hole transmitting to a back surface of the insulating film. 前記導体パターンにおける一部又は全ての前記外部接続端子のXY平面座標における配置間隔が、前記インターフェース部のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein an arrangement interval of some or all of the external connection terminals in the XY plane coordinate in the conductor pattern is the same as an arrangement interval of the interface unit in the XY plane coordinate. 3. 前記導体パターンが直線の集合体で形成され、前記プローブから前記外部接続端子に至るまで段階的に前記導体パターン間ピッチ又は前記導体パターン幅が大きくなることを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein the conductor pattern is formed of a linear assembly, and the pitch between the conductor patterns or the conductor pattern width increases stepwise from the probe to the external connection terminal. . 前記導体パターンの一部又は全部の形状が連続した曲線(例えばスプライン曲線)であり、前記プローブから前記外部接続端子に至るまで連続的に前記導体パターン間ピッチ又は前記導体パターン幅が大きくなることを特徴とする請求項1記載のプローカード。It is assumed that a part or the whole shape of the conductor pattern is a continuous curve (for example, a spline curve), and that the pitch between the conductor patterns or the width of the conductor pattern continuously increases from the probe to the external connection terminal. 2. The professional card according to claim 1, wherein: 1つの前記配線フィルムの一部又は全部に、1つ又は複数の前記配線フィルムを積層した多層配線フィルムにより、2つ以上のプローブ集合体を配置する手段を有することを特徴とする請求項1記載のプローカード。2. The device according to claim 1, further comprising means for arranging two or more probe assemblies by a multilayer wiring film in which one or a plurality of the wiring films are laminated on a part or all of the one wiring film. Pro card. 前記多層配線フィルムであって、前記単列プローブ集合体を2つ又は3つ以上積層したプローブ組立体において、
一部又は全てのプローブ先端の垂直方向(Z方向)位置が同一であり、前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。
The multilayer wiring film, wherein in the probe assembly two or more single-row probe assembly laminated,
The vertical or Z-direction positions of some or all of the probe tips are the same, and the arrangement intervals of the probe tips in the XY plane coordinates are the same as the arrangement intervals of the target semiconductor electrode terminals to be inspected in the XY plane coordinates. 2. The pro-card according to claim 1, wherein:
前記多層配線フィルムであって、前記単列プローブ集合体を2つ又は3つ以上積層し、複数の前記プローブ集合体のプローブ先端を近接並列させたプローブ組立体において、
第1の前記単列プローブ集合体と第2の前記単列プローブ集合体プローブの先端を相互に、前記プローブ先端を結ぶ直線方向(X方向)に一定の値にずらし、かつ、
一部又は全ての前記プローブ先端の垂直方向(Z方向)位置が同一であり、前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。
The multilayer wiring film, wherein two or three or more of the single-row probe assemblies are stacked, and a probe assembly in which probe tips of a plurality of the probe assemblies are closely arranged in parallel,
The tip of the first single-row probe assembly and the tip of the second single-row probe assembly are shifted from each other by a constant value in a linear direction (X direction) connecting the tip of the probe, and
Some or all of the probe tips have the same vertical (Z-direction) position, and the arrangement intervals of the probe tips in the XY plane coordinates are the same as the arrangement intervals of the target semiconductor electrode terminals to be inspected in the XY plane coordinates. The pro-card according to claim 1, wherein
前記多層配線フィルムであって、前記単列プローブ集合体をN個積層し、第1乃至第Nの前記単列プローブ集合体のプローブ先端を等間隔又は任意の間隔に近接並列させたプローブ組立体において、
一部又は全ての前記プローブ先端の垂直方向(Z方向)位置が同一であり、前記プローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。
The multi-layer wiring film, wherein a probe assembly is formed by laminating N single-row probe assemblies, and proximately juxtaposing probe tips of first to N-th single-row probe assemblies at equal intervals or at arbitrary intervals. At
Some or all of the probe tips have the same vertical (Z-direction) position, and the arrangement intervals of the probe tips in the XY plane coordinates are the same as the arrangement intervals of the target semiconductor electrode terminals to be inspected in the XY plane coordinates. The pro-card according to claim 1, wherein
前記単列プローブ集合体の同一平面上の前記プローブ先端近傍に、位置決め用穴を有するダミーパターンを設けたことを特徴とする請求項1記載のプローカード。2. The probe card according to claim 1, wherein a dummy pattern having a positioning hole is provided near the tip of the probe on the same plane of the single-row probe assembly. 複数の前記配線フィルムにおける前記単列プローブ集合体の前記プローブ近傍を固定し、前記プローブ組立体を形成するハウジングであって、前記ダミーパターン上に設置した前記位置決め穴と同一のピッチの固定用穴を有することを特徴とする請求項1記載のプローカード。A housing for fixing the vicinity of the probe of the single-row probe assembly in a plurality of the wiring films to form the probe assembly, the fixing holes having the same pitch as the positioning holes provided on the dummy pattern. 2. The pro-card according to claim 1, comprising: 複数の前記配線フィルムにおける前記単列プローブ集合体の前記プローブ近傍を固定し、前記プローブ組立体を形成する前記ハウジングであって、
前記プローブ組立体における前記配線フィルム間の前記単列プローブ集合体近傍に所定の厚さを有するスペーサを設置することにより、前記プローブ組立体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる被検査半導体電極端子のXY平面座標における配置間隔と同一となる手段としたことを特徴とする請求項1記載のプローカード。
The housing that fixes the vicinity of the probe of the single-row probe assembly in the plurality of wiring films and forms the probe assembly,
By disposing a spacer having a predetermined thickness in the vicinity of the single-row probe assembly between the wiring films in the probe assembly, an arrangement interval in the XY plane coordinates of a part or the entire probe tip of the probe assembly 2. The probe card according to claim 1, wherein the means is the same as the arrangement interval of the target semiconductor electrode terminals to be inspected in the XY plane coordinates.
1つの前記配線フィルム平面(XY平面)において複数の前記プローブ組立体を形成し、前記プローブ組立体の一部又は全部のプローブ先端のXY平面座標における配置間隔が、対象となる半導体ウエハ上の複数の被検査半導体の各々の電極端子のXY平面座標における配置間隔と同一であることを特徴とする請求項1記載のプローカード。A plurality of the probe assemblies are formed on one wiring film plane (XY plane), and the arrangement intervals of the tip ends of some or all of the probe assemblies in XY plane coordinates on the target semiconductor wafer are plural. 2. The probe card according to claim 1, wherein the arrangement intervals of the respective electrode terminals of the semiconductor device to be inspected in the XY plane coordinates are the same. 1つの前記配線フィルムにおける全ての前記導体パターンを、導電性基板上で1つ又は2つ以上の金属材料、又は2種以上の金属の合金材料からなる層を電鋳により形成することを特徴とする請求項1記載のプローブカード。All the conductor patterns in one wiring film are formed by electroforming a layer made of one or more metal materials or an alloy material of two or more metals on a conductive substrate. The probe card according to claim 1, wherein 前記導体パターンにおける少なくとも前記プローブ変形部を含む前記プローブが、電気的導通が可能なバネ材から成ることを特徴とする請求項1記載のプローブカード。The probe card according to claim 1, wherein the probe including at least the probe deforming portion in the conductor pattern is made of a spring material that can be electrically connected. 複数の前記配線フィルムを、例えばポリイミド等の非導電性のシート又は樹脂による絶縁層を介して重ね合わせたことを特徴とする請求項1記載のプローブカード。The probe card according to claim 1, wherein a plurality of the wiring films are overlapped with each other via an insulating layer made of a non-conductive sheet such as polyimide or a resin. 前記配線フィルムの片面又は両面に前記絶縁層を介して金属導体シートを貼り付け、接地用パターン層を設けたことを特徴とする請求項1記載のプローブカード。The probe card according to claim 1, wherein a metal conductor sheet is attached to one or both surfaces of the wiring film via the insulating layer, and a ground pattern layer is provided. 前記配線フィルムの一部又は全部の導体パターンと前記絶縁層と接地用パターン層との断面方向の寸法関係(例えば導体パターン幅、厚さ、絶縁層厚さ等)及び各々の電気的特性(例えば比誘電率等)が、予め所定の特性インピーダンス値となるべく設定したことを特徴とする請求項1記載のプローブカード。A dimensional relationship (for example, a conductor pattern width, a thickness, an insulating layer thickness, etc.) of a part or all of the conductor pattern of the wiring film, the insulating layer, and the ground pattern layer in the cross-sectional direction, and respective electric characteristics (for example, 2. The probe card according to claim 1, wherein the relative dielectric constant and the like are set in advance so as to have a predetermined characteristic impedance value. 一部又は全部の前記導体パターンの同一平面上に、空気層又はポリイミド等の絶縁層を介して前記導体パターンの近傍に接地用配線パターンを設けたことを特徴とする請求項1記載のプローブカード。2. The probe card according to claim 1, wherein a ground wiring pattern is provided in the vicinity of the conductor pattern via an air layer or an insulating layer made of polyimide or the like on the same plane of some or all of the conductor patterns. . 1つの絶縁フィルム上に、1つ又は複数の導体パターンと前記導体パターンの両端に中継用電極端子を設置した中継用配線フィルムであって、前記中継用電気端子の一端を前記配線フィルム上に設置した接続端子と接続し、他端を前記配線フィルム上に設置した他の前記接続端子と接続したことを特徴とする請求項1記載のプローブカード。A relay wiring film in which one or a plurality of conductor patterns and relay electrode terminals are provided at both ends of the conductor pattern on one insulating film, and one end of the relay electric terminals is mounted on the wiring film. The probe card according to claim 1, wherein the probe card is connected to the connection terminal, and the other end is connected to another connection terminal provided on the wiring film. 前記配線フィルムの前記単列プローブ集合体において、プローブ配置面(XZ平面)と平行に前記プローブ配置方向(X方向)に沿って支持体を設置し、前記プローブの一部又は全部のX方向位置が、前記支持体の熱収縮に伴うX方向変位に追従する手段を有することを特徴とする請求項1記載のプローブカード。In the single-row probe assembly of the wiring film, a support is installed in the probe placement direction (X direction) in parallel with the probe placement surface (XZ plane), and a part or the whole of the probe in the X direction position is provided. The probe card according to claim 1, wherein the probe card has means for following a displacement in the X direction accompanying thermal contraction of the support. 前記単列プローブ集合体の片側又は両側から、前記支持体を前記プローブ配置面(XZ平面)方向に押し付け、機械的に保持したことを特徴とする請求項32記載のプローブカード。33. The probe card according to claim 32, wherein the support is pressed mechanically from one side or both sides of the single-row probe assembly in a direction of the probe arrangement surface (XZ plane). 前記単列プローブ集合体の前記絶縁フィルムにおいて、一部又は全部の前記プローブ間にスリットを設置し、前記絶縁フィルムの熱膨張に伴う前記絶縁フィルムの内部応力の前記プローブへの伝達を減少させたことを特徴とする請求項32記載のプローブカード。In the insulating film of the single-row probe assembly, a slit was provided between some or all of the probes to reduce transmission of internal stress of the insulating film to the probes due to thermal expansion of the insulating film. 33. The probe card according to claim 32, wherein: 前記単列プローブ集合体の前記絶縁フィルムにおいて、一部又は全部の前記プローブ間にスリットを設置し、前記支持体の前記プローブ側に突起部を設置し、前記スリットと前記突起部とを勘合させたことを特徴とする請求項32記載のプローブカード。In the insulating film of the single-row probe assembly, a slit is provided between some or all of the probes, a protrusion is provided on the probe side of the support, and the slit and the protrusion are fitted together. 33. The probe card according to claim 32, wherein: 前記支持体の線膨張係数が、被検査半導体ウエハの線膨張係数に近似であることを特徴とする請求項32記載のプローブカード。33. The probe card according to claim 32, wherein a linear expansion coefficient of the support is close to a linear expansion coefficient of the semiconductor wafer to be inspected.
JP2018126383A 2018-06-14 2018-06-14 Probe card Pending JP2019219368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126383A JP2019219368A (en) 2018-06-14 2018-06-14 Probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126383A JP2019219368A (en) 2018-06-14 2018-06-14 Probe card

Publications (1)

Publication Number Publication Date
JP2019219368A true JP2019219368A (en) 2019-12-26

Family

ID=69096366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126383A Pending JP2019219368A (en) 2018-06-14 2018-06-14 Probe card

Country Status (1)

Country Link
JP (1) JP2019219368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281740A1 (en) * 2021-07-09 2023-01-12 日本電子材料株式会社 Wiring board for probe card
KR102586832B1 (en) * 2023-07-12 2023-10-11 김왕균 Method for manufacturing probe card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281740A1 (en) * 2021-07-09 2023-01-12 日本電子材料株式会社 Wiring board for probe card
KR102586832B1 (en) * 2023-07-12 2023-10-11 김왕균 Method for manufacturing probe card

Similar Documents

Publication Publication Date Title
US20060006892A1 (en) Flexible test head internal interface
CN110568683B (en) Array substrate, display device and test method thereof
US7622937B2 (en) Electrical signal connector
JP2005300545A (en) Electrical signal connection device, and probe assembly and prober device using it
TW202035996A (en) Probe card testing device and signal switching module thereof
JP5024861B2 (en) Probe card
US9234915B2 (en) Signal sensing device and circuit boards
JP2012093328A (en) Probe card
JP2018132515A (en) Probe card
KR101149748B1 (en) Electric connection structure, terminal device, socket, device for testing electronic component, and method of manufacturing socket
US7501838B2 (en) Contact assembly and LSI chip inspecting device using the same
JP2019219368A (en) Probe card
CN111721979B (en) Probe card testing device and signal switching module thereof
JP4962929B2 (en) PROBER DEVICE AND PROBE ASSEMBLY USED FOR THE SAME
JP3864201B2 (en) Probe card
JP6182974B2 (en) Board inspection method
US8476919B2 (en) Prober unit
TWI325499B (en) Apparatus for inspecting a liquid crystal display panel
JP2004274010A (en) Prober
KR100720122B1 (en) Probe device of semiconductor wafer inspector
JP2016206160A (en) Probe card
JP5333829B2 (en) Probe assembly
KR20110097529A (en) Prober unit
JP2010054487A (en) Prober apparatus
KR101363368B1 (en) Examination apparatus of printed circuit board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911