JP2019219227A - パターン検査装置及びパターン検査方法 - Google Patents

パターン検査装置及びパターン検査方法 Download PDF

Info

Publication number
JP2019219227A
JP2019219227A JP2018115597A JP2018115597A JP2019219227A JP 2019219227 A JP2019219227 A JP 2019219227A JP 2018115597 A JP2018115597 A JP 2018115597A JP 2018115597 A JP2018115597 A JP 2018115597A JP 2019219227 A JP2019219227 A JP 2019219227A
Authority
JP
Japan
Prior art keywords
area
inspection
region
pattern
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018115597A
Other languages
English (en)
Inventor
克行 青木
Katsuyuki Aoki
克行 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2018115597A priority Critical patent/JP2019219227A/ja
Publication of JP2019219227A publication Critical patent/JP2019219227A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【目的】非解像パターンが形成された領域を検査領域内にもつ試料に対して、設計情報と比較しない検査を行う場合に、疑似欠陥を低減可能な装置を提供する。【構成】本発明の一態様の検査装置100は、非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する光学画像取得機構150と、検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された光学画像の階調値に基づいて当該処理領域が複数の特定領域のうちどの特定領域に相当するのかを判定する特定領域判定回路132と、複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する比較処理部79と、を備えたことを特徴とする。【選択図】図1

Description

本発明は、パターン検査装置及びパターン検査方法に関する。例えば、半導体製造に用いる試料となる物体のパターン欠陥を検査するパターン検査技術に関し、検査装置での解像限界未満の非解像パターンが形成された領域を含む検査領域内のパターン欠陥を検査する装置及び方法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。かかる微細化に伴って、例えば数nm〜数十nmといった、紫外光を使った検査装置では解像困難なサイズの非解像パターンを転写する技術の開発が進められている。例えば、微細な凹凸パターンが形成されたテンプレートを試料に押し付けてパターンを転写するナノインプリントリソグラフィ技術の開発が進められている。
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。歩留まりを低下させる大きな要因の一つとして、パターンを転写する原版のパターン欠陥があげられる。例えば、ナノインプリントリソグラフィ技術であれば、パターンを転写する際に使用されるテンプレートのパターン欠陥があげられる。そのため、テンプレート等の原版のパターン欠陥を検査するパターン検査装置の高精度化が必要とされている。検査手法としては、同一テンプレート上の異なる場所の同一パターンを撮像した光学画像同士を比較する「die to die(ダイ−ダイ)検査」手法が提案されている(例えば、特許文献1参照)。
しかし、例えば数nm〜数十nmといった、紫外光を使った検査装置では解像困難なサイズの非解像パターンを検査する場合、非解像パターンは、中間階調の所謂ボケた像として撮像されることになる。そして、非解像パターン上に欠陥が存在する場合、その輝度差が大きくは生じない。よって、大きくは生じないかかる輝度差から非解像パターン上の欠陥を検出することになる。一方、検査画像として撮像される領域として、非解像パターンが形成される領域の他、それ以外の領域も含まれる。そのため、非解像パターン上の欠陥を検出しようとした場合、非解像パターンに隣接する、解像パターン領域であって欠陥検出感度を緩くしても良いパターンまでも欠陥として検出してしまい、いわゆる疑似欠陥が発生してしまうといった問題があった。特に、非解像パターンと非解像パターン無し領域との境界近辺において疑似欠陥が多発してしまう。光学画像自体には、撮像された領域が、非解像パターンが形成される領域なのか、それ以外の領域なのかを識別する領域情報をもっていないので、光学画像同士を比較するダイ−ダイ検査を行う場合、疑似欠陥かどうかを区別することも難しい。かかる問題は、ナノインプリントリソグラフィ用のテンプレートに限らず、非解像パターンが形成された領域を検査領域内にもつ試料に対して、ダイ−ダイ検査を行う場合に、同様に発生し得る。
特開2016−206169号公報
そこで、本発明の一態様は、非解像パターンが形成された領域を検査領域内にもつ試料に対して、疑似欠陥を低減可能な装置及び方法を提供する。
本発明の一態様のパターン検査装置は、
非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する光学画像取得機構と、
検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された光学画像の階調値に基づいて当該処理領域が複数の特定領域のうちどの特定領域に相当するのかを判定する特定領域判定部と、
複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する比較部と、
を備えたことを特徴とする。
また、複数の領域には、非解像パターンが形成された非解像パターン領域と、パターン無し領域と、非解像パターン領域とパターン無し領域との境界領域と、が含まれると好適である。
また、試料として、ナノインプリント用のテンプレートが用いられると好適である。
また、非解像パターンとして、縦横サイズが異なるホールパターンが形成される場合であると好適である。
本発明の一態様のパターン検査方法は、
非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する工程と、
検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された光学画像の階調値に基づいて当該処理領域が複数の特定領域のうちどの特定領域に相当するのかを判定する工程と、
複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する工程と、
を備えたことを特徴とする。
本発明の他の態様のパターン検査装置は、
非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する光学画像取得機構と、
前記検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された前記光学画像の階調値に基づいて当該処理領域が前記複数の特定領域のうちどの特定領域に相当するのかを判定する特定領域判定部と、
前記複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像を検査する検査部と、
を備えたことを特徴とする。
本発明の一態様によれば、非解像パターンが形成された領域を検査領域内にもつ試料に対して、疑似欠陥を低減できる。
実施の形態1におけるパターン検査装置の構成を示す構成図である。 実施の形態1における検査領域を説明するための概念図である。 実施の形態1における被検査テンプレートに形成されるパターンの一例を示す図である。 実施の形態1における検査方法の要部工程を示すフローチャート図である。 実施の形態1における階調レベル調整回路の内部構成の一例を示す構成図である。 実施の形態1における各領域の階調レベルの一例を示す図である。 実施の形態1における比較回路の内部構成の一例を示す構成図である。
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、検査対象基板に形成されたパターンの欠陥を検査する検査装置100は、光学画像取得機構150、及び制御系回路160を備えている。
光学画像取得機構150は、光源103、照明光学系170、ビームスプリッタ174、拡大光学系104、移動可能に配置されたXYθテーブル102、結像光学系176、フォトダイオードアレイ105(センサの一例)、センサ回路106、ストライプパターンメモリ123、及びレーザ測長システム122を有している。XYθテーブル102上には、試料101が配置されている。試料101として、例えば、ナノインプリントリソグラフィ用のテンプレートが含まれる。また、このテンプレートには、光源103から発生する光の波長では解像できない非解像パターンが形成され、かかる非解像パターンが形成された領域を含む複数の領域を検査領域とする。試料101は、例えば、パターン形成面を下側に向けてXYθテーブル102に配置される。
制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、オートローダ制御回路113、テーブル制御回路114、階調レベル調整回路140、特定領域判定回路142、磁気ディスク装置109、磁気テープ装置115、フレシキブルディスク装置(FD)116、CRT117、パターンモニタ118、及びプリンタ119に接続されている。また、センサ回路106は、ストライプパターンメモリ123に接続され、ストライプパターンメモリ123は、比較回路108に接続されている。また、XYθテーブル102は、X軸モータ、Y軸モータ、θ軸モータにより駆動される。XYθテーブル102は、ステージの一例となる。
なお、位置回路107、比較回路108、オートローダ制御回路113、テーブル制御回路114、階調レベル調整回路140、及び特定領域判定回路142といった一連の「〜回路」は、処理回路を有する。かかる処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。例えば、位置回路107、比較回路108、オートローダ制御回路113、テーブル制御回路114、階調レベル調整回路140、及び特定領域判定回路142といった一連の「〜回路」は、制御計算機110によって構成され、実行されても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置109、磁気テープ装置115、FD116、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。
検査装置100では、光源103、照明光学系170、ビームスプリッタ174、拡大光学系104、結像光学系176、フォトダイオードアレイ105、及びセンサ回路106により高倍率の検査光学系が構成されている。また、XYθテーブル102は、制御計算機110の制御の下にテーブル制御回路114により駆動される。X方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系によって移動可能となっている。これらの、Xモータ、Yモータ、θモータは、例えばステップモータを用いることができる。XYθテーブル102は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、XYθテーブル102上に配置された試料101の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。
ここで、図1では、実施の形態1を説明する上で必要な構成部分について記載している。検査装置100にとって、通常、必要なその他の構成が含まれても構わないことは言うまでもない。
図2は、実施の形態1における検査領域を説明するための概念図である。試料101の検査領域10(検査領域全体)は、図2に示すように、例えばY方向に向かって、スキャン幅Wの短冊状の複数の検査ストライプ20に仮想的に分割される。そして、検査装置100では、検査ストライプ20毎に画像(ストライプ領域画像)を取得していく。検査ストライプ20の各々に対して、レーザ光を用いて、当該ストライプ領域の長手方向(X方向)に向かって当該ストライプ領域内に配置される図形パターンの画像を撮像する。XYθテーブル102の移動によってフォトダイオードアレイ105が相対的にX方向に連続移動しながら光学画像が取得される。フォトダイオードアレイ105では、図2に示されるようなスキャン幅Wの光学画像を連続的に撮像する。言い換えれば、センサの一例となるフォトダイオードアレイ105は、XYθテーブル102(ステージ)と相対移動しながら、検査光を用いて試料101に形成されたパターンの光学画像を撮像する。実施の形態1では、1つの検査ストライプ20における光学画像を撮像した後、Y方向に次の検査ストライプ20の位置まで移動して今度は逆方向に移動しながら同様にスキャン幅Wの光学画像を連続的に撮像する。すなわち、往路と復路で逆方向に向かうフォワード(FWD)−バックフォワード(BWD)の方向で撮像を繰り返す。
また、実際の検査にあたって、各検査ストライプ20のストライプ領域画像は、図2に示すように、例えば、スキャン幅で長手方向に向かって複数のフレーム画像に分割される。そして、フレーム画像毎に検査を行っていく。各検査ストライプ20のストライプ領域がかかるフレーム画像のサイズに分割された領域がフレーム領域30となる。言い換えれば、各検査ストライプ20のストライプ領域が、図2に示すように、例えば、スキャン幅で長手方向に向かって複数のフレーム領域30に分割される。例えば、512×512画素のサイズに分割される。
ここで、撮像の方向は、フォワード(FWD)−バックフォワード(BWD)の繰り返しに限るものではない。一方の方向から撮像してもよい。例えば、FWD−FWDの繰り返しでもよい。或いは、BWD−BWDの繰り返しでもよい。次に、光学画像取得機構150による画像の取得動作について具体的に説明する。
試料101の検査領域には、適切な光源103から、検査光となる紫外域以下の波長のレーザ光(例えば、DUV光)が照明光学系170によりビームスプリッタ174に照射される。照射されたレーザ光は、ビームスプリッタ174で反射して、拡大光学系104により試料101に照射される。試料101から反射した光は拡大光学系104及びビームスプリッタ174を通過して、結像光学系176によりフォトダイオードアレイ105(センサの一例)に光学像として結像し、入射する。
フォトダイオードアレイ105上に結像されたパターンの像は、フォトダイオードアレイ105の各受光素子によって光電変換され、更にセンサ回路106によってA/D(アナログ・デジタル)変換される。そして、ストライプパターンメモリ123に、測定対象の検査ストライプ20の画素データが格納される。その後、ストライプ領域画像は、位置回路107から出力されたXYθテーブル102上における試料101の位置を示すデータと共に比較回路108に送られる。測定データ(画素データ)は例えば8ビットの符号なしデータであり、各画素の明るさの階調(光量)を表現している。
図3は、実施の形態1における被検査テンプレートに形成されるパターンの一例を示す図である。図3において、試料101となる例えばテンプレートには、光源103から発生する光の波長では解像できない非解像パターン41が形成される。また、図3の例では、テンプレートの検査領域10に、かかる非解像パターン41が形成された非解像パターン領域40とパターンが形成されないパターン無し領域42とが交互に繰り返し配置される場合を示している。パターン無し領域42には、非解像パターン41ではなく、回路構成には影響しないパターンが配置されている場合を含めても良い。試料101となる例えばテンプレートは、これらの領域と、非解像パターン領域40とパターン無し領域42との境界に位置する境界領域44とを含めた、複数の特定領域が検査領域10内に含まれる。図3の例では、例えば、数10本以上のストライプ領域20に跨る検査領域中央部の領域31を一例として、領域31内のこれらの複数の特定領域を示している。図3の例では、非解像パターン領域40内に、非解像パターン41として、縦横サイズが異なる矩形の複数のホールパターンが所定のピッチで周期的に配置されている。非解像パターン41は、ホールパターンに限るものではなく、その他のパターンであっても構わない。例えば、ラインアンドスペースパターンが配置されても構わない。試料101となる例えばテンプレートには、図3の例のように、周期性のあるパターンが繰り返し配置される場合が多い。ここで、非解像パターン領域40に欠陥43aが存在する場合、例えば、回路ショート等の不具合が生じる可能性が高いので、高精度に検出することが求められる。一方、パターン無し領域42に欠陥43bが存在しても、回路に影響を与える訳ではないので検出の必要がなく、できれば検出しない方が望ましい。また、境界領域44に欠陥43cが存在する場合、回路ショート等の不具合が生じる可能性もあるが、その可能性は低い。よって、非解像パターン領域40ほどに厳しい検出は求められない。
ここで、かかるテンプレートを光学画像取得機構150により撮像した場合、パターンが配置されていない箇所では、テンプレートの膜質に応じた輝度の画像として撮像される。一方、パターンが配置されている箇所では、パターンが配置されていない箇所よりも例えば黒レベル側の輝度の画像として撮像される。特に、非解像パターン41では、検査光の波長では解像できず、所定の狭い階調幅内の中間階調の所謂ボケた画像として撮像される。よって、非解像パターン領域40は、かかる狭い階調幅内の中間階調の画像として撮像される。非解像パターン領域40内では、周期性を持って形成されている箇所に欠陥43aがあると、その周期性に乱れが生じて、光学画像は、狭い階調幅内の略均一な中間階調の画像に欠陥の程度に応じた輝度変化を持つ。一方、パターン無し領域42では、パターンが配置されていなければ、非解像パターン領域40に比べて白レベルに近い輝度の光学画像となる。また、境界領域44は非解像パターン41とパターン無し領域42との混合領域なので、比較的広い階調幅内の中間階調の画像として撮像される。このように、非解像パターン領域40とパターン無し領域42と境界領域44とでは、光学画像に現れる階調値の範囲が異なる。そこで、実施の形態1では、領域によって光学画像に現れる階調値の範囲が異なることに着目して、各領域を特定する。その上で、それぞれの領域に見合う検査精度で検査することで疑似欠陥を低減する。以下、具体的に説明する。
図4は、実施の形態1における検査方法の要部工程を示すフローチャート図である。図4において、実施の形態1における検査方法は、キャリブレーション工程(S102)と、サンプリング領域画像取得工程(S104)と、階調値分布作成工程(S106)と、ストライプ画像取得工程(S110)と、特定領域判定工程(S111)と、フレーム分割工程(S112)と、位置合わせ工程(S120)と、領域特定工程(S122)と、比較処理工程(S124)と、いう一連の工程を実施する。
図5は、実施の形態1における階調レベル調整回路の内部構成の一例を示す構成図である。図5において、階調レベル調整回路140内には、サンプリング領域抽出部50、階調値分布作成部52、キャリブレーション処理部53、及び磁気ディスク装置等の記憶装置51が配置される。サンプリング領域抽出部50、階調値分布作成部52、及びキャリブレーション処理部53といった一連の「〜部」は、処理回路を有する。かかる処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。サンプリング領域抽出部50、階調値分布作成部52、及びキャリブレーション処理部53に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
キャリブレーション工程(S102)として、キャリブレーション処理部53は、非解像パターン領域40と、パターン無し領域42と、これらの境界に位置する境界領域44といった各領域がそれぞれ階調レベルの異なる所定の階調値になるように、光量を調整する(キャリブレーションを行う)。テンプレートでは、クォーツで形成される平らな面のパターン無し領域42の反射率が高く、非解像パターン41による凹凸があるため光が散乱してしまう非解像パターン領域40の反射率が低い。例えば256階調のダイナミックレンジに対して、例えば、最も階調レベルが低い(反射率が低い)非解像パターン領域40の階調レベルが例えば50になるように光量を調整する。これにより、境界領域44の階調レベルが例えば75付近になり、パターン無し領域42の階調レベルが例えば100付近になる。光量の調整は、例えば、スキャン時のXYθテーブル102の移動速度を調整することで可能である。かかる場合、スキャン時のXYθテーブル102の移動速度を速くすれば、単位時間あたりにフォトダイオードアレイ105の各受光素子が受光できる光量を減らすことができる。逆に、XYθテーブル102の移動速度を遅くすれば、単位時間あたりにフォトダイオードアレイ105の各受光素子が受光できる光量を増やすことができる。或いは、センサ回路106のダイナミックレンジを調整しても良い。ダイナミックレンジを調整するための基準となる領域は非解像パターン領域40に限るものではなく、適宜選択すればよい。非解像パターン領域40若しくはパターン無し領域42を基準にすると好適である。
サンプリング領域画像取得工程(S104)として、光学画像取得機構150は、試料101のサンプリング領域の光学画像を取得する。
まず、サンプリング領域抽出部50は、試料101の検査領域10から複数のサンプリング領域32を抽出する。サンプリング領域32として、例えば、フレーム領域30サイズ以下のサイズの領域を抽出する。図3の例では、フレーム領域30サイズ以下のサイズのサンプリング領域32を示している。図3において説明したように、試料101の検査領域10には、上述した非解像パターン領域40と、パターン無し領域42と、境界領域44といった複数の特定領域が含まれる。よって、これら複数の特定領域のそれぞれからサンプリング領域32を抽出する。
次に、抽出されたサンプリング領域32を撮像可能な位置にXYθテーブル102を移動させる。そして、光学画像取得機構150は、各サンプリング領域32の光学画像を取得する。光学画像の取得動作は、上述した通りである。撮像されたサンプリング領域32の光学画像データ(サンプリング領域画像データ)は、階調レベル調整回路140に出力され、階調レベル調整回路140内の記憶装置51に格納される。
階調値分布作成工程(S106)として、階調値分布作成部52は、記憶装置51からサンプリング領域画像データを読み出し、階調値分布を作成する。
図6は、実施の形態1における各領域の階調レベル及び階調範囲の一例を示す図である。上述したように、非解像パターン領域40の階調レベルが例えば50になるように光量を調整した場合、図6の例に示すように、非解像パターン領域40を撮像したサンプリング領域32の光学画像では、欠陥を含む場合でも、階調値の分布幅が例えば40〜60階調レベル程度の階調値分布が得られる。パターン無し領域42を撮像したサンプリング領域32の光学画像では、欠陥を含む場合でも、階調値の分布幅が例えば80〜120階調レベル程度の階調値分布が得られる。そして、境界領域44を撮像したサンプリング領域32の光学画像では、欠陥を含む場合でも、階調値の分布幅が例えば40〜120階調レベル程度の階調値分布が得られる。このように、領域に応じて光学画像に現れる階調値の範囲が異なる。なお、試料101にテンプレートを用いる場合、テンプレート製造時の遮光膜となるクロム(Cr)が除去されずに残っている個所が存在し得る。かかる部分では、パターン無し領域42よりも高い階調レベル、例えば150になる。
これにより、例えば、検査対象の光学画像から得られる階調値分布が例えば階調レベル40〜60内で分布していれば、かかる光学画像は非解像パターン領域40を撮像した画像であることがわかる。例えば、光学画像から得られる階調値分布が例えば階調レベル80〜120内で分布していれば、かかる光学画像はパターン無し領域42を撮像した画像であることがわかる。例えば、光学画像から得られる階調値分布が例えば階調レベル40〜120内で広い幅で分布していれば、かかる光学画像は境界領域44を撮像した画像であることがわかる。例えば、光学画像から得られる階調値分布が例えば階調レベル120を超えていれば、残Cr領域を撮像した画像であることがわかる。
以上により、所定の処理領域内の測定画像の階調値の分布から、対象領域がどの特定領域なのか判定できることになる。
ストライプ画像取得工程(S110)として、光学画像取得機構150は、非解像パターンが形成された非解像パターン領域40を含む複数の特定領域(非解像パターン領域40,パターン無し領域42,境界領域44)を検査領域10とした試料101から光学画像を取得する。光学画像の取得の仕方は、上述した通りである。取得されたストライプ領域画像は、位置回路107から出力されたXYθテーブル102上における試料101の位置を示すデータと共に比較回路108及び特定領域判定回路142に送られる。
特定領域判定工程(S110)として、特定領域判定回路142は、検査領域10を複数の処理領域21に分割して、処理領域21毎に、当該処理領域内で取得された光学画像の階調値の分布から当該処理領域が複数の特定領域のうちどの特定領域に相当するのかを判定する。図3の例では、処理領域21として、例えば、連続する複数のストライプ領域20をまとめた領域を用いる。例えば、連続する3本のストライプ領域20毎に処理領域21を設定する。或いは、連続する複数のストライプ領域20全体ではなく、複数のストライプ領域20を、例えば、ストライプ領域20の短手方向のサイズを複数本合わせた幅と同じ幅で長手方法に分割した矩形の分割領域であってもよい。或いは、1本のストライプ領域20であってもよい。或いは、1本のストライプ領域20をストライプ領域20の短手方向のサイズで長手方法に分割した矩形の分割領域であってもよい。或いは、ストライプ領域20よりも小さいサイズの領域であってもよい。具体的には以下のように判定する。当該処理領域21内で取得された光学画像の階調値の分布が、最小値が45で、最大値が55であった場合、階調値分布が例えば階調レベル40〜60内で分布しているので、かかる処理領域21は非解像パターン領域40に相当すると判定される。別の処理領域21内で取得された光学画像の階調値の分布が、最小値が55で、最大値が90であった場合、階調値分布が例えば階調レベル40〜120内で分布しているので、かかる処理領域21は境界領域44に相当すると判定される。さらに、別の処理領域21内で取得された光学画像の階調値の分布が、最小値が90で、最大値が115であった場合、階調値分布が例えば階調レベル80〜120内で分布しているので、かかる処理領域21はパターン無し領域42に相当すると判定される。さらに、別の処理領域21内で取得された光学画像の階調値の分布が、最小値が121で、最大値が160であった場合、階調値分布が例えば階調レベル120を超えて分布しているので、かかる処理領域21は残Cr領域に相当すると判定される。
図7は、実施の形態1における比較回路の内部構成の一例を示す構成図である。図7において、比較回路108内には、磁気ディスク装置等の記憶装置70,72,76、フレーム分割部74、位置合わせ部78、比較処理部79、及び領域特定部80が配置されている。フレーム分割部74、位置合わせ部78、比較処理部79、及び領域特定部80といった一連の「〜部」は、処理回路を有する。かかる処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。フレーム分割部74、位置合わせ部78、比較処理部79、及び領域特定部80に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
比較回路108に入力されたストライプデータ(光学画像データ)は記憶装置70に格納される。
フレーム分割工程(S112)として、フレーム分割部74は、x方向に所定のサイズ(例えば、スキャン幅Wと同じ幅)でストライプ領域画像を分割する。例えば、1024×1024画素のフレーム画像に分割する。かかる処理により、複数のフレーム領域30に応じた複数のフレーム画像(光学画像)が取得される。複数のフレーム画像は、記憶装置76に格納される。以上により、検査のために比較される画像(測定された画像)データが生成される。
位置合わせ工程(S120)として、位置合わせ部78は、複数のフレーム画像の中から検査対象のフレーム画像(ダイ1)と、当該検査対象のフレーム画像(ダイ1)と同じパターンが形成されたフレーム画像(ダイ2)とを読み出し、両画像の位置合わせを行う。位置合わせは、例えば、最小二乗法等によって行われると好適である。フレーム画像(ダイ1)とフレーム画像(ダイ2)は、同じ検査ストライプ20から得られた画像同士であっても良いし、異なる検査ストライプ20から得られた画像同士であっても良い。
領域特定工程(S122)として、領域特定部80は、被検査画像となるフレーム画像(ダイ1)(光学画像)が取得された処理領域31を特定する。
比較処理部79(検査部の一例)は、複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像を検査する。例えば、当該被検査画像自体の周期性の乱れを自己の画像から検査する。或いは、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較することによって、当該被検査画像を検査する。例えば、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する場合について以下に説明する。
比較処理部79(比較部)は、複数の特定領域である非解像パターン領域40、パターン無し領域42、境界領域44、及び残Cr領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する。各領域の判定閾値の情報は記憶装置72に格納しておく。そして、比較処理部79は、フレーム画像(ダイ1)(光学画像)が取得された処理領域21に相当する特定領域の判定閾値を記憶装置72から読み出し、フレーム画像(ダイ1)とフレーム画像(ダイ2)を画素毎に比較して、パターンの欠陥を検査する。判定条件としては、例えば、所定のアルゴリズムに従って画素毎に両者を比較し、欠陥の有無を判定する。例えば、画素毎にフレーム画像(ダイ1)の階調値(画素値)からフレーム画像(ダイ2)の階調値(画素値)を差し引いた差分値を演算し、差分値が判定閾値Thより大きい場合を欠陥と判定する。ここでは、高い検査精度が必要な非解像パターン領域40については、最も判定閾値を厳しくする。検査精度を落として疑似欠陥を減らしたいパターン無し領域42については、判定閾値を緩くする。また、非解像パターン領域40ほどに厳しい検出は求められない境界領域44については、判定閾値を非解像パターン領域40とパターン無し領域42との間の値とする。或いは、パターン無し領域42と同じように判定閾値を緩くする。残Cr領域については、Crが残っていても回路自体にショート等が発生するわけではないのでパターン無し領域42と同じように判定閾値を緩くする。例えば、非解像パターン領域40は、階調差が10以上あれば欠陥と判定する。パターン無し領域42は、階調差が30以上あれば欠陥と判定する。境界領域44は、階調差が20以上あれば欠陥と判定する。残Cr領域は、階調差が30以上あれば欠陥と判定する。そして、比較結果が出力される。比較結果は、磁気ディスク装置109、磁気テープ装置115、フレキシブルディスク装置(FD)116、CRT117、パターンモニタ118に出力される、或いはプリンタ119から出力されればよい。
以上のように、実施の形態1によれば、非解像パターン41が形成された領域を検査領域10内にもつ試料101に対して、領域情報を予め用意しなくても、複数の領域の各領域を特定できる。よって、特定された領域毎に判定閾値を可変にできるので、疑似欠陥を低減できる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、実施の形態では、照明光学系170として、反射光を用いた反射照明光学系を示したが、これに限るものではない。例えば、透過光を用いた透過照明光学系であってもよい。或いは、透過照明光学系と反射照明光学系とを組み合わせて、透過光と反射光を同時に用いてもよい。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、検査装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのパターン検査装置及びパターン検査方法は、本発明の範囲に包含される。
10 検査領域
20 検査ストライプ
30 フレーム領域
32 サンプリング領域
40 非解像パターン領域
41 非解像パターン
42 パターン無し領域
43 欠陥
44 境界領域
50 サンプリング領域抽出部
51 記憶装置
52 階調値分布作成部
53 キャリブレーション処理部
70,72,76 記憶装置
74 フレーム分割部
78 位置合わせ部
79 比較処理部
80 領域特定部
100 検査装置
101 基板
102 XYθテーブル
103 光源
104 拡大光学系
105 フォトダイオードアレイ
106 センサ回路
107 位置回路
108 比較回路
109 磁気ディスク装置
110 制御計算機
113 オートローダ制御回路
114 テーブル制御回路
115 磁気テープ装置
116 FD
117 CRT
118 パターンモニタ
119 プリンタ
120 バス
122 レーザ測長システム
123 ストライプパターンメモリ
140 階調レベル調整回路
142 特定領域判定回路
150 光学画像取得機構
160 制御系回路
170 照明光学系
174 ビームスプリッタ
176 結像光学系

Claims (6)

  1. 非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する光学画像取得機構と、
    前記検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された前記光学画像の階調値に基づいて当該処理領域が前記複数の特定領域のうちどの特定領域に相当するのかを判定する特定領域判定部と、
    前記複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する比較部と、
    を備えたことを特徴とするパターン検査装置。
  2. 前記複数の特定領域には、前記非解像パターンが形成された非解像パターン領域と、パターン無し領域と、前記非解像パターン領域と前記パターン無し領域との境界領域と、が含まれることを特徴とする請求項1記載のパターン検査装置。
  3. 前記試料として、ナノインプリント用のテンプレートが用いられることを特徴とする請求項1又は2記載のパターン検査装置。
  4. 前記非解像パターンとして、縦横サイズが異なるホールパターンが形成されることを特徴とする請求項1〜3いずれか記載のパターン検査装置。
  5. 非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する工程と、
    前記検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された前記光学画像の階調値に基づいて当該処理領域が前記複数の特定領域のうちどの特定領域に相当するのかを判定する工程と、
    前記複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像と、当該被検査画像と同一パターンが形成される光学画像とを比較する工程と、
    を備えたことを特徴とするパターン検査方法。
  6. 非解像パターンが形成された領域を含む複数の特定領域を検査領域とした試料から光学画像を取得する光学画像取得機構と、
    前記検査領域を複数の処理領域に分割して、処理領域毎に、当該処理領域内で取得された前記光学画像の階調値に基づいて当該処理領域が前記複数の特定領域のうちどの特定領域に相当するのかを判定する特定領域判定部と、
    前記複数の特定領域の特定領域毎に判定閾値を変えながら、被検査画像となる光学画像が取得された処理領域に相当する特定領域の判定閾値を用いて、当該被検査画像を検査する検査部と、
    を備えたことを特徴とするパターン検査装置。
JP2018115597A 2018-06-18 2018-06-18 パターン検査装置及びパターン検査方法 Pending JP2019219227A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115597A JP2019219227A (ja) 2018-06-18 2018-06-18 パターン検査装置及びパターン検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115597A JP2019219227A (ja) 2018-06-18 2018-06-18 パターン検査装置及びパターン検査方法

Publications (1)

Publication Number Publication Date
JP2019219227A true JP2019219227A (ja) 2019-12-26

Family

ID=69096159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115597A Pending JP2019219227A (ja) 2018-06-18 2018-06-18 パターン検査装置及びパターン検査方法

Country Status (1)

Country Link
JP (1) JP2019219227A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049503A (ja) * 2010-07-27 2012-03-08 Fujitsu Semiconductor Ltd 半導体装置の検査装置及び半導体装置の検査方法
JP2014032073A (ja) * 2012-08-02 2014-02-20 Toppan Printing Co Ltd パターン形成物の検査エリア設定方法および検査装置
JP2015147360A (ja) * 2014-02-07 2015-08-20 大日本印刷株式会社 インプリントモールドとこれを用いたインプリント方法およびインプリントモールドを製造するためのマスターモールド
US20160305892A1 (en) * 2015-04-17 2016-10-20 Nuflare Technology, Inc. Inspection method and template
JP2017211392A (ja) * 2017-07-11 2017-11-30 株式会社ニューフレアテクノロジー パターン評価方法およびパターン評価装置
JP2017220497A (ja) * 2016-06-03 2017-12-14 株式会社ニューフレアテクノロジー 検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049503A (ja) * 2010-07-27 2012-03-08 Fujitsu Semiconductor Ltd 半導体装置の検査装置及び半導体装置の検査方法
JP2014032073A (ja) * 2012-08-02 2014-02-20 Toppan Printing Co Ltd パターン形成物の検査エリア設定方法および検査装置
JP2015147360A (ja) * 2014-02-07 2015-08-20 大日本印刷株式会社 インプリントモールドとこれを用いたインプリント方法およびインプリントモールドを製造するためのマスターモールド
US20160305892A1 (en) * 2015-04-17 2016-10-20 Nuflare Technology, Inc. Inspection method and template
JP2017220497A (ja) * 2016-06-03 2017-12-14 株式会社ニューフレアテクノロジー 検査方法
JP2017211392A (ja) * 2017-07-11 2017-11-30 株式会社ニューフレアテクノロジー パターン評価方法およびパターン評価装置

Similar Documents

Publication Publication Date Title
JP6307367B2 (ja) マスク検査装置、マスク評価方法及びマスク評価システム
KR101540215B1 (ko) 검사 감도 평가 방법
JP4323475B2 (ja) 試料検査装置、試料検査方法及びプログラム
KR20080073281A (ko) 화상 결함 검사 장치, 화상 결함 검사 시스템 및 화상 결함검사 방법
KR101994524B1 (ko) 포커싱 장치, 포커싱 방법 및 패턴 검사 방법
EP1174707A1 (en) Defect inspection method and defect inspection apparatus
US20080175466A1 (en) Inspection apparatus and inspection method
US10192304B2 (en) Method for measuring pattern width deviation, and pattern inspection apparatus
JP4970569B2 (ja) パターン検査装置およびパターン検査方法
JP2016145887A (ja) 検査装置および検査方法
KR101698891B1 (ko) 마스크 검사 장치 및 마스크 검사 방법
KR102013287B1 (ko) 계측 장치 및 계측 방법
JP5075946B2 (ja) パターン検査装置およびパターン検査方法
JP5178781B2 (ja) センサ出力データの補正装置及びセンサ出力データの補正方法
JP5010701B2 (ja) 検査装置および検査方法
JP2009222627A (ja) パターン検査方法、パターン検査装置及びプログラム
KR101604013B1 (ko) 패턴 검사 장치 및 패턴 검사 방법
JP4206393B2 (ja) パターン検査方法
JP4554661B2 (ja) パターン検査装置、パターン検査方法及びプログラム
JP2019219227A (ja) パターン検査装置及びパターン検査方法
JP4922381B2 (ja) パターン検査装置及びパターン検査方法
JP2021025889A (ja) Tdi(時間遅延積分)センサの感度変動の判定方法、パターン検査方法、及びパターン検査装置
JP6533062B2 (ja) パターン検査方法
JP2023119903A (ja) パターン検査方法、及びパターン検査装置
JP2014232071A (ja) パターン検査方法及びパターン検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207