JP2019216409A - 画像処理装置、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理方法及びプログラム Download PDF

Info

Publication number
JP2019216409A
JP2019216409A JP2019067479A JP2019067479A JP2019216409A JP 2019216409 A JP2019216409 A JP 2019216409A JP 2019067479 A JP2019067479 A JP 2019067479A JP 2019067479 A JP2019067479 A JP 2019067479A JP 2019216409 A JP2019216409 A JP 2019216409A
Authority
JP
Japan
Prior art keywords
image
color
measurement target
pixel
target image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019067479A
Other languages
English (en)
Other versions
JP2019216409A5 (ja
JP7309415B2 (ja
Inventor
良隆 佐々木
Yoshitaka Sasaki
良隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE102019003567.4A priority Critical patent/DE102019003567A1/de
Priority to US16/417,253 priority patent/US11138761B2/en
Priority to CN201910501868.2A priority patent/CN110599551B/zh
Publication of JP2019216409A publication Critical patent/JP2019216409A/ja
Publication of JP2019216409A5 publication Critical patent/JP2019216409A5/ja
Application granted granted Critical
Publication of JP7309415B2 publication Critical patent/JP7309415B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】暗所の撮影画像に対して色の測定を可能とする画像処理装置、画像処理方法及びプログラムを提供する。【解決手段】物体の色を測定するための画像処理装置は、測定対象画像と、測定対象画像とは異なる基準画像を取得する取得手段201と、基準画像に基づいて基準色を導出する導出手段203と、測定対象画像を撮影した際の撮像パラメータと基準画像を撮影した際の撮像パラメータとに基づいて、基準色を補正する補正手段205と、補正手段により補正された基準色を参照して、測定対象画像における少なくとも物体に対応する領域の色を測定する色測定手段206と、を有する。【選択図】図2

Description

本発明は、撮影装置で撮影したカラー画像を用いて物体の色を測定する画像処理に関する。
デジタルスチルカメラやデジタルビデオカメラなどのデジタル撮像装置を利用した対象物の計測が広く行われている。その一例としては製品の測色がある。特許文献1では、白色板を含む任意の被写体を面順次で撮像して3原色の色画像を取得し、この被写体の各色画像をそれぞれ白色板の対応するRGB値で規格化する。このようにして規格化した被写体の各色画像と、前記算出した変換パラメータとに基づいて被写体のRGB画像をXYZ画像に変換する方法について記載している。
特開2006−303783号公報
対象物の色を測定する場合、基準とする白色を設定する必要がある。そのため例えば白色板など被写体の一部に白色の領域を含むように撮像し、白色の領域における画素の画素値に基づいて、基準白色を設定していた。しかしながら光源の少ない夜間など暗所において対象物の色を測定する場合、全体として暗い画像であるため基準となる白色に対応する領域を特定することが難しかった。その結果、暗所における物体の色を適切に測定することができなかった。
そこで、本発明は、暗所における物体の色を測定する場合においても、基準色を適切に設定するための画像処理技術を提供することを目的とする。
上記課題を解決するため本発明は、測定対象の物体を撮像することにより得られる測定対象画像に基づいて、前記物体の色を測定するための画像処理装置であって、前記測定対象画像と、前記測定対象画像とは異なる基準画像を取得する取得手段と、前記基準画像に基づいて基準色を導出する導出手段と、前記測定対象画像を撮影した際の撮像パラメータと前記基準画像を撮影した際の撮像パラメータとに基づいて、前記基準色を補正する補正手段と、前記補正手段により補正された基準色を参照して、前記測定対象画像における少なくとも前記物体に対応する領域の色を測定する色測定手段とを有することを特徴とする。
本発明により、暗所において撮影することで得られた画像に対して色を測定することが可能となる。
画像処理装置のハードウェア構成を示すブロック図 画像処理装置の論理構成を示すブロック図 画像処理装置における処理の流れを示すフローチャート図 基準画像と測定対象画像の例を示す図 基準色を設定するGUI(グラフィックユーザインターフェイス)の例を示す図 色測定のGUIの例を示す図 基準色と補正基準色について説明するための図 基準色と補正基準色の変形例を説明するための図 画像処理装置の変形例における処理の流れを示すフローチャート図
以下、添付の図面を参照して、本発明を好適な実施形態に基づいて詳細に説明する。なお、以下の実施形態において示す構成は一例にすぎず、本発明は図示された構成に必ずしも限定されるものではない。
<第1実施形態>
本実施形態では、自動車のテールランプ(尾灯)の色を測定する方法を例に説明する。一般に4輪の自動車は、後面の左右2か所に赤色のライトを装着されている。自動車のテールランプは、後続の自動車に対して自車の減速や停車などの運転操作を知らせる役割がある。当然、自動車は周囲に光源の少ない場所で夜間に運転する場合もある。そのため自動車のテールランプは、テールランプ以外に光源のない環境の夜間においても、ムラなく発光している必要がある。そこで本実施形態では、自動車のテールランプに対して、昼間での測定と夜間での測定とを実現する。本実施形態における画像処理装置は、自動車の後面を撮像した画像に基づいて、左右に装着されたテールランプを、明るい昼間に見たときの色と、周囲にテールランプ以外の光源のない暗い夜間に見たときの色を測定可能な画像処理を実行する。測定対象のオブジェクト(自動車)を昼間に撮像した画像に基づいて測定する場合の画像処理と、測定対象のオブジェクトを夜間に撮像した画像に基づいて測定する場合の画像処理とは異なる。そこで本実施形態では、測定対象のオブジェクトを昼間に撮像した画像に基づいて測定する昼間測定モードと、測定対象のオブジェクトを夜間に撮像した画像に基づいて測定する夜間測定モードを切り替えて、処理を実行する。
図1は、本実施形態における画像処理装置のハードウェア構成について、説明する。図1において、画像処理装置はCPU101、RAM102、HDD103、汎用インターフェース(I/F)104、モニタ108、メインバス109を備える。汎用I/F104はカメラなどの撮像装置105や、マウス、キーボードなどの入力装置106、メモリーカードなどの外部メモリ107をメインバス109に接続する。
以下では、CPU101がHDD103に格納された各種ソフトウェア(コンピュータプログラム)を動作させることで各種処理を実現する。まず、CPU101はHDD103に格納されている画像処理アプリケーションを起動し、RAM102に展開するとともに、モニタ108にユーザインターフェース(UI)を表示する。続いて、HDD103や外部メモリ107に格納されている各種データ、撮像装置105で撮影された画像データ、入力装置106からの指示などがRAM102に転送される。さらに、画像処理アプリケーション内の処理に従って、RAM102に格納されている画像データに対してCPU101からの指令に基づき各種演算が行われる。演算結果はモニタ108に表示したり、HDD103、外部メモリ107に格納したりする。
上記の構成において、CPU101からの指令に基づき、画像処理アプリケーションが実現する画像処理の詳細について説明する。図2は、本実施形態における画像処理装置の詳細な論理構成を示すブロック図である。画像処理装置は、画像取得部201、撮像パラメータ取得部202、基準色導出部203、補正係数導出部204、基準色補正部205、色測定部206、表示部207、カラープロファイル保持部208を備える。
画像取得部201は、CPU101からの指示に基づいて測定するための画像を取得する。昼間測定モードの場合は、測定対象のオブジェクトおよび、基準色を設定するための白色板を含むように撮像した1つの測定対象画像を取得する。一方、夜間測定モードである場合は、測定対象のオブジェクトを夜間に撮像した画像を測定対象画像として取得し、昼間に白色板を撮像した画像を基準画像として取得する。なお本実施形態において、測定対象画像と基準画像は、撮像した時間以外は同じ環境で撮像されたものとする。本実施形態において画像取得部201は、昼間測定モードにおいて測定対象画像として用いる画像を、夜間測定モードにおける基準画像としても取得する。基準画像は、撮像装置105或いはHDD103や外部メモリ107から取得する。勿論、撮像装置105で撮影して得られる画像をHDD103などの記憶装置に一旦記憶した後で取得しても構わない。また、入力した複数の画像はRAM102やHDD103に記憶される。
撮像パラメータ取得部202は、CPU101からの指示に基づいて測定対象画像を撮像した時の撮像パラメータと、基準画像を撮像した時の撮像パラメータを取得する。ここではシャッタースピード、絞り値、ISO感度を撮像パラメータとして取得する。撮像パラメータ取得部202は、各画像に付帯されたメタデータを参照することで撮影時の撮像パラメータを取得できる。
基準色導出部203は、白色板を撮像した画像に基づいて、基準色を導出する。基準色導出部203は、昼間測定モードの場合は測定対象画像から、夜間測定モードの場合は測定対象画像とは異なる基準画像から基準色を導出する。導出した基準色を示すデータはRAM102やHDD103に記憶される。尚、基準色の導出方法の詳細は後述する。
補正係数導出部204は、CPU101からの指示に基づいて基準画像を撮像した時に用いられた撮像パラメータと測定対象画像を撮像した時に用いられた撮像パラメータとに基づいて、基準色を補正するための補正係数を導出する。ここでは、露出条件の差、およびISO感度の差に基づいて補正係数を導出する。導出した補正係数はRAM102やHDD103に記憶される。尚、補正係数の導出方法の詳細は後述する。
基準色補正部205は、CPU101からの指示に基づいて基準色導出部203で導出した基準色を、補正係数導出部204で導出した補正係数を用いて補正し、補正基準色を導出する。導出した補正基準色はRAM102やHDD103に記憶される。尚、補正基準色の導出方法の詳細は後述する。
色測定部206は、CPU101からの指示に基づいて基準色補正部205で導出した補正基準色に基づいて、測定対象画像の色を測定する。色測定の結果はRAM102やHDD103に記憶される。尚、色測定方法の詳細は後述する。
表示部207は、CPU101からの指示に基づいて色測定部206による色測定の結果をモニタ108などに表示する。尚、導出した色測定結果を示す色測定データは汎用I/F104に接続した外部メモリ107に出力したりしてもよいし、プリンタなどを接続して出力しても構わない。
以下では、図2で説明した画像処理装置の各論理構成における、画像処理の流れを詳細に説明する。図3は、本実施形態における画像処理のフローチャートである。CPU101が、図3に示すフローチャートを実現可能なプログラムを読み出し実行することで、各構成(機能)が実現される。なお、以下では、各ステップを「S」と表記するものとする。
まずS301において画像処理装置は、色測定をするモードを判定する。昼間におけるオブジェクトの色の見えを測定する昼間測定モードであればS302に、夜間におけるオブジェクトの色の見えを測定する夜間測定モードであればS308に進む。ユーザによる指示を入力することでモードを決定しても良いし、測定対象画像を解析することでモードを判定してもよい。
以下は、昼間測定モードにおける処理の流れである。S302において画像取得部201は、昼間、測定対象となるオブジェクトを含むように撮影した画像を測定対象画像として取得する。図4に、色測定に用いる画像の例を示す。図4(a)は、昼間の屋外において、測定対象となるオブジェクト401を含むように撮影した画像403である。画像403は、測定対象である自動車の後面にあるテールランプを含む視点から、撮像装置を用いて停止している自動車を撮像することで得られる。このときテールランプは点灯した状態にある。また、基準色を設定するための白色板402も撮像範囲に含まれるように配置されている。なおここでは、白色板402は、自動車とは別に用意された板材であり、白色板402における円内は白色になっている。不図示の指示部材によって白色板が撮像装置の光軸に直交するように配置されている。なお、オブジェクト401に貼り付けられる部材の白色板を用いてもよいし、白色板のサイズや材料および配置は図4(a)に示す例に限らない。昼間測定モードにおいては、高輝度に発光しているテールランプも、周囲からの光を受けて発色している白色板の領域もダイナミックレンジの範囲内に収さまるように撮像された画像を用いるものとする。つまり画像403では、高輝度に発光しているテールランプ領域が白飛びしたり、白色板の領域が黒潰れすることなく、どちらの領域でもシーンの輝度が適切に出力値に対応づけられている。S302において基準色導出部203は、S303において取得した測定対象画像から基準色を導出する。
図5は、ユーザが基準色を指示するためのGUI(グラフィックユーザインターフェース)の例を示す模式図である。領域501には測定対象画像が表示されている。ユーザは測定対象画像における所望の位置(ここでは白色板において白色である点)を指定することで、基準色を指示できる。基準色導出部203は、ユーザに指示された位置の画素の画素値を取得する。ここでは測定対象画像は、R(レッド)、G(グリーン)、B(ブルー)からなるカラー画像であるので、ユーザに指示された位置の画素の画素値は、RGB各色の画素値である。なお基準色として指定された画素の画素値を、Rw、Gw,Bwとする。基準色導出部203は、基準色として指定された画素の画素値(Rw、Gw、Bw)を、カラープロファイル保持部208が保持する所定のカラープロファイルを参照して測色値(XYZ値)に変換する。例えばカラープロファイルとして3×3の変換行列Mが保持されている場合は、基準色導出部203は、式(1)(2)の通りに、基準色の測色値を導出する。
Figure 2019216409
Figure 2019216409
測色値Xw、Yw、Zwは、基準色の測色値を表す。なお、カラープロファイルを用いた測色値の算出方法はこれに限られるものではない。例えば、測定対象画像が8ビットのRGB画像である場合、各画素の画素値は0から255までの整数値に限られる。そのため、あらかじめ全組み合わせについて式(2)に基づいてXYZ値を算出し、対応するRGB値とXYZ値との組をLUT(ルックアップテーブル)としてプロファイルに記憶しておいてもよい。LUTを用いる場合、基準色導出部203は、LUTを参照することでRGB値をXYZ値に変換できるため、行列演算はしない。勿論、LUTの生成方法はこれに限られるものではなく、RGB値とXYZ値の対応関係が記録されているものであればよい。例えば、全色の組み合わせではなく、代表的な組み合わせのみLUTとして記憶しておき、それ以外の色はその代表色の組み合わせから補間演算によって導出することもできる。
S304において色測定部206は、測定対象画像における基準となる画素(基準点)と各画素との測色値の差分を示す色差画像を色測定結果として出力するため、測定対象画像における基準点を取得する。本実施形態では、図5に示すGUIに対してユーザから基準点の位置を指定させる。なお、色測定部206が自動で基準点を設定してもよい。色測定部206は例えば、テールランプの領域を検出して、検出したテールランプ領域における任意の位置を基準点とすればよい。
S305において色測定部206は、測定対象画像における各画素の画素値を式(1)(2)を用いて測色値に変換し、さらに測色値をCIELAB色空間におけるLab値に変換する。S306において色測定部206は、後述する式(3)〜式(8)を用いて各画素のLab値と基準点におけるLab値との色差を算出し、色差画像を生成する。
S307において表示部207は、色測定部206から出力される色差画像を表示する。以上が昼間測定モードである。なお昼間測定モードである場合、撮像パラメータ202、補正係数導出部204、基準色補正部205は処理を実行しない。次に、夜間測定モードにおける処理について説明する。
S308において画像取得部201は、基準色を設定するための基準画像を取得する。上述の通りここでは、画像403を基準画像として取得する。S309において画像取得部309は、夜間にオブジェクトを撮像した画像を測定対象画像として取得する。
ここで夜間調整モードにおける基準画像と測定対象画像について説明する。図4(b)は、夜間の屋外において、測定対象となるオブジェクト401を含むように撮影した画像404である。画像404は、測定対象である自動車の後面にあるテールランプを含む視点から、撮像装置を用いて停止している自動車を撮像することで得られる。基準画像を撮像したときと同様に、画像404において自動車のテールランプは点灯した状態である。また画像404は、画像403を撮像したときの自動車および撮像装置の位置と、同じ位置から撮像することにより画像404を取得したものとする。つまり撮像装置から移動車までの距離や位置関係は、画像403と画像404とは概ね同じであると言える。画像404では、画像403と同様の位置に白色板が配置されている。白色板は、光を反射することで色が見える物体色である。そのため、図4(b)では白色板の領域をグレーにより表現したが、実際には周囲にほとんど光源のない真っ暗な夜間においては、白色板はほとんど発色していない。そのため周囲に光源のない環境では、白色板に合わせて撮像パラメータを設定しようとしても、撮像画像において白色板領域は黒潰れしてしまい、認識できない。その結果、ユーザは、測定対象画像に対して基準色を指示することが困難となってしまう。
そこで本実施形態では、暗い環境で撮像した測定対象画像とは別に、明るい環境において白色板を撮像した画像403を、基準色を設定するための基準画像として取得する。なお、色測定したいテールランプは、光源色であり、夜間であっても非常に明るい。そのため夜間にオブジェクトを撮像する際には、テールランプの色が白飛びしないように撮像パラメータを調整して撮像する必要がある。
S310において基準色導出部203は、S308において取得した基準画像から基準色を導出する。S310における処理は、S303における処理と同様である。図5に示すGUIにおける領域501には、基準画像が表示されている。ユーザにより指示された位置の画素の画素値を、式(1)(2)を用いて測色値に変換する。なお、既に、画像403に対して昼間測定モードにおいて基準色を算出している場合は、昼間測定モードにおいて算出した基準色を保持しておき、夜間測定モードにおいても基準色として測色値Xw、Yw、Zwを用いるようにしてもよい。
S311において補正係数導出部204は、基準画像を撮影した際の撮像パラメータと測定対象画像を撮影した際の撮像パラメータとに基づいて、基準色を補正するための補正係数を導出する。具体的には補正係数導出部204は、撮像パラメータ取得部202から、基準画像に対応するシャッタースピード(TV),絞り(AV)、感度(ISO)と、測定対象画像に対応するシャッタースピード(TV),絞り(AV)、感度(ISO)を取得する。例えば、基準画像のシャッタースピードをTVprf、測定対象画像のシャッタースピードがTVimgとすると、シャッタースピードに応じた補正係数αは、式(3)により算出される。
Figure 2019216409
同様に、絞り値に応じた補正係数β、ISO感度に応じた補正係数γは、それぞれ式(4)、式(5)により算出される。
Figure 2019216409
Figure 2019216409
基準画像の絞り値がAVprf、ISO感度がISOprfであり、測定対象画像の絞り値がAvimg,ISO感度がISOimgである。本実施形態では、補正係数導出部204は、シャッタースピード(TV),絞り(AV)、感度(ISO)に基づいて補正係数δを式(6)により算出する。
Figure 2019216409
以下、具体的な数値で説明する。画像404は、高輝度な光源色(テールランプ)の領域において画素値が飽和しないように撮像することで得られた画像である。昼間の屋外などの明るい環境よりも、夜間など周囲の暗い環境において撮影する場合の方が、短い露光時間が設定される。そこで、基準画像のシャッタースピードがTVprg=1/50、絞り値がAVprf=F8、ISO感度がISOprf=200であったとする。これに対し測定対象画像のシャッタースピードはTVimg=1/200、絞り値はAVimg=F8、ISO感度はISOimg=200のような撮影条件が設定される。この場合、式(3)〜(6)を用いて補正係数4が導出される。
S312において基準色補正部205は、S310において導出した基準色を補正係数δを用いて補正する。基準色補正部205は、式(7)を用いて基準色(Xw、Yw、Zw)を補正する。
Figure 2019216409
基準色補正部205は、測定対象画像における各画素の測色値を算出するための基準色として、補正基準色(Xw’、Yw’、Zw’)を出力する。
S313において色測定部206は、色測定結果として測定対象画像における基準となる画素(基準点)と各画素との測色値の差分を示す色差画像を出力するため、測定対象画像における基準点を取得する。S313における処理は、S304と同様である。
S314において色測定部206は、測定対象画像における各画素の画素値を、式(1)(2)を用いてXYZ値に変換する。S315において色測定部206は、測定対象画像における各画素の色と基準点における色との色差を算出する。ここで色測定部206は、CIELAB色空間などの知覚均等色空間の色差により色評価をする。ここで色測定部206は、S314において導出した各画素の測色値(X、Y、Z)、補正基準色(Xw’、Yw’、Zw’)とすると、式(8)〜(12)の通りに測定対象画像における各画素のCIELAB値(以降、Lab値とする)を算出する。
Figure 2019216409
Figure 2019216409
Figure 2019216409
Figure 2019216409
Figure 2019216409
さらに、基準点に対応する画素のLab値を(L1,a1、b1)、測定対象画像における色差算出対象の画素のLab値を(L2,a2、b2)とすると、色測定部206は、式(13)の通りに色差を算出する。
Figure 2019216409
色測定部206は、各画素の色差からなる色差画像を出力する。
S316において表示部207は、色測定部206から出力された色差画像を表示する。図6は、色評価結果である色差画像を表示するGUIの例である。領域601は、測定対象画像を表示する領域である。表示部207は、まず領域606に色差画像を表示する。色差画像においては、基準点に対する色差が小さい画素ほど暗く、色差が大きいほど明るく表示される。ここでは領域604における画素を基準とした例を示す。なお、色差画像はこれに限られるものではなく、ユーザが色差を判別しやすい色で表示することができればよい。またユーザは、測定対象画像601の中に対して評価したい点や領域を選択することができる。ここでは測定対象画像における2つのテールランプ上の点604と点605が指定されたとする。指定された点におけるLab値が色値表示領域602に表示される。さらに、選択した2点間の色差が色差表示領域603に表示される。
以上で、本実施形態における画像処理を終了する。上述の通り、真っ暗な夜間において非常に明るいテールランプ領域が白飛びしないようにすると、他の領域はほとんど黒潰れしてしまう。通常、色を示すLab値を算出するためには、白色の物体を撮影した領域の画素を基準色として参照する。そのためユーザは、基準色を設定するために白色の物体に対応する領域を指定することで、基準色を指示する。しかしながら白色の物体は周囲からの光がほとんどないため、発色しない。その結果図4(b)のように自動車の後面を暗い環境で撮像した画像では、赤いテールランプの領域以外は真っ黒である。このように測定対象の画像が、一部の領域以外ほとんどで黒潰れしているような画像である場合は、ユーザはどの位置を基準色として指定すればよいのかわからない。そこで本実施形態では、測定対象画像とは異なる、明るい環境で同様のオブジェクトおよび白色板を撮像した画像をユーザに表示することで、ユーザは通常の色測定(ここでは昼間測定モード)を実行する場合と同様の操作で、簡易に基準色を設定することができる。特に本実施形態では、測定対象画像と同じ自動車および白色板を同様の視点から同様の画角で撮像することで得られる画像を基準画像として、GUIに表示した。これによりユーザは、測定対象画像とは異なる画像であっても、測定対象画像を測定するための基準色の設定を直感的に操作することができる。
また、上述の夜間測定モードのように、補正基準色を用いることで、より適切な色値を算出することができる。従来、Lab値を算出するためには、ホワイトポイント(基準色)を基準とした色空間を定義する。しかしながら白色板は物体色であるため、暗い環境下で撮影しても発色せず、ホワイトポイントに対応する基準色を取得できない。そこで本実施形態では、明るい環境下で撮影した白色板の画素値に基づいて、暗い環境下において白として発色する物体のXYZ値を推定する。
図7は、夜間測定モードにおける測定対象画像の入出力特性と、基準画像の入出力特性を模式的に示す図である。横軸はシーンにおける輝度、縦軸は画素値を示す。線701は、基準画像における入出力特性である。つまり画像403における入出力特性である。基準画像においては、ランプの輝度も基準色である白色の輝度も、それぞれ線形に画素値に対応している。一方直線702は、測定対象画像における入出力特性である。測定対象画像は、光源色(テールランプ:703)の領域が飽和しないように撮像パラメータが設定されている。そのためランプの輝度近傍においても、測定対象画像では線形に画素値が対応する。白色板704は、発色できていなかったためにそもそもの輝度が極めて小さく、白色板の領域を識別しにくい。そこで基準色705に補正係数を乗じることで、暗い環境下において白色板が白として発色していた場合の値を推定し、補正基準色とする。補正基準色を用いて、暗い環境下における各画素の色値を算出することで、暗い環境下であってもより精度の高い色値を算出することができる。
さらに以下、具体的な数値で説明する。S303において導出した基準色を(Xw、Yw、Zw)=(971、1000、805)、S304において導出した補正係数が4とすると、補正基準色は(Xw、Yw、Zw)=(3884、4000.0、3220)になる。ここで、測定対象画像におけるテールランプ領域の注目画素の測色値が(X、Y、Z)=(4926、2414、736)であるとする。この場合、補正していない基準色を用いて測色値をLabに変換すると、(L,a,b)=(140、188、74)となりL>100を超えてしまう。CIELAB色空間において明度Lは0から100までしか定義されないため、CIELAB色空間において色差を測定することができない。それに対して、基準画像と測定対象画像との露光時間差に基づいて基準色を補正することで得られる補正基準色を用いて注目画素の測色値をLab値に変換したLabは(L,a,b)=(82、119、47)となり色差を測定できる。
以上の通り本実施形態によれば、暗い環境下で撮影したオブジェクトの色測定をする際に、明るい環境下で撮影した基準色に基づいて各画素の色値を算出することで、暗い環境下であっても色値を算出することができる。また、ユーザは、光源色以外は黒潰れしているような測定対象画像であっても、簡易な操作で基準色を設定することができる。
<変形例>
また、測定対象画像におけるテールランプ領域の注目画素の測色値が(X、Y、Z)=(9852、4828、1472)であるとする。この場合、補正基準色(Xw、Yw、Zw)=(3884、4000.0、3220)よりも明度が高いため、同様にL>100を超えてしまう。そこで、補正した基準色が、注目画素の測色値よりも小さい場合は、基準画像からより明るい基準色を選び直したり、補正基準色をさらに補正したりしてもよい。
図8は、補正基準色をさらに補正する場合の例を示す模式図である。線801は、基準画像における入出力特性である。直線802は、測定対象画像における入出力特性である。測定対象画像は、光源色(評価色:803)の領域が飽和しないように撮像パラメータが設定されている。基準画像上の基準色804を、測定対象画像の露出に応じて補正すると色805になる。しかし、評価色803の方が明るい場合に色805を参照してLab値を算出すると、L>100を超えてしまう。そこで、評価色よりも明るい例えば色806が補正基準色となるように色805を再度補正する。補正基準色をさらに補正する場合の例を図9のフローチャート図を参照して、図3との差異のみ説明する。
S901において測定対象画像から評価色を取得する。S902において基準色補正部205は、評価色と、補正した基準色とを比較する。評価色が基準色よりも暗い場合S903に移行し、評価色が基準色よりも暗い場合S313に移行する。
S903において基準色補正部205は、評価色よりも明るくなるように基準色を再度補正する。基準色の補正は、評価色よりも基準色の輝度Yが大きくなるゲイン補正であれば所望の方法でよい。例えば、補正係数を5にすると、(Xw、Yw、Zw)=(4855、5000、4025)となり、評価色よりも明るい基準色になる。また、所望の基準色の輝度を決定し、それに基づいて補正してもよい。例えば、所望の輝度がYw=5500の場合、基準色は(Xw、Yw、Zw)=(5341、5500、4428)になる。
尚、実施例では基準画像から白基準を設定する方法を説明したが、撮影条件から白基準を設定してもよい。例えば、色温度が5000KのXYZの比(X:Y:Z=0.9642:1:0.8249)、と露出値EV=14の適正輝度6336から(Xw、Yw、Zw)=(6109、6336、5227)のように設定できる。
<その他の実施形態>
上述の実施形態では、昼間評価モードと夜間評価モードとを切り替える実施例について説明した。しかしながら画像処理装置は、必ずしもモードを切り替える形態でなくても良い。例えば、画像403と画像404を入力することにより、昼間における色差画像と、夜間における色差画像の両方を生成し、表示してもよい。この場合、S301における判定はなくてもよい。この場合画像処理装置は、画像403に対してS302〜S307の処理を実行した後、画像403と画像404を用いてS308〜S316を実行するフローチャートとする。
また、上述の実施形態では、昼間においてテールランプと白色板を撮像した画像では、テールランプ領域も白色板も輝度がダイナミックレンジの範囲に収まるように撮像できたものとした。しかしながら、昼間であっても、テールランプ領域の輝度に合わせると白色板の領域が黒潰れしてしまい、白色板の領域の輝度に合わせるとテールランプ領域が白飛びしてしまうことも起こり得る。その場合は、昼間測定モードであっても、測定対象画像と基準画像とを取得するようにすればよい。具体的にはまず、テールランプ領域が白飛びしないよう撮像パラメータを設定して撮像した画像を、測定対象画像として取得する。また、白色板の領域が黒潰れしないよう撮像パラメータを設定して撮像した画像を基準画像として取得する。なおこのとき、基準画像に対応する撮像パラメータおよび測定対象画像に対応する撮像パラメータも取得する。
基準画像に対してユーザから白色板領域を指定させ、ユーザに指示された位置の画素の画素値Rw、Gw,Bwを取得する。S303やS310と同様に、画素値から基準色を算出する。基準画像に対応する撮像パラメータおよび測定対象画像に対応する撮像パラメータとに基づいて、基準色を補正する。例えば、基準画像と撮影画像の露出差に応じて補正する場合、前述の式(3)〜(6)を参照して補正係数を算出し、式(7)を用いて基準色を補正して、補正基準色とする。補正基準色を用いて、式(8)〜(12)の通りに、各測色値を算出する。以降の処理は、S306、S307と同様である。これにより、昼間であっても撮像装置のダイナミックレンジ内でテールランプおよび白色板を撮像できなくても、適切に色差画像を生成することができる。
尚、変形例と同様昼間評価モードにてユーザに指示された基準色よりもランプの輝度が大きい場合もある。その場合、基準色がランプよりも明るくなるように基準色を補正してもよい。
また、上述の実施形態においては、画像403および画像404は、撮像された時間以外は同じ環境であるとしたが、これに限らない。例えば、明るい室内において取得した画像と、自動車に搭載された光源以外の光源がほとんどない真っ暗な夜間において撮像した画像とを用いてもよい。ただしこの場合であっても、撮像装置と自動車との距離や、自動車に対する撮像装置の姿勢方向はおおむね同じであることが望ましい。
なお、色測定の方法はこれに限られるものではない。例えば、色差ではなく明度差、色度差、彩度差、色相差などを利用しても良いし、ΔE94、ΔE00など他の色差を用いてもよい。また、CIELUVやCIECAMなどの色空間で測定しても構わない。
上述の実施形態では、基準画像と測定対象画像のシャッタースピード、絞り、ISO感度の違いに基づいて、基準画像から抽出された基準色を補正した。例えば、シャッタースピード、絞り、ISO感度のうちいずれか1種類或いは2種類に基づいて、補正係数δを導出してもよい。また、補正係数δを式(6)により算出する方法を例に説明したが、例えば、撮像パラメータと補正係数との対応関係をLUTとして記録しておき、補正係数導出部204は、LUTを参照することで補正係数を導出してもよい。さらに、本実施形態では基準画像から基準色を取得し、露出条件やISO感度に応じて基準色を補正する例を説明した。しかしながら、特定の露出条件やISO感度毎の基準色を、標準光源(D65)のXYZ値で指定しておいて、測定対象画像の露出条件やISO感度に応じて補正するようにすることもできる。
また、上述の実施形態において、表示部207は自動車の2つのテールランプ間の色差を表示するユーザインターフェイスの例を説明したが、これに限られるものではない。例えば、1つのテールランプ領域における2点間の色差を評価してもよいし、テールランプ、ブレーキランプなど2つ以上の色差を同時に比較できるようにしてもよい、また、上述の実施形態では画素毎にLab値を算出可能であるから色分布を表示してもよい。
なお本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。

Claims (20)

  1. 測定対象の物体を撮像することにより得られる測定対象画像に基づいて、前記物体の色を測定するための画像処理装置であって、
    前記測定対象画像と、前記測定対象画像とは異なる基準画像を取得する取得手段と、
    前記測定対象画像を得る際の撮影に用いた撮像パラメータと前記基準画像を得る際の撮影に用いて撮像パラメータと前記基準画像における少なくとも1つの画素の画素値とに基づいて、基準色を導出する導出手段と、
    前記基準色を参照して、前記測定対象画像における前記物体に対応する少なくとも1つの画素の色の評価値を算出する算出手段とを有することを特徴とする画像処理装置。
  2. 前記導出手段は、前記基準画像における少なくとも1つの画素の画素値を測色値に変換し、さらに、前記測定対象画像を得る際の撮影に用いた撮像パラメータと前記基準画像を得る際の撮影に用いて撮像パラメータとに基づいて、前記測色値を補正した結果を、前記基準色として導出することを特徴とする請求項1に記載の画像処理装置。
  3. 前記基準画像は、前記基準色を設定するための白色板を撮像することにより得られた画像であり、前記導出手段は、前記白色板に対応する画素の画素値を前記測色値に変換することを特徴とする請求項1に記載の画像処理装置。
  4. 前記測定対象画像は、前記基準画像を撮像した環境よりも暗い環境において前記物体を撮像することにより得られた画像であることを特徴とする請求項1に記載の画像処理装置。
  5. 前記導出手段は、前記測定対象画像に対応する撮像パラメータと前記基準画像に対応する撮像パラメータとの比に応じた補正係数を用いて、前記測色値を補正することを特徴とする請求項1乃至4の何れか一項に記載の画像処理装置。
  6. 前記撮像パラメータは、露光時間、絞り値、ISO感度の少なくとも何れか1つであることを特徴とする請求項1乃至5の何れか一項に記載の画像処理装置。
  7. 前記算出手段は、前記測定対象画像における注目画素の画素値をXYZ値に変換し、前記基準色と前記XYZ値を用いて、前記注目画素のCIELAB色空間における色を、前記評価値として算出することを特徴とする請求項1乃至6の何れか一項に記載の画像処理装置。
  8. 前記算出手段は、前記測定対象画像における基準点の位置を取得し、前記基準点と前記測定対象画像における画素それぞれとの評価値の差を算出することを特徴とする請求項1乃至7の何れか一項に記載の画像処理装置。
  9. 前記算出手段は、色差、明度差、色度差、彩度差、色相差の何れかの評価値を算出することを特徴とする請求項8に記載の画像処理装置。
  10. 前記測定対象画像は、光源色を有する物体を撮像することにより得られた画像であることを特徴とする請求項1乃至9の何れか一項に記載の画像処理装置。
  11. さらに第1のモードと、前記第1のモードとは異なる第2のモードの何れかを判定する判定手段を有し、
    前記第1のモードである場合は、
    前記取得手段は、前記測定対象画像と前記基準画像を取得し、
    前記導出手段は前記基準画像から前記基準色を導出し前記算出手段は前記基準色を用いて測定し、
    前記第2のモードである場合、
    前記取得手段は、前記測定対象画像のみを取得し、
    前記導出手段は、前記測定対象画像に基づいて前記基準色を導出し、
    前記算出手段は、前記基準色を参照して、前記測定対象画像における少なくとも前記物体に対応する領域の色を測定することを特徴とする請求項1乃至5の何れか一項に記載の画像処理装置。
  12. さらに、前記導出手段は、前記基準画像における少なくとも1つの画素の画素値を測色値に変換し、
    前記測定対象画像を得る際の撮影に用いた撮像パラメータと前記基準画像を得る際の撮影に用いて撮像パラメータとに基づいて、前記測色値に対して第1の補正処理を実行することで第1の補正値を算出し、
    前記第1の補正値に対して第2の補正処理を実行することで第2の補正値を算出し、
    前記算出手段は、前記第2の補正値を前記基準色として参照することを特徴とする請求項1に記載の画像処理装置。
  13. 前記第2の補正処理は、前記第1の補正値の輝度が、前記算出手段が算出した前記物体に対応する輝度よりも大きくなるように補正する処理であることを特徴とする請求項12に記載の画像処理装置。
  14. 前記導出手段は、前記第1の補正値と、前記算出手段が算出した少なくとも1つの評価値とを比較し、前記第2の補正処理を実行するか否かを判定することを特徴とする請求項12に記載の画像処理装置。
  15. 前記算出手段は、前記測定対象画像における各画素について、前記基準点との評価値の差を示す色差画像を生成することを特徴とする請求項8に記載の画像処理装置。
  16. さらに、ユーザによる指示を受けつける入力手段を有し、
    前記導出手段は、前記ユーザによる指示に基づいて、前記基準画像における基準色を算出するための画素を決定することを特徴とする請求項1に記載の画像処理装置。
  17. さらに、ユーザによる指示を受けつける入力手段を有し、
    前記算出手段は、前記ユーザによる指示に基づいて前記基準点の位置を取得することを特徴とする請求項8に記載の画像処理装置。
  18. 前記測定対象の物体は、自動車であり、前記算出手段は、前記自動車のテールランプの色の評価値を算出することを特徴とする請求項1に記載の画像処理装置。
  19. コンピュータを請求項1乃至18の何れか1項に記載の画像処理装置として機能させるためのプログラム。
  20. 測定対象の物体を撮像することにより得られる測定対象画像に基づいて、前記物体の色を測定するための画像処理装置であって、
    前記測定対象画像と、前記測定対象画像とは異なる基準画像を取得し、
    前記測定対象画像を撮影した際の撮像パラメータと前記基準画像を撮影した際の撮像パラメータと前記基準画像における少なくとも1つの画素の画素値とに基づいて、前記基準色を導出し、
    前記導出された基準色を参照して、前記測定対象画像における前記物体に対応する少なくとも1つの画素の色の評価値を算出することを特徴とする画像処理方法。
JP2019067479A 2018-06-12 2019-03-29 画像処理装置、画像処理方法及びプログラム Active JP7309415B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102019003567.4A DE102019003567A1 (de) 2018-06-12 2019-05-20 Bildverarbeitungsvorrichtung, Bildverarbeitungsverfahren, und Programm
US16/417,253 US11138761B2 (en) 2018-06-12 2019-05-20 Image processing apparatus, image processing method, and storage medium
CN201910501868.2A CN110599551B (zh) 2018-06-12 2019-06-11 图像处理设备、图像处理方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112075 2018-06-12
JP2018112075 2018-06-12

Publications (3)

Publication Number Publication Date
JP2019216409A true JP2019216409A (ja) 2019-12-19
JP2019216409A5 JP2019216409A5 (ja) 2022-04-05
JP7309415B2 JP7309415B2 (ja) 2023-07-18

Family

ID=68919594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067479A Active JP7309415B2 (ja) 2018-06-12 2019-03-29 画像処理装置、画像処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7309415B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183560A1 (en) * 2022-03-24 2023-09-28 Connaught Electronics Ltd. Method for reducing a color shift of image pixels of an image for a motor vehicle captured by a camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063065A (ja) * 2008-09-08 2010-03-18 Konica Minolta Opto Inc 画像入力装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063065A (ja) * 2008-09-08 2010-03-18 Konica Minolta Opto Inc 画像入力装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183560A1 (en) * 2022-03-24 2023-09-28 Connaught Electronics Ltd. Method for reducing a color shift of image pixels of an image for a motor vehicle captured by a camera

Also Published As

Publication number Publication date
JP7309415B2 (ja) 2023-07-18

Similar Documents

Publication Publication Date Title
JP4266461B2 (ja) カラー照明色温度の検出方法及び該装置
US9852499B2 (en) Automatic selection of optimum algorithms for high dynamic range image processing based on scene classification
JP3514776B2 (ja) マルチビジョンシステム
EP2426928B1 (en) Image processing apparatus, image processing method and program
JP5430254B2 (ja) 画像表示装置及びその制御方法
JP2019096928A (ja) 画像処理装置、画像処理方法、及びプログラム、並びに画像表示装置
JP4967440B2 (ja) 撮像装置およびその光源推定装置
JP2000138948A (ja) カラ―映像処理装置及び方法
JP2003323610A (ja) プロジェクタの色補正方法および色補正装置
KR101629825B1 (ko) Hdr 기능을 이용한 차량용 디스플레이 장치 및 방법
JPH09214787A (ja) 画像処理装置及び方法
KR101030393B1 (ko) 디지털 영상의 화이트 밸런스 조정 장치 및 방법
JP2009171008A (ja) 色再現装置および色再現プログラム
US10121271B2 (en) Image processing apparatus and image processing method
JP2010217645A (ja) 画像表示装置の補正値作成方法、画像表示装置の補正値作成装置、及び画像表示装置の補正値作成プログラム
JP2021101204A (ja) 制御装置の動作方法、プロジェクターの制御方法およびプロジェクター
KR101680446B1 (ko) 컬러 테이블 생성 장치, 카메라 영상 보정/제어 장치 및 그 방법
JP2022048321A (ja) 画像処理装置、画像処理方法、及びプログラム
KR101694621B1 (ko) 이미지 센서의 자동 노출 조절정보를 이용한 밝기 추정장치 및 방법
JP7309415B2 (ja) 画像処理装置、画像処理方法及びプログラム
CN110599551B (zh) 图像处理设备、图像处理方法和存储介质
US20200029016A1 (en) Moving object monitoring device and moving object monitoring system
JP2000148978A (ja) 撮影光源推定方法および装置、画像処理方法および装置、並びに記録媒体
JP6914969B2 (ja) 投射型映像表示装置
KR20180040423A (ko) 이미지센서 자동 화이트밸런스 기반 공간 색온도 추정 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R151 Written notification of patent or utility model registration

Ref document number: 7309415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151