JP2019215972A - Non-aqueous lithium secondary battery - Google Patents

Non-aqueous lithium secondary battery Download PDF

Info

Publication number
JP2019215972A
JP2019215972A JP2018111262A JP2018111262A JP2019215972A JP 2019215972 A JP2019215972 A JP 2019215972A JP 2018111262 A JP2018111262 A JP 2018111262A JP 2018111262 A JP2018111262 A JP 2018111262A JP 2019215972 A JP2019215972 A JP 2019215972A
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
positive electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018111262A
Other languages
Japanese (ja)
Other versions
JP6944651B2 (en
Inventor
大樹 加藤
Daiki Kato
大樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018111262A priority Critical patent/JP6944651B2/en
Publication of JP2019215972A publication Critical patent/JP2019215972A/en
Application granted granted Critical
Publication of JP6944651B2 publication Critical patent/JP6944651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a non-aqueous lithium secondary battery having LiPOadded to a positive electrode active material layer, in which a rise in battery temperature at the time of overcharge is suppressed and low-temperature performance is excellent.SOLUTION: A non-aqueous lithium secondary battery disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode has a positive electrode active material layer. The positive electrode active material layer contains a positive electrode active material and LiPO. The negative electrode has a negative electrode active material layer. The negative electrode active material layer contains a negative electrode active material. The content of LiPOis 1 mass% or more and 5 mass% or less with respect to the positive electrode active material. The CO2 adsorption amount of the negative electrode active material is 0.05 mL/g or more and 3 mL/g or less.SELECTED DRAWING: Figure 1

Description

本発明は、非水系リチウム二次電池に関する。   The present invention relates to a non-aqueous lithium secondary battery.

近年、非水電解質を用いたリチウム二次電池等の非水系リチウム二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。   2. Description of the Related Art In recent years, non-aqueous lithium secondary batteries such as lithium secondary batteries using a non-aqueous electrolyte have been used in portable power supplies such as personal computers and portable terminals, electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). ) Is suitably used for a vehicle driving power supply.

非水系リチウム二次電池はその普及に伴い、さらなる高性能化が望まれている。そのため、非水系リチウム二次電池を高性能化するために種々の技術が開発されている。例えば、特許文献1には、LiPOを正極活物質層に添加する技術が開示されている。また、特許文献2には、負極活物質として用いられる炭素材料の比表面積について着目した技術が開示されている。 With the spread of nonaqueous lithium secondary batteries, higher performance is desired. Therefore, various techniques have been developed to improve the performance of non-aqueous lithium secondary batteries. For example, Patent Literature 1 discloses a technique of adding Li 3 PO 4 to a positive electrode active material layer. Patent Literature 2 discloses a technique that focuses on the specific surface area of a carbon material used as a negative electrode active material.

特開2015−103332号公報JP 2015-103332 A 特許第6287187号公報Japanese Patent No. 6287187

しかしながら本発明者が鋭意検討した結果、従来の正極活物質層にLiPOが添加された非水系リチウム二次電池において、過充電時の電池温度の上昇抑制について、および低温特性について改善の余地があることを見出した。 However, as a result of diligent studies by the present inventors, in a conventional non-aqueous lithium secondary battery in which Li 3 PO 4 is added to the positive electrode active material layer, improvement in battery temperature rise during overcharge and improvement in low-temperature characteristics have been improved. I found that there was room.

そこで本発明は、正極活物質層にLiPOが添加された非水系リチウム二次電池であって、過充電時の電池温度の上昇が抑制されており、かつ低温性能に優れる非水系リチウム二次電池を提供することを目的とする。 Therefore, the present invention relates to a non-aqueous lithium secondary battery in which Li 3 PO 4 is added to a positive electrode active material layer, in which an increase in battery temperature during overcharging is suppressed and the non-aqueous lithium secondary battery has excellent low-temperature performance. It is intended to provide a secondary battery.

本発明者は鋭意検討した結果、正極活物質層に含有されるLiPOの量と負極活物質のCO吸着量を適切に管理することにより、LiPOによる過充電時の良好な被膜形成状態と、CO吸着量による電池の優れた低温性能をと両立できることを見出した。
すなわち、ここに開示される非水系リチウム二次電池は、正極と、負極と、非水電解質と、を備える。前記正極は、正極活物質層を有する。前記正極活物質層は、正極活物質と、LiPOとを含有する。前記負極は、負極活物質層を有する。前記負極活物質層は、負極活物質を含有する。LiPOの含有量は、前記正極活物質に対して1質量%以上5質量%以下である。前記負極活物質のCO2吸着量は、0.05mL/g以上3mL/g以下である。
このような構成によれば、過充電時の電池温度の上昇が抑制されており、かつ低温性能に優れる(特に、低温での電池抵抗が小さい)非水系リチウム二次電池が提供される。
As a result of intensive studies, the present inventor has found that by properly managing the amount of Li 3 PO 4 contained in the positive electrode active material layer and the amount of CO 2 adsorbed on the negative electrode active material, it is possible to improve the overcharge with Li 3 PO 4. It has been found that a good film formation state and excellent low-temperature performance of the battery due to the CO 2 adsorption amount can be compatible.
That is, the nonaqueous lithium secondary battery disclosed herein includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode has a positive electrode active material layer. The positive electrode active material layer contains a positive electrode active material and Li 3 PO 4 . The negative electrode has a negative electrode active material layer. The negative electrode active material layer contains a negative electrode active material. The content of Li 3 PO 4 is 1% by mass or more and 5% by mass or less based on the positive electrode active material. The CO2 adsorption amount of the negative electrode active material is 0.05 mL / g or more and 3 mL / g or less.
According to such a configuration, a non-aqueous lithium secondary battery in which an increase in battery temperature during overcharge is suppressed and which has excellent low-temperature performance (particularly, low battery resistance at low temperatures) is provided.

本発明の一実施形態に係るリチウム二次電池の内部構造を模式的に示す断面図である。1 is a cross-sectional view schematically illustrating an internal structure of a lithium secondary battery according to one embodiment of the present invention. 本発明の一実施形態に係るリチウム二次電池の捲回電極体の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a wound electrode body of the lithium secondary battery according to one embodiment of the present invention.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水系リチウム二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention (for example, a general configuration and a manufacturing process of a non-aqueous lithium secondary battery not characterizing the present invention) Can be understood as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
また、「非水系リチウム二次電池」とは、非水電解質(典型的には、非水溶媒中に支持電解質を含む非水電解質)を備え、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a power storage element such as a so-called storage battery and an electric double layer capacitor.
In addition, a “non-aqueous lithium secondary battery” includes a non-aqueous electrolyte (typically, a non-aqueous electrolyte containing a supporting electrolyte in a non-aqueous solvent), uses lithium ions as a charge carrier, and connects between a positive electrode and a negative electrode. Refers to a secondary battery in which charge and discharge are realized by transfer of electric charge accompanying lithium ions.

以下、扁平形状の捲回電極体と扁平形状の電池ケースとを有する扁平角型の非水系リチウム二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。   Hereinafter, the present invention will be described in detail by taking a flat rectangular non-aqueous lithium secondary battery having a flat wound electrode body and a flat battery case as an example, but the present invention is described in such an embodiment. It is not intended to be limited to those described.

図1に示すリチウム二次電池100は、扁平形状の捲回電極体20と非水電解質(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型のリチウム二次電池100である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解質を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。   The lithium secondary battery 100 shown in FIG. 1 is constructed by housing a flat wound electrode body 20 and a nonaqueous electrolyte (not shown) in a flat rectangular battery case (that is, an outer container) 30. A sealed lithium secondary battery 100. The battery case 30 is provided with a positive electrode terminal 42 and a negative electrode terminal 44 for external connection, and a thin safety valve 36 set to release the internal pressure when the internal pressure of the battery case 30 exceeds a predetermined level. I have. Further, the battery case 30 is provided with an inlet (not shown) for injecting the non-aqueous electrolyte. The positive terminal 42 is electrically connected to the positive current collector 42a. The negative electrode terminal 44 is electrically connected to the negative electrode current collector 44a. As a material of the battery case 30, for example, a metal material having a light weight and good heat conductivity such as aluminum is used.

捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。   As shown in FIGS. 1 and 2, the wound electrode body 20 has a cathode active material layer 54 formed on one or both sides (here, both sides) of a long cathode current collector 52 along the longitudinal direction. The positive electrode sheet 50 and the negative electrode sheet 60 in which the negative electrode active material layer 64 is formed on one side or both sides (here, both sides) of the long negative electrode current collector 62 along the longitudinal direction are two long sheets. And is wound in the longitudinal direction with the separator sheet 70 interposed therebetween. In addition, the positive electrode active material layer non-formed portion 52a (that is, the positive electrode active portion) formed so as to protrude outward from both ends of the wound electrode body 20 in the winding axis direction (that is, the sheet width direction orthogonal to the longitudinal direction). A portion where the positive electrode current collector 52 is exposed without forming the material layer 54) and a portion 62a where the negative electrode active material layer is not formed (that is, a portion where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64). Are connected to a positive current collector 42a and a negative current collector 44a, respectively.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。
正極活物質層54は、正極活物質と、LiPOとを含有する。
正極活物質としては、リチウムイオンを吸蔵および放出可能な材料が用いられ、従来からリチウム二次電池に用いられる物質(例えば層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。正極活物質の例としては、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルマンガン系複合酸化物(例、LiNi0.5Mn1.5)、リチウムニッケルマンガンコバルト系複合酸化物(例、LiNi1/3Mn1/3Co1/3)等のリチウム含有遷移金属酸化物が挙げられる。なかでも、リチウムニッケルマンガンコバルト系複合酸化物(特に、LiNi1/3Mn1/3Co1/3)が好ましい。正極活物質の含有量は、正極活物質層54中(すなわち、正極活物質層54の全質量に対し)70質量%以上が好ましい。
LiPOの含有量については後述する。
Examples of the positive electrode current collector 52 constituting the positive electrode sheet 50 include an aluminum foil.
The positive electrode active material layer 54 contains a positive electrode active material and Li 3 PO 4 .
As the positive electrode active material, a material capable of occluding and releasing lithium ions is used, and one or more of materials conventionally used in lithium secondary batteries (eg, oxides having a layered structure and oxides having a spinel structure) are used. It can be used without particular limitation. Examples of the positive electrode active material include a lithium nickel-based composite oxide, a lithium cobalt-based composite oxide, a lithium manganese-based composite oxide, and a lithium nickel manganese-based composite oxide (eg, LiNi 0.5 Mn 1.5 O 4 ). And a lithium-containing transition metal oxide such as lithium nickel manganese cobalt-based composite oxide (eg, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ). Among them, a lithium nickel manganese cobalt-based composite oxide (particularly, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) is preferable. The content of the positive electrode active material is preferably 70% by mass or more in the positive electrode active material layer 54 (that is, based on the total mass of the positive electrode active material layer 54).
The content of Li 3 PO 4 will be described later.

正極活物質層54は、正極活物質およびLiPO以外の成分を含み得る。その例としては、導電材、バインダ等が挙げられる。
導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。正極活物質層54中の導電材の含有量は、1質量%以上15質量%以下が好ましく、3質量%以上13質量%以下がより好ましい。
バインダとしては、例えばポリフッ化ビニリデン(PVdF)等を使用し得る。正極活物質層54中のバインダの含有量は、1質量%以上15質量%以下が好ましく、2質量%以上10質量%以下がより好ましい。
The positive electrode active material layer 54 may include components other than the positive electrode active material and Li 3 PO 4 . Examples thereof include a conductive material and a binder.
As the conductive material, for example, carbon black such as acetylene black (AB) and other (eg, graphite) carbon materials can be suitably used. The content of the conductive material in the positive electrode active material layer 54 is preferably from 1% by mass to 15% by mass, more preferably from 3% by mass to 13% by mass.
As the binder, for example, polyvinylidene fluoride (PVdF) or the like can be used. The content of the binder in the positive electrode active material layer 54 is preferably from 1% by mass to 15% by mass, and more preferably from 2% by mass to 10% by mass.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。
負極活物質層64は、負極活物質を含有する。
負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。黒鉛は、天然黒鉛であっても人造黒鉛であってもよく、黒鉛が非晶質な炭素材料で被覆された形態の非晶質炭素被覆黒鉛であってもよい。
Examples of the negative electrode current collector 62 constituting the negative electrode sheet 60 include, for example, copper foil.
The negative electrode active material layer 64 contains a negative electrode active material.
As the negative electrode active material, for example, a carbon material such as graphite, hard carbon, or soft carbon can be used. The graphite may be natural graphite or artificial graphite, and may be amorphous carbon-coated graphite in which graphite is coated with an amorphous carbon material.

負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   The negative electrode active material layer 64 may include components other than the active material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.

負極活物質層中の負極活物質の含有量は、90質量%以上が好ましく、95質量%以上99質量%以下がより好ましい。負極活物質層中のバインダの含有量は、0.1質量%以上8質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。負極活物質層中の増粘剤の含有量は、0.3質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。   The content of the negative electrode active material in the negative electrode active material layer is preferably 90% by mass or more, and more preferably 95% by mass or more and 99% by mass or less. The content of the binder in the negative electrode active material layer is preferably from 0.1% by mass to 8% by mass, and more preferably from 0.5% by mass to 3% by mass. The content of the thickener in the negative electrode active material layer is preferably from 0.3% by mass to 3% by mass, and more preferably from 0.5% by mass to 2% by mass.

上述のように、正極活物質層54に含有されるLiPOの量と負極活物質のCO吸着量を適切に管理することにより、LiPOによる過充電時の良好な被膜形成状態と、CO吸着量による電池の優れた低温性能とを両立することができる。
そこで、本発明においては、LiPOの含有量は、正極活物質に対して1質量%以上5質量%以下であり、好ましくは2質量%以上4質量%以下である。
また、負極活物質のCO吸着量は、0.05mL/g(cc/g)以上3mL/g(cc/g)以下であり、好ましくは0.2mL/g以上2mL/g以下である。
これについてより詳細に説明すると、LiPOは、過充電時に分解して負極活物質上に被膜を形成することにより、過充電時の電池の温度上昇を抑制する機能を有する。一方、負極活物質のCO吸着量は、負極活物質の表面状態を示すものである。CO吸着量が多いと、過充電時に被膜が形成されるべき負極活物質の反応面積が大きくなり、LiPOの含有量が少ない場合には、過充電性能が悪化する。しかし、CO吸着量が多いと、負極活物質の反応面積が大きいので低温特性は良化する。CO吸着量が少ないと、過充電時に被膜が形成されるべき負極活物質の反応面積が小さくなるため、LiPOの含有量が少なくても過充電時の温度上昇抑制機能が十分に発揮される。しかし、CO吸着量が少ないと、負極活物質の反応面積が小さいので低温特性は悪化する。
このため、LiPOの含有量とCO吸着量が上記の範囲内にあることによって、過充電時の電池温度の上昇の抑制と、低温特性とを両立することができる。
As described above, by appropriately managing the amount of Li 3 PO 4 contained in the positive electrode active material layer 54 and the amount of CO 2 adsorbed on the negative electrode active material, good film formation during overcharging with Li 3 PO 4 The state and the excellent low-temperature performance of the battery due to the CO 2 adsorption amount can be compatible.
Therefore, in the present invention, the content of Li 3 PO 4 is 1% by mass or more and 5% by mass or less, preferably 2% by mass or more and 4% by mass or less based on the positive electrode active material.
Further, the CO 2 adsorption amount of the negative electrode active material is 0.05 mL / g (cc / g) or more and 3 mL / g (cc / g) or less, and preferably 0.2 mL / g or more and 2 mL / g or less.
To explain this in more detail, Li 3 PO 4 has a function of decomposing at the time of overcharge and forming a film on the negative electrode active material, thereby suppressing a rise in battery temperature at the time of overcharge. On the other hand, the CO 2 adsorption amount of the negative electrode active material indicates the surface state of the negative electrode active material. If the amount of CO 2 adsorbed is large, the reaction area of the negative electrode active material on which a film is to be formed at the time of overcharging becomes large, and if the content of Li 3 PO 4 is small, the overcharge performance deteriorates. However, when the CO 2 adsorption amount is large, the reaction area of the negative electrode active material is large, so that the low temperature characteristics are improved. If the amount of adsorbed CO 2 is small, the reaction area of the negative electrode active material on which a film is to be formed at the time of overcharging becomes small. Therefore, even if the content of Li 3 PO 4 is small, the function of suppressing the temperature rise during overcharging is sufficient. Be demonstrated. However, when the CO 2 adsorption amount is small, the reaction area of the negative electrode active material is small, so that the low-temperature characteristics deteriorate.
Therefore, when the content of Li 3 PO 4 and the amount of adsorbed CO 2 are within the above ranges, it is possible to suppress the rise in the battery temperature at the time of overcharging and achieve both low-temperature characteristics.

負極活物質のCO吸着量は、負極活物質として用いる炭素材料を製造する際の焼成条件(例、焼成温度、焼成時間等)を制御することにより、調整することができる。また、負極活物質として非晶質炭素被覆黒鉛を用いる場合には、焼成条件を制御する以外にも、非晶質炭素被覆黒鉛の被覆量を制御することによっても調整することができる。
なお、負極活物質のCO吸着量は、定溶法によるガス吸着量測定装置を用いて測定することができる。
The CO 2 adsorption amount of the negative electrode active material can be adjusted by controlling firing conditions (eg, firing temperature, firing time, and the like) when producing the carbon material used as the negative electrode active material. When amorphous carbon-coated graphite is used as the negative electrode active material, the adjustment can be performed by controlling the amount of the amorphous carbon-coated graphite in addition to controlling the firing conditions.
In addition, the CO 2 adsorption amount of the negative electrode active material can be measured using a gas adsorption amount measuring device by a constant solution method.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which a PP layer is laminated on both sides of a PE layer). A heat-resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解質は、典型的には、非水溶媒と支持塩とを含有する。
非水溶媒としては、一般的なリチウム二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
The non-aqueous electrolyte typically contains a non-aqueous solvent and a supporting salt.
As the non-aqueous solvent, various types of organic solvents such as carbonates, ethers, esters, nitriles, sulfones, and lactones used in general lithium secondary battery electrolytes can be used without particular limitation. it can. As specific examples, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Monofluoromethyl difluoromethyl carbonate (F-DMC), trifluorodimethyl carbonate (TFDMC) and the like are exemplified. Such nonaqueous solvents can be used alone or in an appropriate combination of two or more.
As the supporting salt, for example, a lithium salt (preferably LiPF 6 ) such as LiPF 6 , LiBF 4 , and LiClO 4 can be suitably used. The concentration of the supporting salt is preferably from 0.7 mol / L to 1.3 mol / L.

なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、上述した成分以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;増粘剤;等の各種添加剤を含んでいてもよい。   In addition, as long as the effect of the present invention is not significantly impaired, the non-aqueous electrolyte may include components other than the components described above, for example, a gas generating agent such as biphenyl (BP) and cyclohexylbenzene (CHB); a thickening agent; Various additives may be included.

以上のようにして構成されるリチウム二次電池100は、過充電時の電池温度の上昇が抑制されており、かつ低温性能に優れる。リチウム二次電池100は、特に、低温での電池抵抗が小さい。   The lithium secondary battery 100 configured as described above suppresses a rise in battery temperature during overcharge and has excellent low-temperature performance. The lithium secondary battery 100 has particularly low battery resistance at low temperatures.

以上のようにして構成されるリチウム二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウム二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium secondary battery 100 configured as described above can be used for various applications. Suitable applications include a drive power supply mounted on vehicles such as an electric vehicle (EV), a hybrid vehicle (HV), and a plug-in hybrid vehicle (PHV). The lithium secondary battery 100 can also be used in the form of a battery pack typically formed by connecting a plurality of batteries in series and / or in parallel.

なお、一例として扁平形状の捲回電極体20を備える角形のリチウム二次電池100について説明した。しかしながら、ここに開示される非水系リチウム二次電池は、積層型電極体を備えるリチウム二次電池として構成することもできる。また、ここに開示される非水系リチウム二次電池は、円筒形リチウム二次電池として構成することもできる。   The rectangular lithium secondary battery 100 including the flat wound electrode body 20 has been described as an example. However, the non-aqueous lithium secondary battery disclosed herein can also be configured as a lithium secondary battery including a stacked electrode body. Further, the nonaqueous lithium secondary battery disclosed herein can also be configured as a cylindrical lithium secondary battery.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   Hereinafter, examples according to the present invention will be described, but the present invention is not intended to be limited to those shown in the examples.

<評価用リチウム二次電池A1〜A5およびB1〜B4の作製>
分散機を用いて、導電材としてのアセチレンブラック(AB)、PVdFおよびN−メチルピロリドン(NMP)が混合されたペーストを得た。このペーストに、正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、LiPOとの混合粉体を投入した後、固形分を均一に分散させ、正極活物質層形成用スラリーを調製した。なお、正極活物質形成用スラリーは、LNCM:LiPO:AB:PVdF=90−x:x:8:2(質量比)となるように調製した(xは表1に示す値である)。このスラリーを、厚さ15μmの長尺状のアルミニウム箔の両面に帯状に塗布して乾燥した後、プレスすることにより、正極シートを作製した。
また、負極活物質としての非晶質炭素被覆黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。このスラリーを、厚さ10μmの長尺状の銅箔の両面に帯状に塗布して乾燥した後、プレスすることにより、負極シートを作製した。なお、非晶質炭素被覆黒鉛は、表1に記載のCO吸着量を有するものを使用した。このCO吸着量は、下記の方法で測定した。
また、セパレータシートとして、PP/PE/PPの三層構造を有する2枚の厚さ20μmの多孔性ポリオレフィンシートを用意した。
作製した正極シートと負極シートと用意した2枚のセパレータシートとを重ね合わせ、捲回して捲回電極体を作製した。このとき、正極シートと負極シートとの間にセパレータが介在するようにした。正極シートと負極シートにそれぞれ電極端子を取り付け、これを、注液口を有する電池ケースに収容した。
続いて、電池ケースの注液口から非水電解質を注入し、当該注液口を気密に封止した。なお、非水電解質には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。
このようにして、評価用リチウム二次電池A1〜A5およびB1〜B4を作製した。
<Production of lithium secondary batteries A1 to A5 and B1 to B4 for evaluation>
Using a disperser, a paste in which acetylene black (AB) as a conductive material, PVdF, and N-methylpyrrolidone (NMP) were mixed was obtained. A mixed powder of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material and Li 3 PO 4 is added to this paste, and then the solid content is uniformly dispersed. A slurry for forming a positive electrode active material layer was prepared. The slurry for forming a positive electrode active material was prepared such that LNCM: Li 3 PO 4 : AB: PVdF = 90-x: x: 8: 2 (mass ratio) (x is a value shown in Table 1). ). This slurry was applied in a strip shape on both sides of a long aluminum foil having a thickness of 15 μm, dried, and then pressed to produce a positive electrode sheet.
Further, amorphous carbon-coated graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were mixed with C: SBR: CMC = 98: The mixture was mixed with ion-exchanged water at a mass ratio of 1: 1 to prepare a slurry for forming a negative electrode active material layer. This slurry was applied to both sides of a long copper foil having a thickness of 10 μm in a strip shape, dried, and then pressed to produce a negative electrode sheet. The amorphous carbon-coated graphite used had the CO 2 adsorption amount shown in Table 1. This CO 2 adsorption amount was measured by the following method.
In addition, two 20 μm thick porous polyolefin sheets having a three-layer structure of PP / PE / PP were prepared as separator sheets.
The prepared positive electrode sheet, negative electrode sheet, and two prepared separator sheets were overlapped and wound to produce a wound electrode body. At this time, a separator was interposed between the positive electrode sheet and the negative electrode sheet. Electrode terminals were attached to the positive electrode sheet and the negative electrode sheet, respectively, and were accommodated in a battery case having a liquid inlet.
Subsequently, a non-aqueous electrolyte was injected from the liquid inlet of the battery case, and the liquid inlet was hermetically sealed. In the non-aqueous electrolyte, LiPF 6 as a supporting salt was added to a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3. A solution dissolved at a concentration of 0.0 mol / L was used.
Thus, evaluation lithium secondary batteries A1 to A5 and B1 to B4 were produced.

<負極活物質のCO吸着量測定>
前処理として、非晶質炭素被覆黒鉛を、350℃で減圧脱気処理した後、さらに150℃で熱処理した。これを、島津製作所製「トライスターII3020」を用いて定溶法により、測定温度約−80℃、圧力範囲0.3atm〜1atmの条件でCO吸着量を測定した。
<Measurement of CO 2 adsorption amount of negative electrode active material>
As a pretreatment, the amorphous carbon-coated graphite was subjected to degassing at 350 ° C. under reduced pressure, and then heat-treated at 150 ° C. This was the constant溶法using Shimadzu "TriStar II3020", measuring a temperature of about -80 ° C., it was measured CO 2 adsorption amount under the conditions of pressure range 0.3Atm~1atm.

<電池温度測定>
上記作製した各評価用リチウム二次電池に、初期充放電処理を行った。その後、各評価用リチウム二次電池の電池ケースに熱電対を取り付けて温度を測定した。その後5.1Vまで充電を行い、温度を測定した。そして、充電前後での温度差(すなわち温度上昇量)を求めた。LiPOの含有量が異なる各評価リチウム二次電池の系において、リチウム二次電池A5の温度上昇量を基準(基準値:100%)として、各評価用リチウム二次電池の温度上昇量の比(%)を算出した。結果を表1に示す。
<Battery temperature measurement>
Initial charge / discharge treatment was performed on each of the evaluation lithium secondary batteries prepared above. Thereafter, a thermocouple was attached to the battery case of each evaluation lithium secondary battery, and the temperature was measured. Thereafter, the battery was charged to 5.1 V, and the temperature was measured. Then, a temperature difference (that is, a temperature rise amount) before and after charging was obtained. In each of the lithium secondary battery systems having different Li 3 PO 4 contents, the temperature rise amount of each evaluation lithium secondary battery was determined based on the temperature rise amount of lithium secondary battery A5 (reference value: 100%). Was calculated (%). The results are shown in Table 1.

<低温抵抗評価>
−35℃の温度環境下で、SOC27%に調整した各評価用リチウム二次電池を、10Cのレートで2秒間放電し、そのときの放電カーブより抵抗値を求めた。リチウム二次電池A5の抵抗値を基準(基準値:100%)として、各評価用リチウム二次電池の抵抗値の比(%)を算出した。結果を表1に示す。
<Low temperature resistance evaluation>
In a temperature environment of −35 ° C., each lithium secondary battery for evaluation adjusted to SOC 27% was discharged at a rate of 10 C for 2 seconds, and a resistance value was obtained from a discharge curve at that time. Using the resistance value of the lithium secondary battery A5 as a reference (reference value: 100%), the ratio (%) of the resistance value of each evaluation lithium secondary battery was calculated. The results are shown in Table 1.

Figure 2019215972
Figure 2019215972

表1より、LiPOの含有量が、正極活物質に対して1質量%以上5質量%以下であり、負極活物質のCO2吸着量が、0.05mL/g以上3mL/g以下である場合に、電圧が上昇した際の電池温度の上昇が大きく抑制されており、加えて、低温での抵抗が低くなっていることがわかる。
したがって、ここに開示される非水系リチウム二次電池によれば、過充電時の電池温度の上昇が抑制されており、かつ低温性能に優れることがわかる。
From Table 1, the content of Li 3 PO 4 is 1% by mass or more and 5% by mass or less based on the positive electrode active material, and the CO 2 adsorption amount of the negative electrode active material is 0.05 mL / g or more and 3 mL / g or less. In some cases, it can be seen that the rise in battery temperature when the voltage rises is greatly suppressed, and in addition, the resistance at low temperatures is low.
Therefore, according to the non-aqueous lithium secondary battery disclosed herein, it is understood that the rise in battery temperature during overcharge is suppressed and the low-temperature performance is excellent.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
100 リチウム二次電池
Reference Signs List 20 wound electrode body 30 battery case 36 safety valve 42 positive electrode terminal 42a positive electrode current collector 44 negative electrode terminal 44a negative electrode current collector 50 positive electrode sheet (positive electrode)
52 Positive electrode current collector 52a Positive electrode active material layer non-formed portion 54 Positive electrode active material layer 60 Negative electrode sheet (negative electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator sheet (separator)
100 lithium secondary battery

Claims (1)

正極と、負極と、非水電解質と、を備える非水系リチウム二次電池であって、
前記正極は、正極活物質層を有し、
前記正極活物質層は、正極活物質と、LiPOとを含有し、
前記負極は、負極活物質層を有し、
前記負極活物質層は、負極活物質を含有し、
LiPOの含有量は、前記正極活物質に対して1質量%以上5質量%以下であり、
前記負極活物質のCO2吸着量は、0.05mL/g以上3mL/g以下である、
ことを特徴とする非水系リチウム二次電池。
A positive electrode, a negative electrode, and a non-aqueous electrolyte, a non-aqueous lithium secondary battery including:
The positive electrode has a positive electrode active material layer,
The positive electrode active material layer contains a positive electrode active material and Li 3 PO 4 ,
The negative electrode has a negative electrode active material layer,
The negative electrode active material layer contains a negative electrode active material,
The content of Li 3 PO 4 is 1% by mass or more and 5% by mass or less based on the positive electrode active material,
The CO2 adsorption amount of the negative electrode active material is 0.05 mL / g or more and 3 mL / g or less.
Non-aqueous lithium secondary battery characterized by the above-mentioned.
JP2018111262A 2018-06-11 2018-06-11 Non-aqueous lithium secondary battery Active JP6944651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018111262A JP6944651B2 (en) 2018-06-11 2018-06-11 Non-aqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111262A JP6944651B2 (en) 2018-06-11 2018-06-11 Non-aqueous lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2019215972A true JP2019215972A (en) 2019-12-19
JP6944651B2 JP6944651B2 (en) 2021-10-06

Family

ID=68919643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111262A Active JP6944651B2 (en) 2018-06-11 2018-06-11 Non-aqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6944651B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034943A (en) * 2009-03-16 2011-02-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2016062644A (en) * 2014-09-12 2016-04-25 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same
WO2016104024A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034943A (en) * 2009-03-16 2011-02-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2016062644A (en) * 2014-09-12 2016-04-25 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same
WO2016104024A1 (en) * 2014-12-26 2016-06-30 日立化成株式会社 Lithium ion battery

Also Published As

Publication number Publication date
JP6944651B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP2019212419A (en) Nonaqueous electrolyte secondary battery
JP6390915B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
CN109119629B (en) Non-aqueous electrolyte secondary battery
CN107546360B (en) Lithium ion secondary battery
JP2020027756A (en) Secondary battery electrode and secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP7071698B2 (en) Non-aqueous electrolyte lithium ion secondary battery
KR102520421B1 (en) Negative electrode
JP2018120824A (en) Positive electrode material
JP2017103163A (en) Nonaqueous electrolyte secondary battery
JP6722384B2 (en) Lithium ion secondary battery
JP7096981B2 (en) Lithium ion secondary battery
JP6919809B2 (en) Non-aqueous electrolyte lithium ion battery
CN109119678B (en) Non-aqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2021044137A (en) Nonaqueous electrolyte secondary battery
JP6944651B2 (en) Non-aqueous lithium secondary battery
JP2021089805A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2020047481A (en) Nonaqueous liquid electrolyte for lithium ion secondary battery
JP2020031020A (en) Nonaqueous electrolyte secondary battery
JP7165305B2 (en) Non-aqueous electrolyte secondary battery
JP7307888B2 (en) negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R151 Written notification of patent or utility model registration

Ref document number: 6944651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151