JP2019214878A - Bearing wall and construction method thereof - Google Patents

Bearing wall and construction method thereof Download PDF

Info

Publication number
JP2019214878A
JP2019214878A JP2018112702A JP2018112702A JP2019214878A JP 2019214878 A JP2019214878 A JP 2019214878A JP 2018112702 A JP2018112702 A JP 2018112702A JP 2018112702 A JP2018112702 A JP 2018112702A JP 2019214878 A JP2019214878 A JP 2019214878A
Authority
JP
Japan
Prior art keywords
bearing wall
load
pair
columns
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018112702A
Other languages
Japanese (ja)
Other versions
JP6454045B1 (en
Inventor
大輔 北川
Daisuke Kitagawa
大輔 北川
白岩 史年
Fumitoshi Shiraiwa
史年 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2018112702A priority Critical patent/JP6454045B1/en
Application granted granted Critical
Publication of JP6454045B1 publication Critical patent/JP6454045B1/en
Publication of JP2019214878A publication Critical patent/JP2019214878A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide a bearing wall and a construction method thereof which inhibit loosening in a joint part of a face material and nails caused by rotation of the face material in a wall structure face and improve the shear capacity.SOLUTION: A bearing wall for a wooden frame construction is formed by installing a face material in a rectangular opening surrounded by a base, a pair of left and right pillars standing at an interval on the base, and a beam horizontally placed atop and between the pillars of the pair. The face material has a reinforcement portion fixed by nails or screws to the beam, and a structure face portion placed under and integrally with the reinforcement portion and fixed by nails to the base, the beam and the pair of pillars to close the opening, with a groove placed between the reinforcement portion and the structure face portion as a crack-inducing joint.SELECTED DRAWING: Figure 1

Description

本発明は、大壁方式の耐力壁およびその施工方法に関する。   The present invention relates to a large wall type load-bearing wall and a method for constructing the same.

一般に、木造住宅においては、必要壁量を満たすように耐力壁を適宜配置して、耐震性を確保している。耐力壁としては、例えば図9に示すように、2本の柱材101,102と上下の土台103,梁104とが組み付けられてなる、矩形の軸組開口に、方形状の面材(構造用合板)105の四周を、室外側から釘打ちによって止め付けた、大壁方式の耐力壁100が広く知られている(例えば特許文献1参照)。   Generally, in a wooden house, a bearing wall is appropriately arranged so as to satisfy a necessary wall amount to secure earthquake resistance. As the load-bearing wall, for example, as shown in FIG. 9, a rectangular face material (structure) is formed in a rectangular frame opening formed by assembling two pillars 101 and 102, upper and lower bases 103 and beams 104. A large-wall load-bearing wall 100 in which four rounds of a plywood 105 are nailed from the outdoor side with a nail is widely known (for example, see Patent Document 1).

文献2には、軸組造の耐力壁の施工方法において、横架材(梁、土台)と面材の接合部に用いる釘またはビスを複数列にすることで、本来最初に破壊する横架材接合部の耐力向上を図った、強度型の耐力壁が記載されている。   Literature 2 discloses that in a method of constructing a load-bearing wall of a frame structure, a plurality of rows of nails or screws used for joining a cross member (beam, base) and a face member are arranged in a plurality of rows, so that a horizontal frame that is originally destroyed first There is described a strength type load-bearing wall for improving the strength of a material joint.

文献3には、軸組造の耐力壁の施工方法において、面材のジョイント部に、補強帯を咬ませて釘等で躯体に留め付けることで、横並びの面材を一体化させ、耐力向上を図った、強度型の耐力壁が記載されている。   According to Reference 3, in the construction method of the load-bearing wall of the frame structure, the reinforcing members are bitten by the joints of the surface materials and fastened to the skeleton with nails, etc., so that the side-by-side surface materials are integrated to improve the strength. , A strength-type load-bearing wall is described.

また、文献4では、RC耐力壁の耐震改修の方法において、柱と壁の間にスリットを入れRCの耐力壁に多い支圧破壊を防止している。更に壁の中央(または上端、下端)に切れ込みを入れることで、意図的に破壊場所を指定し、壁破壊後に残った壁鉄筋が水平方向にせん断変形することで力を逃がし、力の減衰を図った、靭性型の耐力壁が記載されている。   In addition, in Reference 4, in the method of seismic retrofitting of RC bearing walls, a slit is inserted between the column and the wall to prevent bearing damage, which is common in RC bearing walls. In addition, by making a cut in the center (or upper or lower end) of the wall, the break place is intentionally designated, and the wall reinforcement left after the wall breaks is deformed by shearing in the horizontal direction to release the force and reduce the force attenuation. The designed, tough type load-bearing wall is described.

特開2015−121047号公報JP 2015-121047 A 特開2002−155589号公報JP-A-2002-155589 特開2013−209809号公報JP 2013-209809 A 特開平11−62308号公報JP-A-11-62308

図10は、従来の耐力壁100が、地震等により水平力を受けた場合に、柱および面材が変形する様子を模式的に示す図である。水平力を受けた柱は水平力を受けた方向に傾き、梁は水平移動する。このとき、図10に示すように従来の耐力壁100では、建物が水平力を受け柱が傾いた際に、柱101,102と土台103,梁104に打たれた面材105と釘の接合部が緩み始め、面材105も面内で回転する。繰り返し水平力を受け、柱101,102の傾き、ひいては面材105の回転が大きくなると、面材と釘の接合部の緩みを増大させ、せん断耐力性能が低下し、耐力壁としての機能が低下してしまう。面材105の回転を抑える為に、柱101、102と土台103、梁104に打つ釘の本数を増やし過ぎると、壁の最大耐力が増加し接合金物の許容耐力を超えることで、終局時に接合部金物で破壊を起こす脆性的な破壊形状となってしまう。   FIG. 10 is a diagram schematically illustrating a state in which columns and face materials are deformed when a conventional load-bearing wall 100 receives horizontal force due to an earthquake or the like. The column subjected to the horizontal force tilts in the direction of the horizontal force, and the beam moves horizontally. At this time, as shown in FIG. 10, in the conventional load-bearing wall 100, when the building is subjected to horizontal force and the column is tilted, the nail is joined to the surface material 105 struck by the columns 101 and 102, the base 103, and the beam 104. The part starts to loosen, and the face material 105 also rotates in the plane. When the horizontal forces are repeatedly applied and the inclination of the columns 101 and 102 and thus the rotation of the face material 105 increase, the loosening of the joint between the face material and the nail increases, the shear strength performance decreases, and the function as a bearing wall deteriorates. Resulting in. If the number of nails hitting the pillars 101, 102, the base 103, and the beam 104 is excessively increased in order to suppress the rotation of the face material 105, the maximum strength of the wall increases and exceeds the allowable strength of the joint hardware, so that the joint is finally completed. A brittle destruction shape that causes destruction by the metal parts is obtained.

本発明は、上述した従来の実情に鑑みてなされたものであり、壁構面の面材回転による面材と釘の接合部の緩みを抑制し、接合部の許容耐力以下の範囲で壁のせん断耐力を向上させた耐力壁およびその施工方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional circumstances, and suppresses the loosening of the joint between the surface material and the nail due to the rotation of the surface material of the wall construction surface. It is an object of the present invention to provide a load-bearing wall having improved shear strength and a method for constructing the wall.

本発明者らは、上記目的を達成するために鋭意検討した結果、一枚の面材を、壁構面に釘打ちする構面部分と、梁表面に釘打ちをする補強部分とに区分する為、割れ誘発目地として溝を施工することで、建物が水平力を受け柱が傾いた際に補強部分に打たれた多数の釘のせん断耐力が構面部分の回転を抑え早期に補強効果を発揮し、変位の増加に伴い徐々に壁構面部分に回転が生じると、面材の溝に亀裂が入り、構面部分と補強部分に分かれ、補強部分の釘のせん断耐力が構面部分に直接伝わらなくなることで、壁の最大耐力を接合部金物の許容耐力以下に抑えることができる。面材が分かれ構面部分は回転を始めるが、補強部分の小口に接触して構面部分の回転変形が抑えられることにより構面部分と釘の接合部の緩みを抑えることができ、せん断耐力を維持・向上することができることに想到し、本発明を完成させるに至った。すなわち、本発明は以下のとおりである。
[1]
土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる、木造軸組建築物の耐力壁であって、
前記面材は、前記梁に釘またはビスにより固定された補強部分と、該補強部分の下側に該補強部分と一体的に配され、前記開口を塞ぐように、前記土台、前記梁および前記一対の柱に釘により固定された構面部分とを有し、前記補強部分と前記構面部分との間に、割れ誘発目地として溝が設けられていることを特徴とする、耐力壁。
[2]
前記溝の幅が3mm以下である、[1]に記載の耐力壁。
[3]
前記面材は室外側に取り付けられる、[1]または[2]に記載の耐力壁。
[4]
前記溝の深さが、前記面材厚みの1/3以上である、[1]〜[3]のいずれかに記載の耐力壁。
[5]
下記式(1):
固定度=釘またはビス1本あたりの1面せん断降伏耐力(Py)×接合に要する釘またはビスの本数 (1)
で規定される固定度において、
前記補強部分と梁との固定度は、前記構面部分と柱との固定度よりも大きい、[1]〜[4]のいずれかに記載の耐力壁。
[6]
前記補強部分は、さらに接着剤により前記梁に固定されている、[1]〜[5]のいずれかに記載の耐力壁。
[7]
前記一対の柱の間に、該柱と略平行に設けられた1本または複数本の間柱を有し、前記構面部分は、該間柱に釘により固定されている、[1]〜[6]のいずれかに記載の耐力壁。
[8]
土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材を取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記面材の補強部分と構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記補強部分を前記梁に少なくとも釘またはビスにより固定する工程と、
前記開口を塞ぐように、前記構面部分を前記土台、前記梁および前記一対の柱に釘により固定する工程と、を有することを特徴とする、耐力壁の施工方法。
[9]
左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる耐力壁構成パネルを、土台上に取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記柱と前記梁とを固定する工程と、
前記面材を、固定された前記柱および前記梁とで囲まれる矩形状の開口に、少なくとも釘またはビスで取り付ける工程と、
前記面材の補強部分と構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記土台に、前記柱の下端部を取り付け、前記面材の構面部分を少なくとも釘またはビスで取り付ける工程と、
を有することを特徴とする、耐力壁の施工方法。
[10]
前記耐力壁構成パネルの製造を工場で行い、前記土台に前記パネルを取り付ける工程を現場で行うことを特徴とする、[9]に記載の耐力壁の施工方法。
[11]
[10]に記載の施工方法に用いられる前記耐力壁構成パネルであって、左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで三方が囲まれた矩形状の開口に、面材が少なくとも釘またはビスで取り付けられてなる、耐力壁構成パネル。
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have classified one sheet material into a surface portion for nailing a wall surface and a reinforcing portion for nailing a beam surface. Therefore, by constructing a groove as a crack-inducing joint, the shear strength of a large number of nails hit on the reinforcing part when the column is inclined due to the horizontal force of the building suppresses the rotation of the structural part and the reinforcing effect at an early stage When the wall surface gradually rotates as the displacement increases, the groove of the surface material cracks, and the surface and the reinforcement are separated. By not being transmitted directly, the maximum strength of the wall can be suppressed below the allowable strength of the joint hardware. The face material is divided and the face starts to rotate, but it contacts the fore edge of the reinforcement part and suppresses the rotational deformation of the face part, so the loosening of the joint part between the face part and the nail can be suppressed, and the shear strength Have been conceived that can be maintained and improved, and the present invention has been completed. That is, the present invention is as follows.
[1]
A surface material is attached to a rectangular opening surrounded by a base, a pair of left and right columns that are spaced apart from the base, and a beam laid between the pair of columns above the pair of columns. , A bearing wall of a wooden framed building,
The face material is a reinforcing portion fixed to the beam by a nail or a screw, and the reinforcing portion is disposed integrally with the reinforcing portion below the reinforcing portion, so as to close the opening, the base, the beam, and the A load-bearing wall comprising: a pair of pillars having a surface portion fixed by nails; and a groove provided between the reinforcing portion and the surface portion as a crack-inducing joint.
[2]
The load-bearing wall according to [1], wherein the width of the groove is 3 mm or less.
[3]
The load-bearing wall according to [1] or [2], wherein the face material is attached to an outdoor side.
[4]
The load-bearing wall according to any one of [1] to [3], wherein the depth of the groove is not less than 1/3 of the thickness of the face material.
[5]
The following equation (1):
Degree of fixation = Single-plane shear yield strength per nail or screw (Py) x Number of nails or screws required for joining (1)
In the fixed degree specified by
The load-bearing wall according to any one of [1] to [4], wherein the degree of fixation between the reinforcing portion and the beam is greater than the degree of fixation between the structural portion and the column.
[6]
The load-bearing wall according to any one of [1] to [5], wherein the reinforcing portion is further fixed to the beam with an adhesive.
[7]
[1] to [6], between the pair of pillars, one or more pillars provided substantially parallel to the pillars, and the structural surface portion is fixed to the pillars with nails. ] The load-bearing wall according to any one of [1] to [4].
[8]
A base, a pair of left and right columns that are erected at an interval on the base, and a face material is attached to a rectangular opening surrounded by a beam laid between the pair of columns at the top of the pair of columns. A method of constructing a load-bearing wall of a wooden frame building,
A step of performing groove processing as a surface material crack-inducing joint between the reinforcing portion and the structural surface portion of the surface material,
Fixing the reinforcing portion to the beam with at least a nail or a screw;
Fixing the structural surface portion to the base, the beam, and the pair of pillars with a nail so as to close the opening.
[9]
A pair of left and right pillars and a load-bearing wall configuration panel in which a surface material is attached to a rectangular opening surrounded by a beam laid between the pair of pillars above the pair of pillars is mounted on a base, A method of constructing a load-bearing wall of a wooden frame building,
Fixing the column and the beam;
Attaching the face material to a rectangular opening surrounded by the fixed columns and the fixed beams with at least nails or screws,
A step of performing groove processing as a surface material crack-inducing joint between the reinforcing portion and the structural surface portion of the surface material,
A step of attaching the lower end of the pillar to the base, and attaching the face portion of the face material with at least a nail or a screw;
A method for constructing a load-bearing wall, comprising:
[10]
The method for constructing a load-bearing wall according to [9], wherein the load-bearing wall forming panel is manufactured at a factory, and a step of attaching the panel to the base is performed on site.
[11]
The load-bearing wall configuration panel used in the construction method according to [10], wherein three sides are surrounded by a pair of left and right columns and a beam spanned between the pair of columns at the top of the pair of columns. A load-bearing wall configuration panel comprising a rectangular opening and a face material attached thereto with at least a nail or a screw.

本発明では、大壁耐力壁に貼る面材を、梁表面のみに少なくとも釘またはビスにより固定された補強部分と、左右の柱と上下の横架材(梁および土台)とで囲まれた壁構面に少なくとも釘により固定された構面部分との間に、面材割れ誘発目地として溝加工を施すことで、建物が水平力を受け柱が傾いた際に、補強部分に打たれた多数の釘のせん断耐力が構面部分の回転を抑え、変位の増加に伴い壁の耐力も上昇するが、ある一定の変位に達すると割れ誘発目地で面材が割れ、構面部分と補強部分に分かれることで補強部分の釘のせん断耐力が構面部分に直接伝わらなくなり、壁の最大耐力を接合部金物の許容耐力以下に抑えることでき接合部の脆性破壊を回避できる。面材が分かれた後、構面部分は回転しても、梁表面の補強部分は回転しない為、双方の合板小口が接触する。その結果、梁に貼られた補強部分が構面部分の回転を抑え、構面部分の回転による面材と釘の接合部の緩みを抑制する。これにより本発明では、せん断耐力を向上させた耐力壁およびその施工方法を提供することができる。   According to the present invention, the face material to be attached to the large wall bearing wall is a wall surrounded by a reinforcing portion fixed at least to the beam surface with nails or screws, left and right columns, and upper and lower horizontal members (beam and base). By applying groove processing as a joint to induce surface cracks between at least the part of the building surface and the surface part fixed with nails, when the building was subjected to horizontal force and the pillars were inclined, a number of hits were made to the reinforcing parts The shear strength of the nail suppresses the rotation of the face part, and the strength of the wall increases as the displacement increases.However, when a certain displacement is reached, the face material breaks at the joint that induces cracking, and the face part and the reinforcement part Due to the separation, the shear strength of the nail at the reinforcing portion is not directly transmitted to the structural surface portion, and the maximum strength of the wall can be suppressed to below the allowable strength of the joint hardware, and brittle fracture of the joint can be avoided. After the face material is separated, the plywood foreheads come into contact with each other because the reinforced part on the beam surface does not rotate even if the structural part rotates. As a result, the reinforcing portion attached to the beam suppresses the rotation of the structural part, and the loosening of the joint between the surface material and the nail due to the rotation of the structural part is suppressed. Thus, in the present invention, it is possible to provide a load-bearing wall having improved shear strength and a method for constructing the same.

本発明の耐力壁の一構成例を模式的に示す図。The figure which shows typically the example of 1 structure of the load-bearing wall of this invention. 本発明の耐力壁が水平力を受けた場合に、柱が変形する様子を模式的に示す図。The figure which shows typically a mode that a pillar deform | transforms when the bearing wall of this invention receives a horizontal force. 本発明の耐力壁が水平力を受けた場合に、柱および面材が変形する様子を模式的に示す図。The figure which shows typically a mode that a pillar and a face material deform | transform when the bearing wall of this invention receives a horizontal force. 本発明の耐力壁構成パネルを用いた施工方法の一例を模式的に示す図。The figure which shows typically an example of the construction method using the load-bearing wall constituent panel of this invention. 「木造軸組工法住宅の許容応力度設計2008年版」に記載されている試験体の設置方法を示す図。The figure which shows the installation method of the test body described in "allowable stress degree design of wooden frame construction method house 2008 edition". 本試験で行った面内せん断試験における試験体の設置方法を示す図。The figure which shows the installation method of the test body in the in-plane shear test performed by this test. 実施例および比較例1,2の耐力壁について、せん断変位とせん断力との関係を示す図。The figure which shows the relationship between a shear displacement and a shear force about the bearing wall of an Example and the comparative examples 1 and 2. 実施例および比較例1,2の耐力壁について、せん断変位とせん断力との関係を示す図。(層間変形角1/150radまでの拡大図)The figure which shows the relationship between a shear displacement and a shear force about the bearing wall of an Example and the comparative examples 1 and 2. (Enlarged view up to an interlayer deformation angle of 1/150 rad) 従来の耐力壁の一構成例を模式的に示す図。The figure which shows typically the example of 1 structure of the conventional load-bearing wall. 従来の耐力壁が水平力を受けた場合に、柱および面材が変形する様子を模式的に示す図。The figure which shows typically a mode that a pillar and a face material deform when a conventional load-bearing wall receives a horizontal force.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の耐力壁の一構成例を模式的に示す図である。図1(a)は立面図、図1(b)は断面図、図1(c)は、梁の近傍を拡大して示す断面図である。
本発明の耐力壁1は、土台2と、土台2に間隔をあけて立てられた左右一対の柱3,4と、一対の柱3,4の上部で一対の柱3,4間に横架させた梁5とで囲まれる矩形状の開口6(図2参照)に面材10が取り付けられてなる、木造軸組建築物の耐力壁であって、面材10は、一枚の面材を、梁5の表面のみにそれぞれ少なくとも釘またはビス21により固定された補強部分11と、開口6を塞ぐように、土台2、梁5および左右一対の柱3,4に釘20により固定された、構面部分12との間に面材割れ誘発目地として溝13を設けて区分していることを特徴とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a configuration example of a load-bearing wall according to the present invention. 1A is an elevation view, FIG. 1B is a cross-sectional view, and FIG. 1C is an enlarged cross-sectional view showing the vicinity of a beam.
The load-bearing wall 1 of the present invention includes a base 2, a pair of left and right columns 3 and 4 erected at an interval on the base 2, and a horizontal bridge between the pair of columns 3 and 4 above the pair of columns 3 and 4. It is a load-bearing wall of a wooden framed building in which a face material 10 is attached to a rectangular opening 6 (see FIG. 2) surrounded by a beam 5 that has been made, and the face material 10 is a single face material. Is fixed to the base 2, the beam 5, and the pair of left and right pillars 3, 4 by the nails 20 so as to cover the opening 6 and the reinforcing portion 11 fixed at least to the surface of the beam 5 with the nail or screw 21. A groove 13 is provided between the structural surface portion 12 and the joint 12 as a joint for inducing a surface material crack.

左右一対の柱3,4は、図1に示すように、柱脚が土台2に固定されており、柱頭が梁5に固定されている。左右一対の柱3,4の間に、柱3,4と略平行に設けられた1本または複数本の間柱8を455mm間隔以下で配置する(図2参照)。   As shown in FIG. 1, the pair of left and right columns 3 and 4 have column bases fixed to the base 2 and column capitals fixed to the beams 5. One or a plurality of studs 8 provided substantially parallel to the pillars 3 and 4 are arranged at intervals of 455 mm or less between the pair of left and right pillars 3 and 4 (see FIG. 2).

面材10は、土台2と、左右一対の柱3,4と、一対の柱3,4の上部で一対の柱3,4間に横架させた梁5とで囲まれる矩形状の開口6を塞ぐように、大壁方式で釘20またはビス21により固定されることにより、柱3,4や梁5と一体となり、水平せん断力を負担する耐力壁1を構成する。
本発明では、大壁方式による耐力壁1において、面材10を、梁5の表面まで貼り伸ばし、構面部分12と補強部分11とを、割れ誘発目地の溝13を介して区分し、補強部分11を、構面部分12より多くの釘20またはビス21で固定する。
The face material 10 has a rectangular opening 6 surrounded by the base 2, a pair of left and right pillars 3 and 4, and a beam 5 laid between the pair of pillars 3 and 4 above the pair of pillars 3 and 4. Is fixed by the nail 20 or the screw 21 in a large-wall manner so as to close the wall, and is integrated with the pillars 3 and 4 and the beam 5 to constitute the bearing wall 1 that bears the horizontal shear force.
According to the present invention, in the load-bearing wall 1 of the large wall type, the face material 10 is stuck to the surface of the beam 5, and the framing portion 12 and the reinforcing portion 11 are separated through the groove 13 of the crack-inducing joint, and reinforced. The part 11 is fixed with more nails 20 or screws 21 than the face part 12.

面材10としては、昭56建告1100号第1第一号で壁倍率が指定されている面材、構造用合板、パーティクルボード、構造用パネル(OSB)等が用いられる。例えば構造用合板については、合板の日本農林規格(平成26年2月25日農林水産省告示第303号)において、定義(第3条)、合板の接着の程度の基準(第3条)などが定められており、構造用合板とは、合板のうち、化粧ばり構造用合板以外の合板で建築物の構造耐力上主要な部分に使用するもの(さね加工を施したものを含む。)をいう。構造用合板の厚みは7.5mm以上であり、例えば9mm厚みのものが広く用いられている。   As the face material 10, a face material, a structural plywood, a particle board, a structural panel (OSB), or the like, whose wall magnification is specified in No. 1 of the 1980 No. 1100 of 1981 is used. For example, with regard to structural plywood, the definition (Article 3), the standard of the degree of adhesion of plywood (Article 3), etc. in Japanese Agricultural Standards for Plywood (February 25, 2014, Ministry of Agriculture, Forestry and Fisheries Notification No. 303) The term “structural plywood” refers to plywood other than decorative plywood, which is used for the main part of a building in terms of structural strength (including toughness). Say. The thickness of the structural plywood is 7.5 mm or more, for example, 9 mm thick is widely used.

構面部分12は、軸組開口6よりも大きい寸法を有し、両側端の近傍が柱3,4の室外側面に多数の釘20で固定され、割れ誘発目地(溝13)の近傍が梁5の室外側面に多数の釘20で固定されている。また、構面部分12の下端近傍は、土台2に多数の釘20で固定されている。間柱8を有する場合には、構面部分12は間柱8にも多数の釘20で固定されている。   The face portion 12 has a size larger than the frame opening 6, and the vicinity of both ends is fixed to the outdoor surface of the columns 3 and 4 with a number of nails 20, and the vicinity of the crack-inducing joint (groove 13) is a beam. 5 is fixed to the outdoor surface with a number of nails 20. Further, the vicinity of the lower end of the face portion 12 is fixed to the base 2 with a large number of nails 20. When the stud 8 is provided, the face portion 12 is also fixed to the stud 8 with a large number of nails 20.

補強部分11は、構面部分12と同じ一枚の面材が用いられる。補強部分11と構面部分12とは、割れ誘発目地としての溝13を介して繋がっている。
面材10は、縦方向の上端が梁5の上端よりも下げた位置(上層にも耐力壁を配置する場合は上層の面材を梁5に釘で固定する為、例えば梁5の天端から30mm下げる)とし、梁5の下端から30mm上げた位置に割れ誘発目地(溝13)を有し、その周囲が梁5の室外側面に多数の釘またはビス21で固定されている。
The reinforcing portion 11 is made of the same sheet material as the surface portion 12. The reinforcing part 11 and the structural part 12 are connected via a groove 13 as a crack-inducing joint.
The face material 10 is located at a position where the upper end in the vertical direction is lower than the upper end of the beam 5 (when a load bearing wall is also arranged on the upper layer, the face material of the upper layer is fixed to the beam 5 with a nail. From the lower end of the beam 5 and has a crack-inducing joint (groove 13), and the periphery thereof is fixed to the outdoor surface of the beam 5 with a number of nails or screws 21.

補強部分11,構面部分12の間にある割れ誘発目地(溝13)の幅は、狭くすることが好ましく、3mm以下であることが好ましい。溝13の幅を狭くすることで、具体的には後述するように、面材10の溝13に亀裂が入り、補強部分11と構面部分12に分離し、構面部分12が回転したときに補強部分11と構面部分12とが接触する小口の面積が増え、小口の圧縮破壊による耐力低下を防ぎ構面部分12の回転をより確実に抑えることができ、面材10に亀裂が入り分離した後にも補強効果を得られる。
また、割れ誘発目地(溝13)の深さは、面材10の厚みの1/3以上であることが好ましい。溝13の深さを、面材10の厚みの1/3以上とすることにより、金物耐力以下で面材が割れる。1/3未満では割れ誘発目地で面材に亀裂が入りづらい。
The width of the crack-inducing joint (groove 13) between the reinforcing portion 11 and the construction surface portion 12 is preferably reduced, and is preferably 3 mm or less. By narrowing the width of the groove 13, specifically, as will be described later, the groove 13 of the face material 10 is cracked, separated into the reinforcing part 11 and the face part 12, and when the face part 12 rotates. The area of the fore edge where the reinforcing part 11 and the face part 12 come into contact with each other increases, preventing a decrease in the strength due to the compressive fracture of the fore part, and suppressing the rotation of the face part 12 more reliably. Even after separation, a reinforcing effect can be obtained.
Further, the depth of the crack-inducing joint (groove 13) is preferably not less than 1 / of the thickness of the face material 10. By setting the depth of the groove 13 to be not less than 1/3 of the thickness of the face material 10, the face material is cracked at a metal yield strength or less. If it is less than 1/3, it is difficult for the surface material to crack at the crack-inducing joint.

また、構面部分12の回転をより確実に抑えるために、補強部分11は梁5に強固に留め付けられていなければならない。
具体的には後述するように、補強部分11と梁5との固定度が、構面部分12と柱3,4との固定度よりも大きくなるように固定されていることが好ましい。なお、本明細書では、固定度の決定において、他の条件が同一であれば単純に釘20またはビス21の本数で決まる値とする。
すなわち、補強部分11を梁5に固定する釘またはビス21の本数は、構面部分12を柱3,4に固定する釘20の本数よりも多いことが好ましい。補強部分11は、釘またはビス21に加えて、さらに接着剤を用いて梁5に強固に緊結されていることが好ましい。
Further, the reinforcing portion 11 must be firmly fastened to the beam 5 in order to more reliably suppress the rotation of the face portion 12.
More specifically, as described later, it is preferable that the fixing portion 11 and the beam 5 are fixed so that the degree of fixing between the framing portion 12 and the columns 3 and 4 is larger. In this specification, in determining the degree of fixation, if other conditions are the same, a value determined simply by the number of nails 20 or screws 21 is used.
That is, the number of nails or screws 21 for fixing the reinforcing portion 11 to the beam 5 is preferably larger than the number of nails 20 for fixing the structural portion 12 to the columns 3 and 4. The reinforcing portion 11 is preferably tightly fixed to the beam 5 by using an adhesive in addition to the nail or the screw 21.

図2〜図3は、地震等により水平力を受けた場合に、柱3,4および面材10が変形する様子を模式的に示す図である。
まず図2に示すように、水平力を受けた柱3,4は水平力を受けた方向に傾き、梁5は水平移動する。
上述したように、従来の耐力壁では、柱が傾くことにより面材も回転する(図10参照)。地震等により正負交番の繰り返しの水平力を受けると、面材も反転を繰り返し、面材と釘の接合部の緩みを増大させ、耐力壁としての機能が低下してしまう。
FIGS. 2 to 3 are diagrams schematically showing a state in which the columns 3, 4 and the face material 10 are deformed when a horizontal force is applied due to an earthquake or the like.
First, as shown in FIG. 2, the columns 3 and 4 receiving the horizontal force tilt in the direction of receiving the horizontal force, and the beam 5 moves horizontally.
As described above, in the conventional load-bearing wall, the tilting of the column causes the face material to rotate (see FIG. 10). When a horizontal force of alternating positive and negative is received due to an earthquake or the like, the face material also repeats inversion, the looseness of the joint between the face material and the nail increases, and the function as a bearing wall is reduced.

これに対し、図3に示すように本発明の耐力壁1では、柱3,4が傾いても補強部分11に打たれた多数の釘のせん断耐力が構面部分12の回転を抑える。
一方、柱3,4に釘で固定された構面部分12は、柱3,4の傾きが大きくなることで面内で回転するが、補強部分11は回転しない梁5にのみ多数の釘またはビス21で固定されている為、一定量回転すると割れ誘発目地としての溝13に亀裂が入り、面材10が補強部分11と構面部分12にと完全に分離され補強部分11の釘またはビス21のせん断耐力が構面部分12に直接伝わらなくなる為、耐力壁1の変位増加に伴う耐力上昇が止まる。図3中、囲みAに示すように、面材10が分離した後も、構面部分12が補強部分11の小口に接触することにより回転が抑えられる。これにより構面部分12と釘20の接合部の緩みが抑制され、耐力壁1としての機能を維持することができる。すなわち、本発明の耐力壁1は、従来の耐力壁に比べて早期にせん断耐力を向上することができ、壁の最大耐力を接合部の許容耐力以下に抑えることで靱性の高い理想的な破壊形式となる。
On the other hand, as shown in FIG. 3, in the load-bearing wall 1 of the present invention, even when the columns 3 and 4 are inclined, the shear strength of the many nails hit on the reinforcing portion 11 suppresses the rotation of the face portion 12.
On the other hand, the surface portion 12 fixed to the columns 3 and 4 with nails rotates in the plane due to the large inclination of the columns 3 and 4, but the reinforcing portion 11 has a large number of nails or Since it is fixed with the screw 21, a certain amount of rotation causes a crack in the groove 13 as a crack-inducing joint, and the face material 10 is completely separated into the reinforcing part 11 and the structural part 12, and the nail or screw of the reinforcing part 11 Since the shear strength of the bearing wall 21 is not directly transmitted to the structural surface portion 12, the increase in the strength with the increase in the displacement of the load-bearing wall 1 stops. In FIG. 3, as indicated by box A, even after the face material 10 is separated, the rotation of the face portion 12 is suppressed by contacting the fore edge of the reinforcing portion 11. Thereby, loosening of the joint portion between the frame portion 12 and the nail 20 is suppressed, and the function as the load-bearing wall 1 can be maintained. That is, the load-bearing wall 1 of the present invention can improve the shear strength earlier than the conventional load-bearing wall, and suppresses the maximum strength of the wall to the allowable strength of the joint portion or less, thereby achieving ideal fracture with high toughness. Format.

このように、本発明の耐力壁1では、面材10を壁構面に固定する構面部分12と、梁表面のみに固定する補強部分11とに区分する割れ誘発目地(溝13)を施工することで、建物が水平力を受け柱が傾いた際は、補強部分11に固定した多数の釘またはビス21のせん断耐力で構面部分12の回転を抑え、変位増加に伴い構面部分12は回転を始めるが、補強部分11は回転しない為、溝13に亀裂が入り、面材10が完全に分離し、最大耐力の上昇を抑える。その後構面部分12が補強部分11の小口に接触して構面部分12の回転変形が抑えられる。これにより釘の抜けを防ぎ、せん断耐力を維持することができる。   As described above, in the load-bearing wall 1 of the present invention, crack-inducing joints (grooves 13) are divided into a surface portion 12 for fixing the surface material 10 to the wall surface and a reinforcing portion 11 for fixing only the beam surface. By doing so, when the building is subjected to horizontal force and the column is tilted, the rotation of the surface portion 12 is suppressed by the shear strength of a large number of nails or screws 21 fixed to the reinforcing portion 11, and the surface portion 12 Starts rotating, but since the reinforcing portion 11 does not rotate, the groove 13 is cracked, the face material 10 is completely separated, and an increase in the maximum proof stress is suppressed. After that, the face portion 12 comes into contact with the fore edge of the reinforcing portion 11, and the rotational deformation of the face portion 12 is suppressed. Thereby, the nail is prevented from coming off, and the shear strength can be maintained.

このような構造を適用するには、補強部分11と梁5との固定度が、構面部分12と柱3,4との固定度よりも大きくなるように接合することが好ましい。
本発明における固定度とは、下記式(1)
固定度=釘またはビス1本あたりの1面せん断降伏耐力(Py)×接合に要する釘またはビスの本数 (1)
により算出することができる。
In order to apply such a structure, it is preferable to join such that the degree of fixation between the reinforcing portion 11 and the beam 5 is greater than the degree of fixation between the framing portion 12 and the columns 3 and 4.
The degree of fixation in the present invention is defined by the following formula (1).
Degree of fixation = Single-plane shear yield strength per nail or screw (Py) x Number of nails or screws required for joining (1)
Can be calculated by

釘またはビスの1面せん断降伏耐力(Py)は、枠(柱3,4および梁5)の材質、面材10の材質、および、釘20またはビス21の打ち込み長さの条件によって異なる。
釘またはビスの1本あたりの1面せん断降伏耐力(Py)は、式(2):
1面せん断降伏耐力Py=N×C×Fe1×d×t (2)
で計算することができる。ここで、
N:釘またはビスの打ち方に応じた低減係数(平打ちである場合、N=1)
el:側材(面材)のめりこみの終局強度(N/mm

Figure 2019214878

d:釘またはビスの径(mm)
t:側材の厚さ(mm)
C:式(3)による数値
Figure 2019214878
ここで、
β:主材と側材の比(Fe2/Fe1)、ただしFe2は主材のめり込みの終局強度(N/mm
My:釘またはビスの曲げ降伏モーメント(N/mm)
である。 The one-plane shear yield strength (Py) of the nail or screw differs depending on the material of the frame (the columns 3, 4 and the beam 5), the material of the face material 10, and the conditions for the nail 20 or screw 21 driving length.
The one-plane shear yield strength (Py) per nail or screw is given by equation (2):
Single-plane shear yield strength Py = N × C × F e1 × d × t (2)
Can be calculated by here,
N: reduction coefficient according to nail or screw driving method (N = 1 when flat driving)
F el : Ultimate strength of indentation of side material (face material) (N / mm 2 )
Figure 2019214878

d: Nail or screw diameter (mm)
t: thickness of side material (mm)
C: Numerical value according to equation (3)
Figure 2019214878
here,
β: ratio of main material to side material (F e2 / F e1 ), where F e2 is the ultimate strength of indentation of the main material (N / mm 2 )
My: Bending yield moment of nail or screw (N / mm)
It is.

なお、補強部分11と構面部分12それぞれの接合に用いる釘20またはビス21等の素材、形状、長さ、打込み条件等が同一であれば、単純に釘20またはビス21の本数の対比によって固定度の大小を確認できる。
すなわち、上述したように、補強部分11を梁5に固定する釘20またはビス21の本数は、構面部分12を柱3,4に固定する釘20の本数よりも多いことが好ましい。
If the materials, shapes, lengths, driving conditions, etc. of the nails 20 or screws 21 used for joining the reinforcing portion 11 and the construction surface portion 12 are the same, the number of nails 20 or screws 21 is simply compared. The magnitude of the degree of fixation can be confirmed.
That is, as described above, it is preferable that the number of the nails 20 or the screws 21 for fixing the reinforcing portion 11 to the beam 5 is larger than the number of the nails 20 for fixing the face portion 12 to the columns 3 and 4.

そして、このような耐力壁1は、
面材の補強部分11と構面部分12との間に面材割れ誘発目地として溝加工を施す工程と、
前記補強部分11を前記梁5に少なくとも釘またはビス21により固定する工程と、
前記開口6を塞ぐように、前記構面部分12を前記土台2、前記梁5および前記一対の柱3,4に釘20により固定する工程と、により施工される。
先に面材を打ち付けた後に、溝加工をしても構わない。
And such a load-bearing wall 1
A step of forming a groove between the reinforcing part 11 and the structural part 12 of the surface material as a surface material crack-inducing joint;
Fixing the reinforcing portion 11 to the beam 5 with at least a nail or a screw 21;
Fixing the structural surface portion 12 to the base 2, the beam 5, and the pair of columns 3, 4 with a nail 20 so as to close the opening 6.
After hitting the face material first, the groove processing may be performed.

さらに、耐力壁1は、つぎのような施工方法により施工されることもできる。図4は、本発明の耐力壁構成パネルを用いた施工方法の一例を模式的に示す図である。
すなわち、左右一対の柱3,4と、該一対の柱上部で該一対の柱間に横架させた梁5とで三方が囲まれた矩形状の開口6に面材10が取り付けられた耐力壁構成パネル30を、土台2上に取り付ける、木造軸組建築物の耐力壁の施工方法であって、
柱3,4と梁5を固定する工程と、
面材10を、固定された柱3,4および梁5とで三方が囲まれた矩形状の開口6に、少なくとも釘20またはビス21で取り付ける工程と、
面材10の補強部分11と構面部分12との間に面材割れ誘発目地として溝加工を施す工程と、
土台2に、柱3,4の下端部を取り付け、面材10の構面部分12を少なくとも釘20またはビス21で取り付ける工程と、
を有する。
Further, the load-bearing wall 1 can be constructed by the following construction method. Drawing 4 is a figure showing typically an example of the construction method using the load bearing wall constituent panel of the present invention.
That is, the bearing strength in which the face material 10 is attached to the rectangular opening 6 surrounded on three sides by the pair of left and right columns 3 and 4 and the beam 5 laid between the pair of columns above the pair of columns. A method for constructing a load-bearing wall of a wooden frame building, wherein the wall configuration panel 30 is mounted on the base 2,
Fixing the columns 3, 4 and the beam 5,
Attaching the face material 10 to at least a nail 20 or a screw 21 in the rectangular opening 6 surrounded on three sides by the fixed pillars 3, 4 and the beam 5;
A step of forming a groove between the reinforcing portion 11 and the structural portion 12 of the face material 10 as a face material crack inducing joint;
Attaching the lower ends of the columns 3 and 4 to the base 2 and attaching the face portion 12 of the face material 10 with at least a nail 20 or a screw 21;
Have

この耐力壁の施工方法では、耐力壁構成パネル30の製造を工場で行い、土台2に耐力壁構成パネル30を取り付ける工程を現場で行うことが好ましい。これにより現場での作業を簡略化することができる。
具体的には、柱3,4と梁5を固定する工程と、面材10を、固定された柱3,4および梁5とで囲まれる矩形状の開口6に、少なくとも釘20またはビス21で取り付ける工程と、面材10の補強部分11と構面部分12との間に面材割れ誘発目地として溝加工を施す工程とを、工場で行い耐力壁構成パネル30を製造する。
そして耐力壁構成パネル30は、左右一対の柱3,4と、該一対の柱上部で該一対の柱間に横架させた梁5とで三方を囲まれた矩形状の開口6に、釘20またはビス21で面材10が取り付けられてなる。
現場では、土台2に、耐力壁構成パネル30の柱3,4の下端部を取り付け、面材10の構面部分12を釘20またはビス21で取り付ける。
面材10を打ち付ける前に、溝加工をしても構わない。
In this method for constructing a load-bearing wall, it is preferable that the load-bearing wall forming panel 30 be manufactured in a factory and the step of attaching the load-bearing wall forming panel 30 to the base 2 be performed on site. Thereby, the work on site can be simplified.
Specifically, the step of fixing the pillars 3 and 4 and the beam 5 and the face material 10 are inserted into the rectangular opening 6 surrounded by the fixed columns 3 and 4 and the beam 5 by at least a nail 20 or a screw 21. At the factory, the step of attaching the grooved portion and the step of forming a groove between the reinforcing portion 11 and the surface portion 12 of the face material 10 as a face material crack inducing joint are performed at the factory, and the load-bearing wall constituting panel 30 is manufactured.
The load-bearing wall forming panel 30 has a nail formed in a rectangular opening 6 surrounded on three sides by a pair of left and right columns 3 and 4 and a beam 5 laid between the pair of columns above the pair of columns. The face material 10 is attached with 20 or screws 21.
At the site, the lower ends of the columns 3 and 4 of the load-bearing wall forming panel 30 are attached to the base 2, and the face portion 12 of the face material 10 is attached with nails 20 or screws 21.
Before hitting the face material 10, a groove may be formed.

以下、先行技術文献と、本発明との違いについて説明する。
先行文献記載の壁構造に対し、本発明の耐力壁では、土台部分に複数列の釘またはビスを留めていない。すなわち面材の一体化を狙ったものではない。本発明の耐力壁では、溝破壊前は補強した釘またはビスのせん断耐力が耐力向上に寄与した強度型の耐力壁であるが、溝が破壊した後は、構面材の回転を補強材の小口の圧縮で回転を拘束する、靭性型の耐力壁となる。強度型と靭性型両方の性能を持ち合わせた耐力壁であるところが文献2,3に記載の耐力壁とは異なる。
溝を設けることで、意図的に破壊場所を指定しているところは文献4と同じであるが、文献4に記載の構造は、鉄筋(RC)造でのみ利用できる工法であり、木造では不可能である。切り込み部が破壊された後、残った壁鉄筋が水平方向のせん断変形することで力を逃がす効果を狙っているが、開発品は補強部の面材が構面面材の回転を面材小口の圧縮で回転を拘束する。
Hereinafter, the difference between the prior art document and the present invention will be described.
In contrast to the wall structure described in the prior art, the load-bearing wall of the present invention does not fasten a plurality of rows of nails or screws to the base portion. That is, it is not intended to integrate face materials. The load-bearing wall of the present invention is a strength-type load-bearing wall in which the shear strength of the reinforced nail or screw contributes to the improvement of the load resistance before the groove is broken, but after the groove is broken, the rotation of the structural member is performed by the reinforcing member. It becomes a tough type load-bearing wall that restrains rotation by the compression of the forehead. It differs from the bearing walls described in References 2 and 3 in that the bearing wall has both the strength type and the toughness type performance.
It is the same as in Reference 4 that the destruction site is designated intentionally by providing a groove, but the structure described in Reference 4 is a construction method that can be used only for steel bars (RC), and not for wooden structures. It is possible. After the notch is destroyed, the remaining wall reinforcement is deformed in the horizontal direction to release the force by shearing, but in the newly developed product, the reinforcement of the reinforcement uses the rotation of the construction surface to reduce the surface material. Constrains rotation by compression.

以下、本発明の効果を確認するために行った実施例および比較例について説明する。
実施例として、図1に示したような本発明の耐力壁と、比較例として、図9および特願2016‐134940号に示したような従来の耐力壁について、鉛直構面の面内せん断試験を行い、せん断変位とせん断力との関係について測定し評価した。
面内せん断試験は「木造軸組工法住宅の許容応力度設計2008年版」および「木造耐力壁およびその倍率の試験・評価業務方法書」における試験体の設置方法(図5)に準拠して行った。
本試験で行った面内せん断試験における試験体の設置方法を図6に示す。
試験体の構成:柱、土台、間柱および梁の軸組並びに面材を想定した部材で構成する。
試験体の寸法:幅 柱芯〜柱芯の寸法で1,82m、高さ 土台下端〜梁上端の寸法で2.77m
梁の断面寸法は105×240mm、柱および土台の断面寸法は105×105mm、継手間柱の断面寸法は45×90mm
木材の樹種:梁に赤松集成、柱に杉集成、土台に米ヒバ集成、間柱は米松
面材の種類:構造用合板12mm
試験体数:3体以上
試験体は柱脚固定式により設置し、柱頭・柱脚の仕口は以下のとおりとした。
(株)カネシン製 プレセッターSU PZ−HDP20で緊結した(短ほぞ差し十N90釘2本打ち、引き寄せ金物締めと同等)。
Hereinafter, examples and comparative examples performed to confirm the effects of the present invention will be described.
As an example, an in-plane shear test of a vertical bearing surface was performed on a load-bearing wall of the present invention as shown in FIG. 1 and a conventional load-bearing wall as shown in FIG. 9 and Japanese Patent Application No. 2016-134940 as a comparative example. The relationship between shear displacement and shear force was measured and evaluated.
The in-plane shear test was performed in accordance with the installation method for test specimens in the “Permissible Stress Design for Wooden Framed Housing 2008 Edition” and the “Testing and Evaluation Work Method for Wooden Shear Walls and Magnification” (Fig. 5). Was.
FIG. 6 shows a method of installing a test body in the in-plane shear test performed in this test.
Configuration of test body: It is composed of a member that assumes a frame set of pillars, bases, studs and beams, and face materials.
Specimen dimensions: width 1,82 m in the dimension from pillar core to pillar core, height 2.77 m in dimension from bottom of base to top of beam
The cross-sectional dimension of the beam is 105 × 240 mm, the cross-sectional dimension of the column and base is 105 × 105 mm, and the cross-sectional dimension of the joint stud is 45 × 90 mm
Wood species: Akamatsu glue on the beam, cedar glue on the pillar, rice hiba glue on the base, studs on the rice pine face wood Type: Structural plywood 12mm
Number of test specimens: 3 or more The test specimens were installed by fixed pedestals, and the connections between the capitals and pedestals were as follows.
Tightened with Kanesin's Presetter SU PZ-HDP20 (short tenon ten N90 nails, equivalent to pulling hardware).

実施例として、図1に示したような本発明の耐力壁を試験台に設置した。なお、実施例において、割れ誘発目地の溝幅は3mmとした。
耐力壁の設置においては、図4に示すように、柱と梁を固定する工程と、面材を、固定された柱および梁とで三方が囲まれた矩形状の開口に、少なくとも釘またはビスで取り付ける工程と、面材の補強部分と構面部分との間に面材割れ誘発目地として溝加工を施す工程とを、あらかじめ工場で行い、耐力壁構成パネルを製造した。
耐力壁構成パネルは、左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで三方が囲まれた矩形状の開口に面材が取り付けられてなる。
この耐力壁構成パネルの柱の下端部を土台に取り付け、面材の構面部分を少なくとも釘またはビスで取り付けた。
As an example, a load-bearing wall of the present invention as shown in FIG. 1 was installed on a test table. In the examples, the groove width of the crack-inducing joint was 3 mm.
In the installation of the load-bearing wall, as shown in FIG. 4, the step of fixing the column and the beam and the face material are inserted into at least a nail or a screw in a rectangular opening surrounded on three sides by the fixed column and the beam. And a step of forming a groove between the reinforced portion and the structural portion of the surface material as a joint for inducing surface material cracking was performed in a factory in advance to manufacture a load-bearing wall configuration panel.
The load-bearing wall forming panel is formed by attaching a face material to a rectangular opening surrounded on three sides by a pair of left and right columns and a beam laid between the pair of columns above the pair of columns.
The lower end of the column of the load-bearing wall constituting panel was attached to the base, and the face portion of the face material was attached with at least nails or screws.

比較例1として、図9に示したような従来の耐力壁とを試験体とし試験台に設置した。
また、比較例2として、特願2016‐134940号に記載の耐力壁を試験体とし試験台に設置した。すなわち、比較例2の耐力壁では、補強材が上下に配され、構面材とは別体をなす面材で構成されている。上部補強材と構面材との隙間は1mmとした。
As Comparative Example 1, a conventional load-bearing wall as shown in FIG. 9 was used as a test body and installed on a test stand.
In addition, as Comparative Example 2, a load-bearing wall described in Japanese Patent Application No. 2016-134940 was used as a test body and installed on a test stand. That is, in the load-bearing wall of Comparative Example 2, the reinforcing material is disposed vertically, and is made of a surface material that is separate from the structural material. The gap between the upper reinforcing member and the structural member was 1 mm.

下部の土台を固定し、上部の梁を横に押し引きして耐力を求めた。初めは押し引き(3回ずつ繰返し)の幅を小さく、徐々に幅を大きくして行き、所定の所まで行くと最後は大きく引っ張って終了する。変位(動く幅)はせん断変形角で決められており、rad(ラジアン)で表される。柱脚固定式の場合、繰返しは1/450、1/300、1/200、1/150、1/100、1/75、1/50radの正負交換時に行うこととされている。その後は、繰り返しはせずに引き続け、荷重が最大荷重の8割まで低下するか、しない場合は1/15radに達するまで変形させて試験を終了した。   The lower base was fixed, and the upper beam was pushed and pulled laterally to determine the proof stress. At first, the width of the push-pull (repeated three times) is reduced, and the width is gradually increased. The displacement (moving width) is determined by the shear deformation angle and is represented by rad (radian). In the case of the fixed column base type, the repetition is performed at the time of 1/450, 1/300, 1/200, 1/150, 1/100, 1/75, and 1/50 rad exchange. Thereafter, the test was continued without repetition, and the load was reduced to 80% of the maximum load, or if not, deformed until reaching 1/15 rad, and the test was terminated.

実施例の耐力壁と、比較例1,2の耐力壁について、試験結果からせん断変位とせん断力との関係を単位長さ(1P=910mm)あたりの骨格曲線にモデル化したものをそれぞれ図7、図8に示す。
初期の段階では、水平力を受けると実施例、比較例とも構面材を固定している釘のせん断耐力で水平力を負担し、せん断変位の増加に比例して、耐力壁のせん断耐力も増加していく。
層間変形角1/150radまでの比較例(図8)では、比較例2では、材と構面材との間に隙間があるため、補強効果発揮までにブランクがあり、せん断変位が18mm(層間変形角1/150rad)を過ぎたところで、初めて補強効果が発揮されている。これに対し、本発明では変位発生開始から補強効果が発揮されていることがわかる。
For the load-bearing wall of the example and the load-bearing walls of Comparative Examples 1 and 2, the relationship between the shear displacement and the shear force is modeled into a skeleton curve per unit length (1P = 910 mm) from the test results, respectively, as shown in FIG. , Shown in FIG.
In the initial stage, when the horizontal force is applied, both the working example and the comparative example bear the horizontal force with the shear strength of the nail fixing the structural member, and the shear strength of the load-bearing wall increases in proportion to the increase in the shear displacement. Will increase.
In the comparative example (FIG. 8) up to the interlayer deformation angle of 1/150 rad, in Comparative Example 2, there was a gap between the material and the structural member, so there was a blank before the reinforcing effect was exhibited, and the shear displacement was 18 mm (interlayer). After a deformation angle of 1/150 rad), the reinforcing effect is exhibited for the first time. On the other hand, in the present invention, it can be seen that the reinforcing effect is exhibited from the start of displacement generation.

層間変形角1/150radのせん断耐力を比較すると、比較例1は12.0kN、比較例2は12.3kNであるのに対し、本発明の実施例は15.66kNと、比較例1の1.30倍、比較例2の1.27倍の耐力を有することがわかる。
破壊までの比較例(図7)では、本発明はせん断変位が75mmを超えるとせん断変位に対するせん断耐力が徐々に低下している。これは、せん断変位が増えるにつれて構面部分が回転を始め、面材が割れ誘発目地で亀裂が入り、補強部分と構面部分に分かれ、補強部分に打たれた多数の釘のせん断耐力が直接構面部分に伝わらなくなり、構面部分の釘の接合部の緩みが発生し始めているためと考えられる。
When the shear strength at an interlayer deformation angle of 1/150 rad is compared, Comparative Example 1 is 12.0 kN and Comparative Example 2 is 12.3 kN, whereas the Example of the present invention is 15.66 kN and 1 of Comparative Example 1 It can be seen that it has a yield strength of .30 times and 1.27 times that of Comparative Example 2.
In the comparative example (FIG. 7) up to the fracture, in the present invention, when the shear displacement exceeds 75 mm, the shear strength against the shear displacement gradually decreases. This is due to the fact that as the shear displacement increases, the surface starts to rotate, the surface material cracks at the joint that induces cracks, splits into the reinforcing part and the structural part, and the shear strength of many nails struck at the reinforcing part directly It is considered that the transmission is not transmitted to the surface portion, and loosening of the joint portion of the nail on the surface portion has begun to occur.

比較例2はせん断変位が約125mmのところで耐力壁のせん断耐力が最大となり、その後は構面材が補強部分の小口に押され面外座屈し耐力が急激に低下している。比較例2は構面部分を上下に挟むように補強材を配している為、構面材の変形が面外方向に向かって起こりやすく、面外座屈のような急激な耐力低下を起こす脆性的な破壊を起こすが、本発明の補強部分は構面部分の上部にしか配されていない為、変形が面内方向(下部)に起こりやすく、徐々に構面部分の釘の接合部の緩みが発生し始めているためと考えられる。   In Comparative Example 2, when the shear displacement was about 125 mm, the shear strength of the load-bearing wall was maximized, and thereafter, the structural member was pushed by the small edge of the reinforcing portion and buckled out of the plane, and the strength decreased rapidly. In Comparative Example 2, since the reinforcing material is arranged so as to sandwich the structural surface vertically, deformation of the structural material is likely to occur in an out-of-plane direction, causing a sudden decrease in proof stress such as out-of-plane buckling. Although brittle fracture occurs, since the reinforcing portion of the present invention is arranged only at the upper part of the structural part, deformation is likely to occur in the in-plane direction (lower part), and gradually the joint of the nail of the structural part is formed. It is considered that loosening has begun to occur.

このように、本発明の耐力壁では、従来の耐力壁よりも初期のせん断耐力が向上し、最大耐力を接合部の許容耐力以下に抑えることが確認された。高耐力の壁が実現されることで、短い壁の長さで大開口の間取りを演出できるようになる。   As described above, it was confirmed that the load-bearing wall of the present invention has an improved initial shear strength as compared with the conventional load-bearing wall, and suppresses the maximum strength to be equal to or less than the allowable strength of the joint. The realization of a high-bearing wall makes it possible to produce a large opening layout with a short wall length.

以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば上述した説明では、面材を柱および横架材の室外側に取り付けた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、面材を室内側に取り付けた場合であっても適用可能である。
The embodiments of the present invention have been described above. However, the present invention is not limited to the embodiments, and can be appropriately changed without departing from the spirit of the invention.
For example, in the above description, the case where the face material is attached to the outdoor side of the pillar and the horizontal member has been described as an example, but the present invention is not limited to this, and the face material is attached to the indoor side. It is applicable even in the case.

本発明による耐力壁を用いることで、壁構面の合板回転による釘抜けを抑制し、せん断耐力が向上したものとなり、木造建築物における合板張り大壁耐力壁として広く利用することができる。   By using the load-bearing wall according to the present invention, nail pull-out due to the rotation of the plywood on the wall surface is suppressed, and the shear strength is improved, so that the wall can be widely used as a large plywood-bearing wall in a wooden building.

1 耐力壁
2 土台
3,4 柱
5 梁
6 開口
8 間柱
10 面材
11 補強部分
12 構面部分
13 溝(割れ誘発目地)
20 釘
21 釘またはビス
30 耐力壁構成パネル
DESCRIPTION OF SYMBOLS 1 Bearing wall 2 Base 3, 4 Column 5 Beam 6 Opening 8 Stud 10 Surface material 11 Reinforcement part 12 Structural part 13 Groove (Crack-induced joint)
Reference Signs List 20 nail 21 nail or screw 30 load-bearing wall construction panel

本発明者らは、上記目的を達成するために鋭意検討した結果、一枚の面材を、壁構面に釘打ちする構面部分と、梁表面に釘打ちをする補強部分とに区分する為、割れ誘発目地として溝を施工することで、建物が水平力を受け柱が傾いた際に補強部分に打たれた多数の釘のせん断耐力が構面部分の回転を抑え早期に補強効果を発揮し、変位の増加に伴い徐々に壁構面部分に回転が生じると、面材の溝に亀裂が入り、構面部分と補強部分に分かれ、補強部分の釘のせん断耐力が構面部分に直接伝わらなくなることで、壁の最大耐力を接合部金物の許容耐力以下に抑えることができる。面材が分かれ構面部分は回転を始めるが、補強部分の小口に接触して構面部分の回転変形が抑えられることにより構面部分と釘の接合部の緩みを抑えることができ、せん断耐力を維持・向上することができることに想到し、本発明を完成させるに至った。すなわち、本発明は以下のとおりである。
[1]
土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる、木造軸組建築物の耐力壁であって、
前記面材は、前記梁に釘またはビスにより固定された補強部分と、該補強部分の下側に該補強部分と一体的に配され、前記開口を塞ぐように、前記土台、前記梁および前記一対の柱に釘により固定された構面部分とを有し、前記補強部分と前記構面部分との間に、割れ誘発目地として溝が設けられていることを特徴とする、耐力壁。
[2]
前記溝の幅が3mm以下である、[1]に記載の耐力壁。
[3]
前記面材は室外側に取り付けられる、[1]または[2]に記載の耐力壁。
[4]
前記溝の深さが、前記面材厚みの1/3以上である、[1]〜[3]のいずれかに記載の耐力壁。
[5]
下記式(1):
固定度=釘またはビス1本あたりの1面せん断降伏耐力(Py)×接合に要する釘またはビスの本数 (1)
で規定される固定度において、
前記補強部分と梁との固定度は、前記構面部分と柱との固定度よりも大きい、[1]〜[4]のいずれかに記載の耐力壁。
[6]
前記補強部分は、さらに接着剤により前記梁に固定されている、[1]〜[5]のいずれかに記載の耐力壁。
[7]
前記一対の柱の間に、該柱と略平行に設けられた1本または複数本の間柱を有し、前記構面部分は、該間柱に釘により固定されている、[1]〜[6]のいずれかに記載の耐力壁。
[8]
土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材を取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記面材の補強部分と該補強部分と一体的に配された構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記補強部分を前記梁に少なくとも釘またはビスにより固定する工程と、
前記開口を塞ぐように、前記構面部分を前記土台、前記梁および前記一対の柱に釘により固定する工程と、を有することを特徴とする、耐力壁の施工方法。
[9]
左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる耐力壁構成パネルを、土台上に取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記柱と前記梁とを固定する工程と、
前記面材を、固定された前記柱および前記梁とで囲まれる矩形状の開口に、少なくとも釘またはビスで取り付ける工程と、
前記面材の補強部分と該補強部分と一体的に配された構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記土台に、前記柱の下端部を取り付け、前記面材の構面部分を少なくとも釘またはビスで取り付ける工程と、
を有することを特徴とする、耐力壁の施工方法。
[10]
前記耐力壁構成パネルの製造を工場で行い、前記土台に前記パネルを取り付ける工程を現場で行うことを特徴とする、[9]に記載の耐力壁の施工方法。
[11]
[10]に記載の施工方法に用いられる前記耐力壁構成パネルであって、左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで三方が囲まれた矩形状の開口に、面材が少なくとも釘またはビスで取り付けられてなる、耐力壁構成パネル。
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have classified one sheet material into a surface portion for nailing a wall surface and a reinforcing portion for nailing a beam surface. Therefore, by constructing a groove as a crack-inducing joint, the shear strength of a large number of nails hit on the reinforcing part when the column is inclined due to the horizontal force of the building suppresses the rotation of the structural part and the reinforcing effect at an early stage When the wall surface gradually rotates as the displacement increases, the groove of the surface material cracks, and the surface and the reinforcement are separated. By not being transmitted directly, the maximum strength of the wall can be suppressed below the allowable strength of the joint hardware. The face material is divided and the face starts to rotate, but it contacts the fore edge of the reinforcement part and suppresses the rotational deformation of the face part, so the loosening of the joint part between the face part and the nail can be suppressed, and the shear strength Have been conceived that can be maintained and improved, and the present invention has been completed. That is, the present invention is as follows.
[1]
A surface material is attached to a rectangular opening surrounded by a base, a pair of left and right columns that are spaced apart from the base, and a beam laid between the pair of columns above the pair of columns. , A bearing wall of a wooden framed building,
The face material is a reinforcing portion fixed to the beam by a nail or a screw, and the reinforcing portion is disposed integrally with the reinforcing portion below the reinforcing portion, so as to close the opening, the base, the beam, and the A load-bearing wall comprising: a pair of pillars having a surface portion fixed by nails; and a groove provided between the reinforcing portion and the surface portion as a crack-inducing joint.
[2]
The load-bearing wall according to [1], wherein the width of the groove is 3 mm or less.
[3]
The load-bearing wall according to [1] or [2], wherein the face material is attached to an outdoor side.
[4]
The load-bearing wall according to any one of [1] to [3], wherein the depth of the groove is not less than 1/3 of the thickness of the face material.
[5]
The following equation (1):
Degree of fixation = Single-plane shear yield strength per nail or screw (Py) x Number of nails or screws required for joining (1)
In the fixed degree specified by
The load-bearing wall according to any one of [1] to [4], wherein the degree of fixation between the reinforcing portion and the beam is greater than the degree of fixation between the structural portion and the column.
[6]
The load-bearing wall according to any one of [1] to [5], wherein the reinforcing portion is further fixed to the beam with an adhesive.
[7]
[1] to [6], between the pair of pillars, one or more pillars provided substantially parallel to the pillars, and the structural surface portion is fixed to the pillars with nails. ] The load-bearing wall according to any one of [1] to [4].
[8]
A base, a pair of left and right columns that are erected at an interval on the base, and a face material is attached to a rectangular opening surrounded by a beam laid between the pair of columns at the top of the pair of columns. A method of constructing a load-bearing wall of a wooden frame building,
A step of performing groove processing as a surface material crack-inducing joint between a reinforcing portion of the surface material and a surface portion integrally disposed with the reinforcing portion,
Fixing the reinforcing portion to the beam with at least a nail or a screw;
Fixing the structural surface portion to the base, the beam, and the pair of pillars with a nail so as to close the opening.
[9]
A pair of left and right pillars and a load-bearing wall configuration panel in which a surface material is attached to a rectangular opening surrounded by a beam laid between the pair of pillars above the pair of pillars is mounted on a base, A method of constructing a load-bearing wall of a wooden frame building,
Fixing the column and the beam;
Attaching the face material to a rectangular opening surrounded by the fixed columns and the fixed beams with at least nails or screws,
A step of performing groove processing as a surface material crack-inducing joint between a reinforcing portion of the surface material and a surface portion integrally disposed with the reinforcing portion,
A step of attaching the lower end of the pillar to the base, and attaching the face portion of the face material with at least a nail or a screw;
A method for constructing a load-bearing wall, comprising:
[10]
The method for constructing a load-bearing wall according to [9], wherein the load-bearing wall forming panel is manufactured at a factory, and a step of attaching the panel to the base is performed on site.
[11]
The load-bearing wall configuration panel used in the construction method according to [10], wherein three sides are surrounded by a pair of left and right columns and a beam spanned between the pair of columns at the top of the pair of columns. A load-bearing wall configuration panel comprising a rectangular opening and a face material attached thereto with at least a nail or a screw.

Claims (11)

土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる、木造軸組建築物の耐力壁であって、
前記面材は、前記梁に釘またはビスにより固定された補強部分と、該補強部分の下側に該補強部分と一体的に配され、前記開口を塞ぐように、前記土台、前記梁および前記一対の柱に釘により固定された構面部分とを有し、
前記補強部分と前記構面部分との間に、割れ誘発目地として溝が設けられていることを特徴とする、耐力壁。
A surface material is attached to a rectangular opening surrounded by a base, a pair of left and right columns that are spaced apart from the base, and a beam laid between the pair of columns above the pair of columns. , A bearing wall of a wooden framed building,
The face material is a reinforcing portion fixed to the beam by a nail or a screw, and the reinforcing portion is disposed integrally with the reinforcing portion below the reinforcing portion, so as to close the opening, the base, the beam, and the Having a face portion fixed to the pair of pillars with nails,
A load-bearing wall, wherein a groove is provided between the reinforcing portion and the structural surface portion as a crack-inducing joint.
前記溝の幅が3mm以下である、請求項1に記載の耐力壁。   The load-bearing wall according to claim 1, wherein the width of the groove is 3 mm or less. 前記面材は室外側に取り付けられる、請求項1または2に記載の耐力壁。   The load-bearing wall according to claim 1, wherein the face material is attached to an outdoor side. 前記溝の深さが、前記面材厚みの1/3以上である、請求項1〜3のいずれか一項に記載の耐力壁。   The load-bearing wall according to any one of claims 1 to 3, wherein the depth of the groove is not less than 1/3 of the thickness of the face material. 下記式(1):
固定度=釘またはビス1本あたりの1面せん断降伏耐力(Py)×接合に要する釘またはビスの本数 (1)
で規定される固定度において、
前記補強部分と梁との固定度は、前記構面部分と柱との固定度よりも大きい、請求項1〜4のいずれか一項に記載の耐力壁。
The following equation (1):
Degree of fixation = Single-plane shear yield strength per nail or screw (Py) x Number of nails or screws required for joining (1)
In the fixed degree specified by
The load-bearing wall according to claim 1, wherein a degree of fixation between the reinforcing portion and the beam is greater than a degree of fixation between the structural portion and the column.
前記補強部分は、さらに接着剤により前記梁に固定されている、請求項1〜5のいずれか一項に記載の耐力壁。   The load-bearing wall according to any one of claims 1 to 5, wherein the reinforcing portion is further fixed to the beam with an adhesive. 前記一対の柱の間に、該柱と略平行に設けられた1本または複数本の間柱を有し、前記構面部分は、該間柱に釘により固定されている、請求項1〜6のいずれか一項に記載の耐力壁。   7. The method according to claim 1, further comprising one or a plurality of studs provided substantially parallel to the pillars between the pair of pillars, wherein the structural surface portion is fixed to the studs with nails. 8. A load-bearing wall according to any one of the preceding claims. 土台と、該土台に間隔をあけて立てられた左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材を取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記面材の補強部分と構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記補強部分を前記梁に少なくとも釘またはビスにより固定する工程と、
前記開口を塞ぐように、前記構面部分を前記土台、前記梁および前記一対の柱に釘により固定する工程と、
を有することを特徴とする、耐力壁の施工方法。
A base, a pair of left and right columns that are erected at an interval on the base, and a face material is attached to a rectangular opening surrounded by a beam laid between the pair of columns at the top of the pair of columns. A method of constructing a load-bearing wall of a wooden frame building,
A step of performing groove processing as a surface material crack-inducing joint between the reinforcing portion and the structural surface portion of the surface material,
Fixing the reinforcing portion to the beam with at least a nail or a screw;
Fixing the structure portion to the base, the beam and the pair of pillars with nails so as to close the opening;
A method for constructing a load-bearing wall, comprising:
左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで囲まれる矩形状の開口に面材が取り付けられてなる耐力壁構成パネルを、土台上に取り付ける、木造軸組建築物の耐力壁の施工方法であって、
前記柱と前記梁とを固定する工程と、
前記面材を、固定された前記柱および前記梁とで囲まれる矩形状の開口に、少なくとも釘またはビスで取り付ける工程と、
前記面材の補強部分と構面部分との間に面材割れ誘発目地として溝加工を施す工程と、
前記土台に、前記柱の下端部を取り付け、前記面材の構面部分を少なくとも釘またはビスで取り付ける工程と、
を有することを特徴とする、耐力壁の施工方法。
A pair of left and right pillars and a load-bearing wall configuration panel in which a surface material is attached to a rectangular opening surrounded by a beam laid between the pair of pillars above the pair of pillars is mounted on a base, A method of constructing a load-bearing wall of a wooden frame building,
Fixing the column and the beam;
Attaching the face material to a rectangular opening surrounded by the fixed columns and the fixed beams with at least nails or screws,
A step of performing groove processing as a surface material crack-inducing joint between the reinforcing portion and the structural surface portion of the surface material,
A step of attaching the lower end of the pillar to the base, and attaching the face portion of the face material with at least a nail or a screw;
A method for constructing a load-bearing wall, comprising:
前記耐力壁構成パネルの製造を工場で行い、前記土台に前記パネルを取り付ける工程を現場で行うことを特徴とする、請求項9に記載の耐力壁の施工方法。   The method for constructing a load-bearing wall according to claim 9, wherein the manufacturing of the load-bearing wall forming panel is performed in a factory, and the step of attaching the panel to the base is performed on site. 請求項10に記載の施工方法に用いられる前記耐力壁構成パネルであって、左右一対の柱と、該一対の柱上部で該一対の柱間に横架させた梁とで三方が囲まれた矩形状の開口に、面材が釘またはビスで取り付けられてなる、耐力壁構成パネル。   The load-bearing wall forming panel used in the construction method according to claim 10, wherein three sides are surrounded by a pair of left and right columns and a beam spanned between the pair of columns above the pair of columns. A load-bearing wall configuration panel in which a face material is attached to a rectangular opening with nails or screws.
JP2018112702A 2018-06-13 2018-06-13 Bearing wall and its construction method Active JP6454045B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112702A JP6454045B1 (en) 2018-06-13 2018-06-13 Bearing wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112702A JP6454045B1 (en) 2018-06-13 2018-06-13 Bearing wall and its construction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018233868A Division JP2019214923A (en) 2018-12-13 2018-12-13 Bearing wall and construction method thereof

Publications (2)

Publication Number Publication Date
JP6454045B1 JP6454045B1 (en) 2019-01-16
JP2019214878A true JP2019214878A (en) 2019-12-19

Family

ID=65020523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112702A Active JP6454045B1 (en) 2018-06-13 2018-06-13 Bearing wall and its construction method

Country Status (1)

Country Link
JP (1) JP6454045B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202112A (en) * 2011-03-25 2012-10-22 Nichiha Corp Structure for constructing exterior wall substrate
JP6770829B2 (en) * 2016-05-27 2020-10-21 パナソニック株式会社 Joining structure and joining method of building units and wall panels
JP2018003534A (en) * 2016-07-07 2018-01-11 旭化成建材株式会社 Bearing wall and construction method thereof

Also Published As

Publication number Publication date
JP6454045B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US7797907B2 (en) Lateral force resisting system
JP6503318B2 (en) Connected structure
JP2019214923A (en) Bearing wall and construction method thereof
JP2019065482A (en) Wooden bearing wall
JP7157475B2 (en) Load-bearing wall structure of wooden structure building and load-bearing wall construction method
JP2019214878A (en) Bearing wall and construction method thereof
JP2016169565A (en) In-plane shear bearing force structure, and roof structure, wall structure and floor structure having in-plane shear bearing force structure
JP6802086B2 (en) Bearing wall and its construction method
JPH11131590A (en) Brace metal fitting and fixing method
EP1609920A1 (en) Structural wall framework
JP2018003534A (en) Bearing wall and construction method thereof
WO2020158525A1 (en) Installation construction method for wall panels
JP3234545U (en) A joining method that achieves both initial rigidity and toughness of the wood joint using split reinforcement technology using continuous fibers of the main wooden structural members.
WO2022153848A1 (en) Bearing panel and skeleton structure
JP7298158B2 (en) Lower end structure of bearing wall
JP3962647B2 (en) Wall structure
JP7041470B2 (en) Bearing wall structure of wooden building and its construction method
JP6768358B2 (en) Slab structure
JP6378732B2 (en) Seismic panel
JPH10338968A (en) Joint metal for woody framework member
JP2020111916A (en) Lower end structure of bearing wall
JP2023040022A (en) CLT panel
JP2024024423A (en) Load bearing wall panel connection structure
JP3146648U (en) Load-bearing wall panels
JP2023072180A (en) Building plate material and fixing structure for building plate material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6454045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150