JP2019208301A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2019208301A
JP2019208301A JP2018101578A JP2018101578A JP2019208301A JP 2019208301 A JP2019208301 A JP 2019208301A JP 2018101578 A JP2018101578 A JP 2018101578A JP 2018101578 A JP2018101578 A JP 2018101578A JP 2019208301 A JP2019208301 A JP 2019208301A
Authority
JP
Japan
Prior art keywords
power
unit
foreign object
power receiving
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018101578A
Other languages
Japanese (ja)
Inventor
真吾 槌矢
Shingo Tsuchiya
真吾 槌矢
鎌田 誠二
Seiji Kamata
誠二 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2018101578A priority Critical patent/JP2019208301A/en
Publication of JP2019208301A publication Critical patent/JP2019208301A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

To prevent deterioration of charging efficiency when there is a change in dielectric constant due to ice and snow attached to a power receiving coil.SOLUTION: A power supply device has: a power reception unit that receives power from a power transmission unit in a non-contact manner in order to charge a battery mounted on a vehicle; a foreign matter detection unit that detects foreign matter between the power transmission unit and the power reception unit; and an ambient temperature sensor that measures the ambient temperature. When the foreign matter detection unit detects foreign matter, and the ambient temperature is equal to or lower than a prescribed value, power reception unit warming-up means warms up the power reception unit.SELECTED DRAWING: Figure 1

Description

本発明は、電源装置に関する。   The present invention relates to a power supply device.

従来から、車両外部の送電コイルから出力される電力を非接触で受電する受電コイルを車両に搭載し、この受電コイルにより受電された電力により車両のバッテリを充電する電源装置が知られている。   2. Description of the Related Art Conventionally, a power supply device is known in which a power receiving coil that receives power output from a power transmitting coil outside the vehicle in a non-contact manner is mounted on the vehicle, and the vehicle battery is charged with the power received by the power receiving coil.

上記電源装置において、受電コイルと送電コイルとの間の異物の有無を検知する異物検知センサやコイル近傍の温度を検出する温度センサ等の機器が受電コイルや送電コイルに近接して配設され得る。   In the power supply apparatus, devices such as a foreign matter detection sensor that detects the presence or absence of a foreign matter between the power receiving coil and the power transmission coil and a temperature sensor that detects a temperature in the vicinity of the coil can be disposed close to the power receiving coil or the power transmission coil. .

そのため、上記機器は、受電コイルおよび送電コイルの周囲に形成される磁界に曝され、誤動作する可能性がある。そのため、上記機器に対する磁界の影響を低減する必要がある。ただし、受電コイルに付着した氷雪等によって誘電率が変化した場合には上記機器に対する磁界の影響が変化するため、このような環境の変化があっても磁器に対する磁界の影響を効果的に低減することが必要である。   Therefore, the said apparatus is exposed to the magnetic field formed around a receiving coil and a power transmission coil, and may malfunction. Therefore, it is necessary to reduce the influence of the magnetic field on the device. However, if the dielectric constant changes due to ice or snow adhering to the power receiving coil, the influence of the magnetic field on the device changes, so even if there is such an environmental change, the influence of the magnetic field on the porcelain is effectively reduced. It is necessary.

そこで、特許文献1に記載の電源装置は、送電時の環境が変化しても上記機器に対する磁界の影響を効果的に低減することを目的として、送電コイルから受電コイルへの送電時に形成される第1磁界の上記機器への影響を抑制する第2磁界を生成するためのガードコイルと、受電コイルによる受電に伴ない誘起される電圧または電流の位相に基づいて、ガードコイルへ供給される電圧または電流の位相を制御する位相制御回路とを備える。   Therefore, the power supply device described in Patent Document 1 is formed at the time of power transmission from the power transmission coil to the power reception coil for the purpose of effectively reducing the influence of the magnetic field on the device even when the environment during power transmission changes. A guard coil for generating a second magnetic field that suppresses the influence of the first magnetic field on the device, and a voltage supplied to the guard coil based on a voltage or a phase of current induced by power reception by the power receiving coil Or a phase control circuit for controlling the phase of the current.

特開2015−180149号公報JP-A-2015-180149

しかしながら、上記特許文献1では、受電コイルに付着した氷雪によって変化する誘電率に対応するためにガードコイルへ供給される電圧または電流の位相を制御する位相制御回路を用いているが、誘電率の変化そのものを解消できないため、充電効率が低下してしまう虞がある。   However, in Patent Document 1, a phase control circuit that controls the phase of the voltage or current supplied to the guard coil is used in order to cope with the dielectric constant that changes due to ice and snow attached to the power receiving coil. Since the change itself cannot be resolved, there is a possibility that the charging efficiency may be reduced.

本発明は、このような事情に鑑みてなされたもので、その目的は、受電コイルに付着した氷雪によって誘電率の変化が起きた場合に、充電効率の低下を防止することである。   The present invention has been made in view of such circumstances, and an object thereof is to prevent a decrease in charging efficiency when a change in dielectric constant occurs due to ice and snow adhering to a power receiving coil.

本発明の一態様は、車両に搭載されたバッテリに充電するために、送電部から非接触で電力を受電する受電部と、前記送電部と前記受電部との間の異物を検知する異物検知部と、外気温を測定する外気温センサと、を備える電源装置であって、前記異物検知部で異物が検出され、且つ前記外気温が所定値以下の場合には、前記受電部を温める受電部暖機手段を備えることを特徴とする電源装置である。   In one embodiment of the present invention, in order to charge a battery mounted on a vehicle, a power receiving unit that receives power in a non-contact manner from a power transmitting unit, and a foreign object detection that detects a foreign object between the power transmitting unit and the power receiving unit And an outside air temperature sensor that measures the outside air temperature, and when the foreign object is detected by the foreign object detector and the outside air temperature is equal to or lower than a predetermined value, the power receiving unit warms the power receiving unit. It is a power supply device provided with a part warming-up means.

以上説明したように、本発明によれば、受電コイルに付着した氷雪によって誘電率の変化が起きた場合に、充電効率の低下を防止することができる。   As described above, according to the present invention, it is possible to prevent a decrease in charging efficiency when a change in dielectric constant occurs due to ice and snow adhering to the power receiving coil.

(a)が本発明の一実施形態に係る電源装置を備えた電力伝送システムAの概略構成の一例を示す図であり、(b)が本発明の一実施形態に係る電源装置2の動作を示すフローチャートである。(A) is a figure which shows an example of schematic structure of the electric power transmission system A provided with the power supply device which concerns on one Embodiment of this invention, (b) is operation | movement of the power supply device 2 which concerns on one Embodiment of this invention. It is a flowchart to show.

以下、本発明の一実施形態に係る電源装置を、図面を用いて説明する。   Hereinafter, a power supply device according to an embodiment of the present invention will be described with reference to the drawings.

図1(a)は、本発明の一実施形態に係る電源装置を備えた電力伝送システムAの概略構成の一例を示す図である。本実施形態に係る電力伝送システムAは、車両Cに搭載されたバッテリを、車両Cの外部にある充電装置1の電力により非接触で充電するシステムである。車両Cは、電気自動車やハイブリッド車両である。   Fig.1 (a) is a figure which shows an example of schematic structure of the electric power transmission system A provided with the power supply device which concerns on one Embodiment of this invention. The power transmission system A according to the present embodiment is a system that charges a battery mounted on the vehicle C in a non-contact manner with the electric power of the charging device 1 outside the vehicle C. The vehicle C is an electric vehicle or a hybrid vehicle.

電力伝送システムAは、充電装置1及び電源装置2を備える。
充電装置1は、車両Cの外部に設置されている。充電装置1は、車両Cに搭載されている電源装置2と無線通信する第1の通信装置を備え、当該第1の通信装置により電源装置2と無線通信した場合には、電源装置2に電力を供給することで、電源装置2を外部充電する。
The power transmission system A includes a charging device 1 and a power supply device 2.
The charging device 1 is installed outside the vehicle C. The charging device 1 includes a first communication device that wirelessly communicates with the power supply device 2 mounted on the vehicle C. When the wireless communication with the power supply device 2 is performed by the first communication device, the charging device 1 supplies power to the power supply device 2. To charge the power supply 2 externally.

より具体的には、充電装置1は、充電器10及び送電部11を備える。
充電器10は、自宅や充電ステーションなどに設けられている。充電器10は、送電部11に接続されており、第1の通信装置で電源装置2と無線通信した場合には、送電部11に高周波の電力を供給する。
More specifically, the charging device 1 includes a charger 10 and a power transmission unit 11.
The charger 10 is provided at home or a charging station. The charger 10 is connected to the power transmission unit 11 and supplies high-frequency power to the power transmission unit 11 when the first communication device wirelessly communicates with the power supply device 2.

送電部11は、車両Cの外部に設置されている送電コイルであって、例えば、駐車場や充電ステーションなどの地面に埋設されている。   The power transmission unit 11 is a power transmission coil installed outside the vehicle C, and is embedded in the ground such as a parking lot or a charging station, for example.

電源装置2は、バッテリ21、インバータ22、モータ23、受電部24、異物検知部25、外気温センサ26、PTCヒータ27、流路28、ポンプ29、バルブ30、及びBMS31を備える。なお、PTCヒータ27、流路28及びBMS31は、本発明の「受電部暖機手段」の一例である。   The power supply device 2 includes a battery 21, an inverter 22, a motor 23, a power reception unit 24, a foreign matter detection unit 25, an outside air temperature sensor 26, a PTC heater 27, a flow path 28, a pump 29, a valve 30, and a BMS 31. The PTC heater 27, the flow path 28, and the BMS 31 are examples of the “power receiving unit warm-up unit” in the present invention.

バッテリ21は、車両Cに搭載されている。バッテリ21は、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることもできる。   The battery 21 is mounted on the vehicle C. The battery 21 can be a secondary battery such as a nickel metal hydride battery or a lithium ion battery. Further, an electric double layer capacitor (capacitor) can be used instead of the secondary battery.

インバータ22は、バッテリ21に充電されている直流電力を交流電力に変換して、モータ23に供給する。   The inverter 22 converts the DC power charged in the battery 21 into AC power and supplies the AC power to the motor 23.

モータ23は、車両Cが走行するための駆動源であって、インバータ22から供給される交流電力に基づいて回転駆動する。これにより、この回転力が車両Cの車輪に伝達され、車両Cは走行することができる。   The motor 23 is a drive source for the vehicle C to travel, and is driven to rotate based on AC power supplied from the inverter 22. Thereby, this rotational force is transmitted to the wheels of the vehicle C, and the vehicle C can travel.

受電部24は、車両Cに搭載された受電コイルであって、送電部11から非接触で電力を受電する。なお、送電部11から受電部24への非接触での給電方式は特に限定されないが、例えば、電磁誘導方式、電波受信方式や共鳴方式を用いることができる。   The power receiving unit 24 is a power receiving coil mounted on the vehicle C, and receives power from the power transmitting unit 11 in a contactless manner. Note that a non-contact power supply method from the power transmission unit 11 to the power reception unit 24 is not particularly limited. For example, an electromagnetic induction method, a radio wave reception method, and a resonance method can be used.

受電部24は、バッテリ21に電気的にされている。したがって、送電部11から受電部24に非接触で給電された電力は、不図示のインバータで直流に変換された後、バッテリ21に充電される。   The power receiving unit 24 is electrically connected to the battery 21. Therefore, the electric power supplied from the power transmission unit 11 to the power reception unit 24 in a non-contact manner is converted into a direct current by an unillustrated inverter and then charged to the battery 21.

異物検知部25は、送電部11と受電部24との間の異物を検知する。この異物とは、例えば、受電部24に付着した雪や氷である。例えば、異物検知部25は、異物から放出される赤外線を検知することによって異物の有無を検知する焦電素子である。ただし、異物検知部25は、焦電素子に限定されず、送電部11と受電部24との間の異物を検知できればどのような検知方法であってもよい。
異物検知部25は、送電部11と受電部24との間の異物の検知結果をBMS31に送信する。
The foreign object detection unit 25 detects a foreign object between the power transmission unit 11 and the power reception unit 24. This foreign material is, for example, snow or ice attached to the power receiving unit 24. For example, the foreign object detection unit 25 is a pyroelectric element that detects the presence or absence of a foreign object by detecting infrared rays emitted from the foreign object. However, the foreign object detection unit 25 is not limited to the pyroelectric element, and any detection method may be used as long as the foreign object between the power transmission unit 11 and the power reception unit 24 can be detected.
The foreign object detection unit 25 transmits the detection result of the foreign object between the power transmission unit 11 and the power reception unit 24 to the BMS 31.

外気温センサ26は、外気温Tを測定して、その測定した外気温TをBMS31に送信する。   The outside air temperature sensor 26 measures the outside air temperature T and transmits the measured outside air temperature T to the BMS 31.

PTCヒータ27は、バッテリ21を充電又は放電する場合に、バッテリ21の温度が所定温度よりも低い場合には、バッテリ21の暖機を行う装置である。より具体的には、PTCヒータ27は、クーラント液を所定温度以上に温め、その温めたクーラント液をバッテリ21のすぐ外側を通すことでバッテリ21の暖機を行う。   When the battery 21 is charged or discharged, the PTC heater 27 is a device that warms up the battery 21 when the temperature of the battery 21 is lower than a predetermined temperature. More specifically, the PTC heater 27 warms up the coolant by warming the coolant to a predetermined temperature or higher and passing the warmed coolant immediately outside the battery 21.

流路28は、PTCヒータ27で所定温度以上に温められたクーラント液を受電部24に供給するための流路である。   The flow path 28 is a flow path for supplying a coolant liquid heated to a predetermined temperature or higher by the PTC heater 27 to the power receiving unit 24.

ポンプ29は、上記クーラント液を受電部24に供給するための流路28に、PTCヒータ27で所定温度以上に温められたクーラント液を圧送する。このポンプ29は、BMS31により駆動が制御される。   The pump 29 pumps the coolant liquid heated to a predetermined temperature or higher by the PTC heater 27 to the flow path 28 for supplying the coolant liquid to the power receiving unit 24. The drive of the pump 29 is controlled by the BMS 31.

バルブ30は、流路28に設けられており、その流路28を開放又は閉塞することで、受電部24へのクーラント液の供給を制御する。具体的には、バルブ30は、BMS31の制御により開状態に制御された場合には、流路28を開放する。これにより、PTCヒータ27で所定温度以上に温められたクーラント液が受電部24に供給され、受電部24が温められる。一方、バルブ30は、BMS31の制御により閉状態に制御された場合には、流路28を閉塞する。これにより、受電部24へのクーラント液の供給が停止される。   The valve 30 is provided in the flow path 28, and the supply of the coolant liquid to the power receiving unit 24 is controlled by opening or closing the flow path 28. Specifically, when the valve 30 is controlled to be in the open state by the control of the BMS 31, the valve 30 is opened. As a result, the coolant liquid heated to a predetermined temperature or higher by the PTC heater 27 is supplied to the power receiving unit 24, and the power receiving unit 24 is warmed. On the other hand, when the valve 30 is controlled to be closed by the control of the BMS 31, the valve 30 is closed. Thereby, the supply of the coolant liquid to the power receiving unit 24 is stopped.

BMS(Battery Management System)31は、異物検知部25で異物が検出され、且つ外気温センサ26で測定された外気Tが所定値以上である場合には、受電部24を温める。より具体的には、BMS31は、異物検知部25で異物が検出され、且つ外気温センサ26で測定された外気Tが所定値以上である場合には、バルブ30を開状態に制御し、ポンプ29を駆動する。   A BMS (Battery Management System) 31 warms the power receiving unit 24 when a foreign object is detected by the foreign object detection unit 25 and the outside air T measured by the outside air temperature sensor 26 is equal to or greater than a predetermined value. More specifically, the BMS 31 controls the valve 30 to be in an open state when a foreign matter is detected by the foreign matter detection unit 25 and the outside air T measured by the outside air temperature sensor 26 is equal to or greater than a predetermined value. 29 is driven.

また、BMS31は、バッテリ21のSOC(state of charge)を算出し、その算出結果に応じて、PTCヒータ27の出力を制御する。   Further, the BMS 31 calculates the SOC (state of charge) of the battery 21 and controls the output of the PTC heater 27 according to the calculation result.

以下に、本発明の一実施形態に係る電源装置2の動作を、図1(b)を用いて説明する。   Hereinafter, the operation of the power supply device 2 according to an embodiment of the present invention will be described with reference to FIG.

電源装置2には、第1の通信装置と無線通信する第2の通信装置が搭載されている。したがって、車両Cが充電ステーションに侵入すると、充電装置1の第2の通信装置が第1の通信装置と無線通信する。この無線通信により、充電器10は、送電部11に高周波の電力を送信する。これにより、送電部11から受電部24に非接触で電力が給電され、バッテリ21に充電が開始される(ステップS101)。   The power supply device 2 includes a second communication device that wirelessly communicates with the first communication device. Therefore, when the vehicle C enters the charging station, the second communication device of the charging device 1 performs wireless communication with the first communication device. With this wireless communication, the charger 10 transmits high-frequency power to the power transmission unit 11. Thereby, electric power is supplied in a non-contact manner from the power transmission unit 11 to the power reception unit 24, and charging of the battery 21 is started (step S101).

ここで、バッテリ21に対する充電が開始される場合には、BMS31は、バッテリ21のSOCを算出する(ステップS102)。次に、BMS31は、異物検知部25により異物が検知されたか否かを判定する(ステップS103)。BMS31は、異物検知部25により異物が検知されていない場合には、PTCヒータ27をオフ状態のままに制御して、バッテリ21への充電を継続する(ステップS104)。   Here, when charging of the battery 21 is started, the BMS 31 calculates the SOC of the battery 21 (step S102). Next, the BMS 31 determines whether or not a foreign object is detected by the foreign object detection unit 25 (step S103). If no foreign object is detected by the foreign object detection unit 25, the BMS 31 controls the PTC heater 27 to remain off and continues charging the battery 21 (step S104).

一方、BMS31は、異物検知部25により異物が検知された場合には、外気温センサ26で測定された外気温Tが所定値Tth以下か否かを判定する(ステップS105)。 On the other hand, when a foreign object is detected by the foreign object detector 25, the BMS 31 determines whether or not the outside air temperature T measured by the outside air temperature sensor 26 is equal to or less than a predetermined value Tth (step S105).

BMS31は、外気温センサ26で測定された外気温Tが所定値Tth(例えば、5℃)以下でない、すなわち所定値Tthよりも高い場合には、バッテリ21への充電を停止する(ステップS106)。一方、BMS31は、外気温センサ26で測定された外気温Tが所定値Tth以下である場合には、受電部24に氷雪が付着していると判定する。すなわち、BMS31は、異物検知部25で異物が検出され、且つ外気温Tが所定値Tth以下の場合には、受電部24に氷雪が付着していると判定する。 The BMS 31 stops charging the battery 21 when the outside air temperature T measured by the outside air temperature sensor 26 is not less than or equal to a predetermined value T th (for example, 5 ° C.), that is, higher than the predetermined value T th (step S31). S106). On the other hand, when the outside air temperature T measured by the outside air temperature sensor 26 is equal to or less than the predetermined value Tth , the BMS 31 determines that ice / snow is attached to the power receiving unit 24. That is, the BMS 31 determines that ice / snow has adhered to the power receiving unit 24 when a foreign object is detected by the foreign object detection unit 25 and the outside air temperature T is equal to or less than the predetermined value Tth .

そして、BMS31は、受電部24に氷雪が付着していると判定した場合には、バッテリ21のSOCを算出し、当該SOCが閾値(例えば、70%)以下であるか否かを判定する(ステップS107)。   When the BMS 31 determines that ice / snow is attached to the power receiving unit 24, the BMS 31 calculates the SOC of the battery 21 and determines whether the SOC is equal to or less than a threshold (for example, 70%) ( Step S107).

BMS31は、バッテリ21のSOCが閾値以下である場合には、PTCヒータ27の出力を通常よりも下げる制限ヒータモードで制御する(ステップS108)。また、BMS31は、ポンプ29を駆動するとともに、バルブ30を開状態に制御する。これにより、制限ヒータモードで制御されたPTCヒータ27で温められたクーラント液が流路28を介して受電部24に供給される。したがって、受電部24に付着している氷や雪を融かすことができる。   When the SOC of the battery 21 is equal to or lower than the threshold value, the BMS 31 performs control in the limited heater mode in which the output of the PTC heater 27 is lowered than normal (step S108). Further, the BMS 31 drives the pump 29 and controls the valve 30 to an open state. As a result, the coolant liquid heated by the PTC heater 27 controlled in the limited heater mode is supplied to the power receiving unit 24 via the flow path 28. Therefore, ice and snow adhering to the power receiving unit 24 can be melted.

BMS31は、バッテリ21のSOCが閾値を超える場合には、PTCヒータ27の出力を通常のままに制御する通常ヒータモードで制御する(ステップS109)。また、BMS31は、ポンプ29を駆動するとともに、バルブ30を開状態に制御する。これにより、通常ヒータモードで制御されたPTCヒータ27で温められたクーラント液が流路28を介して受電部24に供給される。したがって、受電部24に付着している氷や雪を融かすことができる。   When the SOC of the battery 21 exceeds the threshold value, the BMS 31 controls in the normal heater mode in which the output of the PTC heater 27 is controlled as usual (step S109). Further, the BMS 31 drives the pump 29 and controls the valve 30 to an open state. As a result, the coolant liquid heated by the PTC heater 27 controlled in the normal heater mode is supplied to the power receiving unit 24 via the flow path 28. Therefore, ice and snow adhering to the power receiving unit 24 can be melted.

上述したように、本発明の一実施形態に係る電源装置2は、異物検知部25で異物が検出され、且つ外気温Tが所定値Tth以下の場合には、受電部24を温める。 As described above, the power supply device 2 according to the embodiment of the present invention warms the power receiving unit 24 when a foreign object is detected by the foreign object detection unit 25 and the outside air temperature T is equal to or lower than the predetermined value Tth .

このような構成によれば、受電部24に氷雪が付着することで誘電率の変化が起きた場合には、当該氷雪を溶かすことができるので、充電効率の低下を防止することができる。   According to such a configuration, when a change in the dielectric constant occurs due to the attachment of ice and snow to the power receiving unit 24, the ice and snow can be melted, so that the charging efficiency can be prevented from being lowered.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

1 充電装置
2 電源装置
10 充電器
11 送電部
21 バッテリ
24 受電部
25 異物検知部
26 外気温センサ
27 PTCヒータ
28 流路
31 BMS
DESCRIPTION OF SYMBOLS 1 Charging apparatus 2 Power supply apparatus 10 Charger 11 Power transmission part 21 Battery 24 Power receiving part 25 Foreign object detection part 26 External temperature sensor 27 PTC heater 28 Flow path 31 BMS

Claims (1)

車両に搭載されたバッテリに充電するために、送電部から非接触で電力を受電する受電部と、前記送電部と前記受電部との間の異物を検知する異物検知部と、外気温を測定する外気温センサと、を備える電源装置であって、
前記異物検知部で異物が検出され、且つ前記外気温が所定値以下の場合には、前記受電部を温める受電部暖機手段を備えることを特徴とする電源装置。
In order to charge a battery mounted on a vehicle, a power receiving unit that receives power in a non-contact manner from a power transmitting unit, a foreign object detecting unit that detects a foreign object between the power transmitting unit and the power receiving unit, and an outside temperature measurement An outside air temperature sensor,
A power supply apparatus comprising: a power receiving unit warming-up unit that heats the power receiving unit when a foreign object is detected by the foreign object detection unit and the outside air temperature is equal to or lower than a predetermined value.
JP2018101578A 2018-05-28 2018-05-28 Power supply device Pending JP2019208301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101578A JP2019208301A (en) 2018-05-28 2018-05-28 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101578A JP2019208301A (en) 2018-05-28 2018-05-28 Power supply device

Publications (1)

Publication Number Publication Date
JP2019208301A true JP2019208301A (en) 2019-12-05

Family

ID=68767063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101578A Pending JP2019208301A (en) 2018-05-28 2018-05-28 Power supply device

Country Status (1)

Country Link
JP (1) JP2019208301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116766980A (en) * 2023-08-17 2023-09-19 太原科技大学 Liquid cooling heat dissipation charging pile for liquid leakage early warning and early warning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116766980A (en) * 2023-08-17 2023-09-19 太原科技大学 Liquid cooling heat dissipation charging pile for liquid leakage early warning and early warning method
CN116766980B (en) * 2023-08-17 2023-10-27 太原科技大学 Liquid cooling heat dissipation charging pile for liquid leakage early warning and early warning method

Similar Documents

Publication Publication Date Title
US8760116B2 (en) Charger and charging system
CN108028442B (en) Heating control device for storage battery
CN108028443B (en) Power consumption control device
US9071057B2 (en) Contactless power transmitting system having overheat protection function and method thereof
EP2852998B1 (en) Power storage system and temperature control method for the same
WO2016002839A1 (en) Power-receiving device, contactless power supply system, and power-feeding device
WO2014045776A1 (en) Vehicle control system, vehicle information supply device, and vehicle information supply method
BR112013029326B1 (en) CONTACT-FREE ELECTRICITY SUPPLY DEVICE
US20110267002A1 (en) System and method for inductively charging a battery
EA020003B1 (en) Resonance type noncontact charging device
JP2012178899A (en) Charger
CN103501037B (en) The implantation medical equipment wireless charging device through skin with FMAM function
WO2013001810A1 (en) Power supply device and power receiving device used in contactless power transmission
JP6958733B2 (en) Power transmission device and control method of power transmission device
JP2013031303A (en) Battery pack non-contact charge method and battery pack
JP2016015862A (en) Power reception device
JP2019208301A (en) Power supply device
US11511633B2 (en) Apparatus, system, and method for charging an energy accumulator, and vehicle
CN206135460U (en) Fill electric pile over -temperature protection circuits
CN113002331A (en) Inductive charging device for vehicle charging system
WO2013061617A1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
WO2013001811A1 (en) Power supply device and power-receiving device used for non-contact electric power transmission
CN112440818B (en) Charging and discharging device of power battery, control method and vehicle
CN112204849B (en) Thawing method for power transmission device, non-contact power supply system, and power transmission device
KR100482155B1 (en) Apparatus for driving electric devices of a tail gate using wireless electric charging circuit