JP2019206962A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2019206962A
JP2019206962A JP2018103950A JP2018103950A JP2019206962A JP 2019206962 A JP2019206962 A JP 2019206962A JP 2018103950 A JP2018103950 A JP 2018103950A JP 2018103950 A JP2018103950 A JP 2018103950A JP 2019206962 A JP2019206962 A JP 2019206962A
Authority
JP
Japan
Prior art keywords
valve
fuel
water
water injection
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018103950A
Other languages
Japanese (ja)
Other versions
JP6615943B2 (en
Inventor
泰 柿元
Yasushi Kakimoto
泰 柿元
力 松田
Tsutomu Matsuda
力 松田
昭仁 青田
Akihito Aota
昭仁 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Engine Corp
Original Assignee
Japan Engine Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Engine Corp filed Critical Japan Engine Corp
Priority to JP2018103950A priority Critical patent/JP6615943B2/en
Priority to CN201980035535.3A priority patent/CN112204242B/en
Priority to PCT/JP2019/021549 priority patent/WO2019230891A1/en
Priority to KR1020207033193A priority patent/KR102450605B1/en
Application granted granted Critical
Publication of JP6615943B2 publication Critical patent/JP6615943B2/en
Publication of JP2019206962A publication Critical patent/JP2019206962A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0221Details of the water supply system, e.g. pumps or arrangement of valves
    • F02M25/0225Water atomisers or mixers, e.g. using ultrasonic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To provide a fuel injection valve capable of securing suitable separation distances between water pouring check valves incorporated therein while suppressing an increase in the construction size.SOLUTION: In the fuel injection valve for injecting fuel and water from an injection hole into a combustion chamber in a cylinder of a marine diesel engine, a first water pouring check valve for opening/closing a first water pouring path is arranged on the injection hole side with respect to a needle valve spring for energizing a needle valve to the injection hole side to openably close a front end oil path communicating with a fuel oil path and the injection hole, and a second water pouring check valve for opening/closing a second water pouring path is arranged on the opposite side to the injection hole. Water in the first water pouring path is poured from the arrangement position of the first water pouring check valve into the fuel oil path, and water in the second water pouring path is poured from the arrangement position of the second water pouring check valve into the fuel oil path.SELECTED DRAWING: Figure 1

Description

本発明は、船舶に搭載される舶用ディーゼルエンジンの燃料噴射に適用される燃料噴射弁に関するものである。   The present invention relates to a fuel injection valve applied to fuel injection of a marine diesel engine mounted on a ship.

従来、船舶の分野においては、舶用ディーゼルエンジンの機関内燃焼の際に生成される窒素酸化物(NOx)を低減する手法として、シリンダ内の燃焼室に燃料および水を同一の燃料噴射弁から噴射することが有効とされている。例えば、特許文献1には、弁本体内の水路から注水逆止弁を通った高圧の水を燃料油路内の燃料中に注入し、シリンダ内の燃焼室に対して、1サイクルの噴射で燃料および水を燃料−水−燃料の順となるよう3段階に噴射する燃料噴射弁が提案されている。   Conventionally, in the marine field, fuel and water are injected from the same fuel injection valve into a combustion chamber in a cylinder as a technique for reducing nitrogen oxides (NOx) generated during combustion in an engine of a marine diesel engine. It is effective to do. For example, in Patent Document 1, high-pressure water that has passed through a water injection check valve from a water passage in a valve body is injected into fuel in a fuel oil passage, and one cycle of injection is performed on a combustion chamber in a cylinder. A fuel injection valve that injects fuel and water in three stages so as to be in the order of fuel-water-fuel has been proposed.

特開平6−66217号公報JP-A-6-66217

ところで、上述したようにシリンダ内の燃焼室に対して燃料および水を交互に噴射する水噴射技術においては、舶用ディーゼルエンジンの燃費性能およびNOx低減性能を改善するという観点から、燃焼室に対する燃料および水の1サイクルの噴射を、複数の燃料層と注水層とが交互に並ぶ4段階以上の噴射とすることが好ましい。なお、燃料層は、1サイクルの噴射に際して燃料油路内に形成された燃料の層である。注水層は、この燃料油路内の燃料層中に注入された水の層である。   By the way, in the water injection technology in which fuel and water are alternately injected into the combustion chamber in the cylinder as described above, from the viewpoint of improving the fuel efficiency performance and NOx reduction performance of the marine diesel engine, One cycle of water injection is preferably four or more stages of injection in which a plurality of fuel layers and water injection layers are alternately arranged. The fuel layer is a layer of fuel formed in the fuel oil passage during one cycle of injection. The water injection layer is a layer of water injected into the fuel layer in the fuel oil passage.

また、このような燃料層および注水層の4段階以上の噴射において、燃料油路内で注水層間に挟まれる燃料層の燃料量(以下、注水層間の燃料量という)は、舶用ディーゼルエンジンの安定した性能を確保する等の観点から、極めて重要な因子である。すなわち、燃焼室に対する1サイクルの噴射で、燃料噴射弁の噴孔から数えて1層目の燃料層(第1燃料層)、1層目の注水層(第1注水層)、2層目の燃料層(第2燃料層)、2層目の注水層(第2注水層)、および3層目の燃料層(第3燃料層)が、この順に噴射される場合、第1注水層と第2注水層との間に挟まれる第2燃料層の燃料量(注水層間の燃料量)は、燃焼室への1サイクル当りの燃料の噴射量(以下、燃料噴射量という)に対して所定の割合となっていることが好ましい。この条件を満足するためには、一般に、燃料油路内に対して第1注水層になる水を注入するための水路の注水逆止弁と第2注水層になる水を注入するための水路の注水逆止弁とを、注水層間の燃料量が適量となるように互いに離間させて配置する。   Further, in such fuel layer and water injection layer injections of four or more stages, the fuel amount in the fuel layer sandwiched between the water injection layers in the fuel oil passage (hereinafter referred to as the fuel amount between the water injection layers) is the stability of marine diesel engines. This is an extremely important factor from the viewpoint of ensuring the performance. That is, in one cycle injection to the combustion chamber, the first fuel layer (first fuel layer), the first water injection layer (first water injection layer), and the second layer counted from the nozzle hole of the fuel injection valve When the fuel layer (second fuel layer), the second water injection layer (second water injection layer), and the third fuel layer (third fuel layer) are injected in this order, the first water injection layer and the second water injection layer The amount of fuel in the second fuel layer sandwiched between the two water injection layers (the amount of fuel between the water injection layers) is a predetermined amount relative to the amount of fuel injected into the combustion chamber per cycle (hereinafter referred to as the fuel injection amount). It is preferable that it is a ratio. In order to satisfy this condition, generally, a water injection check valve for injecting water to be the first water injection layer into the fuel oil passage and a water channel for injecting water to be the second water injection layer Are arranged so as to be separated from each other so that the amount of fuel between the water injection layers becomes an appropriate amount.

しかしながら、特許文献1に例示される従来の燃料噴射弁では、注水層間の燃料量が上記の条件を満足するように各注水逆止弁を互いに離間させて燃料噴射弁に内蔵しようとすると、多くの場合、燃料噴射弁が長手方向に大型化(長尺化)してしまう。   However, in the conventional fuel injection valve exemplified in Patent Document 1, if the water injection check valves are separated from each other and built in the fuel injection valve so that the amount of fuel between the water injection layers satisfies the above-described conditions, many In this case, the fuel injection valve is enlarged (lengthened) in the longitudinal direction.

なお、各注水逆止弁間の離間距離を確保するためには、第1注水層に対応する注水逆止弁を燃料噴射弁に内蔵し、第2注水層に対応する注水逆止弁を燃料噴射弁に配管等を介して外付けする手法も考えられる。しかしながら、この手法では、舶用ディーゼルエンジンの運転に伴うシリンダおよび燃料噴射弁等の振動に起因して、燃料噴射弁と外付けの注水逆止弁との接合強度(機械的信頼性)が低下する恐れがある。故に、燃料噴射弁においては、上記各注水逆止弁を内蔵した構造とすることが好ましい。   In order to secure a separation distance between the water injection check valves, a water injection check valve corresponding to the first water injection layer is incorporated in the fuel injection valve, and a water injection check valve corresponding to the second water injection layer is used as the fuel. A method of externally attaching the injection valve to the injection valve is also conceivable. However, in this method, the joint strength (mechanical reliability) between the fuel injection valve and the external water injection check valve is reduced due to vibrations of the cylinder, the fuel injection valve, and the like accompanying the operation of the marine diesel engine. There is a fear. Therefore, the fuel injection valve preferably has a structure in which each of the water injection check valves is incorporated.

本発明は、上記の事情に鑑みてなされたものであって、内蔵される各注水逆止弁間の好適な離間距離を確保するとともに、構造の大型化を抑制することができる燃料噴射弁を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a fuel injection valve that can secure a suitable separation distance between each water-injection check valve incorporated therein and can suppress an increase in size of the structure. The purpose is to provide.

上述した課題を解決し、目的を達成するために、本発明に係る燃料噴射弁は、舶用ディーゼルエンジンのシリンダ内の燃焼室へ燃料および水を噴孔から噴射する燃料噴射弁において、燃料噴射ポンプから圧送された前記燃料を流通させる燃料油路と、一端が前記燃料油路に通じ且つ他端が前記噴孔に通じる先端油路と、前記先端油路を開閉可能に閉塞する針弁と、前記先端油路を閉塞するように前記針弁を前記噴孔側に付勢する針弁ばねと、前記燃料油路の所定の位置に水を注入するための第1の注水路と、前記燃料油路のうち前記第1の注水路よりも前記燃料の圧送方向上流側の位置に水を注入するための第2の注水路と、前記針弁ばねよりも前記噴孔側に配置され、前記第1の注水路を開閉可能に閉塞する第1の注水逆止弁と、前記針弁ばねを基準に前記噴孔とは反対側に配置され、前記第2の注水路を開閉可能に閉塞する第2の注水逆止弁と、を備え、前記第1の注水路内の水は前記第1の注水逆止弁の配置位置から前記燃料油路内に注入され、前記第2の注水路内の水は前記第2の注水逆止弁の配置位置から前記燃料油路内に注入されることを特徴とする。   In order to solve the above-described problems and achieve the object, a fuel injection valve according to the present invention is a fuel injection pump that injects fuel and water from a nozzle hole into a combustion chamber in a cylinder of a marine diesel engine. A fuel oil passage through which the fuel pumped from is circulated, a tip oil passage having one end communicating with the fuel oil passage and the other end communicating with the nozzle hole, and a needle valve that closes the tip oil passage so as to be openable and closable; A needle valve spring that urges the needle valve toward the nozzle hole so as to close the tip oil passage, a first water injection passage for injecting water into a predetermined position of the fuel oil passage, and the fuel A second water injection path for injecting water into a position upstream of the first water injection path in the pressure direction of the fuel in the oil path, and the nozzle hole side than the needle valve spring, A first water check valve that closes the first water supply path so as to be openable and closable; and the needle valve A second water injection check valve that is disposed on the opposite side of the nozzle hole with respect to the nozzle and closes the second water injection path so as to be openable and closable, and the water in the first water injection path is Water is injected into the fuel oil passage from the position of the first water injection check valve, and water in the second water injection passage is injected into the fuel oil passage from the position of the second water injection check valve. It is characterized by that.

また、本発明に係る燃料噴射弁は、上記の発明において、前記第1の注水逆止弁および前記第2の注水逆止弁は、当該燃料噴射弁の長手方向中心軸の方向に同一軸上に配置されることを特徴とする。   The fuel injection valve according to the present invention is the above invention, wherein the first water injection check valve and the second water injection check valve are on the same axis in the direction of the central axis in the longitudinal direction of the fuel injection valve. It is characterized by being arranged in.

また、本発明に係る燃料噴射弁は、上記の発明において、前記第1の注水路は、前記第1の注水逆止弁を囲む環状に形成された環状注水路を有することを特徴とする。   The fuel injection valve according to the present invention is characterized in that, in the above invention, the first water injection path has an annular water injection path formed in an annular shape surrounding the first water injection check valve.

また、本発明に係る燃料噴射弁は、上記の発明において、前記燃料油路は、当該燃料噴射弁の長手方向中心軸を通るように配置されることを特徴とする。   The fuel injection valve according to the present invention is characterized in that, in the above invention, the fuel oil passage is disposed so as to pass through a central axis in a longitudinal direction of the fuel injection valve.

また、本発明に係る燃料噴射弁は、上記の発明において、前記燃料油路は、当該燃料噴射弁の長手方向中心軸から径方向に離間した位置に配置されることを特徴とする。   The fuel injection valve according to the present invention is characterized in that, in the above invention, the fuel oil passage is disposed at a position radially spaced from a longitudinal central axis of the fuel injection valve.

本発明によれば、内蔵される各注水逆止弁間の好適な離間距離を確保するとともに、構造の大型化を抑制し得る燃料噴射弁を実現することができるという効果を奏する。   Advantageous Effects of Invention According to the present invention, it is possible to achieve a fuel injection valve that can secure a suitable separation distance between the water injection check valves incorporated therein and can suppress an increase in the size of the structure.

図1は、本発明の実施形態1に係る燃料噴射弁の一構成例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a fuel injection valve according to Embodiment 1 of the present invention. 図2は、図1に示す燃料噴射弁のA−A線断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line AA of the fuel injection valve shown in FIG. 図3は、図1に示す燃料噴射弁のB−B線断面模式図である。FIG. 3 is a schematic cross-sectional view taken along the line BB of the fuel injection valve shown in FIG. 図4は、本発明の実施形態2に係る燃料噴射弁の一構成例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing a configuration example of a fuel injection valve according to Embodiment 2 of the present invention. 図5は、本発明の実施形態2に係る燃料噴射弁を別の視点から見た一構成例を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a configuration example of the fuel injection valve according to the second embodiment of the present invention viewed from another viewpoint. 図6は、図4に示す燃料噴射弁のC−C線断面模式図である。6 is a schematic cross-sectional view taken along line CC of the fuel injection valve shown in FIG.

以下に、添付図面を参照して、本発明に係る燃料噴射弁の好適な実施形態について詳細に説明する。なお、本実施形態により、本発明が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、各図面において、同一構成部分には同一符号が付されている。   Hereinafter, preferred embodiments of a fuel injection valve according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment. Also, the drawings are schematic, and it should be noted that the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual ones. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included. Moreover, in each drawing, the same code | symbol is attached | subjected to the same component.

(実施形態1)
まず、本発明の実施形態1に係る燃料噴射弁の構成について説明する。図1は、本発明の実施形態1に係る燃料噴射弁の一構成例を示す断面模式図である。図2は、図1に示す燃料噴射弁のA−A線断面模式図である。図3は、図1に示す燃料噴射弁のB−B線断面模式図である。図1において、軸方向F1は、燃料噴射弁100の長手方向中心軸の方向である。本実施形態1では、燃料噴射弁100の構成を説明し易くするために、軸方向F1の正側は燃料噴射弁100の先端側とし、軸方向F1の負側は燃料噴射弁100の後端側とする。径方向F2は、燃料噴射弁100の径方向であり、燃料噴射弁100の長手方向中心軸に対して垂直な方向である。
(Embodiment 1)
First, the configuration of the fuel injection valve according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing a configuration example of a fuel injection valve according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional view taken along line AA of the fuel injection valve shown in FIG. FIG. 3 is a schematic cross-sectional view taken along the line BB of the fuel injection valve shown in FIG. In FIG. 1, the axial direction F <b> 1 is the direction of the central axis in the longitudinal direction of the fuel injection valve 100. In the first embodiment, in order to facilitate the explanation of the configuration of the fuel injection valve 100, the positive side in the axial direction F1 is the front end side of the fuel injection valve 100, and the negative side in the axial direction F1 is the rear end of the fuel injection valve 100. Let it be the side. The radial direction F <b> 2 is a radial direction of the fuel injection valve 100 and is a direction perpendicular to the longitudinal central axis of the fuel injection valve 100.

本実施形態1に係る燃料噴射弁100は、舶用ディーゼルエンジンのシリンダ(図示せず)に取り付けられ、燃料噴射ポンプ(図示せず)から圧送された燃料と注水ポンプ(図示せず)から圧送された水とを当該シリンダ内の燃焼室へ順次噴射(例えば層状に噴射)するためのものである。図1に示すように、燃料噴射弁100は、先端に位置するノズル1と、ノズル1の後端側に位置する噴射弁本体11と、この噴射弁本体11の後端側に位置する噴射弁本体40とを備える。ノズル1と噴射弁本体11とは、ナット状のノズル締付金物10によって外周から締結されることにより、軸方向F1に連結した状態で固定されている。また、この噴射弁本体11と後端側の噴射弁本体40とは、ナット状の弁本体締付金物30によって外周から締結されることにより、軸方向F1に連結した状態で固定されている。   The fuel injection valve 100 according to the first embodiment is attached to a cylinder (not shown) of a marine diesel engine, and is pumped from a fuel pumped from a fuel injection pump (not shown) and a water injection pump (not shown). The water is sequentially injected into the combustion chamber in the cylinder (for example, in a layered manner). As shown in FIG. 1, the fuel injection valve 100 includes a nozzle 1 located at the tip, an injection valve body 11 located on the rear end side of the nozzle 1, and an injection valve located on the rear end side of the injection valve body 11. A main body 40. The nozzle 1 and the injection valve main body 11 are fixed in a state of being connected in the axial direction F1 by being fastened from the outer periphery by a nut-like nozzle fastening metal fitting 10. The injection valve main body 11 and the injection valve main body 40 on the rear end side are fixed in a state of being connected in the axial direction F1 by being fastened from the outer periphery by a nut-like valve main body fastening hardware 30.

ノズル1は、燃料噴射弁100の先端部分を構成するものである。図1に示すように、ノズル1内には、軸方向F1に長手となる孔状の針弁収容部2が設けられる。この針弁収容部2内には、燃料噴射弁100の燃料油路と噴孔4との連通を開放可能に遮断する針弁6が摺動自在に収容される。針弁6内には、軸方向F1に長手となる針弁内油路7が設けられている。これら針弁収容部2の先端側と針弁6の先端側との間には、貯留部3が形成される。針弁6の先端には、針弁内油路7と貯留部3とを連通させる連通孔8が設けられている。また、ノズル1の先端側には、噴孔4および先端油路5が設けられる。先端油路5の一端は、燃料噴射弁100の燃料油路(具体的には、燃料噴射弁100の燃料油路の一部となる針弁内油路7)に通じている。先端油路5の他端は、噴孔4に通じている。   The nozzle 1 constitutes the tip portion of the fuel injection valve 100. As shown in FIG. 1, a hole-like needle valve housing portion 2 that is long in the axial direction F <b> 1 is provided in the nozzle 1. In the needle valve housing portion 2, a needle valve 6 that severably opens the communication between the fuel oil passage of the fuel injection valve 100 and the injection hole 4 is slidably accommodated. In the needle valve 6, an oil passage 7 in the needle valve that is long in the axial direction F1 is provided. A storage portion 3 is formed between the distal end side of the needle valve housing portion 2 and the distal end side of the needle valve 6. A communication hole 8 is provided at the tip of the needle valve 6 to allow the oil passage 7 in the needle valve and the reservoir 3 to communicate with each other. Further, a nozzle hole 4 and a tip oil passage 5 are provided on the tip side of the nozzle 1. One end of the tip oil passage 5 communicates with a fuel oil passage of the fuel injection valve 100 (specifically, an oil passage 7 in the needle valve that becomes a part of the fuel oil passage of the fuel injection valve 100). The other end of the tip oil passage 5 communicates with the nozzle hole 4.

噴射弁本体11は、先端側のノズル1と後端側の噴射弁本体40との間の中間部分を構成するものである。図1に示すように、噴射弁本体11内には、軸方向F1に長手となる孔状の逆止弁収容部12が設けられている。この逆止弁収容部12内には、燃料噴射弁100の第1の注水路に対応する注水逆止弁20が収容されている。本実施形態1において、第1の注水路は、燃料噴射弁100の燃料油路における所定の位置(図1に示す第1注水位置P1)に水を注入するための水路である。   The injection valve main body 11 constitutes an intermediate portion between the nozzle 1 on the front end side and the injection valve main body 40 on the rear end side. As shown in FIG. 1, in the injection valve main body 11, a hole-like check valve accommodating portion 12 that is elongated in the axial direction F1 is provided. In the check valve accommodating portion 12, a water injection check valve 20 corresponding to the first water injection path of the fuel injection valve 100 is accommodated. In the first embodiment, the first water injection channel is a water channel for injecting water into a predetermined position (first water injection position P1 shown in FIG. 1) in the fuel oil channel of the fuel injection valve 100.

注水逆止弁20は、燃料噴射弁100の第1の注水路を開閉可能に閉塞する逆止弁(第1の注水逆止弁)である。図1に示すように、注水逆止弁20は、弁体21と、弁座24と、逆止弁ばね26と、弁体受け部27とによって構成され、後述の針弁ばね50よりも噴孔4側に配置される。   The water injection check valve 20 is a check valve (first water injection check valve) that closes the first water injection path of the fuel injection valve 100 so as to be openable and closable. As shown in FIG. 1, the water injection check valve 20 includes a valve body 21, a valve seat 24, a check valve spring 26, and a valve body receiving portion 27, and ejects more than a later-described needle valve spring 50. It arrange | positions at the hole 4 side.

弁体21は、図1に示すように、第1の注水路からの水の圧力を受ける受圧部23を有し、弁体受け部27内に摺動自在に収容される。受圧部23は、図1、2に示すように、弁体21の先端部近傍の外周に亘って環状に形成される。また、弁体21内には、燃料噴射弁100の燃料油路の一部となる弁体内油路22が設けられている。弁座24は、図1に示すように、弁体受け部27の先端部に締結等によって固定される。弁座24内には、燃料噴射弁100の燃料油路の一部となる弁座内油路25が設けられている。逆止弁ばね26は、図1に示すように、弁体21の後端部と弁体受け部27との間に配置される。逆止弁ばね26は、弁座24側に付勢する付勢力を弁体21に付与する。注水逆止弁20は、この逆止弁ばね26の付勢力を利用して、弁体21を弁座24に押し付け、これにより、燃料噴射弁100の燃料油路と第1の注水路との連通を開放可能に遮断する。   As shown in FIG. 1, the valve body 21 has a pressure receiving portion 23 that receives the pressure of water from the first water injection path, and is slidably accommodated in the valve body receiving portion 27. As shown in FIGS. 1 and 2, the pressure receiving portion 23 is formed in an annular shape over the outer periphery in the vicinity of the distal end portion of the valve body 21. In the valve body 21, a valve body oil passage 22 that is a part of the fuel oil passage of the fuel injection valve 100 is provided. As shown in FIG. 1, the valve seat 24 is fixed to the distal end portion of the valve body receiving portion 27 by fastening or the like. In the valve seat 24, an in-valve oil passage 25 which is a part of the fuel oil passage of the fuel injection valve 100 is provided. As shown in FIG. 1, the check valve spring 26 is disposed between the rear end portion of the valve body 21 and the valve body receiving portion 27. The check valve spring 26 applies a biasing force that biases the valve seat 24 to the valve body 21. The water injection check valve 20 uses the biasing force of the check valve spring 26 to press the valve body 21 against the valve seat 24, whereby the fuel oil passage of the fuel injection valve 100 and the first water injection passage are connected. Block communication to open.

また、本実施形態1において、注水逆止弁20は、上記の逆止弁としての機能と、針弁6に針弁ばね50の付勢力を伝える押し棒としての機能とを兼ね備える。詳細には、図1に示すように、注水逆止弁20は、針弁6と針弁ばね50との間に介在する。例えば、注水逆止弁20は、弁体受け部27の後端部に針弁ばね50を受けるとともに、弁座24の先端部を針弁6の後端部に押し当てた状態となっている。注水逆止弁20は、逆止弁収容部12内において軸方向F1に摺動自在であり、針弁ばね50の付勢力を利用して、針弁6を先端油路5に押し付ける。また、注水逆止弁20は、貯留部3内の燃料の圧力を利用して先端油路5から離間する方向に摺動する針弁6とともに、針弁ばね50の付勢力に抗する方向(針弁ばね50を圧縮する方向)に摺動する。   Further, in the first embodiment, the water injection check valve 20 has a function as the above-described check valve and a function as a push rod for transmitting the urging force of the needle valve spring 50 to the needle valve 6. Specifically, as shown in FIG. 1, the water injection check valve 20 is interposed between the needle valve 6 and the needle valve spring 50. For example, the water injection check valve 20 receives the needle valve spring 50 at the rear end portion of the valve body receiving portion 27 and presses the front end portion of the valve seat 24 against the rear end portion of the needle valve 6. . The water check valve 20 is slidable in the axial direction F <b> 1 within the check valve housing portion 12, and presses the needle valve 6 against the tip oil passage 5 using the urging force of the needle valve spring 50. In addition, the water injection check valve 20 uses a pressure of the fuel in the storage portion 3 and a needle valve 6 that slides in a direction away from the front end oil passage 5 and a direction against the urging force of the needle valve spring 50 ( Slide in the direction in which the needle valve spring 50 is compressed.

また、図1に示すように、噴射弁本体11には柱状注水路72と環状注水路73、75と対称注水路74とが設けられ、注水逆止弁20の弁体受け部27には対称注水路76が設けられる。柱状注水路72は、柱状をなす水路であり、噴射弁本体11の後端部内に穿設される。環状注水路73は、弁本体締付金物30の内壁面と噴射弁本体11の外壁面との間の隙間によって構成され、例えば図1、2に示すように、注水逆止弁20(弁受け部27等)を囲む環状に形成される。対称注水路74は、注水逆止弁20の動作方向中心軸について軸対称に形成される水路である。本実施形態1では、図1、2に示すように、対称注水路74は、注水逆止弁20の動作方向中心軸の周りに等角度間隔で噴射弁本体11内に形成(穿設)される複数(例えば4つ)の水路からなる。環状注水路75は、例えば、噴射弁本体11の内周面(逆止弁収容部12の内壁面)に設けられた溝等によって構成される。環状注水路75は、図1、2に示すように、対称注水路74の出口端と対称注水路76の入口端との間に位置し、注水逆止弁20(弁受け部27等)を囲む環状に形成される。対称注水路76は、注水逆止弁20の動作方向中心軸について軸対称に形成され、注水逆止弁20(具体的には弁体21の受圧部23)と対向する吐出口を有する水路である。本実施形態1では、図1、2に示すように、対称注水路76は、注水逆止弁20の動作方向中心軸の周りに等角度間隔で弁体受け部27内に形成(穿設)される複数(例えば4つ)の水路からなる。   As shown in FIG. 1, the injection valve main body 11 is provided with a columnar water injection path 72, annular water injection paths 73 and 75, and a symmetrical water injection path 74, and the valve body receiving portion 27 of the water injection check valve 20 is symmetrical. A water injection channel 76 is provided. The columnar water injection channel 72 is a column-shaped channel and is formed in the rear end portion of the injection valve main body 11. The annular water injection path 73 is formed by a gap between the inner wall surface of the valve body fastening hardware 30 and the outer wall surface of the injection valve body 11. For example, as shown in FIGS. Part 27 etc.). The symmetric water injection channel 74 is a water channel formed symmetrically about the central axis of the operation direction of the water injection check valve 20. In the first embodiment, as shown in FIGS. 1 and 2, the symmetrical water injection path 74 is formed (perforated) in the injection valve body 11 at equal angular intervals around the central axis in the operation direction of the water injection check valve 20. A plurality of (for example, four) water channels. The annular water injection path 75 is configured by, for example, a groove or the like provided on the inner peripheral surface of the injection valve main body 11 (the inner wall surface of the check valve accommodating portion 12). As shown in FIGS. 1 and 2, the annular water injection path 75 is located between the outlet end of the symmetrical water injection path 74 and the inlet end of the symmetrical water injection path 76, and the water injection check valve 20 (the valve receiving portion 27 and the like) is provided. It is formed in a surrounding ring. The symmetric water injection path 76 is formed in an axial symmetry with respect to the central axis in the operation direction of the water injection check valve 20, and is a water path having a discharge port facing the water injection check valve 20 (specifically, the pressure receiving portion 23 of the valve body 21). is there. In the first embodiment, as shown in FIGS. 1 and 2, the symmetrical water injection path 76 is formed (perforated) in the valve body receiving portion 27 at equal angular intervals around the central axis in the operation direction of the water injection check valve 20. It consists of a plurality of (for example, four) water channels.

なお、注水逆止弁20の動作方向中心軸は、弁体21の摺動方向の中心軸である。本実施形態1において、注水逆止弁20の動作方向中心軸は、燃料噴射弁100の長手方向中心軸と一致または当該長手方向中心軸に平行である。   In addition, the operation direction central axis of the water injection check valve 20 is a central axis in the sliding direction of the valve body 21. In the first embodiment, the operation direction central axis of the water injection check valve 20 coincides with or is parallel to the longitudinal central axis of the fuel injection valve 100.

上述した柱状注水路72、環状注水路73、75および対称注水路74、76は、各々、燃料噴射弁100の第1の注水路の一部となる水路である。図1、2に示すように、柱状注水路72は環状注水路73に通じ、環状注水路73は対称注水路74に通じ、対称注水路74は環状注水路75に通じ、環状注水路75は対称注水路76に通じている。また、対称注水路76は、弁体21が弁座24から離間した場合に、燃料噴射弁100の燃料油路における第1注水位置P1に通じる。また、図1に示すように、噴射弁本体11の外壁面には、環状注水路73と弁本体締付金物30の先端部との間の位置に、環状注水路73等からの漏水を防止するためのOリング91が設けられている。   The columnar water injection path 72, the circular water injection paths 73 and 75, and the symmetrical water injection paths 74 and 76 described above are water paths that are part of the first water injection path of the fuel injection valve 100. As shown in FIGS. 1 and 2, the column-shaped water channel 72 is connected to the annular water channel 73, the circular water channel 73 is connected to the symmetrical water channel 74, the symmetrical water channel 74 is connected to the circular water channel 75, and the circular water channel 75 is It leads to a symmetrical water channel 76. Further, the symmetrical water injection path 76 leads to the first water injection position P <b> 1 in the fuel oil path of the fuel injection valve 100 when the valve body 21 is separated from the valve seat 24. Further, as shown in FIG. 1, the outer wall surface of the injection valve body 11 is prevented from leaking water from the annular water injection path 73 or the like at a position between the annular water injection path 73 and the tip end portion of the valve body fastening hardware 30. An O-ring 91 is provided.

一方、噴射弁本体40は、燃料噴射弁100の後端部分を構成するものである。図1に示すように、噴射弁本体40内には、軸方向F1に長手となる孔状の収容部41が設けられている。この収容部41内には、針弁ばね50と、ばね受け部51と、燃料噴射弁100の第2の注水路に対応する注水逆止弁60とが収容されている。本実施形態1において、第2の注水路は、燃料噴射弁100の燃料油路のうち、第1の注水路よりも燃料の圧送方向上流側の位置(例えば図1に示す第2注水位置P2)に水を注入するための水路である。   On the other hand, the injection valve main body 40 constitutes the rear end portion of the fuel injection valve 100. As shown in FIG. 1, in the injection valve main body 40, a hole-shaped accommodation portion 41 that is elongated in the axial direction F1 is provided. In the accommodating portion 41, a needle valve spring 50, a spring receiving portion 51, and a water injection check valve 60 corresponding to the second water injection path of the fuel injection valve 100 are accommodated. In the first embodiment, the second water injection path is a position upstream of the first water injection path in the fuel pumping direction of the fuel injection valve 100 (for example, the second water injection position P2 shown in FIG. 1). ) Is a water channel for injecting water.

針弁ばね50は、先端油路5を閉塞するように針弁6を噴孔4側に付勢するものである。図1に示すように、針弁ばね50は、例えばコイルばねによって構成され、ばね受け部51に取り付けられた状態で収容部41内に収容される。ばね受け部51は、針弁ばね50を受けた状態で収容部41内に収容され、上述した注水逆止弁20の弁体受け部27の後端部に形成されている挿入孔29内に摺動自在に取り付けられる。ばね受け部51は、針弁ばね50の一端部を受けるとともに針弁ばね50の他端部を弁体受け部27の後端部に押し付け、これにより、針弁ばね50を圧縮して付勢力を発生させる。また、ばね受け部51内には、燃料噴射弁100の燃料油路の一部となる、ばね受け部内油路52が設けられている。   The needle valve spring 50 urges the needle valve 6 toward the nozzle hole 4 so as to close the tip oil passage 5. As shown in FIG. 1, the needle valve spring 50 is constituted by a coil spring, for example, and is housed in the housing portion 41 in a state of being attached to the spring receiving portion 51. The spring receiving portion 51 is accommodated in the accommodating portion 41 in a state where the needle valve spring 50 is received, and is inserted into the insertion hole 29 formed in the rear end portion of the valve body receiving portion 27 of the water injection check valve 20 described above. Attached slidably. The spring receiving portion 51 receives one end portion of the needle valve spring 50 and presses the other end portion of the needle valve spring 50 against the rear end portion of the valve body receiving portion 27, thereby compressing the needle valve spring 50 and biasing force. Is generated. In addition, an oil passage 52 in the spring receiving portion that is a part of the fuel oil passage of the fuel injection valve 100 is provided in the spring receiving portion 51.

注水逆止弁60は、燃料噴射弁100の第2の注水路を開閉可能に閉塞する逆止弁(第2の注水逆止弁)である。図1に示すように、注水逆止弁60は、弁体61と、弁座64と、逆止弁ばね66と、弁体受け部67とによって構成され、針弁ばね50を基準に噴孔4とは反対側に配置される。本実施形態1では、第2の注水路に対応する注水逆止弁60と第1の注水路に対応する注水逆止弁20とが、針弁ばね50を挟んで互いに軸方向F1の反対側に配置される。この際、これら2つの注水逆止弁20、60は、軸方向F1に同一軸上に配置されることが好ましい。   The water injection check valve 60 is a check valve (second water injection check valve) that closes the second water injection path of the fuel injection valve 100 so as to be openable and closable. As shown in FIG. 1, the water check valve 60 includes a valve body 61, a valve seat 64, a check valve spring 66, and a valve body receiving portion 67, and an injection hole with reference to the needle valve spring 50. 4 is arranged on the opposite side. In the first embodiment, the water injection check valve 60 corresponding to the second water injection path and the water injection check valve 20 corresponding to the first water injection path are opposite to each other in the axial direction F1 with the needle valve spring 50 interposed therebetween. Placed in. At this time, the two water injection check valves 20 and 60 are preferably arranged on the same axis in the axial direction F1.

弁体61は、図1に示すように、第2の注水路からの水の圧力を受ける受圧部63を有し、弁体受け部67内に摺動自在に収容される。受圧部63は、図1、3に示すように、弁体61の先端部近傍の外周に亘って環状に形成される。また、弁体61内には、燃料噴射弁100の燃料油路の一部となる弁体内油路62が設けられている。弁座64は、図1に示すように、弁体受け部67の先端部に締結等によって固定される。弁座64内には、燃料噴射弁100の燃料油路の一部となる弁座内油路65が設けられている。逆止弁ばね66は、図1に示すように、弁体61の後端部と弁体受け部67との間に配置される。逆止弁ばね66は、弁座64側に付勢する付勢力を弁体61に付与する。注水逆止弁60は、この逆止弁ばね66の付勢力を利用して、弁体61を弁座64に押し付け、これにより、燃料噴射弁100の燃料油路と第2の注水路との連通を開放可能に遮断する。弁体受け部67は、噴射弁本体40の収容部41内に螺挿し得るように構成される。この弁体受け部67内には、燃料噴射弁100の燃料油路の一部となる受け部内油路68が設けられている。また、弁体受け部67の後端部には、図1に示すように、受け部内油路68に通じる燃料供給管90が連結されている。燃料供給管90は、燃料噴射ポンプ(図示せず)によって圧送された燃料を燃料噴射弁100の燃料油路内に導入するための配管である。   As shown in FIG. 1, the valve body 61 includes a pressure receiving portion 63 that receives the pressure of water from the second water injection channel, and is slidably accommodated in the valve body receiving portion 67. As shown in FIGS. 1 and 3, the pressure receiving portion 63 is formed in an annular shape over the outer periphery in the vicinity of the distal end portion of the valve body 61. In the valve body 61, a valve body oil passage 62 that is a part of the fuel oil passage of the fuel injection valve 100 is provided. As shown in FIG. 1, the valve seat 64 is fixed to the distal end portion of the valve body receiving portion 67 by fastening or the like. In the valve seat 64, an in-valve oil passage 65 that is a part of the fuel oil passage of the fuel injection valve 100 is provided. As shown in FIG. 1, the check valve spring 66 is disposed between the rear end portion of the valve body 61 and the valve body receiving portion 67. The check valve spring 66 applies a biasing force that biases the valve seat 64 to the valve body 61. The water injection check valve 60 uses the biasing force of the check valve spring 66 to press the valve body 61 against the valve seat 64, whereby the fuel oil passage of the fuel injection valve 100 and the second water injection passage are separated. Block communication to open. The valve body receiving portion 67 is configured to be screwed into the accommodating portion 41 of the injection valve main body 40. In the valve body receiving portion 67, a receiving portion internal oil passage 68 that is a part of the fuel oil passage of the fuel injection valve 100 is provided. Further, as shown in FIG. 1, a fuel supply pipe 90 communicating with the receiving portion oil passage 68 is connected to the rear end portion of the valve body receiving portion 67. The fuel supply pipe 90 is a pipe for introducing the fuel pumped by a fuel injection pump (not shown) into the fuel oil passage of the fuel injection valve 100.

また、本実施形態1において、注水逆止弁60は、上記の逆止弁としての機能と、針弁ばね50の付勢力(すなわち針弁6の開弁圧)を調整する調整ねじとしての機能とを兼ね備える。詳細には、図1に示すように、注水逆止弁60は、弁体受け部67を噴射弁本体40の収容部41内に螺挿することによって取り付けられる。収容部41内に螺挿された注水逆止弁60は、弁座64の先端部をばね受け部51の後端部に当接させた状態となる。注水逆止弁60は、収容部41内へのねじ込み量を調整することによって、針弁ばね50の付勢力を調整する。具体的には、注水逆止弁60は、収容部41内へのねじ込み量を増やして、噴孔4側へのばね受け部51の押し込み量を増やすことにより、針弁ばね50の圧縮量を増やして付勢力を強く調整する。一方、注水逆止弁60は、収容部41内へのねじ込み量を減らして、噴孔4側へのばね受け部51の押し込み量を減らすことにより、針弁ばね50の圧縮量を減らして付勢力を弱く調整する。   Further, in the first embodiment, the water injection check valve 60 functions as the above-described check valve and functions as an adjustment screw that adjusts the urging force of the needle valve spring 50 (that is, the valve opening pressure of the needle valve 6). And combine. Specifically, as shown in FIG. 1, the water injection check valve 60 is attached by screwing the valve body receiving portion 67 into the accommodating portion 41 of the injection valve main body 40. The water injection check valve 60 screwed into the accommodating portion 41 is in a state in which the distal end portion of the valve seat 64 is brought into contact with the rear end portion of the spring receiving portion 51. The water injection check valve 60 adjusts the urging force of the needle valve spring 50 by adjusting the screwing amount into the housing portion 41. Specifically, the water injection check valve 60 increases the amount of compression into the needle valve spring 50 by increasing the amount of screwing into the accommodating portion 41 and increasing the amount of pushing of the spring receiving portion 51 toward the injection hole 4 side. Increase to adjust the biasing force strongly. On the other hand, the water check valve 60 reduces the compression amount of the needle valve spring 50 by reducing the screwing amount into the accommodating portion 41 and reducing the pushing amount of the spring receiving portion 51 toward the injection hole 4 side. Adjust the power weakly.

また、図1、3に示すように、噴射弁本体40には柱状注水路71、81が設けられ、注水逆止弁60の弁体受け部67には環状注水路82と対称注水路84とが設けられる。柱状注水路71、81は、柱状をなす水路であり、噴射弁本体40内の互いに異なる位置に各々穿設される。環状注水路82は、例えば、弁体受け部67の外周面に設けられた溝等によって構成される。環状注水路82は、図3に示すように、柱状注水路81の出口端と対称注水路84の入口端との間に位置し、注水逆止弁60(弁体61等)を囲む環状に形成される。対称注水路84は、注水逆止弁60の動作方向中心軸について軸対称に形成され、注水逆止弁60(具体的には弁体61の受圧部63)と対向する吐出口を有する水路である。本実施形態1では、図1、3に示すように、対称注水路84は、注水逆止弁60の動作方向中心軸の周りに等角度間隔で弁体受け部67内に形成(穿設)される複数(例えば4つ)の水路からなる。   As shown in FIGS. 1 and 3, the injection valve main body 40 is provided with columnar water injection channels 71, 81, and the valve body receiving portion 67 of the water injection check valve 60 includes an annular water injection channel 82 and a symmetrical water injection channel 84. Is provided. The columnar water injection channels 71 and 81 are column-shaped water channels and are respectively drilled at different positions in the injection valve main body 40. The annular water injection path 82 is constituted by, for example, a groove provided on the outer peripheral surface of the valve body receiving portion 67. As shown in FIG. 3, the annular water injection path 82 is located between the outlet end of the columnar water injection path 81 and the inlet end of the symmetrical water injection path 84, and has an annular shape surrounding the water injection check valve 60 (valve element 61 and the like). It is formed. The symmetric water injection path 84 is formed in an axial symmetry with respect to the central axis in the operation direction of the water injection check valve 60, and is a water path having a discharge port facing the water injection check valve 60 (specifically, the pressure receiving portion 63 of the valve body 61). is there. In the first embodiment, as shown in FIGS. 1 and 3, the symmetrical water injection path 84 is formed (perforated) in the valve body receiving portion 67 at equal angular intervals around the central axis in the operation direction of the water injection check valve 60. It consists of a plurality of (for example, four) water channels.

なお、注水逆止弁60の動作方向中心軸は、弁体61の摺動方向の中心軸である。本実施形態1において、注水逆止弁60の動作方向中心軸は、燃料噴射弁100の長手方向中心軸と一致または当該長手方向中心軸に平行である。   The central axis in the operation direction of the water injection check valve 60 is the central axis in the sliding direction of the valve body 61. In the first embodiment, the operation direction central axis of the water injection check valve 60 coincides with or is parallel to the longitudinal central axis of the fuel injection valve 100.

上述した柱状注水路71は、燃料噴射弁100の第1の注水路の一部となる水路である。図1に示すように、柱状注水路71は、上述した噴射弁本体11内の柱状注水路72に通じている。一方、上述した柱状注水路81、環状注水路82および対称注水路84は、各々、燃料噴射弁100の第2の注水路の一部となる水路である。図1、3に示すように、柱状注水路81は環状注水路82に通じ、環状注水路82は対称注水路84に通じている。また、対称注水路84は、弁体61が弁座64から離間した場合に、燃料噴射弁100の燃料油路における第2注水位置P2に通じる。また、図1に示すように、弁体受け部67の外周面には、環状注水路82を挟む各位置に、環状注水路82等からの漏水を防止するためのOリング92、93が設けられている。   The columnar water injection channel 71 described above is a water channel that becomes a part of the first water injection channel of the fuel injection valve 100. As shown in FIG. 1, the columnar water injection channel 71 communicates with the columnar water injection channel 72 in the injection valve main body 11 described above. On the other hand, the columnar water injection channel 81, the annular water injection channel 82, and the symmetrical water injection channel 84 described above are each a water channel that becomes a part of the second water injection channel of the fuel injection valve 100. As shown in FIGS. 1 and 3, the column-shaped water channel 81 communicates with the annular water channel 82, and the annular water channel 82 communicates with the symmetrical water channel 84. Further, the symmetrical water injection path 84 leads to the second water injection position P2 in the fuel oil path of the fuel injection valve 100 when the valve body 61 is separated from the valve seat 64. Further, as shown in FIG. 1, O-rings 92 and 93 are provided on the outer peripheral surface of the valve body receiving portion 67 at each position sandwiching the annular water injection path 82 to prevent water leakage from the annular water injection path 82 and the like. It has been.

つぎに、本実施形態1に係る燃料噴射弁100の燃料油路について説明する。燃料噴射弁100の燃料油路は、燃料噴射ポンプから圧送された燃料を流通させる通路(油路)である。本実施形態1において、燃料噴射弁100の燃料油路は、図1に示す針弁内油路7と、弁体内油路22、62と、弁座内油路25、65と、受け部内油路28、68と、ばね受け部内油路52とによって構成される。   Next, the fuel oil passage of the fuel injection valve 100 according to the first embodiment will be described. The fuel oil passage of the fuel injection valve 100 is a passage (oil passage) through which the fuel pumped from the fuel injection pump flows. In the first embodiment, the fuel oil passage of the fuel injection valve 100 includes the needle valve oil passage 7, the valve body oil passages 22, 62, the valve seat oil passages 25, 65, and the receiving portion oil. The passages 28 and 68 and the spring receiving portion internal oil passage 52 are configured.

具体的には、図1に示すように、燃料噴射弁100の燃料油路において、針弁内油路7は、弁座内油路25と連通し、弁座内油路25は、弁体内油路22と連通し、弁体内油路22は、受け部内油路28と連通する。また、受け部内油路28は、ばね受け部内油路52と連通し、ばね受け部内油路52は、弁座内油路65と連通する。さらに、弁座内油路65は、弁体内油路62と連通し、弁体内油路62は、受け部内油路68と連通する。これらの油路によって構成される燃料噴射弁100の燃料油路は、例えば図1に示すように、燃料噴射弁100の長手方向中心軸(図1中の一点鎖線を参照)を通るように配置されている。また、燃料噴射弁100の燃料油路の先端側(噴孔4側)は、針弁内油路7から針弁6の連通孔8を介して貯留部3に通じている。燃料噴射弁100の燃料油路の後端側(燃料噴射ポンプ側)は、受け部内油路68を介して燃料供給管90に通じている。   Specifically, as shown in FIG. 1, in the fuel oil passage of the fuel injection valve 100, the needle valve oil passage 7 communicates with the valve seat oil passage 25, and the valve seat oil passage 25 is formed in the valve body. The oil passage 22 communicates with the oil passage 22, and the oil passage 22 in the valve body communicates with the oil passage 28 within the receiving portion. In addition, the receiving portion oil passage 28 communicates with the spring receiving portion oil passage 52, and the spring receiving portion oil passage 52 communicates with the valve seat oil passage 65. Further, the valve seat oil passage 65 communicates with the valve body oil passage 62, and the valve body oil passage 62 communicates with the receiving portion oil passage 68. For example, as shown in FIG. 1, the fuel oil passage of the fuel injection valve 100 constituted by these oil passages is disposed so as to pass through the longitudinal central axis of the fuel injection valve 100 (see the one-dot chain line in FIG. 1). Has been. Further, the front end side (the injection hole 4 side) of the fuel oil passage of the fuel injection valve 100 communicates from the oil passage 7 in the needle valve to the storage portion 3 through the communication hole 8 of the needle valve 6. The rear end side (fuel injection pump side) of the fuel oil passage of the fuel injection valve 100 communicates with the fuel supply pipe 90 through the receiving portion oil passage 68.

つぎに、本実施形態1に係る燃料噴射弁100の第1の注水路および第2の注水路について説明する。本実施形態1において、第1の注水路は、注水ポンプから圧送された水を、注水逆止弁20を介して燃料噴射弁100の燃料油路の第1注水位置P1に注入するための通路(水路)である。第1の注水路は、図1、2に示すように、柱状注水路71と柱状注水路72と環状注水路73と対称注水路74と環状注水路75と対称注水路76とをこの順に連通させることによって構成される。また、第1の注水路は、柱状注水路71から給水管(図示せず)を介して注水ポンプに通じている。また、環状注水路73は、注水逆止弁20を囲む環状をなすようにして、水の流通範囲を柱状注水路71、72よりも広くしている。このため、環状注水路73は、径方向F2の水路幅を柱状注水路71、72よりも小さくしても、軸方向F1の単位長さ当たりの水路容積を、柱状注水路71、72と同等に維持している。   Next, the first water injection path and the second water injection path of the fuel injection valve 100 according to the first embodiment will be described. In the first embodiment, the first water injection passage is a passage for injecting water pumped from the water injection pump into the first water injection position P1 of the fuel oil passage of the fuel injection valve 100 via the water injection check valve 20. (Waterway). As shown in FIGS. 1 and 2, the first water injection channel communicates a columnar water injection channel 71, a column water injection channel 72, an annular water injection channel 73, a symmetrical water injection channel 74, an annular water injection channel 75, and a symmetrical water injection channel 76 in this order. It is composed by letting. In addition, the first water injection channel communicates with the water injection pump from the columnar water injection channel 71 via a water supply pipe (not shown). Further, the annular water injection path 73 forms an annular shape surrounding the water injection check valve 20 so that the water circulation range is wider than the columnar water injection paths 71 and 72. For this reason, the annular water injection path 73 has the same water channel volume per unit length in the axial direction F1 as that of the columnar water injection paths 71 and 72 even if the width of the water path in the radial direction F2 is smaller than that of the columnar water injection paths 71 and 72. To maintain.

また、本実施形態1において、第2の注水路は、注水ポンプから圧送された水を、注水逆止弁60を介して燃料噴射弁100の燃料油路の第2注水位置P2に注入するための通路(水路)である。第2の注水路は、図1、3に示すように、柱状注水路81と環状注水路82と対称注水路84とをこの順に連通させることによって構成される。また、第2の注水路は、柱状注水路81から給水管(図示せず)を介して注水ポンプに通じている。なお、この第2の注水路に水を圧送する注水ポンプは、上述した第1の注水路に水を圧送する注水ポンプと同一のものであってもよいし、異なるものであってもよい。   Further, in the first embodiment, the second water injection path injects water pumped from the water injection pump into the second water injection position P2 of the fuel oil path of the fuel injection valve 100 via the water injection check valve 60. It is a passage (water channel). As shown in FIGS. 1 and 3, the second water injection channel is configured by communicating a columnar water injection channel 81, an annular water injection channel 82, and a symmetrical water injection channel 84 in this order. In addition, the second water injection channel communicates with the water injection pump from the columnar water injection channel 81 through a water supply pipe (not shown). In addition, the water injection pump which pumps water to this 2nd water supply path may be the same as the water injection pump which pumps water to the 1st water supply path mentioned above, and may differ.

つぎに、本実施形態1に係る燃料噴射弁100の作用について説明する。燃料噴射弁100は、舶用ディーゼルエンジンのシリンダ内の燃焼室に対し、1サイクルの噴射で噴孔4から燃料および水を層状に噴射する。   Next, the operation of the fuel injection valve 100 according to the first embodiment will be described. The fuel injection valve 100 injects fuel and water in layers from the injection holes 4 in one cycle of injection into the combustion chamber in the cylinder of the marine diesel engine.

この1サイクルの噴射が終了してから次回の噴射が行われるまでの期間(以下、非燃料噴射期間という)、燃料噴射弁100の燃料油路から貯留部3を介して先端油路5に亘る流通経路内および燃料供給管90内には、燃料噴射ポンプから圧送された燃料が残留している。この段階において、貯留部3内に残留している燃料の圧力は、針弁6の開弁圧よりも低い。したがって、針弁6は、先端油路5を開閉可能に閉塞した状態となっている。なお、針弁6の開弁圧は、針弁6を開放するために必要な圧力であり、注水逆止弁20を介して針弁6に伝わる針弁ばね50の付勢力によって設定される。   The period from the end of this one-cycle injection to the next injection (hereinafter referred to as a non-fuel injection period) extends from the fuel oil passage of the fuel injection valve 100 to the tip oil passage 5 via the reservoir 3. The fuel pumped from the fuel injection pump remains in the flow path and the fuel supply pipe 90. At this stage, the pressure of the fuel remaining in the reservoir 3 is lower than the valve opening pressure of the needle valve 6. Therefore, the needle valve 6 is in a state of closing the tip oil passage 5 so as to be openable and closable. The valve opening pressure of the needle valve 6 is a pressure necessary to open the needle valve 6 and is set by the urging force of the needle valve spring 50 transmitted to the needle valve 6 via the water injection check valve 20.

また、この非燃料噴射期間、燃料噴射弁100の第1の注水路および第2の注水路の各内部には、注水ポンプから圧送された水が残留している。この段階において、第1の注水路内に残留している水の圧力は、注水逆止弁20の開弁圧よりも低い。したがって、注水逆止弁20は、燃料噴射弁100の燃料油路と第1の注水路との連通を開放可能に遮断した状態となっている。これと同様に、第2の注水路内に残留している水の圧力は注水逆止弁60の開弁圧よりも低いため、注水逆止弁60は、燃料噴射弁100の燃料油路と第2の注水路との連通を開放可能に遮断した状態となっている。なお、注水逆止弁20の開弁圧は、注水逆止弁20を開放するために必要な圧力であり、弁体21を弁座24に押し付ける逆止弁ばね26の付勢力によって設定される。注水逆止弁60の開弁圧は、注水逆止弁60を開放するために必要な圧力であり、弁体61を弁座64に押し付ける逆止弁ばね66の付勢力によって設定される。   Further, during this non-fuel injection period, water pumped from the water injection pump remains in each of the first water injection channel and the second water injection channel of the fuel injection valve 100. At this stage, the pressure of water remaining in the first water injection channel is lower than the valve opening pressure of the water injection check valve 20. Therefore, the water injection check valve 20 is in a state in which communication between the fuel oil passage of the fuel injection valve 100 and the first water injection passage is blocked in an openable manner. Similarly, since the pressure of water remaining in the second water injection path is lower than the valve opening pressure of the water injection check valve 60, the water injection check valve 60 is connected to the fuel oil path of the fuel injection valve 100. The communication with the second irrigation channel is blocked so as to be openable. The valve opening pressure of the water injection check valve 20 is a pressure necessary to open the water injection check valve 20 and is set by the biasing force of the check valve spring 26 that presses the valve body 21 against the valve seat 24. . The valve opening pressure of the water injection check valve 60 is a pressure necessary to open the water injection check valve 60 and is set by the biasing force of the check valve spring 66 that presses the valve body 61 against the valve seat 64.

ここで、この非燃料噴射期間において、注水逆止弁20の開弁圧を超える高圧の水が注水ポンプから燃料噴射弁100の第1の注水路内に圧送された場合、この高圧の水は、図1、2に示す柱状注水路71、72、環状注水路73、対称注水路74、環状注水路75および対称注水路76の各内部をこの順に流通する。そして、この高圧の水は、対称注水路76の吐出口を通じて、注水逆止弁20の動作方向中心軸に対する軸対称の方向から弁体21を押圧するように流れる。すなわち、弁体21は、この高圧の水の圧力(水圧)を受圧部23で軸対称に受ける。この水圧は注水逆止弁20の開弁圧よりも高圧であるため、弁体21は、この水圧を利用して、逆止弁ばね26の付勢力に抗して摺動し、弁座24から離間する。このようにして、注水逆止弁20は、燃料噴射弁100の燃料油路と第1の注水路との連通を開放する。   Here, in this non-fuel injection period, when high pressure water exceeding the valve opening pressure of the water injection check valve 20 is pumped from the water injection pump into the first water injection path of the fuel injection valve 100, the high pressure water is 1 and 2, each of the columnar water injection channels 71 and 72, the annular water injection channel 73, the symmetrical water injection channel 74, the annular water injection channel 75, and the symmetrical water injection channel 76 is circulated in this order. The high-pressure water flows through the outlet of the symmetric water injection path 76 so as to press the valve body 21 from an axially symmetric direction with respect to the central axis in the operation direction of the water injection check valve 20. That is, the valve body 21 receives the pressure (water pressure) of the high-pressure water in an axisymmetric manner at the pressure receiving portion 23. Since this water pressure is higher than the opening pressure of the water injection check valve 20, the valve body 21 slides against the urging force of the check valve spring 26 using this water pressure, and the valve seat 24. Separate from. In this way, the water injection check valve 20 opens the communication between the fuel oil passage of the fuel injection valve 100 and the first water injection passage.

この段階において、第1の注水路内の水は、注水逆止弁20の配置位置から燃料噴射弁100の燃料油路内に注入される。詳細には、第1の注水路内の水は、燃料噴射弁100の燃料油路の燃料流通方向中心軸(例えば燃料噴射弁100の長手方向中心軸)に対する軸対称の方向から、この燃料油路内の第1注水位置P1に注入される。この注入された水は、この燃料油路内に軸対称(径方向F2に均一)に拡がりながら、この燃料油路内の残留燃料を軸方向F1の後端側(燃料噴射ポンプ側)に押し戻す。この結果、この燃料油路内に1層目の注水層となる第1注水層が形成される。なお、この第1注水層の下流側(噴孔4側)には、第1注水位置P1よりも噴孔4側の燃料油路内に残留する燃料からなる第1燃料層が形成される。   At this stage, the water in the first water injection channel is injected into the fuel oil channel of the fuel injection valve 100 from the position where the water injection check valve 20 is disposed. In detail, the water in the first water injection channel flows from the fuel oil passage of the fuel injection valve 100 in a fuel flow direction central axis (for example, the longitudinal central axis of the fuel injection valve 100) in an axially symmetric direction. It is injected into the first water injection position P1 in the road. The injected water spreads axially symmetrically (uniformly in the radial direction F2) in the fuel oil passage, and pushes back residual fuel in the fuel oil passage to the rear end side (fuel injection pump side) in the axial direction F1. . As a result, a first water injection layer serving as a first water injection layer is formed in the fuel oil passage. A first fuel layer made of fuel remaining in the fuel oil passage closer to the nozzle hole 4 than the first water injection position P1 is formed on the downstream side (the nozzle hole 4 side) of the first water injection layer.

一方、この非燃料噴射期間において、注水逆止弁60の開弁圧を超える高圧の水が注水ポンプから燃料噴射弁100の第2の注水路内に圧送された場合、この高圧の水は、図1、3に示す柱状注水路81、環状注水路82および対称注水路84の各内部をこの順に流通する。そして、この高圧の水は、対称注水路84の吐出口を通じて、注水逆止弁60の動作方向中心軸に対する軸対称の方向から弁体61を押圧するように流れる。すなわち、弁体61は、この高圧の水の水圧を受圧部63で軸対称に受ける。この水圧は注水逆止弁60の開弁圧よりも高圧であるため、弁体61は、この水圧を利用して、逆止弁ばね66の付勢力に抗して摺動し、弁座64から離間する。このようにして、注水逆止弁60は、燃料噴射弁100の燃料油路と第2の注水路との連通を開放する。   On the other hand, when high pressure water exceeding the valve opening pressure of the water injection check valve 60 is pumped from the water injection pump into the second water injection path of the fuel injection valve 100 during this non-fuel injection period, The columnar water injection channel 81, the annular water injection channel 82, and the symmetrical water injection channel 84 shown in FIGS. The high-pressure water flows through the outlet of the symmetric water injection channel 84 so as to press the valve body 61 from the axially symmetric direction with respect to the central axis of the operation direction of the water injection check valve 60. In other words, the valve body 61 receives the water pressure of the high-pressure water in an axisymmetric manner at the pressure receiving portion 63. Since this water pressure is higher than the opening pressure of the water injection check valve 60, the valve body 61 slides against the urging force of the check valve spring 66 using this water pressure, and the valve seat 64. Separate from. In this way, the water injection check valve 60 opens the communication between the fuel oil passage of the fuel injection valve 100 and the second water injection passage.

この段階において、第2の注水路内の水は、注水逆止弁60の配置位置から燃料噴射弁100の燃料油路内に注入される。詳細には、第2の注水路内の水は、燃料噴射弁100の燃料油路の燃料流通方向中心軸に対する軸対称の方向から、この燃料油路内の第2注水位置P2に注入される。この注入された水は、この燃料油路内に軸対称(径方向F2に均一)に拡がりながら、この燃料油路内の残留燃料を軸方向F1の後端側(燃料噴射ポンプ側)に押し戻す。この結果、この燃料油路内に2層目の注水層となる第2注水層が形成される。なお、この第2注水層と上述の第1注水層との間には、燃料油路内に残留する燃料からなる第2燃料層が形成される。また、この第2注水層の上流側(燃料噴射ポンプ側)には、第2注水位置P2よりも燃料噴射ポンプ側の燃料油路内に残留する燃料からなる第3燃料層が形成される。   At this stage, water in the second water injection channel is injected into the fuel oil channel of the fuel injection valve 100 from the position where the water injection check valve 60 is disposed. Specifically, the water in the second water injection channel is injected into the second water injection position P2 in the fuel oil channel from the axially symmetric direction with respect to the central axis of the fuel distribution direction of the fuel oil channel of the fuel injection valve 100. . The injected water spreads axially symmetrically (uniformly in the radial direction F2) in the fuel oil passage, and pushes back residual fuel in the fuel oil passage to the rear end side (fuel injection pump side) in the axial direction F1. . As a result, a second water injection layer serving as a second water injection layer is formed in the fuel oil passage. A second fuel layer made of fuel remaining in the fuel oil passage is formed between the second water injection layer and the first water injection layer. Further, on the upstream side (fuel injection pump side) of the second water injection layer, a third fuel layer made of fuel remaining in the fuel oil passage on the fuel injection pump side from the second water injection position P2 is formed.

上述した非燃料噴射期間の後、燃料噴射ポンプから燃料噴射弁100の燃料油路内に燃料が圧送されて、舶用ディーゼルエンジンのシリンダ内の燃焼室に対し、1サイクルでの燃料および水の噴射が行われる。   After the non-fuel injection period described above, fuel is pumped from the fuel injection pump into the fuel oil passage of the fuel injection valve 100, and fuel and water are injected in one cycle into the combustion chamber in the cylinder of the marine diesel engine. Is done.

詳細には、この噴射が行われる期間(以下、燃料噴射期間という)、針弁6の開弁圧を超える高圧の燃料が燃料噴射ポンプから燃料供給管90を介して燃料噴射弁100の燃料流路内に圧送される。この場合、燃料噴射ポンプから圧送された燃料の圧力は、燃料噴射弁100の燃料流路内に存在する流体(残留していた燃料および注入された水)を通じて、針弁6の連通孔8から貯留部3内の燃料に伝わる。この結果、貯留部3内の燃料の圧力は、針弁6の開弁圧よりも高圧に昇圧される。針弁6は、この貯留部3内の昇圧された燃料の圧力を先端部で受け、この燃料の圧力を利用して、針弁ばね50の付勢力に抗して摺動し、先端油路5の開口部(シート部)から離間する。この際、注水逆止弁20は、針弁6とともに、針弁ばね50の付勢力に抗する方向(軸方向F1の後端側)に摺動する。このようにして、針弁6は、燃料噴射弁100の燃料油路と噴孔4との連通を開放する。   Specifically, during a period during which this injection is performed (hereinafter referred to as a fuel injection period), high-pressure fuel exceeding the valve opening pressure of the needle valve 6 flows from the fuel injection pump through the fuel supply pipe 90 to the fuel flow of the fuel injection valve 100. Pumped into the road. In this case, the pressure of the fuel pumped from the fuel injection pump is made from the communication hole 8 of the needle valve 6 through the fluid (remaining fuel and injected water) existing in the fuel flow path of the fuel injection valve 100. It is transmitted to the fuel in the reservoir 3. As a result, the pressure of the fuel in the reservoir 3 is increased to a pressure higher than the valve opening pressure of the needle valve 6. The needle valve 6 receives the pressure of the boosted fuel in the reservoir 3 at the tip, and slides against the biasing force of the needle valve spring 50 using the pressure of the fuel, and the tip oil passage 5 apart from the opening (sheet part). At this time, the water check valve 20 slides together with the needle valve 6 in a direction against the urging force of the needle valve spring 50 (the rear end side in the axial direction F1). In this way, the needle valve 6 opens communication between the fuel oil passage of the fuel injection valve 100 and the injection hole 4.

この段階において、燃料噴射弁100は、舶用ディーゼルエンジンのシリンダ内の燃焼室に1サイクル分の燃料および水を噴射する。例えば、燃料噴射弁100は、燃料油路内の第1燃料層、第1注水層、第2燃料層、第2注水層および第3燃料層を、この順序で噴孔4からシリンダ内の燃焼室へ層状に噴射する。その後、貯留部3内の燃料の圧力は、針弁6の開弁圧以下に減圧される。この場合、針弁6は、針弁ばね50の付勢力を利用して、噴孔4側に摺動し、再び先端油路5のシート部と接触して先端油路5を開閉可能に閉塞する。このようにして、針弁6は、燃料噴射弁100の燃料油路と噴孔4との連通を開放可能に遮断する。   At this stage, the fuel injection valve 100 injects fuel and water for one cycle into the combustion chamber in the cylinder of the marine diesel engine. For example, the fuel injection valve 100 combusts the first fuel layer, the first water injection layer, the second fuel layer, the second water injection layer, and the third fuel layer in the fuel oil passage from the injection hole 4 in the cylinder in this order. Spray into the chamber in layers. Thereafter, the pressure of the fuel in the reservoir 3 is reduced below the valve opening pressure of the needle valve 6. In this case, the needle valve 6 slides toward the nozzle hole 4 side using the urging force of the needle valve spring 50 and again comes into contact with the seat portion of the tip oil passage 5 so that the tip oil passage 5 can be opened and closed. To do. In this way, the needle valve 6 blocks the communication between the fuel oil passage of the fuel injection valve 100 and the injection hole 4 so as to be openable.

以上、説明したように、本発明の実施形態1に係る燃料噴射弁100では、針弁6を噴孔4側に付勢する針弁ばね50を基準として、第1の注水路の注水逆止弁20を噴孔4側に配置し、第2の注水路の注水逆止弁60を噴孔4とは反対側に配置するようにし、第1の注水路内の水が注水逆止弁20から燃料油路内の第1注水位置P1に注入され、第2の注水路内の水が注水逆止弁60から燃料油路内の第2注水位置P2に注入されるようにしている。   As described above, in the fuel injection valve 100 according to the first embodiment of the present invention, the water injection check of the first water injection path is based on the needle valve spring 50 that biases the needle valve 6 toward the injection hole 4 side. The valve 20 is arranged on the injection hole 4 side, the water injection check valve 60 of the second water injection path is arranged on the side opposite to the injection hole 4, and the water in the first water injection path is water injection check valve 20. Is injected into the first water injection position P1 in the fuel oil passage, and the water in the second water injection passage is injected from the water injection check valve 60 into the second water injection position P2 in the fuel oil passage.

このため、第1の注水路の注水逆止弁20を針弁6の近傍に配置できるとともに、燃料油路内の第1注水位置P1と第2注水位置P2との間における注水層間の燃料量が1サイクル当りの燃料噴射量に対して適した割合(例えば10〜20%程度)となるように、第1の注水路の注水逆止弁20と第2の注水路の注水逆止弁60とを離間して配置することができ、さらには、これら2つの注水逆止弁20、60間の領域を、針弁ばね50を配置する領域として有効活用することができる。この結果、燃料噴射弁100に内蔵される各注水逆止弁20、60間の好適な離間距離を確保するとともに、燃料噴射弁100の大型化(特に長手方向の構造の長尺化)を抑制することができる。このような燃料噴射弁100を用いて舶用ディーゼルエンジンのシリンダ内の燃焼室へ燃料および水を噴射することにより、燃焼室に対して燃料噴射の初期段階から水を投入することができ、この結果、燃焼室内において燃料の燃焼初期に発生し易いNOxの生成量を効率よく低減することができる。   For this reason, the water injection check valve 20 of the first water injection path can be disposed in the vicinity of the needle valve 6, and the fuel amount between the water injection layers between the first water injection position P1 and the second water injection position P2 in the fuel oil path. Is a ratio suitable for the fuel injection amount per cycle (for example, about 10 to 20%), the water check valve 20 in the first water channel and the water check valve 60 in the second water channel. Further, the region between these two water injection check valves 20, 60 can be effectively utilized as a region where the needle valve spring 50 is disposed. As a result, a suitable separation distance between the water injection check valves 20 and 60 built in the fuel injection valve 100 is ensured, and an increase in the size of the fuel injection valve 100 (particularly, an increase in the structure in the longitudinal direction) is suppressed. can do. By injecting fuel and water into the combustion chamber in the cylinder of the marine diesel engine using such a fuel injection valve 100, water can be introduced into the combustion chamber from the initial stage of fuel injection. In addition, it is possible to efficiently reduce the amount of NOx generated easily in the combustion chamber in the early stage of combustion of the fuel.

また、本発明の実施形態1に係る燃料噴射弁100では、第1の注水路の注水逆止弁20および第2の注水路の注水逆止弁60を、燃料噴射弁100の長手方向中心軸の方向に同一軸上に配置している。このため、これら2つの注水逆止弁20、60の配置に占める領域の幅(燃料噴射弁100の径方向F2の長さ)を低減することができる。この結果、燃料噴射弁100の径方向F2の大型化(幅の長尺化)を抑制することができる。   In the fuel injection valve 100 according to the first embodiment of the present invention, the water injection check valve 20 of the first water injection path and the water injection check valve 60 of the second water injection path are connected to the longitudinal central axis of the fuel injection valve 100. On the same axis in the direction of. For this reason, the width | variety (length of the radial direction F2 of the fuel injection valve 100) which occupies for arrangement | positioning of these two water injection non-return valves 20 and 60 can be reduced. As a result, an increase in size (lengthening of the width) of the fuel injection valve 100 in the radial direction F2 can be suppressed.

また、本発明の実施形態1に係る燃料噴射弁100では、第1の注水路を、注水逆止弁20を囲む環状に形成された環状注水路73を有するように構成している。ここで、環状注水路73は、水の流通範囲を環状に拡げることができるから、径方向F2の水路幅を柱状の水路に比べて小さくしても、軸方向F1の単位長さ当たりの水路容積を柱状の水路と同等にすることができる。このため、第1の注水路内における水の流通を阻害することなく、第1の注水路のうち環状注水路73の領域における水路幅を低減することができ、この結果、燃料噴射弁100の径方向F2の小型化を促進することができる。   In the fuel injection valve 100 according to the first embodiment of the present invention, the first water injection path is configured to have an annular water injection path 73 formed in an annular shape surrounding the water injection check valve 20. Here, since the annular water supply channel 73 can expand the water flow range in an annular shape, the water channel per unit length in the axial direction F1 even if the water channel width in the radial direction F2 is smaller than that of the columnar water channel. The volume can be made equivalent to a columnar water channel. For this reason, the water channel width in the region of the annular water injection channel 73 in the first water injection channel can be reduced without hindering the flow of water in the first water injection channel. Miniaturization in the radial direction F2 can be promoted.

また、本発明の実施形態1に係る燃料噴射弁100では、燃料噴射ポンプから圧送された燃料を流通させる燃料油路を、燃料噴射弁100の長手方向中心軸を通るように配置している。このため、当該燃料油路を構成する複数の部品(例えば針弁6、注水逆止弁20、60および針弁ばね50のばね受け部51等)を燃料噴射弁100の長手方向中心軸に集約して配置することができる。この結果、これら複数の部品の配置に占める領域の幅を低減できることから、燃料噴射弁100の径方向F2の小型化を促進することができる。   Further, in the fuel injection valve 100 according to the first embodiment of the present invention, the fuel oil passage through which the fuel pressure-fed from the fuel injection pump flows is disposed so as to pass through the longitudinal central axis of the fuel injection valve 100. For this reason, a plurality of parts constituting the fuel oil passage (for example, the needle valve 6, the water injection check valves 20 and 60, the spring receiving portion 51 of the needle valve spring 50, etc.) are gathered on the longitudinal center axis of the fuel injection valve 100. Can be arranged. As a result, it is possible to reduce the width of the region occupied by the arrangement of the plurality of components, and thus it is possible to promote the downsizing of the fuel injection valve 100 in the radial direction F2.

(実施形態2)
つぎに、本発明の実施形態2について説明する。まず、本発明の実施形態2に係る燃料噴射弁の構成について説明する。図4は、本発明の実施形態2に係る燃料噴射弁の一構成例を示す断面模式図である。図5は、本発明の実施形態2に係る燃料噴射弁を別の視点から見た一構成例を示す断面模式図である。図5には、図4に示す燃料噴射弁を方向Dから見た断面模式図が図示されている。図6は、図4に示す燃料噴射弁のC−C線断面模式図である。なお、軸方向F1および径方向F2の定義は、上述した実施形態1に係る燃料噴射弁100を本実施形態2に係る燃料噴射弁200に置き換えたものと同じである。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described. First, the configuration of the fuel injection valve according to Embodiment 2 of the present invention will be described. FIG. 4 is a schematic cross-sectional view showing a configuration example of a fuel injection valve according to Embodiment 2 of the present invention. FIG. 5 is a schematic cross-sectional view illustrating a configuration example of the fuel injection valve according to the second embodiment of the present invention as viewed from another viewpoint. FIG. 5 is a schematic cross-sectional view of the fuel injection valve shown in FIG. 6 is a schematic cross-sectional view taken along line CC of the fuel injection valve shown in FIG. The definitions of the axial direction F1 and the radial direction F2 are the same as those obtained by replacing the fuel injection valve 100 according to the first embodiment with the fuel injection valve 200 according to the second embodiment.

本実施形態2に係る燃料噴射弁200は、舶用ディーゼルエンジンのシリンダに取り付けられ、燃料噴射ポンプから圧送された燃料と注水ポンプから圧送された水とを当該シリンダ内の燃焼室へ順次噴射(例えば層状に噴射)するためのものである。図4、5に示すように、燃料噴射弁200は、先端に位置するノズル101と、ノズル101よりも後端側に位置する噴射弁本体111と、これらノズル101と噴射弁本体111との間に位置する中間金物112とを備える。ノズル101、噴射弁本体111および中間金物112は、ノズル101と噴射弁本体111との間に中間金物112を挟んだ状態でナット状のノズル締付金物110によって外周から締結されることにより、軸方向F1に連結した状態で固定されている。   The fuel injection valve 200 according to the second embodiment is attached to a cylinder of a marine diesel engine, and sequentially injects fuel pumped from a fuel injection pump and water pumped from a water injection pump into a combustion chamber in the cylinder (for example, For jetting in layers). As shown in FIGS. 4 and 5, the fuel injection valve 200 includes a nozzle 101 located at the front end, an injection valve main body 111 located on the rear end side of the nozzle 101, and between the nozzle 101 and the injection valve main body 111. And an intermediate hardware 112 located in The nozzle 101, the injection valve main body 111, and the intermediate metal piece 112 are fastened from the outer periphery by a nut-like nozzle tightening metal piece 110 with the intermediate metal piece 112 sandwiched between the nozzle 101 and the injection valve main body 111. It is fixed in a connected state in the direction F1.

ノズル101は、燃料噴射弁200の先端部分を構成するものである。図4、5に示すように、ノズル101内には、軸方向F1に長手となる孔状の針弁収容部102が設けられる。この針弁収容部102内には、燃料噴射弁200の燃料油路と噴孔104との連通を開放可能に遮断する針弁106が摺動自在に収容される。針弁106の中途部には、軸方向F1の先端側から後端側に向かって幅広となるテーパ部106aが設けられている。また、針弁収容部102の中途部には、貯留部103が設けられている。針弁106が針弁収容部102内に収容された状態において、テーパ部106aは、貯留部3内に位置している。   The nozzle 101 constitutes the tip portion of the fuel injection valve 200. As shown in FIGS. 4 and 5, the nozzle 101 is provided with a hole-like needle valve accommodating portion 102 that is long in the axial direction F <b> 1. In this needle valve accommodating part 102, the needle valve 106 which interrupts | blocks communication between the fuel oil path of the fuel injection valve 200 and the nozzle hole 104 so that opening is possible is accommodated slidably. In the middle part of the needle valve 106, a tapered part 106a is provided which becomes wider from the front end side to the rear end side in the axial direction F1. A reservoir 103 is provided in the middle of the needle valve housing 102. In a state where the needle valve 106 is accommodated in the needle valve accommodating portion 102, the tapered portion 106 a is located in the storage portion 3.

また、図4,5に示すように、ノズル101の先端側には、噴孔104および先端油路105が設けられる。先端油路105の一端は、針弁収容部102を介して燃料噴射弁200の燃料油路に通じている。先端油路105の他端は、噴孔104に通じている。また、図4に示すように、ノズル101内には、燃料噴射弁200の燃料油路の一部となる柱状燃料油路174が設けられている。柱状燃料油路174は、柱状をなす油路であり、針弁106の動作方向中心軸から燃料噴射弁200の幅方向(図4に示す径方向F2の左側)に離間した領域に穿設される。柱状燃料油路174は、軸方向F1に対して傾斜するように延在し、貯留部103から針弁収容部102を介して先端油路105に通じている。なお、針弁106の動作方向中心軸は、針弁106の摺動方向の中心軸である。   As shown in FIGS. 4 and 5, a nozzle hole 104 and a tip oil passage 105 are provided on the tip side of the nozzle 101. One end of the leading oil passage 105 communicates with the fuel oil passage of the fuel injection valve 200 through the needle valve housing portion 102. The other end of the tip oil passage 105 communicates with the nozzle hole 104. As shown in FIG. 4, a columnar fuel oil passage 174 that is a part of the fuel oil passage of the fuel injection valve 200 is provided in the nozzle 101. The columnar fuel oil passage 174 is a columnar oil passage, and is drilled in a region separated from the central axis in the operation direction of the needle valve 106 in the width direction of the fuel injection valve 200 (the left side in the radial direction F2 shown in FIG. 4). The The columnar fuel oil passage 174 extends so as to be inclined with respect to the axial direction F <b> 1, and communicates from the storage portion 103 to the tip oil passage 105 via the needle valve housing portion 102. Note that the central axis in the operation direction of the needle valve 106 is the central axis in the sliding direction of the needle valve 106.

中間金物112は、ノズル101と噴射弁本体111との間の中間部分を構成するものである。図4、5に示すように、中間金物112内には、軸方向F1に長手となる挿通孔113が設けられている。この挿通孔113内には、針弁106を噴孔104側に押すための押し棒155が摺動自在に挿通される。また、図4〜6に示すように、中間金物112には、燃料噴射弁200の第1の注水路に対応する注水逆止弁120と、燃料噴射弁200の燃料油路の一部となる柱状燃料油路173と、合流通路176とが設けられる。本実施形態2において、第1の注水路は、燃料噴射弁200の燃料油路における所定の位置(図4に示す第1注水位置P1)に水を注入するための水路である。   The intermediate metal piece 112 constitutes an intermediate portion between the nozzle 101 and the injection valve main body 111. As shown in FIGS. 4 and 5, an insertion hole 113 that is long in the axial direction F <b> 1 is provided in the intermediate hardware 112. A push rod 155 for pushing the needle valve 106 toward the nozzle hole 104 is slidably inserted into the insertion hole 113. Also, as shown in FIGS. 4 to 6, the intermediate metal piece 112 becomes a part of the water injection check valve 120 corresponding to the first water injection path of the fuel injection valve 200 and the fuel oil path of the fuel injection valve 200. A columnar fuel oil passage 173 and a junction passage 176 are provided. In the second embodiment, the first water injection channel is a water channel for injecting water into a predetermined position (first water injection position P1 shown in FIG. 4) in the fuel oil channel of the fuel injection valve 200.

注水逆止弁120は、燃料噴射弁200の第1の注水路を開閉可能に閉塞する逆止弁(第1の注水逆止弁)である。本実施形態2において、注水逆止弁120は、特に図示しないが、弁体、弁座、および逆止弁ばね等によって構成され、第1の注水路の一部となる柱状注水路182と合流通路176との連通を開放可能に遮断する。図5に示すように、注水逆止弁120は、後述の針弁ばね150よりも噴孔104側に配置される。また、注水逆止弁120は、針弁106の動作方向中心軸から燃料噴射弁200の幅方向に離間した領域に位置する。   The water injection check valve 120 is a check valve (first water injection check valve) that closes the first water injection path of the fuel injection valve 200 so as to be openable and closable. In the second embodiment, the water injection check valve 120 is not particularly illustrated, but is configured by a valve body, a valve seat, a check valve spring, and the like, and joins with the columnar water injection path 182 that is a part of the first water injection path. The communication with the passage 176 is blocked to be openable. As shown in FIG. 5, the water injection check valve 120 is disposed closer to the injection hole 104 than a later-described needle valve spring 150. The water injection check valve 120 is located in a region separated from the central axis of the needle valve 106 in the operation direction in the width direction of the fuel injection valve 200.

柱状燃料油路173は、柱状をなす油路であり、針弁106の動作方向中心軸から燃料噴射弁200の幅方向(図4に示す径方向F2の左側)に離間した領域に穿設される。柱状燃料油路174は、軸方向F1に延在し、ノズル101内の柱状燃料油路174と噴射弁本体111内の柱状燃料油路172とを連通させる。また、合流通路176は、第1の注水路から注水逆止弁120を介して流通する水と燃料噴射弁200の燃料油路内の燃料とを合流させるための通路である。例えば、合流通路176は、中間金物112の端面に設けられた溝等によって構成される。図4〜6に示すように、合流通路176は、一端が注水逆止弁120に通じ且つ他端が柱状燃料油路173に通じている。   The columnar fuel oil passage 173 is a columnar oil passage, and is drilled in a region separated from the central axis of the needle valve 106 in the operation direction in the width direction of the fuel injection valve 200 (left side in the radial direction F2 shown in FIG. 4). The The columnar fuel oil passage 174 extends in the axial direction F <b> 1 and connects the columnar fuel oil passage 174 in the nozzle 101 and the columnar fuel oil passage 172 in the injection valve body 111. The merge passage 176 is a passage for joining the water flowing from the first water injection path through the water injection check valve 120 and the fuel in the fuel oil path of the fuel injection valve 200. For example, the merge passage 176 is configured by a groove or the like provided on the end surface of the intermediate metal piece 112. As shown in FIGS. 4 to 6, the merge passage 176 has one end communicating with the water injection check valve 120 and the other end communicating with the columnar fuel oil passage 173.

噴射弁本体111は、燃料噴射弁200の中途部から後端部に亘る部分を構成するものである。図4、5に示すように、噴射弁本体111内には、軸方向F1に長手となる孔状の収容部141が設けられている。この収容部141内には、針弁ばね150と、ばね受け部151と、押し棒155と、調整ねじ156とが収容されている。   The injection valve main body 111 constitutes a portion extending from the middle part to the rear end part of the fuel injection valve 200. As shown in FIGS. 4 and 5, the injection valve main body 111 is provided with a hole-shaped accommodation portion 141 that is elongated in the axial direction F <b> 1. In the accommodating portion 141, a needle valve spring 150, a spring receiving portion 151, a push bar 155, and an adjusting screw 156 are accommodated.

針弁ばね150は、先端油路105を閉塞するように針弁106を噴孔104側に付勢するものである。図4、5に示すように、針弁ばね150は、例えばコイルばねによって構成され、ばね受け部151と調整ねじ156との間に挟まれた状態で収容部141内に収容される。ばね受け部151は、針弁ばね150を受け受ける部品であり、押し棒155の後端部に固定された状態で収容部141内に収容される。ばね受け部151は、針弁ばね150の一端部を受けるとともに針弁ばね150の他端部を調整ねじ156の先端部に押し付け、これにより、針弁ばね150を圧縮して付勢力を発生させる。押し棒155は、収容部141内から挿通孔113内に亘って摺動自在に配置されている。押し棒155の先端部は、針弁106の後端部に接触している。押し棒155の後端部には、ばね受け部151が接触している。押し棒155は、ばね受け部151から伝達された針弁ばね150の付勢力を利用して、針弁106を先端油路105に押し付ける。また、押し棒155は、貯留部103内の燃料の圧力を利用して先端油路105から離間する方向に摺動する針弁106とともに、針弁ばね150の付勢力に抗する方向(針弁ばね150を圧縮する方向)に摺動する。   The needle valve spring 150 urges the needle valve 106 toward the nozzle hole 104 so as to close the tip oil passage 105. As shown in FIGS. 4 and 5, the needle valve spring 150 is configured by, for example, a coil spring, and is accommodated in the accommodating portion 141 while being sandwiched between the spring receiving portion 151 and the adjusting screw 156. The spring receiving portion 151 is a component that receives the needle valve spring 150 and is housed in the housing portion 141 while being fixed to the rear end portion of the push rod 155. The spring receiving portion 151 receives one end portion of the needle valve spring 150 and presses the other end portion of the needle valve spring 150 against the distal end portion of the adjustment screw 156, thereby compressing the needle valve spring 150 and generating a biasing force. . The push rod 155 is slidably disposed from the accommodation portion 141 to the insertion hole 113. The front end portion of the push rod 155 is in contact with the rear end portion of the needle valve 106. A spring receiving portion 151 is in contact with the rear end portion of the push rod 155. The push rod 155 presses the needle valve 106 against the tip oil passage 105 using the urging force of the needle valve spring 150 transmitted from the spring receiving portion 151. In addition, the push rod 155 uses the pressure of the fuel in the storage portion 103 and the needle valve 106 that slides in a direction away from the tip oil passage 105, and the direction against the urging force of the needle valve spring 150 (needle valve). Sliding in the direction in which the spring 150 is compressed.

調整ねじ156は、針弁ばね150の付勢力(すなわち針弁106の開弁圧)を調整するためのものである。図4、5に示すように、調整ねじ156は、噴射弁本体111の収容部141内に螺挿することによって取り付けられる。収容部141内に螺挿された調整ねじ156は、その先端部を針弁ばね150の後端部に当接させた状態となる。調整ねじ156は、収容部141内へのねじ込み量を調整することによって、針弁ばね150の付勢力を調整する。具体的には、調整ねじ156は、収容部141内へのねじ込み量を増やすことにより、針弁ばね150の圧縮量を増やして付勢力を強く調整する。一方、調整ねじ156は、収容部141内へのねじ込み量を減らすことにより、針弁ばね150の圧縮量を減らして付勢力を弱く調整する。   The adjusting screw 156 is for adjusting the urging force of the needle valve spring 150 (that is, the valve opening pressure of the needle valve 106). As shown in FIGS. 4 and 5, the adjustment screw 156 is attached by being screwed into the accommodating portion 141 of the injection valve main body 111. The adjustment screw 156 screwed into the accommodating portion 141 is in a state in which the tip portion thereof is in contact with the rear end portion of the needle valve spring 150. The adjusting screw 156 adjusts the urging force of the needle valve spring 150 by adjusting the screwing amount into the housing portion 141. Specifically, the adjustment screw 156 increases the compression amount of the needle valve spring 150 by increasing the screwing amount into the housing portion 141, thereby strongly adjusting the urging force. On the other hand, the adjustment screw 156 reduces the compression amount of the needle valve spring 150 by reducing the screwing amount into the accommodating portion 141, and adjusts the biasing force weakly.

また、図4に示すように、噴射弁本体111内には、燃料噴射弁200の燃料油路の一部となる柱状燃料油路172が設けられている。柱状燃料油路172は、柱状をなす油路であり、針弁106の動作方向中心軸から燃料噴射弁200の幅方向(図4に示す径方向F2の左側)に離間した領域に穿設される。柱状燃料油路172は、軸方向F1に対して傾斜するように延在し、中間金物112内の柱状燃料油路173に通じている。また、柱状燃料油路172の後端部は、燃料受入部171に通じている。燃料受入部171は、燃料噴射ポンプによって圧送された燃料を受け入れるものである。図4に示すように、燃料受入部171の一端部は、噴射弁本体111の後端部に取り付けられる。燃料受入部171の他端部には、燃料噴射ポンプに通じる燃料供給管90が接続される。燃料受入部171は、燃料供給管90と柱状燃料油路172とを連通させる。   As shown in FIG. 4, a columnar fuel oil passage 172 that is a part of the fuel oil passage of the fuel injection valve 200 is provided in the injection valve main body 111. The columnar fuel oil passage 172 is an oil passage having a columnar shape, and is drilled in a region spaced from the central axis of the needle valve 106 in the operation direction in the width direction of the fuel injection valve 200 (left side in the radial direction F2 shown in FIG. 4). The The columnar fuel oil passage 172 extends so as to be inclined with respect to the axial direction F <b> 1, and communicates with the columnar fuel oil passage 173 in the intermediate hardware 112. Further, the rear end portion of the columnar fuel oil passage 172 communicates with the fuel receiving portion 171. The fuel receiving part 171 receives the fuel pumped by the fuel injection pump. As shown in FIG. 4, one end portion of the fuel receiving portion 171 is attached to the rear end portion of the injection valve main body 111. A fuel supply pipe 90 leading to the fuel injection pump is connected to the other end of the fuel receiving portion 171. The fuel receiving portion 171 allows the fuel supply pipe 90 and the columnar fuel oil passage 172 to communicate with each other.

また、図5に示すように、噴射弁本体111内には、燃料噴射弁200の第2の注水路に対応する注水逆止弁160と、ストッパー167と、水受入部181、185と、柱状注水路182、186と、合流通路175とが設けられている。本実施形態2において、第2の注水路は、燃料噴射弁200の燃料油路のうち、第1の注水路よりも燃料の圧送方向上流側の位置(例えば図4に示す第2注水位置P2)に水を注入するための水路である。   Further, as shown in FIG. 5, in the injection valve main body 111, a water injection check valve 160 corresponding to the second water injection path of the fuel injection valve 200, a stopper 167, water receiving portions 181 and 185, and a columnar shape Water injection channels 182 and 186 and a junction passage 175 are provided. In the second embodiment, the second water injection path is a position upstream of the first water injection path in the fuel pumping direction of the fuel injection valve 200 (for example, the second water injection position P2 shown in FIG. 4). ) Is a water channel for injecting water.

注水逆止弁160は、燃料噴射弁200の第2の注水路を開閉可能に閉塞する逆止弁(第2の注水逆止弁)である。本実施形態2において、注水逆止弁160は、特に図示しないが、弁体、弁座、および逆止弁ばね等によって構成され、第2の注水路の一部となる柱状注水路186と合流通路175との連通を開放可能に遮断する。図5に示すように、注水逆止弁160は、針弁ばね150を基準に噴孔104とは反対側に配置される。また、注水逆止弁160は、針弁106の動作方向中心軸から燃料噴射弁200の幅方向に離間した領域に位置する。ストッパー167は、注水逆止弁160の一端部(図5では下端部)を受けて、注水逆止弁160の摺動範囲を制限する。   The water injection check valve 160 is a check valve (second water injection check valve) that closes the second water injection path of the fuel injection valve 200 so as to be openable and closable. In the second embodiment, the water injection check valve 160 is not particularly illustrated, but is configured by a valve body, a valve seat, a check valve spring, and the like, and joins with a columnar water injection path 186 that is a part of the second water injection path. The communication with the passage 175 is blocked so as to be openable. As shown in FIG. 5, the water check valve 160 is disposed on the side opposite to the injection hole 104 with respect to the needle valve spring 150. In addition, the water injection check valve 160 is located in a region separated from the central axis in the operation direction of the needle valve 106 in the width direction of the fuel injection valve 200. The stopper 167 receives one end portion (the lower end portion in FIG. 5) of the water injection check valve 160 and limits the sliding range of the water injection check valve 160.

柱状注水路182は、燃料噴射弁200の第1の注水路の一部となる柱状の水路であり、針弁106の動作方向中心軸から燃料噴射弁200の幅方向(図5では右側)に離間した領域に穿設される。柱状注水路182は、軸方向F1に対して傾斜するように延在し、中間金物112内の注水逆止弁120に通じている。また、柱状注水路182の後端部は、水受入部181に通じている。水受入部181は、注水ポンプによって圧送された水を受け入れるものであり、図5に示すように、噴射弁本体111の後端部内に設けられる。水受入部181は、注水ポンプに通じる給水管(図示せず)と柱状注水路182とを連通させる。   The columnar water injection path 182 is a columnar water path that becomes a part of the first water injection path of the fuel injection valve 200, and extends in the width direction of the fuel injection valve 200 (right side in FIG. 5) from the central axis in the operation direction of the needle valve 106. It is drilled in a separated area. The columnar water injection path 182 extends so as to be inclined with respect to the axial direction F <b> 1 and communicates with the water injection check valve 120 in the intermediate hardware 112. Further, the rear end portion of the columnar water injection channel 182 communicates with the water receiving unit 181. The water receiving part 181 receives the water pumped by the water injection pump, and is provided in the rear end part of the injection valve main body 111 as shown in FIG. The water receiving unit 181 allows a water supply pipe (not shown) that communicates with the water injection pump to communicate with the columnar water injection path 182.

柱状注水路186は、燃料噴射弁200の第2の注水路の一部となる柱状の水路であり、針弁106の動作方向中心軸から燃料噴射弁200の幅方向(図5では左側)に離間した領域に穿設される。柱状注水路186は、軸方向F1に延在し、水受入部185と注水逆止弁160とを連通させる。水受入部185は、注水ポンプによって圧送された水を受け入れるものであり、図5に示すように、噴射弁本体111の後端部内に設けられる。水受入部185は、注水ポンプに通じる給水管(図示せず)と柱状注水路186とを連通させる。   The columnar water injection path 186 is a columnar water path that becomes a part of the second water injection path of the fuel injection valve 200, and extends in the width direction of the fuel injection valve 200 from the central axis in the operation direction of the needle valve 106 (left side in FIG. 5). It is drilled in a separated area. The columnar water injection path 186 extends in the axial direction F <b> 1 and allows the water receiving portion 185 and the water injection check valve 160 to communicate with each other. The water receiving part 185 receives the water pumped by the water injection pump, and is provided in the rear end part of the injection valve main body 111 as shown in FIG. The water receiving unit 185 communicates a water supply pipe (not shown) that communicates with the water injection pump and the columnar water supply path 186.

合流通路175は、第2の注水路から注水逆止弁160を介して流通する水と燃料噴射弁200の燃料油路内の燃料とを合流させるための通路である。例えば、合流通路175は、噴射弁本体111内に柱状に穿設された通路等によって構成される。図4、5に示すように、合流通路175は、一端が注水逆止弁160に通じ且つ他端が柱状燃料油路172に通じている。   The junction passage 175 is a passage for joining the water flowing from the second water injection passage through the water injection check valve 160 and the fuel in the fuel oil passage of the fuel injection valve 200. For example, the merging passage 175 is configured by a passage or the like drilled in a columnar shape in the injection valve main body 111. As shown in FIGS. 4 and 5, the junction passage 175 has one end communicating with the water injection check valve 160 and the other end communicating with the columnar fuel oil passage 172.

つぎに、本実施形態2に係る燃料噴射弁200の燃料油路について説明する。燃料噴射弁200の燃料油路は、燃料噴射ポンプから圧送された燃料を流通させる通路(油路)である。燃料噴射弁200の燃料油路は、図4に示す柱状燃料油路172、173、174を連結することによって構成される。このような燃料油路は、燃料噴射弁200の長手方向中心軸から径方向F2(図4では左側)に離間した位置に配置されている。   Next, the fuel oil passage of the fuel injection valve 200 according to the second embodiment will be described. The fuel oil passage of the fuel injection valve 200 is a passage (oil passage) through which the fuel pumped from the fuel injection pump flows. The fuel oil passage of the fuel injection valve 200 is configured by connecting columnar fuel oil passages 172, 173, and 174 shown in FIG. Such a fuel oil passage is disposed at a position spaced apart from the longitudinal central axis of the fuel injection valve 200 in the radial direction F2 (left side in FIG. 4).

燃料噴射弁200の燃料油路では、図4に示すように、第1の注水路から水が注入される第1注水位置P1は、中間金物112内の柱状燃料油路173と合流通路176とが合流する位置となる。第2の注水路から水が注入される第2注水位置P2は、噴射弁本体111内の柱状燃料油路172と合流通路175とが合流する位置となる。   In the fuel oil passage of the fuel injection valve 200, as shown in FIG. 4, the first water injection position P <b> 1 into which water is injected from the first water injection passage is the columnar fuel oil passage 173 and the junction passage 176 in the intermediate hardware 112. Will be the position where will join. The second water injection position P2 into which water is injected from the second water injection path is a position where the columnar fuel oil path 172 and the junction path 175 in the injection valve main body 111 join.

つぎに、本実施形態2に係る燃料噴射弁200の第1の注水路および第2の注水路について説明する。本実施形態2において、第1の注水路は、注水ポンプから圧送された水を、注水逆止弁120等を介して燃料噴射弁200の燃料油路の第1注水位置P1に注入するための通路(水路)である。第1の注水路は、図5に示すように、柱状注水路182と注水逆止弁120と合流通路176とをこの順に連通させることによって構成される。   Next, the first water injection channel and the second water injection channel of the fuel injection valve 200 according to Embodiment 2 will be described. In the second embodiment, the first water injection path is for injecting water pumped from the water injection pump into the first water injection position P1 of the fuel oil path of the fuel injection valve 200 via the water injection check valve 120 or the like. It is a passage (water channel). As shown in FIG. 5, the first water injection path is configured by communicating a columnar water injection path 182, a water injection check valve 120, and a merging passage 176 in this order.

また、本実施形態2において、第2の注水路は、注水ポンプから圧送された水を、注水逆止弁160を介して燃料噴射弁200の燃料油路の第2注水位置P2に注入するための通路(水路)である。第2の注水路は、図5に示すように、柱状注水路186と注水逆止弁160と合流通路175とをこの順に連通させることによって構成される。なお、この第2の注水路に水を圧送する注水ポンプは、上述した第1の注水路に水を圧送する注水ポンプと同一のものであってもよいし、異なるものであってもよい。   Further, in the second embodiment, the second water injection channel injects the water pumped from the water injection pump into the second water injection position P2 of the fuel oil channel of the fuel injection valve 200 via the water injection check valve 160. It is a passage (water channel). As shown in FIG. 5, the second water injection path is configured by communicating a columnar water injection path 186, a water injection check valve 160, and a merge passage 175 in this order. In addition, the water injection pump which pumps water to this 2nd water supply path may be the same as the water injection pump which pumps water to the 1st water supply path mentioned above, and may differ.

つぎに、本実施形態2に係る燃料噴射弁200の作用について説明する。燃料噴射弁200は、舶用ディーゼルエンジンのシリンダ内の燃焼室に対し、1サイクルの噴射で噴孔104から燃料および水を層状に噴射する。   Next, the operation of the fuel injection valve 200 according to the second embodiment will be described. The fuel injection valve 200 injects fuel and water in layers from the injection hole 104 in one cycle of injection into the combustion chamber in the cylinder of the marine diesel engine.

この1サイクルの噴射が終了してから次回の噴射が行われるまでの非燃料噴射期間、燃料噴射弁200の燃料油路から針弁収容部102を介して先端油路105に亘る流通経路内、燃料受入部171内および燃料供給管90内には、燃料噴射ポンプから圧送された燃料が残留している。この段階において、貯留部103内に残留している燃料の圧力は、針弁106の開弁圧よりも低い。したがって、針弁106は、先端油路105を開閉可能に閉塞した状態となっている。なお、針弁106の開弁圧は、ばね受け部151および押し棒155を介して針弁106に伝わる針弁ばね150の付勢力によって設定される。   A non-fuel injection period from the end of this one-cycle injection to the next injection, in the flow path from the fuel oil passage of the fuel injection valve 200 to the tip oil passage 105 via the needle valve housing portion 102, The fuel pumped from the fuel injection pump remains in the fuel receiving portion 171 and the fuel supply pipe 90. At this stage, the pressure of the fuel remaining in the reservoir 103 is lower than the valve opening pressure of the needle valve 106. Therefore, the needle valve 106 is in a state where the tip oil passage 105 is closed so as to be openable and closable. The valve opening pressure of the needle valve 106 is set by the biasing force of the needle valve spring 150 transmitted to the needle valve 106 via the spring receiving portion 151 and the push rod 155.

また、この非燃料噴射期間、燃料噴射弁200の第1の注水路および第2の注水路の各内部には、注水ポンプから圧送された水が残留している。この段階において、第1の注水路内に残留している水の圧力は、注水逆止弁120の開弁圧よりも低い。したがって、注水逆止弁120は、燃料噴射弁200の燃料油路と第1の注水路との連通を開放可能に遮断した状態となっている。これと同様に、第2の注水路内に残留している水の圧力は注水逆止弁160の開弁圧よりも低いため、注水逆止弁160は、燃料噴射弁200の燃料油路と第2の注水路との連通を開放可能に遮断した状態となっている。   Further, during this non-fuel injection period, water pumped from the water injection pump remains in each of the first water injection channel and the second water injection channel of the fuel injection valve 200. At this stage, the pressure of water remaining in the first water injection channel is lower than the valve opening pressure of the water injection check valve 120. Therefore, the water injection check valve 120 is in a state in which the communication between the fuel oil passage of the fuel injection valve 200 and the first water injection passage is blocked openably. Similarly, since the pressure of water remaining in the second water injection path is lower than the valve opening pressure of the water injection check valve 160, the water injection check valve 160 is connected to the fuel oil path of the fuel injection valve 200. The communication with the second water injection channel is blocked in such a way that it can be opened.

ここで、この非燃料噴射期間において、注水逆止弁120の開弁圧を超える高圧の水が注水ポンプから燃料噴射弁200の第1の注水路内に圧送された場合、この高圧の水は、図5に示す水受入部181および柱状注水路182の各内部をこの順に流通する。そして、この高圧の水は、柱状注水路182から注水逆止弁120内に流入する。この水圧は注水逆止弁120の開弁圧よりも高圧であるため、注水逆止弁120は、この水圧を利用して開弁し、燃料噴射弁200の燃料油路と第1の注水路との連通を開放する。詳細には、注水逆止弁120は、柱状注水路182と合流通路176とを連通させ、この合流通路176を介して柱状注水路182と柱状燃料油路173とを連通させる。   Here, in this non-fuel injection period, when high pressure water exceeding the valve opening pressure of the water injection check valve 120 is pumped from the water injection pump into the first water injection path of the fuel injection valve 200, the high pressure water is The water receiving portion 181 and the columnar water injection channel 182 shown in FIG. The high-pressure water flows into the water injection check valve 120 from the columnar water injection path 182. Since this water pressure is higher than the valve opening pressure of the water injection check valve 120, the water injection check valve 120 is opened using this water pressure, and the fuel oil passage of the fuel injection valve 200 and the first water injection passage. Open communication with. Specifically, the water injection check valve 120 causes the columnar water injection path 182 and the merge passage 176 to communicate with each other, and the columnar water injection path 182 and the columnar fuel oil path 173 communicate with each other via the merge path 176.

この段階において、第1の注水路内の水は、注水逆止弁120の配置位置から燃料噴射弁200の燃料油路内に注入される。詳細には、第1の注水路内の水は、注水逆止弁120から合流通路176を通じて、この燃料油路内の第1注水位置P1に注入される。この注入された水は、この燃料油路内の残留燃料を軸方向F1の後端側(燃料噴射ポンプ側)に押し戻す。この結果、この燃料油路内に1層目の注水層となる第1注水層が形成される。なお、この第1注水層の下流側(噴孔104側)には、第1注水位置P1よりも噴孔104側の燃料油路内に残留する燃料からなる第1燃料層が形成される。   At this stage, water in the first water injection channel is injected into the fuel oil channel of the fuel injection valve 200 from the position where the water injection check valve 120 is disposed. Specifically, the water in the first water injection channel is injected from the water injection check valve 120 through the junction channel 176 to the first water injection position P1 in the fuel oil channel. This injected water pushes the residual fuel in the fuel oil passage back to the rear end side (fuel injection pump side) in the axial direction F1. As a result, a first water injection layer serving as a first water injection layer is formed in the fuel oil passage. A first fuel layer made of fuel remaining in the fuel oil passage closer to the nozzle hole 104 than the first water injection position P1 is formed on the downstream side (the nozzle hole 104 side) of the first water injection layer.

一方、この非燃料噴射期間において、注水逆止弁160の開弁圧を超える高圧の水が注水ポンプから燃料噴射弁200の第2の注水路内に圧送された場合、この高圧の水は、図5に示す水受入部185および柱状注水路186の各内部をこの順に流通する。そして、この高圧の水は、柱状注水路186から注水逆止弁160内に流入する。この水圧は注水逆止弁160の開弁圧よりも高圧であるため、注水逆止弁160は、この水圧を利用して開弁し、燃料噴射弁200の燃料油路と第2の注水路との連通を開放する。詳細には、注水逆止弁160は、柱状注水路186と合流通路175とを連通させ、この合流通路175を介して柱状注水路186と柱状燃料油路172とを連通させる。   On the other hand, when high-pressure water exceeding the valve opening pressure of the water injection check valve 160 is pumped from the water injection pump into the second water injection path of the fuel injection valve 200 during this non-fuel injection period, It distribute | circulates each inside of the water receiving part 185 and the columnar water injection path 186 shown in FIG. 5 in this order. This high-pressure water flows into the water injection check valve 160 from the columnar water injection path 186. Since this water pressure is higher than the valve opening pressure of the water injection check valve 160, the water injection check valve 160 is opened using this water pressure, and the fuel oil passage and the second water injection passage of the fuel injection valve 200. Open communication with. Specifically, the water injection check valve 160 causes the columnar water injection path 186 to communicate with the merge passage 175, and communicates the columnar water injection path 186 and the columnar fuel oil path 172 via the merge passage 175.

この段階において、第2の注水路内の水は、注水逆止弁160の配置位置から燃料噴射弁200の燃料油路内に注入される。詳細には、第2の注水路内の水は、注水逆止弁160から合流通路175を通じて、この燃料油路内の第2注水位置P2に注入される。この注入された水は、この燃料油路内の残留燃料を軸方向F1の後端側(燃料噴射ポンプ側)に押し戻す。この結果、この燃料油路内に2層目の注水層となる第2注水層が形成される。なお、この第2注水層と上述の第1注水層との間には、燃料油路内に残留する燃料からなる第2燃料層が形成される。また、この第2注水層の上流側(燃料噴射ポンプ側)には、第2注水位置P2よりも燃料噴射ポンプ側の燃料油路内に残留する燃料からなる第3燃料層が形成される。   At this stage, the water in the second water injection channel is injected into the fuel oil channel of the fuel injection valve 200 from the position where the water injection check valve 160 is disposed. Specifically, the water in the second water injection channel is injected from the water injection check valve 160 through the junction channel 175 to the second water injection position P2 in the fuel oil channel. This injected water pushes the residual fuel in the fuel oil passage back to the rear end side (fuel injection pump side) in the axial direction F1. As a result, a second water injection layer serving as a second water injection layer is formed in the fuel oil passage. A second fuel layer made of fuel remaining in the fuel oil passage is formed between the second water injection layer and the first water injection layer. Further, on the upstream side (fuel injection pump side) of the second water injection layer, a third fuel layer made of fuel remaining in the fuel oil passage on the fuel injection pump side from the second water injection position P2 is formed.

上述した非燃料噴射期間の後、燃料噴射ポンプから燃料噴射弁200の燃料油路内に燃料が圧送されて、舶用ディーゼルエンジンのシリンダ内の燃焼室に対し、1サイクルでの燃料および水の噴射が行われる。   After the non-fuel injection period described above, fuel is pumped from the fuel injection pump into the fuel oil passage of the fuel injection valve 200, and fuel and water are injected in one cycle into the combustion chamber in the cylinder of the marine diesel engine. Is done.

詳細には、この燃料噴射期間、針弁106の開弁圧を超える高圧の燃料が燃料噴射ポンプから燃料供給管90を介して燃料噴射弁200の燃料流路内に圧送される。この場合、燃料噴射ポンプから圧送された燃料の圧力は、燃料噴射弁200の燃料流路内に存在する流体(残留していた燃料および注入された水)を通じて、貯留部103内の燃料に伝わる。この結果、貯留部103内の燃料の圧力は、針弁106の開弁圧よりも高圧に昇圧される。針弁106は、この貯留部103内の昇圧された燃料の圧力をテーパ部106aで受け、この燃料の圧力を利用して、針弁ばね150の付勢力に抗して摺動し、先端油路105の開口部(シート部)から離間する。このようにして、針弁106は、燃料噴射弁200の燃料油路と噴孔104との連通を開放する。   Specifically, during this fuel injection period, high-pressure fuel exceeding the valve opening pressure of the needle valve 106 is pumped from the fuel injection pump into the fuel flow path of the fuel injection valve 200 through the fuel supply pipe 90. In this case, the pressure of the fuel pumped from the fuel injection pump is transmitted to the fuel in the reservoir 103 through the fluid (remaining fuel and injected water) present in the fuel flow path of the fuel injection valve 200. . As a result, the fuel pressure in the reservoir 103 is increased to a pressure higher than the valve opening pressure of the needle valve 106. The needle valve 106 receives the pressure of the pressurized fuel in the storage portion 103 by the taper portion 106a, and slides against the urging force of the needle valve spring 150 using the pressure of the fuel, and the tip oil It is separated from the opening (sheet part) of the path 105. In this way, the needle valve 106 opens communication between the fuel oil passage of the fuel injection valve 200 and the injection hole 104.

この段階において、燃料噴射弁200は、舶用ディーゼルエンジンのシリンダ内の燃焼室に1サイクル分の燃料および水を噴射する。例えば、燃料噴射弁200は、燃料油路内の第1燃料層、第1注水層、第2燃料層、第2注水層および第3燃料層を、この順序で噴孔104からシリンダ内の燃焼室へ層状に噴射する。その後、貯留部103内の燃料の圧力は、針弁106の開弁圧以下に減圧される。この場合、針弁106は、針弁ばね150の付勢力を利用して、噴孔104側に摺動し、再び先端油路105のシート部と接触して先端油路105を開閉可能に閉塞する。このようにして、針弁106は、燃料噴射弁200の燃料油路と噴孔104との連通を開放可能に遮断する。   At this stage, the fuel injection valve 200 injects fuel and water for one cycle into the combustion chamber in the cylinder of the marine diesel engine. For example, the fuel injection valve 200 combusts the first fuel layer, the first water injection layer, the second fuel layer, the second water injection layer, and the third fuel layer in the fuel oil passage from the injection hole 104 in the cylinder in this order. Spray into the chamber in layers. Thereafter, the pressure of the fuel in the reservoir 103 is reduced below the valve opening pressure of the needle valve 106. In this case, the needle valve 106 slides toward the nozzle hole 104 side using the urging force of the needle valve spring 150 and again comes into contact with the seat portion of the tip oil passage 105 so that the tip oil passage 105 can be opened and closed. To do. In this way, the needle valve 106 blocks the communication between the fuel oil passage of the fuel injection valve 200 and the injection hole 104 so as to be openable.

以上、説明したように、本発明の実施形態2に係る燃料噴射弁200では、針弁106を噴孔104側に付勢する針弁ばね150を基準として、第1の注水路の注水逆止弁120を噴孔104側に配置し、第2の注水路の注水逆止弁160を噴孔104とは反対側に配置するようにし、第1の注水路内の水が注水逆止弁120から合流通路175を通じて燃料油路内の第1注水位置P1に注入され、第2の注水路内の水が注水逆止弁160から合流通路176を通じて燃料油路内の第2注水位置P2に注入されるようにしている。   As described above, in the fuel injection valve 200 according to the second embodiment of the present invention, the water injection check of the first water injection path is based on the needle valve spring 150 that biases the needle valve 106 toward the injection hole 104 side. The valve 120 is arranged on the nozzle hole 104 side, the water injection check valve 160 of the second water injection channel is arranged on the side opposite to the nozzle hole 104, and the water in the first water injection channel is the water injection check valve 120. Is injected into the first water injection position P1 in the fuel oil passage through the merging passage 175, and the water in the second water injection passage is injected from the water injection check valve 160 into the second water injection position P2 in the fuel oil passage through the merging passage 176. To be.

このため、第1の注水路の注水逆止弁120を針弁106の近傍に配置できるとともに、燃料油路内の第1注水位置P1と第2注水位置P2との間における注水層間の燃料量が1サイクル当りの燃料噴射量に対して適した割合(例えば10〜20%程度)となるように、第1の注水路の注水逆止弁120と第2の注水路の注水逆止弁160とを離間して配置することができ、さらには、これら2つの注水逆止弁120、160間の領域を、針弁ばね150を配置する領域として有効活用することができる。この結果、燃料噴射弁200に内蔵される各注水逆止弁120、160間の好適な離間距離を確保するとともに、燃料噴射弁200の大型化(特に長手方向の構造の長尺化)を抑制することができる。このような燃料噴射弁200を用いて舶用ディーゼルエンジンのシリンダ内の燃焼室へ燃料および水を噴射することにより、燃焼室に対して燃料噴射の初期段階から水を投入することができ、この結果、燃焼室内において燃料の燃焼初期に発生し易いNOxの生成量を効率よく低減することができる。   Therefore, the water injection check valve 120 of the first water injection path can be disposed in the vicinity of the needle valve 106, and the fuel amount between the water injection layers between the first water injection position P1 and the second water injection position P2 in the fuel oil path. Is a ratio suitable for the fuel injection amount per cycle (for example, about 10 to 20%), the water check valve 120 of the first water channel and the water check valve 160 of the second water channel. Further, the region between these two water injection check valves 120 and 160 can be effectively utilized as a region where the needle valve spring 150 is disposed. As a result, a suitable separation distance between the water injection check valves 120 and 160 built in the fuel injection valve 200 is ensured, and an increase in the size of the fuel injection valve 200 (particularly, an increase in the structure in the longitudinal direction) is suppressed. can do. By injecting fuel and water into the combustion chamber in the cylinder of the marine diesel engine using such a fuel injection valve 200, water can be introduced into the combustion chamber from the initial stage of fuel injection. In addition, it is possible to efficiently reduce the amount of NOx generated easily in the combustion chamber in the early stage of combustion of the fuel.

また、本発明の実施形態2に係る燃料噴射弁200では、燃料噴射ポンプから圧送された燃料を流通させる燃料油路を、燃料噴射弁200の長手方向中心軸から径方向に離間した位置に配置している。このため、燃料噴射弁200の長手方向中心軸の近傍に配置される針弁106、針弁ばね150、ばね受け部151、押し棒155、調整ねじ156等の部品を避けて燃料油路を設けることができる。これにより、燃料噴射弁200の長手方向中心軸の近傍に配置される複数の部品内の通路を連結して燃料油路を構成する必要がなくなることから、燃料油路を構成する部品の点数を少なくして、燃料油路における通路同士の連結箇所を少なくすることができる。   Further, in the fuel injection valve 200 according to the second embodiment of the present invention, the fuel oil passage through which the fuel pressure-fed from the fuel injection pump is circulated is disposed at a position spaced radially from the longitudinal central axis of the fuel injection valve 200. doing. For this reason, a fuel oil passage is provided by avoiding components such as the needle valve 106, the needle valve spring 150, the spring receiving portion 151, the push rod 155, and the adjusting screw 156 that are disposed in the vicinity of the longitudinal center axis of the fuel injection valve 200. be able to. This eliminates the need for connecting the passages in a plurality of parts arranged in the vicinity of the central axis in the longitudinal direction of the fuel injection valve 200 to configure the fuel oil path, so that the number of parts constituting the fuel oil path is reduced. It is possible to reduce the number of connecting portions between the passages in the fuel oil passage.

なお、上述した実施形態1では、注水逆止弁の弁体に水を吐出する対称注水路の一例として、注水逆止弁の動作方向中心軸の周りに等角度間隔で形成される4つの水路からなる対称注水路を例示したが、本発明は、これに限定されるものではない。本発明において、対称注水路は、注水逆止弁の動作方向中心軸の周りに等角度間隔で形成される2つ以上(複数)の水路からなるものであってもよいし、注水逆止弁の動作方向中心軸の周りに連続する環状吐出口をもつ単一の環状水路からなるものであってもよい。   In Embodiment 1 described above, as an example of a symmetrical water injection path for discharging water to the valve body of the water injection check valve, four water paths formed at equal angular intervals around the central axis in the operation direction of the water injection check valve However, the present invention is not limited to this. In the present invention, the symmetric water injection channel may be composed of two or more (a plurality of) water channels formed at equiangular intervals around the operation direction central axis of the water injection check valve. It may consist of a single annular water channel having an annular discharge port that is continuous around the central axis in the operation direction.

また、上述した実施形態1では、第1の注水路および第2の注水路の一例として環状注水路を有するものを例示したが、本発明は、これに限定されるものではない。例えば、第1の注水路および第2の注水路は、注水逆止弁の弁体に吐出口を向けている対称注水路と、注水ポンプから圧送された水を受け入れる柱状注水路とを直接連通させたものであってもよい。   Moreover, in Embodiment 1 mentioned above, although what has an annular water channel as an example of a 1st water channel and a 2nd water channel, this invention is not limited to this. For example, the first water injection channel and the second water injection channel directly communicate with a symmetrical water injection channel whose discharge port faces the valve body of the water injection check valve and a columnar water channel that receives water pumped from the water injection pump. It may be made.

また、上述した実施形態1では、注水逆止弁の弁体の一例として、対称注水路の吐出口から吐出された水の圧力を受ける受圧部を外周に備えた弁体を例示したが、本発明は、これに限定されるものではない。例えば、注水逆止弁の弁体は、受圧部が設けられたものではなく、外周部または先端部に水の圧力を受けるものであってもよい。   Moreover, in Embodiment 1 mentioned above, although the valve body provided with the pressure receiving part which receives the pressure of the water discharged from the discharge port of a symmetrical water injection path was illustrated as an example of the valve body of a water injection check valve, The invention is not limited to this. For example, the valve body of the water injection check valve is not provided with a pressure receiving portion, and may receive water pressure at the outer peripheral portion or the tip portion.

また、上述した実施形態1では、第1の注水路および第2の注水路の一例として、注水逆止弁の弁体に対し、当該注水逆止弁の動作方向中心軸について軸対称の方向に水を吐出するものを例示したが、本発明は、これに限定されたものではない。例えば、第1の注水路および第2の注水路は、注水逆止弁の弁体に対して非対称の方向(単一方向等)に水を吐出するものであってもよい。   In the first embodiment described above, as an example of the first water injection channel and the second water injection channel, the valve body of the water injection check valve is axially symmetric with respect to the operation direction central axis of the water injection check valve. Although what discharged water was illustrated, this invention is not limited to this. For example, the first water injection channel and the second water injection channel may discharge water in an asymmetric direction (single direction or the like) with respect to the valve body of the water injection check valve.

また、上述した実施形態1、2では、2つの注水逆止弁が設けられた燃料噴射弁を例示したが、本発明は、これに限定されるものではない。例えば、燃料噴射弁に設ける注水逆止弁の数は、3つ以上であってもよい。この場合、3つめ以上の注水逆止弁は、燃料噴射弁の噴射弁本体後端部に設けてもよいし、燃料噴射ポンプからの配管と注水ポンプからの配管との合流部分等に設けてもよい。   Moreover, although Embodiment 1 and 2 mentioned above illustrated the fuel injection valve provided with the two water-injection check valves, this invention is not limited to this. For example, the number of water injection check valves provided in the fuel injection valve may be three or more. In this case, the third or more water injection check valves may be provided at the rear end portion of the injection valve main body of the fuel injection valve, or provided at a joint portion between the pipe from the fuel injection pump and the pipe from the water injection pump. Also good.

また、上述した実施形態1、2により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施形態1、2に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。   In addition, the present invention is not limited by the above-described first and second embodiments, and the present invention includes a combination of the above-described constituent elements as appropriate. In addition, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on Embodiments 1 and 2 described above are all included in the scope of the present invention.

1 ノズル
2 針弁収容部
3 貯留部
4 噴孔
5 先端油路
6 針弁
7 針弁内油路
8 連通孔
10 ノズル締付金物
11 噴射弁本体
12 逆止弁収容部
20 注水逆止弁
21 弁体
22 弁体内油路
23 受圧部
24 弁座
25 弁座内油路
26 逆止弁ばね
27 弁体受け部
28 受け部内油路
29 挿入孔
30 弁本体締付金物
40 噴射弁本体
41 収容部
50 針弁ばね
51 ばね受け部
52 ばね受け部内油路
60 注水逆止弁
61 弁体
62 弁体内油路
63 受圧部
64 弁座
65 弁座内油路
66 逆止弁ばね
67 弁体受け部
68 受け部内油路
71、72、81 柱状注水路
73、75、82 環状注水路
74、76、84 対称注水路
90 燃料供給管
91、92、93 Oリング
100、200 燃料噴射弁
101 ノズル
102 針弁収容部
103 貯留部
104 噴孔
105 先端油路
106 針弁
106a テーパ部
110 ノズル締付金物
111 噴射弁本体
112 中間金物
113 挿通孔
120 注水逆止弁
141 収容部
150 針弁ばね
151 ばね受け部
155 押し棒
156 調整ねじ
160 注水逆止弁
167 ストッパー
171 燃料受入部
172、173、174 柱状燃料油路
175、176 合流通路
181、185 水受入部
182、186 柱状注水路
F1 軸方向
F2 径方向
P1 第1注水位置
P2 第2注水位置
DESCRIPTION OF SYMBOLS 1 Nozzle 2 Needle valve accommodating part 3 Reserving part 4 Injection hole 5 Tip oil path 6 Needle valve 7 Needle valve internal oil path 8 Communication hole 10 Nozzle tightening metal 11 Injection valve body 12 Check valve accommodating part 20 Water injection check valve 21 Valve body 22 Oil passage in valve body 23 Pressure receiving portion 24 Valve seat 25 Oil passage in valve seat 26 Check valve spring 27 Valve body receiving portion 28 Oil passage in receiving portion 29 Insertion hole 30 Valve body tightening fitting 40 Injection valve body 41 Housing portion 50 Needle valve spring 51 Spring receiving portion 52 Oil passage in spring receiving portion 60 Water injection check valve 61 Valve body 62 Oil passage in valve body 63 Pressure receiving portion 64 Valve seat 65 Oil passage in valve seat 66 Check valve spring 67 Valve body receiving portion 68 Receiving section oil passage 71, 72, 81 Columnar water injection passage 73, 75, 82 Annular water injection passage 74, 76, 84 Symmetric water injection passage 90 Fuel supply pipe 91, 92, 93 O-ring 100, 200 Fuel injection valve 101 Nozzle 102 Needle valve Containment DESCRIPTION OF SYMBOLS 103 Storage part 104 Injection hole 105 Tip oil path 106 Needle valve 106a Taper part 110 Nozzle clamping metal 111 Injection valve main body 112 Intermediate metal 113 Insertion hole 120 Water injection check valve 141 Accommodating part 150 Needle valve spring 151 Spring receiving part 155 Push rod 156 Adjustment screw 160 Water injection check valve 167 Stopper 171 Fuel receiving portion 172, 173, 174 Columnar fuel oil passage 175, 176 Merge passage 181, 185 Water receiving portion 182, 186 Columnar water injection passage F1 Axial direction F2 Radial direction P1 First water injection Position P2 Second water injection position

Claims (5)

舶用ディーゼルエンジンのシリンダ内の燃焼室へ燃料および水を噴孔から噴射する燃料噴射弁において、
燃料噴射ポンプから圧送された前記燃料を流通させる燃料油路と、
一端が前記燃料油路に通じ且つ他端が前記噴孔に通じる先端油路と、
前記先端油路を開閉可能に閉塞する針弁と、
前記先端油路を閉塞するように前記針弁を前記噴孔側に付勢する針弁ばねと、
前記燃料油路の所定の位置に水を注入するための第1の注水路と、
前記燃料油路のうち前記第1の注水路よりも前記燃料の圧送方向上流側の位置に水を注入するための第2の注水路と、
前記針弁ばねよりも前記噴孔側に配置され、前記第1の注水路を開閉可能に閉塞する第1の注水逆止弁と、
前記針弁ばねを基準に前記噴孔とは反対側に配置され、前記第2の注水路を開閉可能に閉塞する第2の注水逆止弁と、
を備え、前記第1の注水路内の水は前記第1の注水逆止弁の配置位置から前記燃料油路内に注入され、前記第2の注水路内の水は前記第2の注水逆止弁の配置位置から前記燃料油路内に注入されることを特徴とする燃料噴射弁。
In a fuel injection valve that injects fuel and water from a nozzle hole into a combustion chamber in a cylinder of a marine diesel engine,
A fuel oil passage for circulating the fuel pumped from the fuel injection pump;
A tip oil passage having one end communicating with the fuel oil passage and the other end communicating with the nozzle hole;
A needle valve that closes and opens the tip oil passage;
A needle valve spring that biases the needle valve toward the nozzle hole so as to close the tip oil passage;
A first water injection channel for injecting water into a predetermined position of the fuel oil channel;
A second water injection path for injecting water into the fuel oil path at a position upstream of the first water injection path in the direction of pumping the fuel;
A first water injection check valve that is disposed closer to the nozzle hole than the needle valve spring and closes the first water injection path so as to be openable and closable;
A second water check valve that is disposed on the opposite side of the nozzle hole with respect to the needle valve spring and closes the second water supply path so as to be openable and closable;
The water in the first water injection channel is injected into the fuel oil channel from the arrangement position of the first water injection check valve, and the water in the second water injection channel is the second water injection reverse A fuel injection valve, which is injected into the fuel oil passage from a position where the stop valve is arranged.
前記第1の注水逆止弁および前記第2の注水逆止弁は、当該燃料噴射弁の長手方向中心軸の方向に同一軸上に配置されることを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel according to claim 1, wherein the first water injection check valve and the second water injection check valve are disposed on the same axis in a direction of a longitudinal central axis of the fuel injection valve. Injection valve. 前記第1の注水路は、前記第1の注水逆止弁を囲む環状に形成された環状注水路を有することを特徴とする請求項1または2に記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the first water injection path has an annular water injection path formed in an annular shape surrounding the first water injection check valve. 4. 前記燃料油路は、当該燃料噴射弁の長手方向中心軸を通るように配置されることを特徴とする請求項1〜3のいずれか一つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 3, wherein the fuel oil passage is disposed so as to pass through a longitudinal central axis of the fuel injection valve. 前記燃料油路は、当該燃料噴射弁の長手方向中心軸から径方向に離間した位置に配置されることを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the fuel oil passage is disposed at a position radially spaced from a longitudinal central axis of the fuel injection valve.
JP2018103950A 2018-05-30 2018-05-30 Fuel injection valve Active JP6615943B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018103950A JP6615943B2 (en) 2018-05-30 2018-05-30 Fuel injection valve
CN201980035535.3A CN112204242B (en) 2018-05-30 2019-05-30 Fuel injection valve
PCT/JP2019/021549 WO2019230891A1 (en) 2018-05-30 2019-05-30 Fuel injection valve
KR1020207033193A KR102450605B1 (en) 2018-05-30 2019-05-30 fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103950A JP6615943B2 (en) 2018-05-30 2018-05-30 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP6615943B2 JP6615943B2 (en) 2019-12-04
JP2019206962A true JP2019206962A (en) 2019-12-05

Family

ID=68698924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103950A Active JP6615943B2 (en) 2018-05-30 2018-05-30 Fuel injection valve

Country Status (4)

Country Link
JP (1) JP6615943B2 (en)
KR (1) KR102450605B1 (en)
CN (1) CN112204242B (en)
WO (1) WO2019230891A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579420A (en) * 1991-09-17 1993-03-30 Ishikawajima Shibaura Mach Co Ltd Multi-fluid injection device
JPH0666217A (en) * 1992-08-17 1994-03-08 Mitsubishi Heavy Ind Ltd Two-fluid injection fuel valve
JPH07174056A (en) * 1993-12-20 1995-07-11 Toyota Motor Corp Double fuel injection valve
JP2001525899A (en) * 1997-05-09 2001-12-11 ウエストポート イノベイションズ インク. Hydraulically operated gas or dual fuel injectors
JP2010185380A (en) * 2009-02-12 2010-08-26 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2012122405A (en) * 2010-12-08 2012-06-28 Mitsubishi Heavy Ind Ltd Fuel injection device of internal combustion engine and fuel injection method of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300709B2 (en) * 1992-10-28 2002-07-08 三菱重工業株式会社 Two-fluid injection fuel valve
JP3219525B2 (en) * 1993-02-25 2001-10-15 三菱重工業株式会社 Water injection diesel engine
JPH094539A (en) * 1995-06-21 1997-01-07 Mitsubishi Motors Corp Fuel injection nozzle and controller therefor
JP6285699B2 (en) * 2013-11-26 2018-02-28 川崎重工業株式会社 Ship engine system and ship using pilot fuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579420A (en) * 1991-09-17 1993-03-30 Ishikawajima Shibaura Mach Co Ltd Multi-fluid injection device
JPH0666217A (en) * 1992-08-17 1994-03-08 Mitsubishi Heavy Ind Ltd Two-fluid injection fuel valve
JPH07174056A (en) * 1993-12-20 1995-07-11 Toyota Motor Corp Double fuel injection valve
JP2001525899A (en) * 1997-05-09 2001-12-11 ウエストポート イノベイションズ インク. Hydraulically operated gas or dual fuel injectors
JP2010185380A (en) * 2009-02-12 2010-08-26 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2012122405A (en) * 2010-12-08 2012-06-28 Mitsubishi Heavy Ind Ltd Fuel injection device of internal combustion engine and fuel injection method of internal combustion engine

Also Published As

Publication number Publication date
JP6615943B2 (en) 2019-12-04
KR20210002562A (en) 2021-01-08
WO2019230891A1 (en) 2019-12-05
KR102450605B1 (en) 2022-10-04
CN112204242B (en) 2022-06-21
CN112204242A (en) 2021-01-08

Similar Documents

Publication Publication Date Title
US8371268B2 (en) Safety valve and high-pressure pump comprising said safety valve
US9328723B2 (en) Pressure relief valve and high pressure pump with such valve
WO2006070719A1 (en) Fuel supply pump
JP5549293B2 (en) Fuel injection device
US9562503B2 (en) Fuel injection nozzle
CN108138735B (en) Flow restrictor for an ejector
CN105745430B (en) Overflow valve and fuel injection system for fuel injection system
JP6615943B2 (en) Fuel injection valve
WO2019230892A1 (en) Fuel injection valve
JP2001173517A (en) Constitution group consisting of module to inject into cylinder of internal combustion engine and fuel injection valve
US20040226540A1 (en) High pressure reservoir for fuel injection of internal combustion engines with a high-pressure fuel pump
JP2020143585A (en) Pressure control unit
US8925523B2 (en) Vented pressure relief valve for an internal combustion engine fuel system
US11421637B2 (en) High pressure diesel fuel pump pumping element
JP5839206B2 (en) Internal combustion engine and water-containing fuel emulsion generation / injection pump therefor
KR20090028860A (en) Pressure pulse reduction equipment on fuel injection pump for 2-stroke diesel engine
JP4013685B2 (en) Fuel injection valve
US20160069310A1 (en) Fuel injector with diesel pilot injection
JP2010196544A (en) Fuel injection nozzle
JP2004019592A (en) High-pressure oil manifold and internal combustion engine
JP2020143586A (en) Pressure control unit
JP2007170263A (en) Fuel supply pump
JP2004257252A (en) Accumulator-distributor type fuel injection pump
RU2001117630A (en) MIXED FUEL SUPPLY SYSTEM FOR DIESEL
JP2000170621A (en) Fuel supplying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R150 Certificate of patent or registration of utility model

Ref document number: 6615943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250