JP2019204225A - 画像処理装置、画像処理方法、及びプログラム - Google Patents

画像処理装置、画像処理方法、及びプログラム Download PDF

Info

Publication number
JP2019204225A
JP2019204225A JP2018098058A JP2018098058A JP2019204225A JP 2019204225 A JP2019204225 A JP 2019204225A JP 2018098058 A JP2018098058 A JP 2018098058A JP 2018098058 A JP2018098058 A JP 2018098058A JP 2019204225 A JP2019204225 A JP 2019204225A
Authority
JP
Japan
Prior art keywords
image
component
correction
filter
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098058A
Other languages
English (en)
Other versions
JP7101539B2 (ja
JP2019204225A5 (ja
Inventor
明 加納
Akira Kano
明 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018098058A priority Critical patent/JP7101539B2/ja
Publication of JP2019204225A publication Critical patent/JP2019204225A/ja
Publication of JP2019204225A5 publication Critical patent/JP2019204225A5/ja
Application granted granted Critical
Publication of JP7101539B2 publication Critical patent/JP7101539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】ノイズの増幅を抑制しつつ、撮像光学系の点像強度分布関数に起因する画質劣化を補正する技術を提供する。【解決手段】撮像光学系の点像強度分布関数に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する画像処理手段を備え、前記補正画像に含まれる前記補正処理に由来する補正成分が、前記入力画像に前記点像強度分布関数を適用した場合に前記入力画像に生じる変化に対応する第1の成分に対してローパスフィルタを適用した場合に得られる第2の成分に少なくとも部分的に基づくことを特徴とする画像処理装置を提供する。【選択図】図10

Description

本発明は、画像処理装置、画像処理方法、及びプログラムに関する。
情報のデジタル化により画像を信号値として扱うことが可能になった。これに伴い、撮影画像に対する様々な補正処理方法が提案されている。デジタルカメラで被写体を撮像した場合、得られた画像は、特に撮像光学系の収差によって画質劣化(画像のぼけ)を伴う。画像のぼけは、光学系の球面収差、コマ収差、像面湾曲、非点収差等が原因である。これらの収差による画像のぼけは、無収差で回折の影響もないと仮定した場合に被写体の一点から出た光束が撮像面上で再度一点に集まるべきものが広がりをもって像を結んでいる状態に相当する。画像のぼけ成分は、光学的には点像強度分布関数(PSF:Point Spread Function)により生じる成分である。
従来、入力画像をぼかした画像と入力画像との差分を入力画像に加算又は減算することにより入力画像を鮮鋭化するアンシャープマスク処理が知られている。特許文献1では、像高方向の画素信号列に対して非対称な1次元のフィルタを適用することにより光学系の点像強度分布関数の影響を低減する方法が提案されている。
特許第4618355号公報
アンシャープマスクとして回転対称なフィルタを利用する従来のアンシャープマスク処理では、非対称収差やサジタルハロのような複雑な形状のPSFの影響を受けて劣化した画像を鮮鋭化により補正することは困難である。即ち、収差が大きく発生しているアジムス方向の収差を補正する場合、収差の小さなアジムス方向ではアンダーシュートが発生し、逆にアンダーシュートを抑制すると収差を十分に補正できない。
特許文献1の方法では、メリジオナル面のアジムス方向である像高方向への非対称性しか考慮しておらず、フィルタは1次元であるため、像高方向以外の方向への非対称性を改善することができない。また、フィルタは、マイナスタップ係数の個数で非対称性が調整され、光学系のPSFのぼけ方とは異なるため、十分に画像を鮮鋭化することができない。
また、回転対称なフィルタを利用する従来のアンシャープマスク処理では、補正の強さを制御することは行われているが、各周波数に対するバランスの制御は考慮されていない。そのため、鮮鋭化の効果を上げるために補正を強めると、特に高周波側でノイズが増幅される。反対に、補正を弱めると、ノイズの問題は緩和されるものの鮮鋭化の効果が低減する。
本発明はこのような状況に鑑みてなされたものであり、ノイズの増幅を抑制しつつ、撮像光学系の点像強度分布関数に起因する画質劣化を補正する技術を提供することを目的とする。
上記課題を解決するために、本発明は、撮像光学系の点像強度分布関数に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する画像処理手段を備え、前記補正画像に含まれる前記補正処理に由来する補正成分が、前記入力画像に前記点像強度分布関数を適用した場合に前記入力画像に生じる変化に対応する第1の成分に対してローパスフィルタを適用した場合に得られる第2の成分に少なくとも部分的に基づくことを特徴とする画像処理装置を提供する。
本発明によれば、ノイズの増幅を抑制しつつ、撮像光学系の点像強度分布関数に起因する画質劣化を補正することが可能となる。
なお、本発明のその他の特徴及び利点は、添付図面及び以下の発明を実施するための形態における記載によって更に明らかになるものである。
アンシャープマスク処理(画像鮮鋭化処理)による補正の概念図。 撮像光学系のPSFの概念図。 非対称に劣化した画像に対して回転対称なガウシアンフィルタを用いるアンシャープマスク処理による補正の概念図。 非対称に劣化した画像に対して回転非対称な撮像光学系のPSFを適用するアンシャープマスク処理の概念図。 式10の括弧{}の絶対値を示す図。 アンシャープマスク処理による補正前後の振幅成分MTFの変化を示す図。 式7の(1−U(u,v))の周波数特性の例を示す図。 ローパスフィルタLPF(x,y)の周波数特性の例を示す図。 画像処理装置の一例である撮像装置100の構成を示す図。 撮像光学系の点像強度分布関数(PSF)に起因する画質劣化を補正する補正処理のフローチャート。 ベイヤー配列の模式図。 ローパスフィルタ取得部112が取得するローパスフィルタLPF(x,y)の周波数特性の例を示す図。 異なる撮影条件における撮像光学系のMTFの例を示す図。 (a)PSF(x,y)及びローパスフィルタLPF(x,y)の一例として15×15タップの2次元のフィルタを表す図、(b)図14(a)のPSF(x,y)及びLPF(x,y)の断面図。 入力画像の模式図。 図15の第1象限を拡大した図。 式15に示す演算方法を実現するための画像処理部104の構成を示す図。 式15に示す演算方法による補正処理のフローチャート。 式27により生成した補正フィルタのゲインの例を示す図。
以下、添付図面を参照して、本発明の実施形態を説明する。添付図面の全体を通じて、同一の参照符号が付与された要素は、同一又は同様の要素を表す。なお、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。また、実施形態の中で説明されている特徴の組み合わせすべてが、本発明に必須とは限らない。また、別々の実施形態の中で説明されている特徴を適宜組み合せることも可能である。
[第1の実施形態]
最初に、本実施形態の画像補正処理の原理を説明する。図1は、アンシャープマスク処理(画像鮮鋭化処理)による補正の概念図である。図1において、横軸は座標を示し、縦軸は画素値又は輝度値を示す。図1(A)において、実線は入力画像を示し、破線は入力画像をぼかした画像(ボケ画像)を示し、点線は鮮鋭化後の画像を示す。図1(B)は、補正成分を表す。
入力画像をf(x,y)、補正成分をh(x,y)とすると、鮮鋭化後の補正画像g(x,y)は以下の式1で表される。

g(x,y)=f(x,y)+m×h(x,y) ・・・(1)

ここで、mは補正の強さを変化させるための調整係数である。調整係数mを変化させることで補正量を調整することができる。なお、調整係数mは、入力画像の位置によらない定数であってもよいし、入力画像の位置に応じて変化させてもよい。調整係数mを入力画像の位置に応じて異ならせることで、入力画像の位置に応じて補正量を調整することができる。また、調整係数mは、光学系の焦点距離、絞り値、又は被写体距離といった撮影条件に応じて異なる数であってもよい。また、式1は第1項と第2項を加算する形で表されるが、これは調整係数mが正の場合であり、調整係数mが負の場合は、式1は第1項と第2項を減算する形で表される。
補正成分h(x,y)は、アンシャープマスクにおけるボケ画像生成フィルタをUSM(x,y)とすると、以下の式2で表される。USM(x,y)は、例えば、座標(x,y)におけるタップ値である。

h(x,y)=f(x,y)-f(x,y)*USM(x,y) ・・・(2)

ここで、「*」はコンボリューション(畳み込み積分、積和)を意味する。
式2の右辺を変形すると、補正成分h(x,y)は以下の式3で表される。

h(x,y)=f(x,y)*(δ(x,y)-USM(x,y)) ・・・(3)

ここで、「δ」はデルタ関数(理想点像)である。デルタ関数とは、USM(x,y)とタップ数が等しく、中心の値が1でそれ以外が0で埋まっているデータである。
以下、補正成分h(x,y)の生成について説明する。一般的なアンシャープマスク処理では、ボケ画像生成フィルタとしてガウシアンフィルタ、メディアンフィルタ、又は移動平均フィルタ等の平滑化フィルタが使用される。例えば、図1(A)の実線で示される入力画像f(x,y)に対してUSM(x,y)としてガウシアンフィルタを適用する場合、入力画像f(x,y)は図1(A)の破線で示されるボケ画像となる。補正成分h(x,y)は、式2に示されるように入力画像f(x,y)とボケ画像の差分値であり、図1(A)の実線から図1(A)の破線を減算することで図1(B)の実線で表される補正成分h(x,y)が得られる。入力画像f(x,y)は、式1の演算を行うことで、図1(A)の点線で示される鮮鋭化後の補正画像g(x,y)となる。
以下、被写体の光学像を形成する撮像光学系により劣化した画像に対して、アンシャープマスク処理を行うことで画像を補正する方法について説明する。
撮像光学系を介して取得される入力画像f(x,y)は、撮影前の元の画像(被写体像)をI(x,y)、撮像光学系の点光源に対する応答を表す関数であるPSFをpsf(x,y)とすると、以下の式4で表される。

f(x,y)=I(x,y)*psf(x,y) ・・・(4)

撮像光学系が回転対称な共軸光学系である場合、画像の中心部に対応するPSFは回転対称となる。そのため、画像の中心部に対して回転対称なUSM(x,y)を適用することで、入力画像f(x,y)を元の画像I(x,y)に近づける鮮鋭化を行うことができる。補正成分h(x,y)は入力画像f(x,y)とボケ画像の差分値であるため、USM(x,y)として単純な平滑化フィルタではなく、PSFに近い形状のフィルタを使用することで入力画像f(x,y)を精度良く補正することができる。例えば、球面収差の影響で入力画像が劣化する場合、球面収差は入力画像に回転対称に影響を与えるが、ガウシアンフィルタのような平滑化フィルタは、球面収差の影響によるPSFとは分布の形状が異なる。そのため、入力画像が回転対称にぼける影響を低減する場合、PSFを使用することで入力画像を精度良く補正することができる。
本実施形態では、USM(x,y)としてPSFを用いる。図1(A)の実線で示される入力画像f(x,y)は、簡略化のため対称な形状としているが、非対称な形状であってもよい。元の画像I(x,y)の形状が非対称であってもpsf(x,y)に相当する元の画像I(x,y)の劣化関数が回転対称であれば、回転対称なUSM(x,y)を用いて鮮鋭化を行うことができる。
画像の中心部以外では、撮像光学系が回転対称な共軸光学系であっても、PSFは通常非対称な形状となる。図2は、撮像光学系のPSFの概念図である。図2(A)は軸上のPSFを表し、図2(B)は軸外のPSFを表す。例えば、元の画像(被写体像)が理想点像である場合、入力画像f(x,y)は、式4に示されるように、撮像光学系のPSFになる。図2(B)に対応する画角に理想点像があり、撮像光学系のPSFの影響を受けて元の画像(被写体像)が劣化する場合、入力画像f(x,y)として得られる画像は、図2(B)に示されるように、ぼけた画像となる。
以下、非対称にぼけた画像に対して、アンシャープマスク処理による補正を行う場合について説明する。図3は、非対称に劣化した画像に対して回転対称なガウシアンフィルタを用いるアンシャープマスク処理による補正の概念図である。図4は、非対称に劣化した画像に対して回転非対称な撮像光学系のPSFを適用するアンシャープマスク処理の概念図である。図1において、横軸は座標を示し、縦軸は画素値又は輝度値を示す。図3(A)及び図4(A)において、実線は入力画像を表し、破線は入力画像をぼかした画像(ボケ画像)を表す。図3(B)及び図4(B)は、入力画像とボケ画像の差分値である補正成分を表す。図3及び図4の横軸では、ボケ画像のうち、よりぼけて裾野が広くなっている側を便宜的にプラス側と表現し、その反対側をマイナス側と表現する。
図3(A)では、実線のピーク位置に対してマイナス側の入力画像とボケ画像の差分値が、プラス側の入力画像とボケ画像の差分値より大きい。そのため、図3(B)に示されるように、ピーク位置に対してマイナス側の補正成分の極値は、プラス側の補正成分の極値に比べて小さい。即ち、プラス側の補正成分が小さく、マイナス側の補正成分は大きいため、式1を用いてアンシャープマスク処理を行っても非対称なボケを補正できない。図3(C)は、式1の調整係数mが1である場合の補正後の画像を表す。補正後の画像は、図3(C)に示されるように、図3(A)の実線で示される入力画像に対して鮮鋭化されているが、マイナス側の領域がプラス側の領域に比べて大きく凹んでおり、非対称なボケは補正されていない。また、入力画像のプラス側の領域を適切に補正するように調整係数mを設定すると、入力画像のマイナス側の領域は補正過剰(アンダーシュート)になる。入力画像のマイナス側の領域を適切に補正するように調整係数mを設定すると、入力画像のプラス側の領域は補正不足になる。
以上説明したように、非対称にぼけた入力画像に対して回転対称なUSM(x,y)を適用してアンシャープマスク処理を行う場合、入力画像の非対称性を改善することは困難である。このような問題は、ガウシアンフィルタ以外の回転対称なフィルタを使用する場合でも発生する。
図4(A)では、実線のピーク位置に対してプラス側の入力画像とボケ画像の差分値が、マイナス側の入力画像とボケ画像の差分値より大きい。そのため、図4(B)に示されるように、ピーク位置に対してプラス側の補正成分の極値は、マイナス側の補正成分の極値に比べて小さい。即ち、ボケ量が大きいプラス側の補正成分は大きく、ボケ量の少ないマイナス側の補正成分は小さくなっている。従って、図4(A)の実線で示される入力画像に対してアンシャープマスク処理を行うと、入力画像のボケのバランスと補正成分の補正量のバランスの傾向が一致するため、補正の過不足も起きにくい。
図4(C)は、式1の調整係数mが1である場合の補正後の画像を表す。補正後の画像は、図4(C)に示されるように、図4(A)の実線で示される入力画像に対して補正されるとともに、図3(C)の補正後の画像に比べてマイナス側の領域とプラス側の領域の凹みのバランス差が改善されている。また、回転対称なUSM(x,y)を適用する場合と比べて、補正過剰になりにくくなるため、調整係数mの値も比較的大きく変化させることできる。そのため、補正後の画像は、非対称なボケが低減されるとともにより鮮鋭化される。
また、補正成分の補正量のバランスは入力画像とボケ画像の差分値となるため、より精度良くアンシャープマスク処理を行うためには、撮像光学系のPSFによって大きくぼけた領域がUSM(x,y)によって他の領域に比べてよりぼかされる必要がある。従って、USM(x,y)として撮像光学系のPSFを利用することで、より精度良くアンシャープマスク処理を行うことができる。
以下、アンシャープマスク処理の周波数特性の制御について説明する。式1をフーリエ変換して周波数面での表示形式に変換すると、式1は以下の式5で表される。

G(u,v)=F(u,v)+m×H(u,v) ・・・(5)

ここで、H(u,v)は補正成分h(x,y)のフーリエ変換であり、G(u,v)及びF(u,v)はそれぞれ補正後の画像g(x,y)及び入力画像f(x,y)のフーリエ変換である。(u,v)は2次元周波数面での座標、即ち周波数である。
式2をフーリエ変換することで、補正成分h(x,y)のフーリエ変換H(u,v)は、以下の式6で表される。

H(u,v)=F(u,v)-F(u,v)×U(u,v) ・・・(6)

ここで、U(u,v)は、ボケ画像生成フィルタであるUSM(x,y)のフーリエ変換である。
また、式3をフーリエ変換することで、補正成分h(x,y)のフーリエ変換H(u,v)は、以下の式7で表される。

H(u,v)=F(u,v)×(1-U(u,v)) ・・・(7)

補正後の画像g(x,y)のフーリエ変換G(u,v)は、式5に式6を代入することで、以下の式8で表される。

G(u,v)=F(u,v)+m×{F(u,v)-F(u,v)×U(u,v)} ・・・(8)

また、補正後の画像g(x,y)のフーリエ変換G(u,v)は、式5に式7を代入することで、以下の式9で表される。

G(u,v)=F(u,v)+m×F(u,v)×{1-U(u,v)} ・・・(9)

ここで、式9は、以下の式のように変形される。

G(u,v)=F(u,v)×{1+m×(1-U(u,v))} ・・・(10)

式8から式10は、処理する順序等が異なるものの、数式の変形により導出できるため、いずれも等価な関係にある。式10の括弧{}の部分は、アンシャープマスク処理前後の周波数特性の変化に対応する。即ち、式10の括弧{}の絶対値は、アンシャープマスク処理で使用するフィルタのゲイン(鮮鋭化度合い)であり、アンシャープマスク処理の周波数空間における補正効果を表す。
図5は、式10の括弧{}の絶対値を示す図である。図5において、横軸は空間周波数を示し、縦軸はゲインを示す。図5では、点線は調整係数mが0.5である場合を表し、高周波側ではゲインGaが1.5に漸近する。破線は調整係数mが1.0である場合を表し、高周波側ではゲインGaが2.0に漸近する。図5の実線については後で説明する。
ボケ画像生成フィルタUSM(x,y)として撮像光学系のPSFを利用する場合、USM(x,y)のフーリエ変換U(u,v)は、PSFのフーリエ変換である光学伝達関数(OTF:Optical Transfer Function)となる。
図6は、アンシャープマスク処理による補正前後の振幅成分MTFの変化を示す図である。図6において、一点鎖線は補正前の振幅成分MTFを表し、点線と破線はそれぞれ図5の点線と破線に対応する補正後の振幅成分MTFを表す。図6の実線については後で説明する。
振幅成分MTFは、収差による画像劣化の振幅成分の周波数特性であり、図6に示されるように、低周波側が高く、高周波側が低くなる。振幅成分MTFがゼロに近づくと、OTFの実部及び虚部はゼロに近づき、撮像光学系で解像できる周波数を超えると実部及び虚部は0となる。このとき、ゲインGaは式10より(1+m)となる。そのため、USM(x,y)として撮像光学系のPSFを利用した場合でも、ゲインGaは図5の点線や破線で示される高周波側で増加する曲線となる。なお、軸外のPSFは回転非対称となるため、ゲインGaも回転非対称となる。ゲインGaはPSFが回転対称の場合はどの方向(断面)でも一定となるが、回転非対称な場合は方向によって異なる。また、所定の周波数でゲインGaはGa>(1+m)となる場合もある。
以上説明したように、ボケ画像生成フィルタUSM(x,y)としてガウス分布のような回転対称なフィルタを利用する場合であっても、撮像光学系のPSFを利用する場合であっても、基本的にゲインGaは低周波側から高周波側にかけて増加する曲線となる。図5に示されるように、調整係数mが異なる場合、高周波側でゲインGaに差が生じるものの、補正後の振幅成分MTFは周波数frにおいて差が最大となる。これは、図6の一点鎖線で示される補正前の振幅成分MTFに図5に示されるゲインGaが掛け合わされて補正後の振幅成分MTFとなるためである。補正前の振幅成分MTFが低い場合、ゲインGaが大きくても補正による振幅成分MTFの変化は小さくなる。
図5の点線と破線を比較すると、破線の方が点線を上回っているため補正効果は大きい。しかし、アンシャープマスク処理を適用する入力画像にはノイズ成分が含まれているため、実際にはノイズ成分の影響を考慮する必要がある。入力画像のノイズ成分を考慮すると、式10は、以下の式11で表される。

G(u,v)=(F(u,v)+N(u,v))×{1+m×(1-U(u,v))} ・・・(11)

ここで、N(u,v)は、ノイズ成分である。式11から理解できるように、ノイズ成分を含む入力画像に対してアンシャープマスク処理を行うと、入力画像f(x,y)のフーリエ変換F(u,v)とノイズ成分N(u,v)の両方に括弧{}の部分がかかる。また、入力画像f(x,y)のフーリエ変換F(u,v)は、式4をフーリエ変換することで取得され、撮影前の元の画像I(x,y)のフーリエ変換と撮像光学系のOTFの積である。振幅成分MTFがゼロに近づく高周波側では、OTFの実部及び虚部はゼロに近づくため、入力画像f(x,y)のフーリエ変換F(u,v)も同様にゼロに近づく。
一方、ノイズ成分N(u,v)は、例えばホワイトノイズのようなノイズ成分であれば、基本的に周波数に依存することなく一様な分布となる。従って、高周波側では、入力画像f(x,y)のフーリエ変換F(u,v)に対するノイズ成分N(u,v)の割合が大きくなる。そのため、ノイズ成分を含む入力画像に対して高周波側に大きなゲインをかけると、補正効果はあまり得られないにも関わらず、ノイズ成分は大きく増幅される。そのため、観賞用画像として良好な画像を得るためには、補正効果よりもノイズ成分の影響が大きい高周波側でのゲインはできる限り小さくする必要がある。
そこで、本実施形態では、観賞用画像として良好な画像を得るために、図5において実線で示すように、補正効果よりノイズ成分に対する影響が大きい高周波側ではゲインGaを小さくし、ノイズ成分の影響が小さい低周波側ではゲインGaを大きくする。
ところで、アンシャープマスク処理では、前述したように、調整係数mを変化させることでゲインGaを制御することができる。しかしながら、調整係数mによる補正量の調整では、空間周波数に対して一律に補正量を制御することはできるものの、図5の実線のように低周波側のゲインGaを大きく、高周波側のゲインGaを小さくすることはできない。そこで、本実施形態では、以下に説明する方法によりゲインGaを制御する。
式7において画像のノイズ成分の影響を考慮すると、補正成分は以下の式12で表される。

H(u,v)=(F(u,v)+N(u,v))×(1-U(u,v)) ・・・(12)

ここで、図7は、式12の(1−U(u,v))の周波数特性の例を示す図である。(1−U(u,v))は、低周波側から高周波側にかけて増加する曲線であり、ハイパスフィルタの特性を示す。式12において、ノイズ成分N(u,v)に(1−U(u,v))がかかることで、補正成分H(u,v)は高周波側が増幅されたノイズ成分を含むことになる。この増幅されたノイズ成分を含む補正成分が、アンシャープマスク処理では式1で表したように入力画像に加算されることで、補正後の画像にノイズ増加が発生する。
本実施形態では、このような補正成分に含まれるノイズ成分を抑制するために、補正成分にローパスフィルタLPF(x,y)をかける。このときの補正成分h(x,y)は以下の式13で表される。式13は、式3のローパスフィルタLPF(x,y)を適用したものに相当する。

h(x,y)=f(x,y)*(δ(x,y)-USM(x,y))*LPF(x,y) ・・・(13)

ここで、図8は、ローパスフィルタLPF(x,y)の周波数特性の例を示す図である。このようなローパスフィルタを補正成分に適用することで、補正成分中のノイズ成分を抑制することができる。
ローパスフィルタLPF(x,y)のフーリエ変換をL(u,v)とすると、補正後の画像g(x,y)のフーリエ変換G(u,v)は、以下の式14で表される。

G(u,v)=F(u,v)×{1+m×(1-U(u,v))×L(u,v)} ・・・(14)

ここで、式14に基づくアンシャープマスク処理を実行した後の振幅成分MTFは図6の実線で表され、式14に基づくゲインGaは図5の実線で表される。
本実施形態では、ローパスフィルタを撮像光学系の特性に基づいて決定することで、補正効果とノイズ抑制のバランスを制御する。例えば、高周波側でMTFがゼロに近い周波数帯域では、ゲインをかけて補正しても補正効果はほとんどなく、ノイズ成分の増幅だけが発生する。従って、その周波数帯域で振幅を下げるローパスフィルタを使用することで、補正効果を維持し、ノイズ成分の増幅を抑制することが可能になる。
本実施形態におけるアンシャープマスク処理の基本式は、式1と式13から導かれる以下の式15で表される。なお、本実施形態ではUSM(x,y)としてPSFを用いるため、式15以降の式では、USM(x,y)をPSF(x,y)に置き換えている。

g(x,y)=f(x,y)+m×{f(x,y)*(δ(x,y)-PSF(x,y))*LPF(x,y)} ・・・(15)

また、式15は、式16又は式17に変形することができる。

g(x,y)=f(x,y)+m×{f(x,y)*LPF(x,y)-f(x,y)*PSF(x,y)*LPF(x,y)}・・・(16)
g(x,y)=f(x,y)*{δ(x,y)+m×(δ(x,y)-PSF(x,y))*LPF(x,y)} ・・・(17)

なお、PSFは、光学系を介して形成される像の像高、光学系の焦点距離、F値、及び被写体距離を含む撮影条件ごとに異なる。以下では撮影条件として像高を例に説明を行っているが、光学系の焦点距離、F値、及び撮影距離に応じて異なる収差情報を取得し、それに基づいてボケ画像生成フィルタを生成してもよい。
次に、図9を参照して、第1の実施形態に係る画像処理装置の一例である撮像装置100の構成について説明する。図1において、撮像光学系101は、不図示の被写体を撮像素子102に結像する。撮像光学系101は、絞り101a及びフォーカスレンズ101bを備え、撮像装置100本体と一体的に構成されている。なお、撮像光学系101は、撮像装置100本体に対して着脱可能に構成されてもよい。撮像光学系101には、ローパスフィルタや赤外線カットフィルタなどの光学素子を挿入してもよい。ローパスフィルタなどのPSFの特性に影響を与える光学素子を用いる場合、挿入した光学素子の影響を考慮してアンシャープマスク処理を行えばより高精度な補正処理が可能である。また、赤外線カットフィルタを用いる場合、分光波長のPSFの積分値であるRGBチャンネル(RGB色成分)の各PSF(特に、RチャンネルのPSF)に影響が生じる。そのため、アンシャープマスク処理を行う際に赤外線カットフィルタの影響を考慮してもよい。
撮像素子102は、結像光を電気信号に変換する。A/Dコンバータ103は、撮像素子102が出力した電気信号をデジタル信号に変換し、画像処理部104に入力する。画像処理部104は、点像強度分布関数取得部111、ローパスフィルタ取得部112、補正フィルタ生成部113、フィルタ重畳部114、及び、その他画像処理部115を含む。画像処理部104は、点像強度分布関数取得部111、ローパスフィルタ取得部112、補正フィルタ生成部113、及びフィルタ重畳部114によって画像補正処理を行う。また、その他画像処理部115は、画素補間、ガンマ補正、カラーバランス調整などの所定の画像処理を行い、JPEG等の画像ファイルを生成する。
画像処理部104は、状態検知部107から撮像装置100の撮像状態の情報を得る。状態検知部107は、システムコントローラ110から直接状態情報を得ても良い。例えば、撮像光学系に関する撮像状態情報については、状態検知部107は、撮像光学系制御部106から得ることもできる。
記憶部108は、画像処理部104で使用するPSF及びローパスフィルタに関する情報を保持する。画像処理部104で処理された出力画像は、画像記録媒体109に所定のフォーマットで保存される。また、表示部105には、画像処理後の画像が表示される。
システムコントローラ110は、撮像装置100の全体的な制御を行う。撮像光学系の機械的な駆動については、システムコントローラ110の指示により撮像光学系制御部106が行う。
次に、図10を参照して、撮像光学系の点像強度分布関数(PSF)に起因する画質劣化を補正する補正処理について説明する。図10に示すフローチャートの各ステップの処理は、システムコントローラ110の指示に従って画像処理部104により実行される。
S201で、画像処理部104は、撮影画像に基づいて補正対象の入力画像を取得する。補正対象の入力画像の色成分データは、例えば、デモザイキング後のGチャンネルの画像データである。但し、補正対象の入力画像の色成分データは、RチャンネルやBチャンネルの画像データや、RGBすべてのチャンネルの画像データ、或いはデモザイキング前の画像データであってもよい。図11は、離散的な規則配列であるベイヤー配列の模式図である。例えば、画像処理部104は、単純にRGBの各チャンネルのデータをそのまま抜き出して、色ごとに入力画像として使用してもよいし、特定のチャンネルのみ入力画像として使用してもよい。また、図11に示されるように、GチャンネルをG1、G2の2つに分け、撮影画像を4チャンネルの色成分データとして取り扱ってもよい。Gチャンネルを2つに分けることで、R、G1、G2、Bのそれぞれを抜き出した画像データは解像度が等しくなるため、処理やデータ加工がしやすくなる。
S202で、画像処理部104の点像強度分布関数取得部111は、入力画像の撮影条件に対応する撮像光学系101のPSFを記憶部108から取得する。点像強度分布関数取得部111が取得するPSFは、2次元のタップデータ、PSFの構成要素となる複数の1次元のタップデータ、又は係数であってもよい。2次元のタップデータは、例えば、特異値分解定理などを用いて複数の1次元のタップデータに分解される。記憶部108が分解されたデータを記録し、点像強度分布関数取得部111が撮影条件に応じてPSFの主成分に対応する複数の1次元のタップデータを取得してもよい。なお、記憶部108から取得するPSFの情報は、必ずしも精度の高い情報である必要はなく、PSFを近似した情報であっても構わない。
S203で、ローパスフィルタ取得部112は、ローパスフィルタLPF(x,y)を記憶部108から取得する。図12に、ローパスフィルタ取得部112が取得するローパスフィルタLPF(x,y)の周波数特性の例を示す。この例では、ローパスフィルタ取得部112は、撮像光学系のMTFに応じて図12(a)、図12(b)、図12(c)に示す3つのローパスフィルタのうちの1つを選択する。図13は、異なる撮影条件における撮像光学系のMTFの例を示す図であり、点線のMTFは破線のMTFよりもより低周波側でゼロに近づいている。例えば、点線のMTFの場合、MTFがゼロ付近の周波数帯域におけるノイズ増加を抑えるために、ローパスフィルタ取得部112は図12(a)のローパスフィルタを選択する。また、図13の破線で示したMTFの場合、ローパスフィルタ取得部112は図12(c)のローパスフィルタを選択する。また、図13の点線で示したMTFと破線で示したMTFの間の特性を持つMTFの場合、ローパスフィルタ取得部112は図12(b)のローパスフィルタを選択する。入力画像の撮影条件と選択するローパスフィルタの対応関係を示す情報は、記憶部108に格納することができる。なお、ローパスフィルタ取得部112は、記憶部108から取得したローパスフィルタをそのままローパスフィルタLPF(x,y)として使用してもよいし、取得したローパスフィルタを加工したものをローパスフィルタLPF(x,y)として使用してもよい。
図14(a)は、PSF(x,y)及びローパスフィルタLPF(x,y)の一例として15×15タップの2次元のフィルタを表している。PSF(x,y)及びLPF(x,y)のタップ数は、必ずしも等しくなくてもよい。例えば、LPF(x,y)がPSF(x,y)よりも分布の広がりが小さい場合、タップ数を減らすことで処理負荷を低減したり、データ量を削減したりすることができる。
図14(b)は、図14(a)のPSF(x,y)及びLPF(x,y)の断面図である。図14(b)において、横軸はタップを示し、縦軸はタップの値を示す。図14(b)では、実線がPSF(x,y)の断面、点線がLPF(x,y)の断面を表す。本実施形態では、点像強度分布関数取得部111は、記憶部108から取得したPSFをそのままPSF(x,y)として使用してもよいし、取得したPSFを加工したものをPSF(x、y)として使用してもよい。
S204で、補正フィルタ生成部113は、PSF(x,y)及びLPF(x,y)から補正フィルタを生成する。補正フィルタC(x,y)は、式17の括弧{}の部分に相当し、以下の式18で表される。

C(x,y)=δ(x,y)+m×(δ(x,y)-PSF(x,y))*LPF(x,y) ・・・(18)
S205で、フィルタ重畳部114は、補正フィルタC(x,y)を入力画像に適用する(重畳する)ことにより(即ち、式17に示す演算を行うことにより)、補正画像g(x,y)を生成する。
式18において、調整係数mは補正量に影響するパラメータである。調整係数mを大きくするとアンシャープマスクのゲインGaは大きくなり、調整係数mを小さくするとアンシャープマスクのゲインGaは小さくなる。図5の点線や破線で示されるように、調整係数mを変更すると周波数に対し全体的に補正量が変化する。また、式18の補正フィルタC(x,y)は、LPF(x,y)の適用を含んでおり、図5の実線で示されるように、低周波側のゲインGaを大きく、高周波側のゲインGaを小さくすることができる。従って、本実施形態の補正処理では、調整係数mに基づいてゲインGaの全体的な調整を行い、LPF(x,y)の性質(形状)に基づいてゲインGaの高周波側と低周波側のバランスの調整を行うことができる。
なお、補正フィルタは、PSF(x,y)及びLPF(x,y)に基づいて生成されるが、PSFは像高によって変化する。そのため、画像処理部104は、補正精度を高めるために像高に応じてPSF(x,y)を変化させてもよい。しかしながら、記憶部108が像高に対し細かい間隔で対応するPSFを記録する場合、データ容量が増えコストアップとなる。そこで、本実施形態では、像高によってPSFを変化させるために、入力画像を複数の領域に分割し、領域ごとに少なくとも2点の像高におけるPSFの情報を記憶部108に記録する。画像処理部104は、少なくとも2点の像高におけるPSFに基づく補間処理を行うことで、様々な像高における補正フィルタを生成する。
以下、補間処理の詳細について説明する。図15は、入力画像の模式図である。図15において、入力画像の長辺方向をx軸、短辺方向をy軸とし、画像の中心を座標の原点とする。本実施形態では、図15に示されるように、一例として、入力画像は領域Aから領域Hの8つの領域に分割され、画像処理部104は、各領域の周辺部、及び原点のPSFの情報を取得する。図16は、図15の第1象限を拡大した図である。図16において、P0は原点、P1、P2、P3はそれぞれ領域A、領域B、領域Cの周辺像高を表す。Pnは画像内の任意の点(像高)を表し、図16では、点Pnは原点P0から距離d0、点P2から距離d2で領域B内に位置する。点P0、P2に対応する補正フィルタをそれぞれF0、F2とすると、任意の点Pnに相当する補間データFnは、以下の式19で表される。

Fn=F0×(1-d0)+F2×d2 ・・・(19)

式19に示すような補間処理を行うことで、各領域内の任意の像高における補正フィルタを生成することができる。このように補間処理を行って補正フィルタを生成することで、像高に対して連続的に補正フィルタを変化させることができる。
なお、式19は第1象限の領域Bに関する計算式となっているが、他の領域や他の象限についても同様の演算を行うことで補間処理後のデータを作成することができる。また、像高の補間に使用する計算式は式19に限定されず、計算式に2次曲線を使用したり、或いは補間前の各補正フィルタに対して所定の定数を掛けることで重み付けしたりしてもよい。
また、ここでは2つのデータから任意の補間データを生成する方法について説明したが、補間に利用するデータ数を増やせば補間データの精度を向上させることができる。例えば、原点P0や点P1、P2、P3に相当する補正フィルタを点Pnとの距離に応じて重み付けして加算することにより、任意の点Pnに相当する補間データFnを生成してもよい。
また、調整係数mを像高に応じて変化させる場合、式19の補正フィルタF0、F2の部分に像高に対応する調整係数mを代入することで補間後の調整係数mを生成することができる。このように、補間した調整係数mを補正フィルタに利用することで、像高に対して連続的に補正量を調整することが可能となる。
また、補正フィルタの補間処理を行う代わりに、補正画像g(x,y)の補間処理を行ってもよい。この場合、各像高に対応する補正画像g(x,y)を式19のF0、F2の部分に代入することで、PSFの像高方向の変化を考慮した補間後の補正画像を取得することができる。
ところで、図10では、式18に示す補正フィルタC(x,y)を用いる補正処理、即ち式17に示す演算方法による補正処理について説明した。しかしながら、本実施形態の補正処理は、式17に示す演算方法によるものに限定されず、例えば式15や式16に示す演算方法によっても本実施形態の補正処理を実現することが可能である。
式15において、「m×{f(x,y)*(δ(x,y)−PSF(x,y))*LPF(x,y)}」は、補正画像g(x,y)に含まれる補正処理に由来する補正成分に相当する。補正成分のうち、「{f(x,y)*(δ(x,y)−PSF(x,y))」は、入力画像にPSF(x,y)を適用した場合に入力画像に生じる変化に対応する成分(第1の成分)に相当する。また、「f(x,y)*(δ(x,y)−PSF(x,y))*LPF(x,y)」は、この第1の成分に対してLPF(x,y)を適用した場合に得られる成分(第2の成分)に相当する。従って、式15の補正処理は、補正成分が第2の成分のm倍となるような補正処理、即ち、補正成分が第2の成分に少なくとも部分的に基づく補正処理であると言える。
ここで、式16及び式17は、式15を変形することにより得られるため、数学的には式15と等価である。従って、式15〜式17のいずれの演算方法により補正処理を行っても、補正画像g(x,y)に含まれる補正処理に由来する補正成分は、第2の成分のm倍となり、第2の成分に少なくとも部分的に基づく。例えば、式17の場合、「(δ(x,y)−PSF(x,y))」は、デルタ関数とPSF(x,y)との差に対応するフィルタ(第1の中間フィルタ)であると言える。また、「(δ(x,y)−PSF(x,y))*LPF(x,y)」は、第1の中間フィルタにLPF(x,y)を適用した場合に得られるフィルタ(第2の中間フィルタ)であると言える。従って、式17の演算方法による補正処理において生成される補正フィルタC(x,y)(式18)は、第2の中間フィルタに少なくとも部分的に基づくフィルタであると言える。そして、このような補正フィルタC(x,y)に基づく補正処理を行った場合であっても、結局、補正画像g(x,y)に含まれる補正処理に由来する補正成分は、第2の成分に少なくとも部分的に基づく値になる。
ここから理解できるように、本実施形態の補正処理は、補正画像g(x,y)に含まれる補正処理に由来する補正成分が第2の成分に少なくとも部分的に基づく限り、任意の演算方法により実現可能である。
以下、式15に示す演算方法による補正処理の具体例について説明する。図17は、式15に示す演算方法を実現するための画像処理部104の構成を示す図である。この例では、図9に示す画像処理部104が、図17に示す画像処理部104に置き換えられる。図17の画像処理部104は、図9に示す補正フィルタ生成部113の代わりに、画像合成部116を含む。
図18は、式15に示す演算方法による補正処理のフローチャートである。本フローチャートの各ステップの処理は、システムコントローラ110の指示に従って図17の画像処理部104により実行される。
図18において、S301〜S303の処理は、図10のS201〜S203の処理と同様である。
S304で、フィルタ重畳部114は、PSFに基づいて生成したフィルタ(δ(x,y)−PSF(x,y))を入力画像に重畳し(式20)、ローパスフィルタLPF(x,y)を更に重畳する(式21)。

fp(x,y)=f(x,y)*(δ(x,y)-PSF(x,y)) ・・・(20)
fpl(x,y)=f(x,y)*(δ(x,y)-PSF(x,y))*LPF(x,y) ・・・(21)
S305で、画像合成部116は、式15と式21から導かれる以下の式22の演算を行う。

g(x,y)=f(x,y)+m×fpl(x,y) ・・・(22)

式22に示すように、PSFに基づいて生成したフィルタとローパスフィルタとを入力画像に重畳することにより得られる画像fpl(x,y)と入力画像f(x,y)とを合成することで、補正画像の生成が可能である。
また、式16に示した演算方法による補正処理も可能である。この場合、図18のS304において、フィルタ重畳部114は、ローパスフィルタLPF(x,y)を以下の式23に示したように入力画像に重畳する。

fl(x,y)=f(x,y)*LPF(x,y) ・・・(23)
また、フィルタ重畳部114は、以下の式24及び式25に示したように、PSFに基づいて生成したフィルタPSF(x,y)とローパスフィルタLPF(x,y)を重畳する。

fp'(x,y)=f(x,y)*PSF(x,y) ・・・(24)
fpl'(x,y)=fp’(x,y)*LPF(x,y)} ・・・(25)
次に、S305で、画像合成部116は、式16、式23、式25から導かれる以下の式26の演算を行う。

g(x,y)=f(x,y)+m×{fl(x,y)-fpl'(x,y)} ・・・(26)

式26に示すように、PSFに基づいて生成したフィルタとローパスフィルタとを入力画像に重畳することにより得られる画像fpl’(x,y)と入力画像f(x,y)とを合成することで、補正画像の生成が可能である。
以上説明したように、第1の実施形態によれば、撮像装置100は、撮像光学系の点像強度分布関数(PSF)に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する。この補正処理は、補正画像に含まれる補正処理に由来する補正成分が、入力画像にPSFを適用した場合に入力画像に生じる変化に対応する第1の成分に対してローパスフィルタを適用した場合に得られる第2の成分に少なくとも部分的に基づくように行われる。これにより、ノイズの増幅を抑制しつつ、撮像光学系のPSFに起因する画質劣化を補正することが可能となる。
[第2の実施形態]
次に、第2の実施形態について説明する。本実施形態における撮像装置100の基本的な構成は、第1の実施形態と同様である(図9及び図17参照)。以下、主に第1の実施形態と異なる点について説明する。
本実施形態では、撮像装置100は、ローパスフィルタとしてPSFを用いる。前述の通り、PSFをフーリエ変換したOTFの絶対値MTFは、図6に示されるように、低周波側が高く高周波側が低い特性を示す。また、前述の通り、高周波側でMTFがゼロに近い周波数帯域は、ゲインをかけて補正しても補正効果はほとんどなく、ノイズ成分の増幅だけが発生する。第1の実施形態では、MTFがゼロに近い周波数帯域におけるノイズ成分の増幅を抑制するため、式15〜式17に示すようにローパスフィルタの適用を含む補正処理を行った。しかしながら、このローパスフィルタとして、PSFをそのまま使用することが可能である。この場合、式15〜式17におけるLPF(x,y)は、PSF(x,y)に置き換えられる。
ローパスフィルタとしてPSFを使用することで、MTFが残っている周波数帯域については補正効果を残し、MTFがゼロに近づきMTFが残っていない周波数帯域についてはゲインを抑制することでノイズ増加を抑制することが可能である。
また、第1の実施形態では、補正成分の全体がローパスフィルタの影響を受ける補正処理について説明したが、第2の実施形態では、ローパスフィルタの影響を調整可能な構成について説明する。
以下、図10を参照して、第2の実施形態に係る補正処理について説明する。図10において、S201及びS202の処理は、第1の実施形態と同様である。
S203で、ローパスフィルタ取得部112は、ローパスフィルタLPF(x,y)として、S202で取得したPSFあるいはPSFを近似した情報を同様に取得する。
S204で、補正フィルタ生成部113は、PSF(x,y)から、以下の式27に示す補正フィルタを生成する。なお、式27において、LPF(x,y)の部分は実際にはPSF(x,y)が代入されるが、この部分がローパスフィルタ適用の目的を持つことを示すためにLPF(x,y)と表記する。

C(x,y)=δ(x,y)+m×{(1-w)×(δ(x,y)-PSF(x,y))
+w×(δ(x,y)-PSF(x,y))*LPF(x,y)} ・・・(27)

式27において、調整係数wは、ローパスフィルタによる高周波側のゲインの調整強度を制御するための係数である。
図19は、式27により生成した補正フィルタのゲインの例を示す図である。調整係数wが0の時は、ローパスフィルタの影響を受けない補正フィルタとなり、wを1に近づけていくと高周波側のゲインを抑えた補正フィルタになる。この調整係数wを、画像のノイズ成分に影響する撮像素子102のISO感度に基づいて設定することで、画像のノイズ量に応じて補正フィルタのゲイン特性をコントロールすることが可能である。
式27の補正フィルタを式17の括弧{}の部分に代入することにより、調整係数wによりローパスフィルタによる高周波側のゲインの調整強度を制御可能な補正処理を実現可能である。この場合、「(δ(x,y)−PSF(x,y))」は、デルタ関数とPSF(x,y)との差に対応するフィルタ(第1の中間フィルタ)であると言える。また、「(δ(x,y)−PSF(x,y))*LPF(x,y)」は、第1の中間フィルタにLPF(x,y)を適用した場合に得られるフィルタ(第2の中間フィルタ)であると言える。従って、式27の補正フィルタC(x,y)は、第1の中間フィルタと第2の中間フィルタとを調整係数wに基づく所定の合成率で合成した場合に得られるフィルタ(第3の中間フィルタ)に少なくとも部分的に基づくフィルタであると言える。
ところで、第1の実施形態では、補正画像に含まれる補正処理に由来する補正成分が、第1の成分に対してLPFを適用した場合に得られる第2の成分に少なくとも部分的に基づく限り、任意の演算方法により補正処理を実現可能であると説明した。この点は、第2の実施形態においても、第1の成分と第2の成分とが調整係数wに基づく所定の合成率で合成される点を除き、ほぼ同様である。即ち、第2の実施形態では、補正画像に含まれる補正処理に由来する補正成分が、第1の成分と第2の成分とを所定の合成率で合成した場合に得られる成分(第3の成分)に少なくとも部分的に基づく。このことは、式15に基づく式22に調整係数wを適用することにより得られる以下の式28から確認できる。

g(x,y)=f(x,y)+m×{(1-w)×fp(x,y)+w×fpl(x,y)} ・・・(28)

ここで、fp(x,y)、fpl(x,y)は、それぞれ式20、式21に示したものである。
同様に、式16に基づく式26に対しても、調整係数wを適用して以下の式29を得ることができる。

g(x,y)=f(x,y)+m×{(1-w)×(f(x,y)-fp'(x,y))
+w×(fl(x,y)-fpl'(x,y)} ・・・(29)

ここで、fl(x,y)、fp’(x,y)、fpl’(x,y)は、それぞれ式23、式24、式25で示したものである。
以上説明したように、第2の実施形態によれば、撮像装置100は、撮像光学系の点像強度分布関数(PSF)に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する。この補正処理は、第1の成分と第2の成分とを所定の合成率で合成した場合に得られる第3の成分に少なくとも部分的に基づくように行われる。ここで、第1の成分は、入力画像にPSFを適用した場合に入力画像に生じる変化に対応する成分であり、第2の成分は、第1の成分に対してローパスフィルタを適用した場合に得られる成分である。これにより、ローパスフィルタによる高周波側のゲインの調整強度を制御することが可能になる。
撮像装置100は、入力画像の撮像時のISO感度に基づいて所定の合成率を決定してもよい。一般的に、ISO感度が大きいほど、ノイズ成分が多くなる。そこで、撮像装置100は、ISO感度が第1の値である場合に、第1の成分に対する第2の成分の比率が、ISO感度が第1の値より小さい第2の値である場合よりも大きくなるように、所定の合成率を決定してもよい。
なお、上の説明では、ローパスフィルタとしてPSFをそのまま用いるものとした。しかしながら、撮像装置100は、PSFの代わりに、PSFを基に生成したローパスフィルタを使用してもよい。即ち、撮像装置100が使用するローパスフィルタは、PSFに少なくとも部分的に基づくフィルタである。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100…撮像装置、101…撮像光学系、102…撮像素子、103…A/Dコンバータ、104…画像処理部、105…表示部、106…撮像光学系制御部、107…状態検知部、108…記憶部、109…画像記録媒体、110…システムコントローラ

Claims (11)

  1. 撮像光学系の点像強度分布関数に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する画像処理手段を備え、
    前記補正画像に含まれる前記補正処理に由来する補正成分が、前記入力画像に前記点像強度分布関数を適用した場合に前記入力画像に生じる変化に対応する第1の成分に対してローパスフィルタを適用した場合に得られる第2の成分に少なくとも部分的に基づく
    ことを特徴とする画像処理装置。
  2. 前記画像処理手段は、
    デルタ関数と前記点像強度分布関数との差に対応する第1の中間フィルタに前記ローパスフィルタを適用した場合に得られる第2の中間フィルタに少なくとも部分的に基づく補正フィルタを生成するフィルタ生成手段と、
    前記補正フィルタを前記入力画像に適用するフィルタ適用手段と、
    を含むことを特徴とする請求項1に記載の画像処理装置。
  3. 前記画像処理手段は、
    デルタ関数と前記点像強度分布関数との差に対応するフィルタを前記入力画像に適用することにより前記第1の成分を取得し、
    前記ローパスフィルタを前記第1の成分に適用することにより前記第2の成分を取得し、
    前記第2の成分、又は前記第2の成分に所定の係数を乗じることにより得られる成分を、前記入力画像に加算する
    ことを特徴とする請求項1に記載の画像処理装置。
  4. 前記補正成分が、前記第1の成分と前記第2の成分とを所定の合成率で合成した場合に得られる第3の成分に少なくとも部分的に基づく
    ことを特徴とする請求項1に記載の画像処理装置。
  5. 前記画像処理手段は、
    デルタ関数と前記点像強度分布関数との差に対応する第1の中間フィルタと、前記ローパスフィルタを前記第1の中間フィルタに適用した場合に得られる第2の中間フィルタとを前記所定の合成率で合成した場合に得られる第3の中間フィルタに少なくとも部分的に基づく補正フィルタを生成するフィルタ生成手段と、
    前記補正フィルタを前記入力画像に適用するフィルタ適用手段と、
    を含むことを特徴とする請求項4に記載の画像処理装置。
  6. 前記画像処理手段は、
    デルタ関数と前記点像強度分布関数との差に対応するフィルタを前記入力画像に適用することにより前記第1の成分を取得し、
    前記ローパスフィルタを前記第1の成分に適用することにより前記第2の成分を取得し、
    前記第1の成分と前記第2の成分とを前記所定の合成率で合成することにより第3の成分を取得し、
    前記第3の成分、又は前記第3の成分に所定の係数を乗じることにより得られる成分を、前記入力画像に加算する
    ことを特徴とする請求項4に記載の画像処理装置。
  7. 前記入力画像の撮像時のISO感度に基づいて、前記ISO感度が第1の値である場合に、前記第1の成分に対する前記第2の成分の比率が、前記ISO感度が前記第1の値より小さい第2の値である場合よりも大きくなるように、前記所定の合成率を決定する決定手段を更に備える
    ことを特徴とする請求項4乃至6のいずれか1項に記載の画像処理装置。
  8. 前記ローパスフィルタは、前記点像強度分布関数に少なくとも部分的に基づく
    ことを特徴とする請求項1乃至7のいずれか1項に記載の画像処理装置。
  9. 前記入力画像を生成する撮像手段を更に備える
    ことを特徴とする請求項1乃至8のいずれか1項に記載の画像処理装置。
  10. 画像処理装置が実行する画像処理方法であって、
    撮像光学系の点像強度分布関数に起因する画質劣化を補正する補正処理を入力画像に適用することにより補正画像を生成する画像処理工程を備え、
    前記補正画像に含まれる前記補正処理に由来する補正成分が、前記入力画像に前記点像強度分布関数を適用した場合に前記入力画像に生じる変化に対応する第1の成分に対してローパスフィルタを適用した場合に得られる第2の成分に少なくとも部分的に基づく
    ことを特徴とする画像処理方法。
  11. コンピュータを、請求項1乃至8のいずれか1項に記載の画像処理装置の各手段として機能させるためのプログラム。
JP2018098058A 2018-05-22 2018-05-22 画像処理装置、画像処理方法、及びプログラム Active JP7101539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098058A JP7101539B2 (ja) 2018-05-22 2018-05-22 画像処理装置、画像処理方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098058A JP7101539B2 (ja) 2018-05-22 2018-05-22 画像処理装置、画像処理方法、及びプログラム

Publications (3)

Publication Number Publication Date
JP2019204225A true JP2019204225A (ja) 2019-11-28
JP2019204225A5 JP2019204225A5 (ja) 2021-07-26
JP7101539B2 JP7101539B2 (ja) 2022-07-15

Family

ID=68727043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098058A Active JP7101539B2 (ja) 2018-05-22 2018-05-22 画像処理装置、画像処理方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP7101539B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738780A (ja) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 画像輪郭強調器
JP2010028178A (ja) * 2008-07-15 2010-02-04 Victor Co Of Japan Ltd 画質改善装置及び方法
JP2010219797A (ja) * 2009-03-16 2010-09-30 Fujitsu Semiconductor Ltd エッジ強調画像処理装置
JP2015097380A (ja) * 2013-10-09 2015-05-21 キヤノン株式会社 画像処理方法およびそれを用いた撮像装置、画像処理装置、画像処理プログラム
JP2017163282A (ja) * 2016-03-08 2017-09-14 キヤノン株式会社 画像処理装置、光学機器、画像処理方法、画像処理プログラム、および記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738780A (ja) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 画像輪郭強調器
JP2010028178A (ja) * 2008-07-15 2010-02-04 Victor Co Of Japan Ltd 画質改善装置及び方法
JP2010219797A (ja) * 2009-03-16 2010-09-30 Fujitsu Semiconductor Ltd エッジ強調画像処理装置
JP2015097380A (ja) * 2013-10-09 2015-05-21 キヤノン株式会社 画像処理方法およびそれを用いた撮像装置、画像処理装置、画像処理プログラム
JP2017163282A (ja) * 2016-03-08 2017-09-14 キヤノン株式会社 画像処理装置、光学機器、画像処理方法、画像処理プログラム、および記録媒体

Also Published As

Publication number Publication date
JP7101539B2 (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
US9747672B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium
JP6327922B2 (ja) 画像処理装置、画像処理方法、およびプログラム
US8798389B2 (en) Image processing method, image processing apparatus, and image pickup apparatus for correcting degradation component of image
JP5991749B2 (ja) 画像処理装置及び方法
JP6045185B2 (ja) 画像処理装置、画像処理方法及びプログラム
US10062153B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and storage medium
JP6071974B2 (ja) 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
JP6234623B2 (ja) 画像処理方法およびそれを用いた撮像装置、画像処理装置、画像処理プログラム
JP6440766B2 (ja) 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体
JP6071966B2 (ja) 画像処理方法およびそれを用いた撮像装置、画像処理装置、画像処理プログラム
CN111988517B (zh) 图像处理装置、镜头装置和图像处理方法
JP6768312B2 (ja) 画像処理装置、光学機器、画像処理方法、画像処理プログラム、および記録媒体
JP6562650B2 (ja) 画像処理装置、撮像装置、画像処理方法および画像処理プログラム
CN112073603B (zh) 图像处理设备、摄像设备、图像处理方法和存储介质
JP7101539B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP6559011B2 (ja) 画像処理装置、および画像処理方法
JP6605009B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラムおよび記録媒体
US9854169B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium
JP2015198380A (ja) 画像処理装置、撮像装置、画像処理プログラム、および画像処理方法
JP7207893B2 (ja) 撮像装置、レンズ装置
JP5418258B2 (ja) 撮像装置および画像処理方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R151 Written notification of patent or utility model registration

Ref document number: 7101539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151