JP2019202902A - Glass, glass filler, and resin mixture - Google Patents

Glass, glass filler, and resin mixture Download PDF

Info

Publication number
JP2019202902A
JP2019202902A JP2018097542A JP2018097542A JP2019202902A JP 2019202902 A JP2019202902 A JP 2019202902A JP 2018097542 A JP2018097542 A JP 2018097542A JP 2018097542 A JP2018097542 A JP 2018097542A JP 2019202902 A JP2019202902 A JP 2019202902A
Authority
JP
Japan
Prior art keywords
glass
resin
resin mixture
content
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018097542A
Other languages
Japanese (ja)
Other versions
JP7094490B2 (en
Inventor
篤 虫明
Atsushi MUSHIAKE
篤 虫明
俣野 高宏
Takahiro Matano
高宏 俣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018097542A priority Critical patent/JP7094490B2/en
Publication of JP2019202902A publication Critical patent/JP2019202902A/en
Application granted granted Critical
Publication of JP7094490B2 publication Critical patent/JP7094490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a glass that hardly impairs the transparency of a resin mixture even when mixed with a resin.SOLUTION: A glass contains, in mass%, SiO35-75%, AlO0.1-30%, BO0-30%, SiO+AlO+BO55-90%, MgO+CaO+SrO+BaO+ZnO 2-15%, NbO+WO5-15%.SELECTED DRAWING: None

Description

本発明は、ガラス、ガラスフィラー、及び樹脂混合体に関する。   The present invention relates to glass, a glass filler, and a resin mixture.

従来、樹脂材料等を積層させて立体造形物を得る方法が知られている。例えば光造形法、粉末焼結法、熱溶解積層(FDM)法等種々の方法が提案され実用化されている。   Conventionally, a method of obtaining a three-dimensional model by laminating resin materials or the like is known. For example, various methods such as an optical shaping method, a powder sintering method, and a hot melt lamination (FDM) method have been proposed and put into practical use.

例えば光造形法は、細やかな造形や正確なサイズ表現に優れており、広く普及している。この方法は以下のようにして立体造形物を作製するものである。まず液状の光硬化性樹脂を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂に紫外線レーザーを照射して所望のパターンの硬化層を作製する。このようにして硬化層を1層造ると造形ステージを1層分だけ下げて、硬化層上に未硬化の樹脂を導入し、同様にして紫外線レーザーを光硬化性樹脂に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得る。また、粉末焼結法は、樹脂、金属、セラミックス、ガラスの粉末を満たした槽内に造形ステージを設け、造形ステージ上の粉末に半導体等のレーザーを照射し、軟化変形にて所望のパターンの硬化層を作製するものである。   For example, stereolithography is excellent in fine modeling and accurate size expression, and is widely used. In this method, a three-dimensional model is produced as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin, and a photocurable resin on the modeling stage is irradiated with an ultraviolet laser to produce a cured layer having a desired pattern. When one cured layer is formed in this way, the modeling stage is lowered by one layer, an uncured resin is introduced onto the cured layer, and similarly, the cured layer is irradiated with an ultraviolet laser. Stack a new hardened layer on top. By repeating this operation, a predetermined three-dimensional model is obtained. In addition, the powder sintering method has a modeling stage in a tank filled with resin, metal, ceramics, and glass powder, and the powder on the modeling stage is irradiated with a laser such as a semiconductor to form a desired pattern by softening deformation. A cured layer is produced.

特開平7−26060号公報Japanese Patent Laid-Open No. 7-26060

光造形法等で作製される樹脂製の立体造形物は、細やかで精密であるが、機械的強度等に劣ることが指摘されている。そこで特許文献1では、光硬化性樹脂と無機充填材を混合することが提案されている。   It has been pointed out that a resin-made three-dimensional model produced by an optical modeling method is fine and precise, but is inferior in mechanical strength or the like. Therefore, Patent Document 1 proposes mixing a photocurable resin and an inorganic filler.

ところが樹脂と無機充填材粒子を混合すると、樹脂混合体である立体造形物の透明性が損なわれるという問題があった。   However, when the resin and the inorganic filler particles are mixed, there is a problem that the transparency of the three-dimensional structure that is the resin mixture is impaired.

以上に鑑み、本発明は、樹脂と混合しても樹脂混合体の透明性を損ないにくいガラスを提供することを目的とする。   In view of the above, an object of the present invention is to provide a glass that does not impair the transparency of a resin mixture even when mixed with a resin.

本発明のガラスは、質量%で、SiO 35〜75%、Al 0.1〜30%、B 0〜30%、SiO+Al+B 55〜90%、MgO+CaO+SrO+BaO+ZnO 2〜15%、Nb+WO 5〜15%を含有することを特徴とする。このような組成のガラスは、樹脂と屈折率が整合しやすく、樹脂と混合してもガラスと樹脂の屈折率差に起因する光の散乱が生じにくく、結果として樹脂混合体の透明性を高めることができる。ここで、「SiO+Al+B」はSiO、Al、及びBの合量、「MgO+CaO+SrO+BaO+ZnO」はMgO、CaO、SrO、BaO、及びZnOの合量、「Nb+WO」はNb、及びWOの含有量の合量を意味する。 Glass of the present invention, in mass%, SiO 2 35~75%, Al 2 O 3 0.1~30%, B 2 O 3 0~30%, SiO 2 + Al 2 O 3 + B 2 O 3 55~90 %, MgO + CaO + SrO + BaO + ZnO 2-15%, Nb 2 O 5 + WO 3 5-15%. The glass having such a composition easily matches the refractive index of the resin, and even when mixed with the resin, light scattering due to the refractive index difference between the glass and the resin hardly occurs, and as a result, the transparency of the resin mixture is increased. be able to. Here, “SiO 2 + Al 2 O 3 + B 2 O 3 ” is the total amount of SiO 2 , Al 2 O 3 , and B 2 O 3 , and “MgO + CaO + SrO + BaO + ZnO” is the total amount of MgO, CaO, SrO, BaO, and ZnO. , “Nb 2 O 5 + WO 3 ” means the total content of Nb 2 O 5 and WO 3 .

本発明のガラスは、質量%で、LiO+NaO+KO 0〜15%を含有することが好ましい。ここで、「LiO+NaO+KO」はLiO、NaO、及びKOの含有量の合量を意味する。 Glass of the present invention, in mass%, preferably contains 2 O 0~15% Li 2 O + Na 2 O + K. Here, “Li 2 O + Na 2 O + K 2 O” means the total content of Li 2 O, Na 2 O, and K 2 O.

本発明のガラスは、Nb 0.1〜15%を含有し、質量比で、SiO/Nbが2.4〜20であることが好ましい。ここで、「SiO/Nb」はSiOの含有量をNbの含有量で除した値を意味する。 The glass of the present invention contain Nb 2 O 5 0.1~15%, by weight ratio, it is preferable SiO 2 / Nb 2 O 5 is from 2.4 to 20. Here, “SiO 2 / Nb 2 O 5 ” means a value obtained by dividing the content of SiO 2 by the content of Nb 2 O 5 .

本発明のガラスは、屈折率ndが1.50〜1.70、アッベ数νdが40〜60であることが好ましい。   The glass of the present invention preferably has a refractive index nd of 1.50 to 1.70 and an Abbe number νd of 40 to 60.

本発明のガラスフィラーは上記ガラスからなることを特徴とする。   The glass filler of the present invention is made of the above glass.

本発明のガラスフィラーは、形状が略球状であることが好ましい。   The glass filler of the present invention preferably has a substantially spherical shape.

本発明のガラスフィラーは、平均粒子径が0.5〜20μmであることが好ましい。ここで、「平均粒子径」とは一次粒子のメジアン径での50%体積累積径を示し、レーザー回折式粒度分布測定法により測定された値をいう。   The glass filler of the present invention preferably has an average particle size of 0.5 to 20 μm. Here, the “average particle diameter” indicates a 50% volume cumulative diameter in terms of the median diameter of primary particles, and is a value measured by a laser diffraction particle size distribution measurement method.

本発明の樹脂混合体は、上記ガラスフィラーと樹脂とを含有することを特徴とする。   The resin mixture of the present invention contains the glass filler and a resin.

本発明の樹脂混合体は、ガラスフィラーと樹脂との屈折率ndの差が±0.05以内であることが好ましい。   In the resin mixture of the present invention, the difference in refractive index nd between the glass filler and the resin is preferably within ± 0.05.

本発明の樹脂混合体は、立体造形用であることが好ましい。   The resin mixture of the present invention is preferably for three-dimensional modeling.

本発明によれば、樹脂と混合しても樹脂混合体の透明性を損ないにくいガラスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it mixes with resin, the glass which is hard to impair the transparency of a resin mixture can be provided.

本発明のガラスは、ガラス組成として、SiO 35〜75%、Al 0.1〜30%、B 0〜30%、SiO+Al+B 55〜90%、MgO+CaO+SrO+BaO+ZnO 2〜15%、Nb+WO 5〜15%を含有する。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有量に関する説明において、「%」は「質量%」を意味する。 The glass of the present invention has a glass composition of SiO 2 35 to 75%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 30%, SiO 2 + Al 2 O 3 + B 2 O 3 55 to 90. %, MgO + CaO + SrO + BaO + ZnO 2-15%, Nb 2 O 5 + WO 3 5-15%. Hereinafter, the reason why each component is limited as described above will be described. In the description regarding the content of each component, “%” means “mass%”.

SiOはガラス骨格を形成する成分である。また化学耐久性の向上や失透の抑制が可能な成分である。SiOの含有量は、35〜75%であり、40〜70%、45〜65%、48〜60%、特に50〜58%であることが好ましい。SiOの含有量が少なすぎると、上記効果が得にくくなる。一方、SiOの含有量が多すぎると溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になる虞がある。 SiO 2 is a component that forms a glass skeleton. Further, it is a component capable of improving chemical durability and suppressing devitrification. The content of SiO 2 is 35 to 75%, preferably 40 to 70%, 45 to 65%, 48 to 60%, and particularly preferably 50 to 58%. If the content of SiO 2 is too small, the above effect is difficult to obtain. On the other hand, the fusible content of SiO 2 is too large tends to decrease. Moreover, there is a possibility that the manufacturing becomes difficult due to difficulty in softening during molding.

Alはガラス化安定成分である。また化学耐久性の向上や失透の抑制が可能な成分である。Alの含有量は、0.1〜30%であり、1〜25%、5〜22%、10〜20%、特に12〜18%であることが好ましい。Alの含有量が少なすぎると、上記効果が得にくくなる。一方、Alの含有量が多すぎると、溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になる虞がある。 Al 2 O 3 is a vitrification stable component. Further, it is a component capable of improving chemical durability and suppressing devitrification. The content of Al 2 O 3 is 0.1 to 30%, preferably 1 to 25%, 5 to 22%, 10 to 20%, particularly preferably 12 to 18%. When the content of Al 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of Al 2 O 3 is too large, the melting property tends to decrease. Moreover, there is a possibility that the manufacturing becomes difficult due to difficulty in softening during molding.

はガラス化安定成分である。また化学耐久性の向上や失透の抑制が可能な成分である。Bの含有量は、0〜30%であり、1〜26%、5〜22%、10〜20%、特に12〜18%であることが好ましい。Bの含有量が多すぎると、溶融性が低下しやすくなる。また、略球状化工程において蒸発して設計組成からの組成ズレが生じやすくなる。 B 2 O 3 is a vitrification stable component. Further, it is a component capable of improving chemical durability and suppressing devitrification. The content of B 2 O 3 is 0 to 30%, preferably 1 to 26%, 5 to 22%, 10 to 20%, particularly preferably 12 to 18%. If the B 2 O 3 content is too large, the melting property tends to decrease. Moreover, it evaporates in a substantially spheroidizing step, and composition deviation from the design composition tends to occur.

SiO+Al+Bの含有量は、55〜90%であり、60〜89%、65〜88%、70〜87%、75〜86%、特に80〜86%であることが好ましい。SiO+Al+Bの含有量が少なすぎると、ガラス化しにくくなる。一方、SiO+Al+Bの含有量が多すぎると、溶融性が低下しやすくなる。また成形時に軟化しにくくなって製造が困難になる虞がある。 The content of SiO 2 + Al 2 O 3 + B 2 O 3 is 55 to 90%, 60 to 89%, 65 to 88%, 70 to 87%, 75 to 86%, particularly 80 to 86%. Is preferred. When the content of SiO 2 + Al 2 O 3 + B 2 O 3 is too small, it is difficult to vitrify. On the other hand, when the content of SiO 2 + Al 2 O 3 + B 2 O 3 is too large, the melting property tends to decrease. Moreover, there is a possibility that the manufacturing becomes difficult due to difficulty in softening during molding.

MgO、CaO、SrO、BaO、及びZnOはガラス中で中間物質として働き、ガラスを安定化させるとともに、粘性を低下させる成分である。MgO+CaO+SrO+BaO+ZnOの含有量は、2〜15%であり、2.2〜12%、2.4〜10%、2.6〜8%、特に2.8〜6%であることが好ましい。MgO+CaO+SrO+BaO+ZnOの含有量が少なすぎると、上記効果が得にくくなる。一方、MgO+CaO+SrO+BaO+ZnOの含有量が多すぎると化学耐久性が低下しやすくなり、またガラスが失透しやすくなって製造が困難になる虞がある。   MgO, CaO, SrO, BaO, and ZnO are components that act as intermediate substances in the glass, stabilize the glass, and lower the viscosity. The content of MgO + CaO + SrO + BaO + ZnO is 2 to 15%, preferably 2.2 to 12%, 2.4 to 10%, 2.6 to 8%, particularly preferably 2.8 to 6%. If the content of MgO + CaO + SrO + BaO + ZnO is too small, the above effect is difficult to obtain. On the other hand, if the content of MgO + CaO + SrO + BaO + ZnO is too large, the chemical durability tends to decrease, and the glass tends to be devitrified, making it difficult to manufacture.

なお、MgO、CaO、SrO、BaO、及びZnOの好ましい範囲は以下の通りである。   In addition, the preferable range of MgO, CaO, SrO, BaO, and ZnO is as follows.

MgOの含有量は、0〜15%、0.5〜10%、特に1〜6%であることが好ましい。   The content of MgO is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 6%.

CaOの含有量は、0〜15%、0.5〜10%、特に1〜6%であることが好ましい。   The content of CaO is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 6%.

SrOの含有量は、0〜15%、0.5〜10%、特に1〜6%であることが好ましい。   The content of SrO is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 6%.

BaOの含有量は、0〜15%、0.5〜10%、特に1〜6%であることが好ましい。   The content of BaO is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 6%.

ZnOの含有量は、0〜15%、0.5〜10%、特に1〜6%であることが好ましい。   The content of ZnO is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 6%.

Nb、及びWOは屈折率、アッベ数を調整できる成分である。Nb+WOの含有量は、5〜15%であり、5〜12%、5〜10%、6〜9%、特に7〜8%であることが好ましい。Nb+WOの含有量が少なすぎると、上記効果が得にくくなる。一方、Nb+WOの含有量が多すぎると、屈折率が大きくなりすぎ、アッベ数が小さくなりすぎる傾向がある。また、ガラスが失透しやすくなる。 Nb 2 O 5 and WO 3 are components capable of adjusting the refractive index and the Abbe number. The content of Nb 2 O 5 + WO 3 is 5 to 15%, preferably 5 to 12%, 5 to 10%, 6 to 9%, particularly preferably 7 to 8%. When the content of Nb 2 O 5 + WO 3 is too small, the effect is difficult to obtain. On the other hand, if the content of Nb 2 O 5 + WO 3 is too large, the refractive index tends to be too large and the Abbe number tends to be too small. Moreover, it becomes easy to devitrify glass.

なお、Nb、及びWOの好ましい範囲は以下の通りである。 A preferable range of Nb 2 O 5, and WO 3 are as follows.

Nbの含有量は、0〜15%、0.1〜15%、0.5〜10%、特に1〜5%であることが好ましい。Nbの含有量が多すぎると、屈折率が大きくなりすぎ、アッベ数が小さくなりすぎる傾向がある。また、ガラスが失透しやすくなる。 The content of Nb 2 O 5 is preferably 0 to 15%, 0.1 to 15%, 0.5 to 10%, particularly 1 to 5%. When the content of Nb 2 O 5 is too large, the refractive index becomes too large, there is a tendency that the Abbe number becomes too small. Moreover, it becomes easy to devitrify glass.

WOの含有量は、0〜15%、0.1〜15%、0.5〜10%、特に1〜5%であることが好ましい。WOの含有量が多すぎると、屈折率が大きくなりすぎ、アッベ数が小さくなりすぎる傾向がある。また、ガラスが失透しやすくなる。さらに、ガラスが着色しやすくなる傾向がある。 The content of WO 3 is preferably 0 to 15%, 0.1 to 15%, 0.5 to 10%, particularly 1 to 5%. If the content of WO 3 is too large, the refractive index tends to be too large and the Abbe number tends to be too small. Moreover, it becomes easy to devitrify glass. Furthermore, the glass tends to be easily colored.

SiO/Nbは、2.4〜20、4〜18、8〜16、10〜15、特に12〜14であることが好ましい。このようにすることで化学的耐久性、耐失透性を高めつつ、樹脂の屈折率と整合したガラスを得やすくなる。 SiO 2 / Nb 2 O 5 is 2.4~20,4~18,8~16,10~15, particularly preferably 12 to 14. By doing so, it becomes easy to obtain glass that matches the refractive index of the resin while improving chemical durability and devitrification resistance.

本発明のガラスは、上記成分以外にも以下の成分を含有することができる。   In addition to the above components, the glass of the present invention can contain the following components.

LiO、NaO、及びKOは、ガラスの粘度を低下させるとともに、失透を抑制する成分である。LiO+NaO+KOの含有量は、0〜15%、0.1〜10%、0.5〜8%、1〜6%、特に1〜4%であることが好ましい。LiO+NaO+KOの含有量が多すぎると、ガラスの略球状化工程においてガラス成分が蒸発しやすく、設計組成からの組成ずれが生じやすくなる。また化学耐久性が低下しやすく、LiO、NaO、及びKOが樹脂中に溶出し樹脂が劣化しやすくなる。 Li 2 O, Na 2 O, and K 2 O are components that reduce the viscosity of the glass and suppress devitrification. The content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 15%, 0.1 to 10%, 0.5 to 8%, 1 to 6%, particularly preferably 1 to 4%. When Li 2 O + Na 2 O + K 2 O content is too much, tends glass component evaporates at substantially spherical step of the glass, the composition deviation from a design composition is likely to occur. Moreover, chemical durability tends to be lowered, and Li 2 O, Na 2 O, and K 2 O are eluted into the resin, and the resin is likely to be deteriorated.

なお、LiO、NaO、及びKOの好ましい範囲は以下の通りである。 Incidentally, Li 2 O, Na 2 O , and K 2 O in the preferred ranges are as follows.

LiOの含有量は、0〜10%、0.1〜9%、0.5〜7%、特に1〜5%であることが好ましい。 The content of Li 2 O is preferably 0 to 10%, 0.1 to 9%, 0.5 to 7%, and particularly preferably 1 to 5%.

NaOの含有量は、0〜10%、0.1〜7.5%、0.5〜5%、特に1〜2.5%であることが好ましい。 The content of Na 2 O is preferably 0 to 10%, 0.1 to 7.5%, 0.5 to 5%, and particularly preferably 1 to 2.5%.

Oの含有量は、0〜10%、0.1〜8%、0.5〜6%、特に1〜4%であることが好ましい。 The content of K 2 O is preferably 0 to 10%, 0.1 to 8%, 0.5 to 6%, particularly 1 to 4%.

TiOは、屈折率、アッベ数を調整できる成分であり、またガラスの粘度を低下させる成分である。TiOの含有量は、0〜15%、0.1〜12%、0.5〜10%、特に1〜5%であることが好ましい。TiOの含有量が多すぎると屈折率が大きくなりすぎ、またアッベ数が小さくなりすぎる傾向がある。さらに、ガラスが着色しやすくなる。 TiO 2 is a component that can adjust the refractive index and Abbe number, and is a component that lowers the viscosity of the glass. The content of TiO 2 is preferably 0 to 15%, 0.1 to 12%, 0.5 to 10%, particularly 1 to 5%. If the content of TiO 2 is too large, the refractive index tends to be too large and the Abbe number tends to be too small. Furthermore, it becomes easy to color glass.

本発明のガラスは、屈折率ndが1.50〜1.70、1.50〜1.60、特に1.50〜1.55であることが好ましく、アッベ数νdは、40〜60、45〜60、特に50〜57であることが好ましい。このようにすれば、アクリル系樹脂等多くの樹脂と光学定数が整合しやすくなる。光学定数が上記範囲から外れると、樹脂と整合した光学定数を得ることが難しくなる。また、本発明のガラスは、得られる樹脂混合物の透明性を高める観点から、588nmにおける厚み0.5mmでの光透過率が30%以上、50%以上、特に70%以上であることが好ましい。   The glass of the present invention preferably has a refractive index nd of 1.50 to 1.70, 1.50 to 1.60, particularly 1.50 to 1.55, and an Abbe number νd of 40 to 60, 45. It is preferable that it is -60, especially 50-57. In this way, it becomes easy to match optical constants with many resins such as acrylic resins. If the optical constant deviates from the above range, it becomes difficult to obtain an optical constant consistent with the resin. The glass of the present invention preferably has a light transmittance of 30% or more, 50% or more, particularly 70% or more at a thickness of 0.5 mm at 588 nm from the viewpoint of enhancing the transparency of the resulting resin mixture.

本発明のガラスフィラーは、上記のガラスからなる。   The glass filler of this invention consists of said glass.

本発明のガラスフィラーの形状は破砕状、柱状、繊維状、略球状を取りうるが、略球状であることが好ましい。形状を略球状とすれば樹脂に含有するガラスフィラーの量を増やした際に、樹脂混合体の粘度上昇を抑制することができ、流動性を維持することができる。また、樹脂に添加した際、樹脂と接触する表面積が低減できるため、光の散乱が生じにくく、樹脂混合体の透明性を高めることができる。   The shape of the glass filler of the present invention can be crushed, columnar, fibrous, or substantially spherical, but is preferably substantially spherical. If the shape is substantially spherical, when the amount of the glass filler contained in the resin is increased, an increase in the viscosity of the resin mixture can be suppressed, and the fluidity can be maintained. Moreover, since it can reduce the surface area which contacts with resin when it adds to resin, it is hard to produce light scattering and can improve the transparency of a resin mixture.

本発明のガラスフィラーは、平均粒子径が0.5〜20μm、1〜15μm、特に3〜12μmであることが好ましい。このようにすれば、液体の樹脂にガラスフィラーを添加した際、ガラスフィラーの沈降速度を低下させることができる。特に、紫外線硬化樹脂にガラスフィラーを添加し、紫外線を照射して硬化させる立体造形用である場合、造形に必要な時間内に沈降が生じると造形物にムラが生じるが、上記平均粒子径とすることでその虞が低減できる。   The glass filler of the present invention preferably has an average particle size of 0.5 to 20 μm, 1 to 15 μm, particularly 3 to 12 μm. If it does in this way, when a glass filler is added to liquid resin, the sedimentation rate of a glass filler can be reduced. In particular, when the glass filler is added to the ultraviolet curable resin and the object is three-dimensional modeling that is cured by irradiating with ultraviolet rays, if the sedimentation occurs within the time required for modeling, unevenness occurs in the molded article, This can reduce this possibility.

次に、本発明のガラス及びガラスフィラーの製造方法の一例について説明する。   Next, an example of the manufacturing method of the glass and glass filler of this invention is demonstrated.

まず、ガラス原料を所定割合で調合して得られた原料バッチを1400〜1700℃で溶融して溶融ガラスを得る。次に、溶融ガラスを所定形状(例えば、フィルム状)に成形した後、粉砕、分級しガラス粉末を得る。粉砕方法としては、ボールミル、ビーズミル、ジェットミル、振動ミル等が使用され、湿式粉砕又は乾式粉砕を使用することができる。分級方法としては、網篩い、気流式分級装置等の公知の分級技術を用いることができる。   First, a raw material batch obtained by blending glass raw materials at a predetermined ratio is melted at 1400 to 1700 ° C. to obtain molten glass. Next, the molten glass is formed into a predetermined shape (for example, a film), and then pulverized and classified to obtain glass powder. As a pulverization method, a ball mill, a bead mill, a jet mill, a vibration mill or the like is used, and wet pulverization or dry pulverization can be used. As a classification method, a known classification technique such as a net sieve or an airflow classifier can be used.

得られたガラス粉末を加熱溶融することにより球状化する。加熱溶融方法としては、ガラス粉末をテーブルフィーダー等で炉内へ供給し、空気バーナー等で1400〜2000℃で加熱し、溶融して、表面張力によりガラス粉末を球状化し、冷却、回収する方法が挙げられる。   The obtained glass powder is spheroidized by heating and melting. As a heating and melting method, there is a method in which glass powder is supplied into a furnace with a table feeder or the like, heated at 1400 to 2000 ° C. with an air burner or the like, melted, spheroidized by surface tension, cooled and recovered. Can be mentioned.

次に、球状化したガラス粉末を所望の粒度分布になるように分級することにより、ガラスフィラーを得る。分級方法としては、網篩い、気流式分級装置等の公知の分級技術を用いることができる。   Next, a glass filler is obtained by classifying the spheroidized glass powder to have a desired particle size distribution. As a classification method, a known classification technique such as a net sieve or an airflow classifier can be used.

なお、ガラスフィラーの表面をシランカップリング剤によって処理する。シランカップリング剤で処理すれば、ガラスフィラーと樹脂の結合力を高めることができるため、機械的強度の優れた樹脂混合物を得ることが可能になる。さらに、ガラスフィラーと樹脂のなじみがよくなり、界面の泡や空隙が減少し、光散乱が少なくなるため、樹脂混合体の透明性を高めやすい。シランカップリング剤としては、アミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる樹脂によって適宜選択すればよい。   The surface of the glass filler is treated with a silane coupling agent. By treating with a silane coupling agent, it is possible to increase the bonding force between the glass filler and the resin, so that a resin mixture having excellent mechanical strength can be obtained. Furthermore, the familiarity between the glass filler and the resin is improved, the bubbles and voids at the interface are reduced, and the light scattering is reduced, so that the transparency of the resin mixture can be easily improved. As the silane coupling agent, aminosilane, epoxy silane, acrylic silane and the like are preferable. The silane coupling agent may be appropriately selected depending on the resin used.

次に、本発明で使用する樹脂について説明する。   Next, the resin used in the present invention will be described.

樹脂は、光硬化性樹脂、熱硬化性樹脂の何れであってもよく、採用する造形法によって適宜選択することができる。例えば光造形法を使用する場合は液状の光硬化性樹脂を選択すればよく、また粉末焼結法を採用する場合は粉末状の熱硬化性樹脂を選択すればよい。   The resin may be either a photocurable resin or a thermosetting resin, and can be appropriately selected depending on the modeling method employed. For example, when using an optical modeling method, a liquid photocurable resin may be selected, and when a powder sintering method is used, a powdery thermosetting resin may be selected.

上記光硬化性樹脂としては、例えば、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアセタール系樹脂、(メタ)アクリル系樹脂、メラミン樹脂、(メタ)アクリル−スチレン共重合体、ポリカーボネート系樹脂、スチレン系樹脂、ポリ塩化ビニル系樹脂、ベンゾグアナミン−メラミンホルムアルデヒド、シリコーン系樹脂、フッ素系樹脂、ポリエステル系樹脂、架橋(メタ)アクリル系樹脂、架橋ポリスチレン系樹脂、架橋ポリウレタン系樹脂、エポキシ系樹脂等が挙げられる。   Examples of the photocurable resin include polyamide resins, polyamideimide resins, polyacetal resins, (meth) acrylic resins, melamine resins, (meth) acrylic-styrene copolymers, polycarbonate resins, and styrene resins. , Polyvinyl chloride resin, benzoguanamine-melamine formaldehyde, silicone resin, fluorine resin, polyester resin, crosslinked (meth) acrylic resin, crosslinked polystyrene resin, crosslinked polyurethane resin, epoxy resin and the like.

上記熱硬化性樹脂としては、例えば、エポキシ系樹脂、熱硬化型変性ポリフェニレンエーテル系樹脂、熱硬化型ポリイミド系樹脂、ユリア系樹脂、アリル樹脂、ケイ素樹脂、ベンゾオキサジン系樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、ビスマレイミドトリアジン樹脂、アルキド系樹脂、フラン系樹脂、メラミン系樹脂、ポリウレタン系樹脂、アニリン系樹脂等が挙げられる。   Examples of the thermosetting resin include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, allyl resins, silicon resins, benzoxazine resins, phenol resins, Examples include saturated polyester resins, bismaleimide triazine resins, alkyd resins, furan resins, melamine resins, polyurethane resins, aniline resins, and the like.

次に、本発明の樹脂混合体について説明する。   Next, the resin mixture of the present invention will be described.

本発明の樹脂混合体は、上記のガラスフィラーと樹脂とを含む。ガラスフィラーの量は、樹脂100質量部に対して10〜300質量部、20〜280質量部、特に30〜260質量部であることが好ましい。ガラスフィラーの量が少なすぎると、樹脂混合体の機械的強度が低くなる傾向がある。一方、ガラスフィラーの量が多すぎると、樹脂混合体の粘度が高くなりすぎ、樹脂の流動性が低下しやすくなる。   The resin mixture of the present invention contains the above glass filler and resin. The amount of the glass filler is preferably 10 to 300 parts by mass, 20 to 280 parts by mass, particularly 30 to 260 parts by mass with respect to 100 parts by mass of the resin. When there is too little quantity of a glass filler, there exists a tendency for the mechanical strength of a resin mixture to become low. On the other hand, when there is too much quantity of a glass filler, the viscosity of a resin mixture will become high too much and the fluidity | liquidity of resin will fall easily.

本発明の樹脂混合体は、ガラスフィラーと樹脂との屈折率ndの差が±0.05以内であることが好ましい。このようにすれば、ガラスフィラーと樹脂の屈折率差に起因する光の散乱を低減することができるため、樹脂混合体の透明性を高めやすい。   In the resin mixture of the present invention, the difference in refractive index nd between the glass filler and the resin is preferably within ± 0.05. In this way, light scattering caused by the difference in refractive index between the glass filler and the resin can be reduced, and thus the transparency of the resin mixture can be easily increased.

本発明の樹脂混合体は、厚み0.5mmにて波長588nmにおける光透過率が50%以上、70%以上、特に80%以上であることが好ましい。このような樹脂混合体は、立体造形用として好適である。   The resin mixture of the present invention preferably has a light transmittance at a thickness of 0.5 mm and a wavelength of 588 nm of 50% or more, 70% or more, particularly 80% or more. Such a resin mixture is suitable for three-dimensional modeling.

本発明の樹脂混合体は、本発明のガラスフィラー以外の材料、例えば粘度調整剤、他のガラスフィラー、セラミックフィラー、金属材料、樹脂材料、炭素材料などを含んでいてもよい。粘度調整剤としては液体のものであっても固体のものであってもよく、特にフュームドシリカは少量の添加で樹脂混合体の粘度を上昇させ、ガラスフィラーの沈降を抑制することができる。ちなみに、フュームドシリカは表面に多数のシラノール基を有し、各フュームドシリカ同士が水素結合して、液体樹脂中にて三次元網目構造を形成するため、樹脂混合体の粘度を高める効果が大きい。フュームドシリカは例えば平均粒子径1〜500nm、2〜200nm、2〜100nm、2〜50nm、2〜20nm、2〜10nmのものを用いることができる。   The resin mixture of the present invention may contain materials other than the glass filler of the present invention, such as a viscosity modifier, other glass fillers, ceramic fillers, metal materials, resin materials, carbon materials, and the like. The viscosity modifier may be liquid or solid. In particular, fumed silica can increase the viscosity of the resin mixture and suppress sedimentation of the glass filler by adding a small amount. By the way, fumed silica has many silanol groups on the surface, and each fumed silica is hydrogen bonded to form a three-dimensional network structure in the liquid resin, which has the effect of increasing the viscosity of the resin mixture. large. For example, fumed silica having an average particle size of 1 to 500 nm, 2 to 200 nm, 2 to 100 nm, 2 to 50 nm, 2 to 20 nm, and 2 to 10 nm can be used.

次に、立体造形物の製造方法の一例を説明する。具体的には、光硬化性樹脂を含む樹脂混合体を用いた立体造形物の製造方法について説明する。なお樹脂混合体は既述の通りであり、ここでは説明を省略する。   Next, an example of the manufacturing method of a three-dimensional molded item is demonstrated. Specifically, the manufacturing method of the three-dimensional molded item using the resin mixture containing photocurable resin is demonstrated. The resin mixture is as described above, and the description is omitted here.

まず光硬化性樹脂混合体からなる1層の液状層を準備する。例えば液状の光硬化性樹脂混合体を満たした槽内に造形用ステージを設け、ステージ上面が液面から所望の深さ(例えば0.2mm程度)となるように位置させる。このようにすることで、ステージ上に液状層を準備することができる。   First, one liquid layer made of a photocurable resin mixture is prepared. For example, a modeling stage is provided in a tank filled with a liquid photocurable resin mixture, and the stage upper surface is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface. By doing in this way, a liquid layer can be prepared on a stage.

次に、この液状層に活性エネルギー線、例えば紫外線レーザーを照射して光硬化性樹脂を硬化させ、所定のパターンを有する硬化層を形成する。なお活性エネルギー線としては、紫外線の他に、可視光線、赤外線等のレーザー光を用いることができる。   Next, the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin, thereby forming a cured layer having a predetermined pattern. As the active energy ray, laser light such as visible light and infrared light can be used in addition to ultraviolet light.

続いて、形成した硬化層上に、光硬化性樹脂混合体からなる新たな液状層を準備する。例えば、前記した造形用ステージを1層分下降させることにより、硬化層上に光硬化性樹脂を導入し、新たな液状層を準備することができる。   Subsequently, a new liquid layer made of a photocurable resin mixture is prepared on the formed cured layer. For example, by lowering the modeling stage by one layer, a photocurable resin can be introduced onto the cured layer to prepare a new liquid layer.

その後、硬化層上に準備した新たな液状層に活性エネルギー線を照射して、前記硬化層と連続した新たな硬化層を形成する。   Thereafter, an active energy ray is irradiated to a new liquid layer prepared on the cured layer to form a new cured layer continuous with the cured layer.

以上の操作を繰り返すことによって硬化層を連続的に積層し、所定の立体造形物を得る。   By repeating the above operation, the hardened layer is continuously laminated to obtain a predetermined three-dimensional object.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1は本発明の実施例(No.1〜6)、及び比較例(No.7)を示している。   Table 1 shows Examples (No. 1 to 6) and Comparative Example (No. 7) of the present invention.

(ガラスフィラーの作製)
表1の組成となるように、原料粉末を調合し、均一に混合した。得られた原料バッチを1580〜1600℃で均質になるまで溶融した後、一対のローラー間に流し出してフィルム状に成形した。溶融したガラスの一部については720℃から5時間かけて室温まで降温し、屈折率測定器(島津製作所社製 KPR−2000)により屈折率を測定した。
(Production of glass filler)
Raw material powders were prepared and mixed uniformly so as to have the composition shown in Table 1. The obtained raw material batch was melted at 1580 to 1600 ° C. until homogeneous, and then poured out between a pair of rollers to form a film. A part of the melted glass was cooled from 720 ° C. to room temperature over 5 hours, and the refractive index was measured with a refractive index measuring instrument (KPR-2000, manufactured by Shimadzu Corporation).

フィルム状に成形したガラスをジェットミル粉砕し、ガラス粉末を得た。得られたガラス粉末をテーブルフィーダーで炉内へ供給し、空気バーナーでガラス粉末を1400〜2000℃に加熱し、溶融して、ガラス粉末を球状化した。   Glass formed into a film was pulverized by jet mill to obtain glass powder. The obtained glass powder was supplied into the furnace with a table feeder, and the glass powder was heated to 1400 to 2000 ° C. with an air burner and melted to spheroidize the glass powder.

次に、ガラス粉末表面に付着した微粒子を水で洗浄して取り除いた後、乾燥した。   Next, the fine particles adhering to the glass powder surface were removed by washing with water and then dried.

次いで、球状化したガラス粉末を表1に記載の平均粒子径になるように気流式分級装置にて分級することにより、ガラスフィラーを得た。なお、平均粒子径はレーザー回折式粒度分布測定法により求めた。   Next, a glass filler was obtained by classifying the spheroidized glass powder with an airflow classifier so as to have an average particle diameter shown in Table 1. The average particle size was determined by a laser diffraction particle size distribution measurement method.

(シラン処理)
ビーカーに純水9g及びシランカップリング剤(信越化学社製 KBM−503)1gを混合した。さらに酢酸0.03gを添加し、スターラーを用いて30分撹拌し、シランカップリング剤を加水分解させた。
(Silane treatment)
In a beaker, 9 g of pure water and 1 g of a silane coupling agent (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed. Further, 0.03 g of acetic acid was added and stirred for 30 minutes using a stirrer to hydrolyze the silane coupling agent.

次に、別の容器に重量比で、ガラスフィラー:エタノール:加水分解させたシランカップリング剤を20:19:1の割合で混合し、1時間撹拌した。   Next, glass filler: ethanol: hydrolyzed silane coupling agent was mixed at a weight ratio of 20: 19: 1 in another container and stirred for 1 hour.

次に、エタノールを蒸発乾燥させ、さらに110℃で30分保持した。   Next, ethanol was evaporated to dryness, and further maintained at 110 ° C. for 30 minutes.

(樹脂混合体の作製)
硬化性樹脂(デジタルワックス社製 DL360)100質量部に対してシラン処理を施したガラスフィラー46.5質量部となるように秤量した。さらに、自公転ミキサー(シンキー社製 ARE−310)を用いて、ガラスフィラー及び硬化性樹脂を混合し、樹脂混合体を得た。なお、光硬化後の硬化性樹脂の屈折率ndは1.511であった。
(Production of resin mixture)
It measured so that it might become 46.5 mass parts of glass fillers which performed the silane process with respect to 100 mass parts of curable resin (Digital wax company DL360). Furthermore, the glass filler and the curable resin were mixed using a self-revolving mixer (ARE-310, manufactured by Shinky Corporation) to obtain a resin mixture. The refractive index nd of the curable resin after photocuring was 1.511.

(光透過率測定)
得られた樹脂混合体をスライドガラス上に適量採取し、厚さ0.5mmのガラス板をスペーサとしてもう一枚のスライドガラスで挟み、紫外線を照射して樹脂混合体を硬化させた。
(Light transmittance measurement)
An appropriate amount of the obtained resin mixture was collected on a slide glass, sandwiched between another glass slide with a glass plate having a thickness of 0.5 mm as a spacer, and irradiated with ultraviolet rays to cure the resin mixture.

次にスライドガラスを含めた樹脂混合体について、分光光度計(島津製作所製 UV−3100)により全光線透過率測定を行い、588nmにおける光透過率を測定した。   Next, the total light transmittance of the resin mixture including the slide glass was measured with a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation), and the light transmittance at 588 nm was measured.

表1に示すように、本発明の実施例である試料No.1〜6は、光透過率が80〜84%と高かった。一方、比較例である試料No.7は、屈折率ndが1.725であり、樹脂の屈折率ndとの差が大きいため、光透過率が22%と低かった。   As shown in Table 1, sample No. which is an example of the present invention. 1 to 6 had a high light transmittance of 80 to 84%. On the other hand, sample No. which is a comparative example. No. 7 had a refractive index nd of 1.725 and a large difference from the refractive index nd of the resin, so the light transmittance was as low as 22%.

Claims (10)

質量%で、SiO 35〜75%、Al 0.1〜30%、B 0〜30%、SiO+Al+B 55〜90%、MgO+CaO+SrO+BaO+ZnO 2〜15%、Nb+WO 5〜15%を含有することを特徴とするガラス。 By mass%, SiO 2 35~75%, Al 2 O 3 0.1~30%, B 2 O 3 0~30%, SiO 2 + Al 2 O 3 + B 2 O 3 55~90%, MgO + CaO + SrO + BaO + ZnO 2~15 %, Nb 2 O 5 + WO 3 5 to 15% glass. さらに、質量%で、LiO+NaO+KO 0〜15%を含有することを特徴とする請求項1に記載のガラス。 Moreover, in mass%, the glass according to claim 1, characterized in that it contains 2 O 0~15% Li 2 O + Na 2 O + K. 質量%で、Nb 0.1〜15%を含有し、質量比で、SiO/Nbが2.4〜20であることを特徴とする請求項1又は2に記載のガラス。 By mass%, contains Nb 2 O 5 0.1 to 15%, by mass ratio, SiO 2 / Nb 2 O 5 is as defined in claim 1 or 2, characterized in that a 2.4 to 20 Glass. 屈折率ndが1.50〜1.70、アッベ数νdが40〜60であることを特徴とする請求項1〜3のいずれかに記載のガラス。   The glass according to any one of claims 1 to 3, wherein the refractive index nd is 1.50 to 1.70, and the Abbe number νd is 40 to 60. 請求項1〜4のいずれかに記載のガラスからなることを特徴とするガラスフィラー。   It consists of the glass in any one of Claims 1-4, The glass filler characterized by the above-mentioned. 形状が略球状であることを特徴とする請求項5に記載のガラスフィラー。   The glass filler according to claim 5, wherein the glass filler has a substantially spherical shape. 平均粒子径が0.5〜20μmであることを特徴とする請求項5又は6に記載のガラスフィラー。   The glass filler according to claim 5 or 6, wherein an average particle diameter is 0.5 to 20 µm. 請求項5〜7のいずれかに記載のガラスフィラーと樹脂とを含むことを特徴とする樹脂混合体。   A resin mixture comprising the glass filler according to claim 5 and a resin. ガラスフィラーと樹脂との屈折率ndの差が±0.05以内であることを特徴とする請求項8に記載の樹脂混合体。   The resin mixture according to claim 8, wherein a difference in refractive index nd between the glass filler and the resin is within ± 0.05. 立体造形用であることを特徴とする請求項8又は9に記載の樹脂混合体。   The resin mixture according to claim 8 or 9, wherein the resin mixture is for three-dimensional modeling.
JP2018097542A 2018-05-22 2018-05-22 Glass, glass filler, and resin mixture Active JP7094490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097542A JP7094490B2 (en) 2018-05-22 2018-05-22 Glass, glass filler, and resin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097542A JP7094490B2 (en) 2018-05-22 2018-05-22 Glass, glass filler, and resin mixture

Publications (2)

Publication Number Publication Date
JP2019202902A true JP2019202902A (en) 2019-11-28
JP7094490B2 JP7094490B2 (en) 2022-07-04

Family

ID=68726115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097542A Active JP7094490B2 (en) 2018-05-22 2018-05-22 Glass, glass filler, and resin mixture

Country Status (1)

Country Link
JP (1) JP7094490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132217A1 (en) * 2019-12-25 2021-07-01 日本電気硝子株式会社 Resin composition, resin composition for three-dimensional models, and dental resin composition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270859A (en) * 1991-04-17 1993-10-19 Cookson Group Plc Glaze composition and glazing method
JPH10167756A (en) * 1996-11-29 1998-06-23 Meihindou:Kk Lead-free overglaze color for pottery
JPH11314932A (en) * 1998-01-27 1999-11-16 Carl Zeiss:Fa Glass for hard disk substrate
JP2001287936A (en) * 2000-04-03 2001-10-16 Minolta Co Ltd Glass composition
JP2003313047A (en) * 2002-04-18 2003-11-06 Ohara Inc Optical glass having abnormal dispersibility
JP2004010477A (en) * 2002-06-06 2004-01-15 Carl-Zeiss-Stiftung Lead-free, arsenic-free short flint special glass
JP2010248011A (en) * 2009-04-13 2010-11-04 Nippon Electric Glass Co Ltd Glass film and method for manufacturing the same
WO2011125477A1 (en) * 2010-03-31 2011-10-13 Hoya株式会社 Method of manufacturing glass blank for magnetic recording medium glass substrate, method of manufacturing magnetic recording medium glass substrate, and method of manufacturing magnetic recording medium
WO2014196421A1 (en) * 2013-06-03 2014-12-11 旭硝子株式会社 White glass
WO2016076180A1 (en) * 2014-11-12 2016-05-19 日本電気硝子株式会社 Resin composition for stereolithography, method for producing stereolithogram, and inorganic filler particles
JP2016190942A (en) * 2015-03-31 2016-11-10 日本電気硝子株式会社 Resin composition for three-dimensional molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270859A (en) * 1991-04-17 1993-10-19 Cookson Group Plc Glaze composition and glazing method
JPH10167756A (en) * 1996-11-29 1998-06-23 Meihindou:Kk Lead-free overglaze color for pottery
JPH11314932A (en) * 1998-01-27 1999-11-16 Carl Zeiss:Fa Glass for hard disk substrate
JP2001287936A (en) * 2000-04-03 2001-10-16 Minolta Co Ltd Glass composition
JP2003313047A (en) * 2002-04-18 2003-11-06 Ohara Inc Optical glass having abnormal dispersibility
JP2004010477A (en) * 2002-06-06 2004-01-15 Carl-Zeiss-Stiftung Lead-free, arsenic-free short flint special glass
JP2010248011A (en) * 2009-04-13 2010-11-04 Nippon Electric Glass Co Ltd Glass film and method for manufacturing the same
WO2011125477A1 (en) * 2010-03-31 2011-10-13 Hoya株式会社 Method of manufacturing glass blank for magnetic recording medium glass substrate, method of manufacturing magnetic recording medium glass substrate, and method of manufacturing magnetic recording medium
WO2014196421A1 (en) * 2013-06-03 2014-12-11 旭硝子株式会社 White glass
WO2016076180A1 (en) * 2014-11-12 2016-05-19 日本電気硝子株式会社 Resin composition for stereolithography, method for producing stereolithogram, and inorganic filler particles
JP2016190942A (en) * 2015-03-31 2016-11-10 日本電気硝子株式会社 Resin composition for three-dimensional molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132217A1 (en) * 2019-12-25 2021-07-01 日本電気硝子株式会社 Resin composition, resin composition for three-dimensional models, and dental resin composition

Also Published As

Publication number Publication date
JP7094490B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
JP2022022290A (en) Resin composition
JP2020094223A (en) Resin composition for three-dimensional modeling, method for manufacturing three-dimensional modeled object, and inorganic filler particles
US7304102B2 (en) Process for making encapsulant for opto-electronic devices
US10954362B2 (en) Resin composition for three-dimensional forming
WO2021049371A1 (en) Resin composition for three-dimensional shaping
JP2019112283A (en) Method for producing glass filler
US10023720B2 (en) Filler powder and method for manufacturing same
JP6406567B2 (en) Filler powder and resin composition
JP6891394B2 (en) Manufacturing method of three-dimensional model
JP7094490B2 (en) Glass, glass filler, and resin mixture
JP2017007921A (en) Inorganic filler particle and resin composition for solid molding
JPWO2008140059A1 (en) Glass filler, photocurable coating composition and photocurable resin composition using the same, and photocurable adhesive
JP7101937B2 (en) Resin composition for three-dimensional modeling
JP7075033B2 (en) How to make filler powder
JPWO2016114031A1 (en) Three-dimensional modeling resin composition
JPWO2017014067A1 (en) Glass filler and resin composition for three-dimensional modeling using the same
WO2017221599A1 (en) Glass filler and method for production of same
JP6883271B2 (en) Inorganic filler particles
WO2022070971A1 (en) Glass filler powder
JP2016138180A (en) Resin composition for three-dimensional molding
JP6670478B2 (en) Three-dimensional modeling resin composition
WO2022145339A1 (en) Glass and method for producing same
JP7323861B2 (en) RESIN COMPOSITION, 3D MODEL PRODUCT AND METHOD FOR MANUFACTURING 3D MODEL
JP2020073333A (en) Resin components for three-dimensional modeling
JP2020180171A (en) Resin composition, resin cured body and method for producing three-dimensional molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220605

R150 Certificate of patent or registration of utility model

Ref document number: 7094490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150