JP2019202258A - Method and apparatus for re-dissolving hydrogen molecules in disk-type electrolytic cell - Google Patents

Method and apparatus for re-dissolving hydrogen molecules in disk-type electrolytic cell Download PDF

Info

Publication number
JP2019202258A
JP2019202258A JP2018098007A JP2018098007A JP2019202258A JP 2019202258 A JP2019202258 A JP 2019202258A JP 2018098007 A JP2018098007 A JP 2018098007A JP 2018098007 A JP2018098007 A JP 2018098007A JP 2019202258 A JP2019202258 A JP 2019202258A
Authority
JP
Japan
Prior art keywords
water
anode
hydrogen molecules
cathode
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098007A
Other languages
Japanese (ja)
Other versions
JP6731443B2 (en
Inventor
徐文星
Wen Xing Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018098007A priority Critical patent/JP6731443B2/en
Publication of JP2019202258A publication Critical patent/JP2019202258A/en
Application granted granted Critical
Publication of JP6731443B2 publication Critical patent/JP6731443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a method and an apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell, with an increased total amount of hydrogen molecules dissolved in electrolytically reduced water and secured purity of the hydrogen molecules.SOLUTION: There is provided a method for re-dissolving hydrogen molecules, including: introducing raw water from central water supply ports 33 and 63 of two electrode plates 40 and 60; flowing out the raw water radially along cathode/anode chambers 42 and 62 on corresponding surfaces of the two electrode plates 40 and 60; thereby generating a dissolving action on cathode water and hydrogen molecules in nascent state; providing an ion membrane 50 between the two electrode plates 40 and 60 so that oxygen molecules generated by electrolysis are not mixed into the cathode water; removing hydrogen and oxygen molecules from the cathode/anode chambers 42 and 62 by the cathode water and anode water, which are then merged into upper and lower gas collecting and guiding chambers; causing the hydrogen molecules and the cathode water to generate a mutual dissolving action again in a gas collecting water conducting chamber 78; re-dissolving more hydrogen molecules in the cathode water; thereby increasing a concentration of the hydrogen molecules in the cathode water.SELECTED DRAWING: Figure 4

Description

本発明のディスク型電解槽における水素分子の再溶解方法及び装置は、主として、電解還元水における水素分子(マイナス水素イオンを含む)の総溶解量を増加させる技術に応用される。   The method and apparatus for re-dissolving hydrogen molecules in the disk-type electrolytic cell of the present invention is mainly applied to a technique for increasing the total amount of dissolved hydrogen molecules (including negative hydrogen ions) in electrolytic reduced water.

近年、水素分子医学は予防医学研究における新たなトピックとして注目されており、最近では様々な動物の疾病パターンについて、水素の吸入や水素生理食塩水の注入による保護及び緩和効果が実証されている。水素分子は、無臭・無色・無味・無毒性の安全な気体であり、宇宙空間で最小の抗酸化剤でもあるほか、万病の元となるフリーラジカルを除去する能力も有している。そのため、世界各地の専門家や学者らが続々と研究に参入しており、論文発表や臨床実証を通じて、水素分子がヘルスケア、美容及び疾病予防において良好な効果を奏することが確認されている。また、将来的には水分子医学による新たな段階が切り開かれるであろうことが予測されている。   In recent years, molecular hydrogen medicine has attracted attention as a new topic in preventive medicine research, and recently, the protection and mitigation effects of various animal disease patterns by inhalation of hydrogen and injection of hydrogen saline have been demonstrated. Hydrogen molecules are safe gas that is odorless, colorless, tasteless and nontoxic, is the smallest antioxidant in outer space, and has the ability to remove free radicals that cause all diseases. For this reason, experts and scholars from all over the world are entering the research one after another, and through the publication of papers and clinical demonstrations, it has been confirmed that hydrogen molecules have good effects in health care, beauty and disease prevention. In the future, it is predicted that a new stage of water molecular medicine will be opened.

水素分子の機能研究やその病理メカニズムについては次第に明らかになっているが、上述の吸入式水素又は水素生理食塩水の注入には専門的な技術や機器が必要とされる。そこで、水素分子を日々の飲用水に導入することができれば、経済的且つ手軽なヘルスケア方法となり、健康産業に新たな光明がもたらされるだけでなく、水素産業における新たな希望ともなるはずである。   The functional study of hydrogen molecules and the pathological mechanism thereof are gradually becoming clear, but specialized techniques and devices are required for the inhalation-type hydrogen or hydrogen saline injection described above. Therefore, if hydrogen molecules can be introduced into daily drinking water, it will be an economical and easy health care method, which will not only bring new light to the health industry, but also a new hope for the hydrogen industry. .

しかしながら、現状ではハード面において早急に克服すべき課題が数多く存在する。これまで常用されている電気分解デバイスとしては、従来の流水型多孔式電解槽、静置型水素水電解カップ、多孔式流水型電解槽がある。ところが、水素は水中への溶解度が非常に低いため、一般的な電気分解デバイスで生成される電解還元水は水素分子の総溶解量が十分でない。以下に、従来常用されている上記3種類の電解槽で生じる問題点について述べる。   However, there are many problems that must be overcome immediately in terms of hardware. Conventionally used electrolysis devices include a conventional flowing water type porous electrolytic cell, a stationary hydrogen water electrolytic cup, and a porous flowing water type electrolytic cell. However, since hydrogen has a very low solubility in water, the total amount of hydrogen molecules dissolved in electroreduction water produced by a general electrolysis device is not sufficient. The problems that occur in the three types of electrolytic cells that are conventionally used are described below.

従来の流水型多孔式電解槽の場合、電極孔は大体において円形、方形、長方形に設計されるか、メッシュ状電極で構成される。陰極水と陽極水の流路はいずれも電極板の表面に設けられるため、当該電極孔の孔径垂直断面には大量の凹部が出現し、「停滞域」が形成されてしまう。「停滞域」とは、水流が緩慢となる領域のことをいう。当該領域によって、陰極で発生した水素には凝集現象が生じ、更にはより大きな気泡が生成されてしまう。換言すると、陰極で生成されたばかりの水素は迅速に水中へ溶解することができず、この現象によって陰極水中の水素分子の溶解量は徐々に減少することになる。   In the case of a conventional flowing-water type porous electrolytic cell, the electrode holes are generally designed to be circular, square, rectangular, or are constituted by mesh electrodes. Since both the cathode water and the anode water flow paths are provided on the surface of the electrode plate, a large number of recesses appear in the hole diameter vertical cross section of the electrode hole, and a “stagnation zone” is formed. The “stagnation area” means an area where the water flow becomes slow. Due to this region, agglomeration phenomenon occurs in the hydrogen generated at the cathode, and even larger bubbles are generated. In other words, hydrogen that has just been generated at the cathode cannot be rapidly dissolved in water, and this phenomenon gradually reduces the amount of hydrogen molecules dissolved in the cathode water.

また、水平に架設される電解槽について静置型水素水電解カップを例にあげると、現状では主として次のような課題に直面している。即ち、気体は水よりも質量が軽いことから、水素又は酸素のいずれにしても軽いものが上昇するとの物性を有しており、下記のような現象が生じてしまう。   In addition, taking a static hydrogen water electrolysis cup as an example of a horizontally installed electrolytic cell, at present, the following problems are mainly faced. That is, since gas has a lighter mass than water, it has the physical property that a lighter one rises in either hydrogen or oxygen, and the following phenomenon occurs.

1.まず、当該陰極の上方で発生した水素(水素分子又はマイナス水素イオン)は凝集現象によって気泡を形成し、急速にカップの上方まで上昇するため、陰極で発生した水素は実際のところ完全には水中に溶解しない。結果、当該カップで生成される水素分子の含有量が不足するとの事態が招来される。   1. First, hydrogen (hydrogen molecules or negative hydrogen ions) generated above the cathode forms bubbles due to agglomeration and rapidly rises above the cup. Therefore, the hydrogen generated at the cathode is actually completely underwater. Does not dissolve. As a result, a situation in which the content of hydrogen molecules generated in the cup is insufficient is invited.

2.当該陽極の下方で発生した酸素は上方の圧力不足によって円滑には導出されず、往々にして陽極下方の孔(垂直断面)に停滞してしまう。そして、この現象によって電極のインピーダンスが急速に増加することになる。   2. Oxygen generated below the anode is not led out smoothly due to insufficient pressure above, and often stays in the hole (vertical cross section) below the anode. This phenomenon rapidly increases the impedance of the electrode.

3.当該陽極の下方(即ち、陽極室内)で必要とされる電解液は、陰極の上方、即ちカップ内から孔又は親水性のイオン膜を経由して当該陽極室に導入される。ここで、前記孔は実際のところ陰陽の極室を連通しているため、次のような矛盾が生じてしまう。即ち、孔が小さすぎると上方の電解液が下方の陽極室に導入されにくくなる一方で、孔が大きすぎると水は導入しやすいが、下方の陽極で発生した酸素とオゾンが上昇して上方の陰極水中に混入しやすくもなり、汚染が生じてしまう。また、当該陽極室で必要とされる電極液が親水性のイオン膜を介して導入される場合には、膜のインピーダンスの関係上、当該陽極室上方のイオン膜は比較的長時間にわたり漬け置かなければ十分に湿潤されない。そのため、カップでの電気分解においては一定時間(約10分以上)の休息が必須となる。この現象により、カップの場合には水素水(Hydrogen Water)を連続生成できず、これが最大の弊害となっている。   3. The electrolyte solution required under the anode (that is, in the anode chamber) is introduced into the anode chamber from above the cathode, that is, from the inside of the cup via a hole or a hydrophilic ion membrane. Here, since the hole actually communicates with the yin and yang polar chamber, the following contradiction occurs. That is, if the hole is too small, the upper electrolyte solution is difficult to be introduced into the lower anode chamber, while if the hole is too large, water is easily introduced, but the oxygen and ozone generated at the lower anode rise and rise upward. It becomes easy to mix in the cathode water, and contamination occurs. In addition, when the electrode solution required in the anode chamber is introduced through a hydrophilic ion membrane, the ion membrane above the anode chamber is immersed for a relatively long time because of the impedance of the membrane. Without it, it will not get wet enough. Therefore, a rest of a certain time (about 10 minutes or more) is essential for electrolysis in a cup. Due to this phenomenon, hydrogen water cannot be continuously generated in the case of a cup, which is the greatest adverse effect.

また、常用されている多孔式流水型電解槽の場合には、電極の大部分が直立して架設されている。即ち、電極が左右に1つずつの構造配置となるよう設計されおり、水流が下から上に向かうようになっている。つまり、電解槽の下方から給水され、電解槽の上方から排水されるよう設計されている。この場合、気体は電極から離れた後、軽いものほど上昇するとの物性にしたがって水流とともに急速に下から上へと向かい、当該陰極室で水中に溶解しなかった水素が急速に導出されてしまう。これは、主として、電解槽内の電極の左右両側に気体収容空間を設けにくいことに起因する。そこで、一般的には陰極水を電解槽の外部に導出した後、特別に設計された気体収容室に導入することで水素分子の溶解量を増加させている。上記の構造は、主として従来の電解槽における先天的な不足を補うためのものであるが、空間が不要に増大するとの課題が存在するほか、構造コストも増加してしまう。よって、依然として克服すべき課題及び瑕疵が存在している。   Further, in the case of a commonly used porous flowing water electrolytic cell, most of the electrodes are erected upright. That is, the electrodes are designed so that one electrode is arranged on each of the left and right sides, and the water flow is directed from the bottom to the top. That is, it is designed so that water is supplied from below the electrolytic cell and drained from above the electrolytic cell. In this case, after the gas leaves the electrode, the lighter the gas, the faster it moves from bottom to top according to the physical property that it rises, and hydrogen that did not dissolve in water in the cathode chamber is rapidly derived. This is mainly because it is difficult to provide gas accommodating spaces on the left and right sides of the electrode in the electrolytic cell. Therefore, generally, after the cathode water is led out of the electrolytic cell, it is introduced into a specially designed gas storage chamber to increase the amount of dissolved hydrogen molecules. The above structure is mainly to compensate for the innate deficiency in the conventional electrolytic cell, but there is a problem that the space is unnecessarily increased, and the structure cost is also increased. Thus, there are still challenges and traps to overcome.

本発明の発明者は、関連製品の製造・設計に現在携わっており、長年にわたる実務経験と習得の蓄積がある。そこで、上述の従来常用されている電解槽に存在する課題及び瑕疵について革新と改良の精神を積極的に投入した結果、ディスク型電解槽における水素分子の再溶解方法及び装置を完成させた。   The inventor of the present invention is currently engaged in the manufacture and design of related products, and has many years of practical experience and knowledge. Therefore, as a result of positively investing in the spirit of innovation and improvement on the problems and jars that exist in the above-mentioned conventional electrolytic cell, a hydrogen molecule remelting method and apparatus in a disk-type electrolytic cell was completed.

本発明が第一の課題を解決するために応用する技術手段及び従来技術に対する効果としては、まず、陰極水中に完全には溶解していない電解還元水の水素分子について、相互溶解現象に複数層の環状水素溶解室及び圧力上昇を組み合わせることで、より多くの水素分子を水中に再溶解させる。   The technical means applied by the present invention to solve the first problem and the effect on the prior art are as follows. First, hydrogen molecules of electrolyzed reduced water that is not completely dissolved in the cathode water have multiple layers in the mutual dissolution phenomenon. More hydrogen molecules are redissolved in water by combining the cyclic hydrogen dissolution chamber and the pressure rise.

本発明が第二の課題を解決するために応用する技術手段及び従来技術に対する効果としては、環状の陰・陽電極板に放射状の孔を切り欠いて陰・陽極室を形成する。また、当該陰・陽極室は陰・陽極水流路を構成するため、発生期状態の水素を迅速に陰極室から持ち去ることで、水素の凝集現象によるより大きな気泡の生成を回避可能となる。これにより、水素の溶解量が効果的に増加する。   The technical means applied by the present invention to solve the second problem and the effect on the prior art are to form a negative / anode chamber by notching radial holes in the annular negative / positive electrode plate. In addition, since the negative / anode chamber constitutes a negative / anodic water flow path, the generation of larger bubbles due to the hydrogen agglomeration phenomenon can be avoided by quickly removing the hydrogen in the nascent state from the cathode chamber. This effectively increases the amount of hydrogen dissolved.

本発明が第三の課題を解決するために応用する技術手段及び従来技術に対する効果としては、陽極電極板の下方に気体収集導水室を設けることで、陽極電極板で生成された酸素及びオゾンを迅速に収容し、上方の陰極水に対する当該酸素及びオゾンの混入を回避する。実験により、上記のような対策で陰極水中の水素分子の溶解量を効果的に増加させられるとともに、陰極水中の水素分子の純度を確保可能であることが証明された。   The technical means applied by the present invention to solve the third problem and the effect on the prior art are as follows. By providing a gas collecting water guiding chamber below the anode electrode plate, oxygen and ozone generated by the anode electrode plate are reduced. Accommodate quickly and avoid contamination of the oxygen and ozone into the cathode water above. Through experiments, it was proved that the amount of hydrogen molecules dissolved in the cathode water can be effectively increased by the measures described above, and the purity of the hydrogen molecules in the cathode water can be secured.

図1は、本発明の実施例1にかかる底面視の立体組立図である。FIG. 1 is a three-dimensional assembly diagram in bottom view according to the first embodiment of the present invention. 図2は、本発明の実施例1にかかる正面視の立体組立断面図である。FIG. 2 is a three-dimensional assembly cross-sectional view in front view according to the first embodiment of the present invention. 図3は、本発明の実施例1におけるベースと下方気体収集導水盤の立体組立断面図である。FIG. 3 is a three-dimensional assembly cross-sectional view of the base and the lower gas collection headboard in the first embodiment of the present invention. 図4は、本発明の実施例1にかかる立体分解図及びA部、K部・・・G部の拡大図である。FIG. 4 is a three-dimensional exploded view according to the first embodiment of the present invention and an enlarged view of A part, K part... G part. 図5は、本発明の実施例1にかかる立体分解図及びS部の拡大図である。FIG. 5 is a three-dimensional exploded view according to Example 1 of the present invention and an enlarged view of the S part. 図6は、本発明の実施例1における陰・陽極電極板の導電状態を示す組立断面図である。FIG. 6 is an assembly cross-sectional view showing the conductive state of the negative / anode electrode plate in Example 1 of the present invention. 図7は、本発明の実施例1における電気分解時の原水供給を示す組立断面図とC部及びY部の拡大図である。FIG. 7 is an assembled cross-sectional view showing the supply of raw water during electrolysis in Example 1 of the present invention, and an enlarged view of C and Y parts. 図8は、図7のE−E断面を示す組立図である。FIG. 8 is an assembly view showing a cross section EE in FIG. 7. 図9は、本発明の実施例1における電気分解時の陰極水及び陽極水の導出を示す組立断面図である。FIG. 9 is an assembly cross-sectional view showing the derivation of cathodic water and anodic water during electrolysis in Example 1 of the present invention. 図10は、図9のJ−J断面を示す組立図である。FIG. 10 is an assembly view showing a JJ cross section of FIG. 9. 図11は、図9のF−F断面を示す組立図である。FIG. 11 is an assembly view showing the FF cross section of FIG. 9. 図12は、図9のR−R断面を示す組立図である。FIG. 12 is an assembly view showing the RR cross section of FIG. 9. 図13は、本発明の実施例2の立体分解図である。FIG. 13 is a three-dimensional exploded view of Example 2 of the present invention. 図14は、本発明の実施例2の組立断面図及びH部の拡大図である。FIG. 14 is an assembled cross-sectional view of the second embodiment of the present invention and an enlarged view of the H portion.

当業者が本発明の構造の詳細及び達成可能な機能・効果を理解しやすいよう、具体的実施例を挙げつつ、図面を組み合わせて以下の通り詳述する。   In order that those skilled in the art can easily understand the details of the structure of the present invention and the functions and effects that can be achieved, the following detailed description will be given in combination with the drawings with specific examples.

ディスク型電解槽における水素分子の再溶解方法及び装置について、図1〜5を参照する。主として、ベース10、導電体20、下方気体収集導水盤30、陽極電極板40、イオン膜50、陰極電極板60、上方気体収集導水盤70、カバー体80、給排水コネクタ90及び複数の止水ワッシャQを含む。   1 to 5 will be referred to for a method and apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell. Mainly, the base 10, the conductor 20, the lower gas collecting water guide board 30, the anode electrode plate 40, the ion membrane 50, the cathode electrode plate 60, the upper gas collecting water guide board 70, the cover body 80, the water supply / drainage connector 90, and a plurality of water stop washers. Q is included.

当該ベース10は円盤状をなしており、中央に給排水コネクタ90を覆接するための中空の覆接凸部11が下方に延伸するよう設けられている。当該覆接凸部11の外部には溝111が2つ設けられており、2つの止水ワッシャQにより止水されている。また、当該覆接凸部11の外部には給排水コネクタ90を係止するためのほぞ112が2つ設けられている。当該ベース10の上面には等間隔の放射状に配置された複数の仕切り板12が設けられており、各仕切り板12の間に陽極水流路121が形成されている。当該ベース10上面の両側には、陽極電極板40における2つの正極導電部45が挿通されて2つのスペーサRと2つのナットNによりベース10に締結されるよう、挿通孔13が2つ設けられている。当該覆接凸部11には、内から外に向かって、導電スペーサ管14、原水給水スペーサリング15及び陽極水排水スペーサリング16が順に設けられている。当該導電スペーサ管14の内部には、導電体20を締結するための雌ネジ141が設けられている。当該原水給水スペーサリング15の内壁と導電スペーサ管14の間には、当該原水給水スペーサリング15の内壁に原水給水流路152が形成されるよう、等間隔のスペーサリブ151が複数設けられている。また、当該陽極水排水スペーサリング16の内壁と原水給水スペーサリング15の間には、当該陽極水排水スペーサリング16の内壁に陽極水排水流路162が形成されるよう、等間隔のスペーサリブ161が複数設けられている。当該陽極水排水スペーサリング16のうち陽極水流路121に対応する箇所には陽極水排水口163が設けられている。また、当該陽極水排水流路162の底部のうち覆接凸部11の円周外縁に対応する箇所には、等間隔の陽極水排水孔164が複数設けられている。また、当該ベース10の上面には、複数の仕切り板12の外縁に対応してフランジ17が設けられている。これにより、ベース10の内壁とフランジ17の間に、下方気体収集導水盤30を組み合わせるための結合溝171が形成される。当該ベース10の外壁のうちカバー体80の内壁に対応する箇所には、ベース10とカバー体80を対合するための雄ネジ18が設けられている。当該ベース10のうち雄ネジ18の上方に対応する箇所には、止水ワッシャQを圧設可能であって、ベース10とカバー体80の対合時に止水に用いられる溝19が設けられている。   The base 10 has a disk shape, and a hollow covering convex portion 11 for covering the water supply / drainage connector 90 is provided at the center so as to extend downward. Two grooves 111 are provided outside the covering projection 11 and are stopped by two water washers Q. Two tenons 112 for locking the water supply / drainage connector 90 are provided outside the covering projection 11. A plurality of partition plates 12 arranged radially at equal intervals are provided on the upper surface of the base 10, and an anodic water flow path 121 is formed between the partition plates 12. Two insertion holes 13 are provided on both sides of the upper surface of the base 10 so that the two positive electrode conductive portions 45 of the anode electrode plate 40 are inserted and fastened to the base 10 by two spacers R and two nuts N. ing. The covering projection 11 is provided with a conductive spacer tube 14, a raw water supply spacer ring 15 and an anode water drain spacer ring 16 in this order from the inside to the outside. A female screw 141 for fastening the conductor 20 is provided inside the conductive spacer tube 14. Between the inner wall of the raw water supply spacer ring 15 and the conductive spacer tube 14, a plurality of equally spaced spacer ribs 151 are provided so that the raw water supply flow channel 152 is formed on the inner wall of the raw water supply spacer ring 15. In addition, between the inner wall of the anodic drainage spacer ring 16 and the raw water supply spacer ring 15, spacer ribs 161 are equally spaced so that an anodic drainage channel 162 is formed on the inner wall of the anodic drainage spacer ring 16. A plurality are provided. An anode water drain port 163 is provided at a location corresponding to the anode water flow path 121 in the anode water drain spacer ring 16. A plurality of equally spaced anode water drain holes 164 are provided at locations corresponding to the circumferential outer edge of the covering projection 11 in the bottom of the anode water drain flow channel 162. A flange 17 is provided on the upper surface of the base 10 so as to correspond to the outer edges of the plurality of partition plates 12. As a result, a coupling groove 171 for combining the lower gas collecting water guide plate 30 is formed between the inner wall of the base 10 and the flange 17. A male screw 18 for mating the base 10 and the cover body 80 is provided at a location corresponding to the inner wall of the cover body 80 in the outer wall of the base 10. A water stop washer Q can be press-fitted at a location corresponding to the upper side of the male screw 18 in the base 10, and a groove 19 used for water stop when the base 10 and the cover body 80 are mated is provided. Yes.

当該導電体20の上端には、止水ワッシャQとナットNを陰極電極板60の中央位置に緊締可能とする雄ネジ21と位置決め凸縁22が設けられている。また、当該導電体20の下端には、ベース10中央の導電スペーサ管14における雌ネジ141に緊締可能となるよう、雄ネジ23と位置決め凸縁24が設けられている。当該2つの位置決め凸縁22,24の間には、止水ワッシャQを圧設して止水可能とする溝25が形成されている。また、当該導電体20の下端には導電部26が設けられている。   A male screw 21 and a positioning convex edge 22 are provided at the upper end of the conductor 20 so that the water stop washer Q and the nut N can be fastened to the center position of the cathode electrode plate 60. A male screw 23 and a positioning convex edge 24 are provided at the lower end of the conductor 20 so as to be fastened to the female screw 141 in the conductive spacer tube 14 at the center of the base 10. A groove 25 is formed between the two positioning convex edges 22 and 24 so that the water stop washer Q is pressed to stop the water. In addition, a conductive portion 26 is provided at the lower end of the conductor 20.

当該下方気体収集導水盤30は円盤状をなしており、当該下方気体収集導水盤30のうちベース10の2つの挿通孔13に対応する箇所には、2つの孔付スタッド31が設けられている。当該2つの孔付スタッド31の外径は2つの挿通孔13の内径に相当しており、当該2つの孔付スタッド31を2つの挿通孔13に貫設可能である。当該2つの孔付スタッド31の内部には、陽極電極板40における2つの正極導電部45を挿通可能となるよう、貫通した2つの魚眼孔311が設けられている。また、当該2つの魚眼孔311の上方には、止水のための止水ワッシャQが2つ設けられている。当該下方気体収集導水盤30の中央には原水給水スペーサリング32が設けられており、当該原水給水スペーサリング32における外壁の円周を等分した箇所には、複数の原水給水口33が設けられている。当該原水給水口33の円周外縁には原水給水溝34が設けられている。原水は複数の原水給水口33から原水給水溝34に進入した後、原水給水溝34から放射状に内から外へと流出する。また、当該下方気体収集導水盤30上面の円周内壁には、上方気体収集導水盤70を嵌設及び位置決めするための等間隔の位置決め嵌設溝35が複数設けられている。当該下方気体収集導水盤30上面の円周外縁には、等間隔の陽極水排水口36が複数設けられている。当該陽極水排水口36の円周内縁には、複数の陽極水排水流路361が設けられている。また、当該複数の陽極水排水口36の円周外縁には、イオン膜50を止水するための突設リング362が設けられている。当該原水給水スペーサリング32の下方のうちベース10の原水給水スペーサリング15の内壁に対応する箇所には、止水ワッシャQを圧設して止水可能とする溝321が設けられている。当該下方気体収集導水盤30の外壁のうちベース10の結合溝17の内壁に対応する箇所には、止水ワッシャQを圧設して止水可能とする溝37が設けられているため、陰極水と陽極水の混合が防止される。当該下方気体収集導水盤30の上面のうち複数の陽極水排水口36の円周に対応する箇所にはフランジ38が設けられている。フランジ38を用いることで陽極水の水位が上昇するため、イオン膜50を十分に湿潤させられる。当該下方気体収集導水盤30の底面のうち複数の陽極水排水口36の円周内縁に対応する箇所には遮断縁39が設けられている。これにより、下方気体収集導水盤30の底面に、酸素分子の収集及び陽極水の導水のための気体収集導水室391が形成されることから、陽極電極板40で生成された酸素及びオゾンが急速に収容される。よって、上方の陰極水に対する当該酸素及びオゾンの混入が回避される。   The lower gas collection diversion board 30 has a disk shape, and two hole studs 31 are provided at locations corresponding to the two insertion holes 13 of the base 10 in the lower gas collection diversion board 30. . The outer diameters of the two holed studs 31 correspond to the inner diameters of the two insertion holes 13, and the two holed studs 31 can be inserted through the two insertion holes 13. Two fisheye holes 311 that penetrate therethrough are provided inside the two studs with holes 31 so that the two positive electrode conductive portions 45 of the anode electrode plate 40 can be inserted. Two water-stop washers Q for water stop are provided above the two fish eye holes 311. A raw water supply spacer ring 32 is provided at the center of the lower gas collecting water guide plate 30, and a plurality of raw water supply ports 33 are provided at locations where the circumference of the outer wall of the raw water supply spacer ring 32 is equally divided. ing. A raw water supply groove 34 is provided on the circumferential outer edge of the raw water supply port 33. The raw water enters the raw water supply groove 34 from the plurality of raw water supply ports 33 and then flows out from the inside to the outside radially from the raw water supply groove 34. The circumferential inner wall of the upper surface of the lower gas collection diversion board 30 is provided with a plurality of equally-positioned positioning fitting grooves 35 for fitting and positioning the upper gas collection diversion board 70. A plurality of equally-spaced anode water drain ports 36 are provided on the circumferential outer edge of the upper surface of the lower gas collection guide plate 30. A plurality of anode water drain passages 361 are provided at the inner circumferential edge of the anode water drain port 36. Further, a projecting ring 362 for stopping the ion membrane 50 is provided on the circumferential outer edge of the plurality of anode water drain ports 36. A groove 321 is provided below the raw water supply spacer ring 32 at a location corresponding to the inner wall of the raw water supply spacer ring 15 of the base 10 so that the water stop washer Q is pressed to stop the water. Since a groove 37 that presses a water stop washer Q and can stop water is provided at a location corresponding to the inner wall of the coupling groove 17 of the base 10 in the outer wall of the lower gas collecting water guide plate 30. Mixing of water and anode water is prevented. A flange 38 is provided at a location corresponding to the circumference of the plurality of anode water drain ports 36 on the upper surface of the lower gas collection guide plate 30. Since the water level of the anode water is increased by using the flange 38, the ion membrane 50 can be sufficiently wetted. A blocking edge 39 is provided at a position corresponding to the circumferential inner edge of the plurality of anode water drain ports 36 on the bottom surface of the lower gas collection guide plate 30. As a result, a gas collecting water conducting chamber 391 for collecting oxygen molecules and conducting anode water is formed on the bottom surface of the lower gas collecting water guiding plate 30, so that oxygen and ozone generated in the anode electrode plate 40 rapidly Is housed in. Therefore, mixing of the oxygen and ozone into the upper cathode water is avoided.

当該陽極電極板40は円盤状をなしている。当該陽極電極板40の中央には軸孔41が設けられており、当該軸孔41の内径は下方気体収集導水盤30の原水給水スペーサリング32の外径に相当している。当該陽極電極板40の円周面には複数の中空且つ放射状に配置される陽極室42が設けられている。当該陽極室42はV字形状としてもよい。これにより、下方気体収集導水盤30の原水給水溝34に対応する箇所には複数の給水口43が形成され、原水を複数の給水口43から複数の陽極室42へと導入可能となる。当該陽極電極板40の円周外縁には、陰極電極板60との位置合わせ時において案内に用いられる複数の等間隔に配置される凹陥状の位置決め部44が設けられている。当該陽極電極板40のうちベース10の2つの挿通孔13及び下方気体収集導水盤30の2つの魚眼孔311に対応する箇所には、2つの正極導電部45が設けられている。当該2つの正極導電部45には、ナットNを緊締するための2つの雄ネジ46が設けられている。   The anode electrode plate 40 has a disk shape. A shaft hole 41 is provided at the center of the anode electrode plate 40, and the inner diameter of the shaft hole 41 corresponds to the outer diameter of the raw water supply spacer ring 32 of the lower gas collection water guide panel 30. A plurality of hollow and radially arranged anode chambers 42 are provided on the circumferential surface of the anode electrode plate 40. The anode chamber 42 may be V-shaped. As a result, a plurality of water supply ports 43 are formed at locations corresponding to the raw water supply grooves 34 of the lower gas collection diversion board 30, and raw water can be introduced into the plurality of anode chambers 42 from the plurality of water supply ports 43. On the outer circumferential edge of the anode electrode plate 40, a plurality of recessed positioning portions 44 are provided that are arranged at equal intervals and used for guidance when positioning with the cathode electrode plate 60. Two positive electrode conductive portions 45 are provided at locations corresponding to the two insertion holes 13 of the base 10 and the two fisheye holes 311 of the lower gas collecting water guide plate 30 in the anode electrode plate 40. The two positive electrode conductive portions 45 are provided with two male screws 46 for tightening the nut N.

当該イオン膜50の中央には丸孔51が設けられており、当該丸孔51の内径は下方気体収集導水盤30の原水給水スペーサリング32の内径に相当している。当該イオン膜50としてはプロトン交換膜が可能である。当該イオン膜50の外径は陽極電極板40及び陰極電極板60の外径よりも大きい。電気分解時には、水素分子がイオン膜50を通過可能であるのに対し、酸素分子はイオン膜50を通過不可能である。よって、陽極電極板40で生成された酸素及びオゾンが上方の陰極水に混入するとの事態を回避可能である。   A round hole 51 is provided in the center of the ion membrane 50, and the inner diameter of the round hole 51 corresponds to the inner diameter of the raw water supply spacer ring 32 of the lower gas collection water guide plate 30. The ion membrane 50 can be a proton exchange membrane. The outer diameter of the ion film 50 is larger than the outer diameters of the anode electrode plate 40 and the cathode electrode plate 60. During electrolysis, hydrogen molecules can pass through the ion membrane 50, whereas oxygen molecules cannot pass through the ion membrane 50. Therefore, it is possible to avoid a situation in which oxygen and ozone generated in the anode electrode plate 40 are mixed into the upper cathode water.

当該陰極電極板60は円盤状をなしている。当該陰極電極板60の中央には軸孔61が設けられており、当該軸孔61の内径は導電体20上端の雄ネジ21の外径に相当している。当該導電体20の上端の雄ネジ21を陰極電極板60の軸孔61に挿通すると、止水ワッシャQとナットNを陰極電極板60の中央位置に緊締可能となる。当該陰極電極板60の円周面には複数の中空且つ放射状に配置される陰極室62が設けられている。当該陰極室62はV字形状としてもよい。当該陽極電極板40の陽極室42及び当該陰極電極板60の陰極室62は、形状、大きさ及び位置が完全に同一となっている。当該陰極電極板60のうち軸孔61と複数の陰極室62の間には等間隔に配置される複数の給水口63が設けられており、原水を複数の給水口63から複数の陰極室62へと導入可能である。当該陰極電極板60の円周外縁には、陽極電極板40の位置決め部44との位置合わせを案内するための複数の等間隔に配置される凹陥状の位置決め部64が設けられている。これにより、当該陽極電極板40の陽極室42及び当該陰極電極板60の陰極室62を完全に噛合させられる。   The cathode electrode plate 60 has a disk shape. A shaft hole 61 is provided at the center of the cathode electrode plate 60, and the inner diameter of the shaft hole 61 corresponds to the outer diameter of the male screw 21 at the upper end of the conductor 20. When the male screw 21 at the upper end of the conductor 20 is inserted into the shaft hole 61 of the cathode electrode plate 60, the water stop washer Q and the nut N can be tightened to the center position of the cathode electrode plate 60. A plurality of hollow and radially arranged cathode chambers 62 are provided on the circumferential surface of the cathode electrode plate 60. The cathode chamber 62 may be V-shaped. The anode chamber 42 of the anode electrode plate 40 and the cathode chamber 62 of the cathode electrode plate 60 are completely the same in shape, size and position. A plurality of water supply ports 63 arranged at equal intervals are provided between the shaft hole 61 and the plurality of cathode chambers 62 in the cathode electrode plate 60, and raw water is supplied from the plurality of water supply ports 63 to the plurality of cathode chambers 62. Can be introduced. On the outer circumferential edge of the cathode electrode plate 60, a plurality of recessed positioning portions 64 are provided that are arranged at equal intervals to guide alignment with the positioning portion 44 of the anode electrode plate 40. Thereby, the anode chamber 42 of the anode electrode plate 40 and the cathode chamber 62 of the cathode electrode plate 60 are completely meshed with each other.

当該上方気体収集導水盤70は円盤状をなしている。当該上方気体収集導水盤70のうち下方気体収集導水盤30における複数の位置決め嵌設溝35に対応する箇所には、上方気体収集導水盤70と下方気体収集導水盤30を嵌設及び位置決めするための複数の位置決め嵌設ブロック71が設けられている。当該上方気体収集導水盤70のうち下方気体収集導水盤30の突設リング362に対応する箇所には、止水ワッシャQを圧設可能とする溝72が設けられている。これにより、当該イオン膜50を当該上方気体収集導水盤70の止水ワッシャQと下方気体収集導水盤30の突設リング362で圧設することで止水作用が形成され、陰極水と陽極水の混流を回避可能となる。当該上方気体収集導水盤70の底面中央には、導電体20上端の雄ネジ21とナットNを収容するための収容凹溝73が設けられている。当該上方気体収集導水盤70の底面のうち陰極電極板60の複数の給水口63に対応する箇所には、原水給水溝74が設けられている。原水は複数の原水給水口63から原水給水溝74に給水された後、原水給水溝74から放射状に内から外へと流出可能である。当該上方気体収集導水盤70の円周外縁には、等間隔の陰極水排水口75が複数設けられている。当該上方気体収集導水盤70の底面のうち複数の当該陰極水排水口75の円周内縁に対応する箇所には、等間隔の陰極水排水流路76が複数設けられている。当該上方気体収集導水盤70の上面のうち複数の陰極水排水口75の円周内縁に対応する箇所には、上方気体収集導水盤70の上面に複数の気体収集導水室78が形成されるよう、複数の円環状遮断縁77が設けられている。当該複数の円環状遮断縁77の上面には、水素分子の収集及び陰極水の導水のための複数の切欠き79が設けられているため、陰極電極板60で生成された水素が迅速に収容される。   The upper gas collecting water guide plate 70 has a disk shape. In order to fit and position the upper gas collection diversion board 70 and the lower gas collection diversion board 30 at locations corresponding to the plurality of positioning fitting grooves 35 in the lower gas collection diversion board 30 in the upper gas collection diversion board 70. A plurality of positioning fitting blocks 71 are provided. A groove 72 that allows the water stop washer Q to be press-fitted is provided at a location corresponding to the projecting ring 362 of the lower gas collection diversion board 30 in the upper gas collection diversion board 70. As a result, the ion membrane 50 is pressed by the water stop washer Q of the upper gas collection diversion board 70 and the projecting ring 362 of the lower gas collection diversion board 30 to form a water stop action. Can be avoided. An accommodation concave groove 73 for accommodating the male screw 21 and the nut N at the upper end of the conductor 20 is provided at the center of the bottom surface of the upper gas collection guide board 70. Raw water supply grooves 74 are provided at locations corresponding to the plurality of water supply ports 63 of the cathode electrode plate 60 in the bottom surface of the upper gas collection guide plate 70. After the raw water is supplied from the plurality of raw water supply ports 63 to the raw water supply groove 74, the raw water can flow out from the inside to the outside radially from the raw water supply groove 74. A plurality of equally spaced cathode water drain ports 75 are provided on the outer circumferential edge of the upper gas collection guide board 70. A plurality of equally spaced cathode water drain channels 76 are provided at locations corresponding to the circumferential inner edges of the plurality of cathode water drain ports 75 in the bottom surface of the upper gas collection guide plate 70. A plurality of gas collecting water conducting chambers 78 are formed on the upper surface of the upper gas collecting water guiding plate 70 at a position corresponding to the circumferential inner edge of the plurality of cathode water drain ports 75 in the upper surface of the upper gas collecting water guiding plate 70. A plurality of annular blocking edges 77 are provided. A plurality of notches 79 for collecting hydrogen molecules and introducing the cathode water are provided on the upper surfaces of the plurality of annular blocking edges 77, so that the hydrogen generated by the cathode electrode plate 60 is quickly accommodated. Is done.

当該カバー体80の内壁のうちベース10の雄ネジ18に対応する箇所には、カバー体80とベース10を対合するための雌ネジ81が設けられている。当該カバー体80のうち上方気体収集導水盤70の複数の円環状遮断縁77に対応する箇所に複数の互い違いに配置される円環状遮断縁82が設けられることで、カバー体80内部の上方位置には複数の水素溶解室83が形成されている。当該複数の円環状遮断縁82の上面には、水素分子の収集及び陰極水の導水のための複数の切欠き84が設けられている。陰極水は、複数の気体収集導水室78と複数の水素溶解室83において上下及び上下に連続したS字形状をなすよう流動可能であり、水素の上昇と陰極水の下降により発生する相互溶解現象によって、より多くの水素分子が水中に溶解する。当該カバー体80の中央には、上方に延伸する貫通した陰極水排水コネクタ85が設けられている。当該陰極水排水コネクタ85の外部には、止水ワッシャQを圧設可能であって、陰極水排水チューブ(図示しない)を連接するための溝86が設けられている。これにより、活性水素を豊富に含んだ陰極水を、陰極水排水コネクタ85と陰極水排水チューブ(図示しない)から導出可能となる。   A female screw 81 for mating the cover body 80 and the base 10 is provided at a location corresponding to the male screw 18 of the base 10 on the inner wall of the cover body 80. An upper position inside the cover body 80 is provided by providing a plurality of staggered annular blocking edges 82 at locations corresponding to the plurality of annular blocking edges 77 of the upper gas collecting head 70 in the cover body 80. A plurality of hydrogen-dissolving chambers 83 are formed. A plurality of notches 84 for collecting hydrogen molecules and conducting cathodic water are provided on the upper surfaces of the plurality of annular blocking edges 82. Cathodic water can flow in a plurality of gas collecting water conducting chambers 78 and a plurality of hydrogen dissolving chambers 83 in an S-shape that is continuous in the vertical and vertical directions, and is a mutual dissolution phenomenon that occurs due to the rise of hydrogen and the fall of cathodic water. Causes more hydrogen molecules to dissolve in water. In the center of the cover body 80, a penetrating cathode water drain connector 85 extending upward is provided. Outside the cathode water drain connector 85, a water stop washer Q can be press-fitted, and a groove 86 for connecting a cathode water drain tube (not shown) is provided. Thereby, the cathode water containing abundant active hydrogen can be derived from the cathode water drain connector 85 and the cathode water drain tube (not shown).

当該給排水コネクタ90の中央のうちベース10の導電スペーサ管14に対応する箇所には中空軸柱91が設けられている。当該中空軸柱91には弾性部材Sと負極導電柱98(図6参照)が設けられており、当該弾性部材Sの弾性力によって、当該負極導電柱98の上端を導電体20の導電部26に対ししっかりと接触させられる。また、当該導電柱98の下端には負極電線(図示しない)を接続可能である。当該給排水コネクタ90の上面には、弾性を有する2つの正極導電片99(図6参照)が陽極電極板40の2つの正極導電部45に対応して設けられている。これにより、当該陽極電極板40における2つの正極導電部45の下端を2つの正極導電片99にしっかりと接触させられる。また、当該2つの正極導電片99の下端には正極電線(図示しない)を接続可能である。当該給排水コネクタ90のうちベース10の覆接凸部11に対応する箇所には覆接凹部92が設けられており、当該ベース10の覆接凸部11の外径が給排水コネクタ90の覆接凹部92の内径に相当している。当該覆接凹部92のうち2つのほぞ112に対応する箇所には、2つのほぞ溝93が設けられている。2つのほぞ112は2つのほぞ溝93に対し回入又は回出可能であり、給排水コネクタ90の迅速な着脱に用いられる。当該覆接凹部92の内部には、陽極水排水溝94と原水給水溝95が同軸に設けられている。当該陽極水排水溝94の内径は原水給水溝95よりも大きい。当該給排水コネクタ90の外部のうち陽極水排水溝94に対応する箇所には、陽極水排水コネクタ96が設けられている。当該陽極水排水コネクタ96には、陽極水排水チューブ(図示しない)を連接可能である。当該給排水コネクタ90の外部のうち原水給水溝95に対応する箇所には、原水給水コネクタ97が設けられている。   A hollow shaft column 91 is provided at a location corresponding to the conductive spacer tube 14 of the base 10 in the center of the water supply / drainage connector 90. The hollow shaft column 91 is provided with an elastic member S and a negative electrode conductive column 98 (see FIG. 6), and the upper end of the negative electrode conductive column 98 is connected to the conductive portion 26 of the conductor 20 by the elastic force of the elastic member S. Can be brought into firm contact. A negative electrode wire (not shown) can be connected to the lower end of the conductive column 98. On the upper surface of the water supply / drainage connector 90, two positive electrode conductive pieces 99 (see FIG. 6) having elasticity are provided corresponding to the two positive electrode conductive portions 45 of the anode electrode plate 40. Accordingly, the lower ends of the two positive electrode conductive portions 45 in the anode electrode plate 40 can be brought into firm contact with the two positive electrode conductive pieces 99. A positive electrode wire (not shown) can be connected to the lower ends of the two positive electrode conductive pieces 99. A covering recess 92 is provided at a location corresponding to the covering protrusion 11 of the base 10 in the water supply / drainage connector 90, and the outer diameter of the covering protrusion 11 of the base 10 is the covering recess of the water supply / drainage connector 90. This corresponds to an inner diameter of 92. Two tenon grooves 93 are provided at locations corresponding to the two tenon 112 in the covering recess 92. The two tenons 112 can be turned into and out of the two tenon grooves 93 and are used for quick attachment and detachment of the water supply / drainage connector 90. An anode water drain groove 94 and a raw water supply groove 95 are provided coaxially inside the covering recess 92. The inner diameter of the anode water drain groove 94 is larger than that of the raw water supply groove 95. An anode water drain connector 96 is provided at a location corresponding to the anode water drain groove 94 in the outside of the water supply / drain connector 90. An anode water drain tube (not shown) can be connected to the anode water drain connector 96. A raw water / water supply connector 97 is provided at a location corresponding to the raw water / water supply groove 95 in the outside of the water supply / drainage connector 90.

上記各部品構造を組み合わせてなる本発明は、ディスク型電解槽における水素分子の再溶解方法及び装置を提供する。なお、実際の操作にあたっては次のように応用される。   The present invention, which is a combination of the above component structures, provides a method and apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell. The actual operation is applied as follows.

本発明の実施例1における電気分解時の原水供給を示す組立断面図とC部及びY部の拡大図である図7、及び、図7のE−E断面を示す組立図である図8を参照する。原水流入時には、原水を給排水コネクタ90の原水給水コネクタ97から原水給水溝95に導入し、まずはベース10の原水給水スペーサリング15の内壁により形成される原水給水流路152を経由して下方から上方へと流入させる。大部分の水は陰極電極板60の複数の給水口63から上方気体収集導水盤70の原水給水溝74に導入された後、原水給水溝74から陰極電極板60における放射状に配置された複数の陰極室62に流入する。また、少量の水は下方気体収集導水盤30における原水給水スペーサリング32の外縁の複数の原水給水口33から原水給水溝34に流入した後、原水給水溝34から陽極電極板40の複数の給水口43を経由して放射状に配置された複数の陽極室42に流入する。   FIG. 7 is an assembly cross-sectional view showing the raw water supply during electrolysis in Example 1 of the present invention, FIG. 7 is an enlarged view of the C part and the Y part, and FIG. 8 is an assembly view showing the EE cross section of FIG. refer. When the raw water flows in, the raw water is introduced from the raw water / water supply connector 97 of the water supply / drainage connector 90 into the raw water / water supply groove 95, and first, from below through the raw water / water supply flow path 152 formed by the inner wall of the raw water / water supply spacer ring 15 of the base 10. To flow into. Most of the water is introduced from the plurality of water supply ports 63 of the cathode electrode plate 60 into the raw water supply groove 74 of the upper gas collecting water guide plate 70, and then the plurality of waters arranged radially from the raw water supply groove 74 in the cathode electrode plate 60. It flows into the cathode chamber 62. A small amount of water flows into the raw water supply groove 34 from the plurality of raw water supply ports 33 at the outer edge of the raw water supply spacer ring 32 in the lower gas collection water guide plate 30 and then from the raw water supply groove 34 to the plurality of water supplies of the anode electrode plate 40. It flows into the plurality of anode chambers 42 arranged radially via the port 43.

本発明の実施例1における電気分解時の陰極水及び陽極水の導出を示す組立断面図である図9と、図9のJ−J、F−F、R−R断面を示す組立図である図10、図11、図12を参照する。原水の電気分解時には、原水がそれぞれ陰極電極板60における複数の陰極室62と陽極電極板40における複数の陽極室42で電気分解されることで、複数の陰極室62では水素及び陰極水が、複数の陽極室42では酸素、オゾン及び陽極水がそれぞれ生成される。陰極電極板60と陽極電極板40はイオン膜50を隔てているため、電気分解時には、水素分子がイオン膜50を通過可能であるのに対し、酸素分子はイオン膜50を通過不可能となる。これにより、陽極電極板40で生成された酸素及びオゾンが上方の陰極水に混入するとの事態が回避される。また、陰極水は、陰極室62で生成された発生期状態の水素を迅速に溶解して持ち去り、まずは上方気体収集導水盤70の陰極水排水流路76から陰極水排水口75に流入した後、陰極水排水口75を経由して、下方から上方に向かって円環状遮断縁77の切欠き79から上方の気体収集導水室78に導入される。これにより、水素分子を水素溶解室83の上方に収集可能となる。また、陰極水は、複数の気体収集導水室78と複数の水素溶解室83において上下及び上下に連続したS字形状をなすよう流動し、水素の上昇と陰極水の下降により発生する相互溶解現象によってより多くの水素分子を水中に溶解させつつ、圧力を加えることで更に多くの水素分子を陰極水に再溶解させて、陰極水中の水素分子濃度を上昇させる。最後に、水素を豊富に含んだ陰極水を陰極水排水コネクタ85と陰極水排水チューブ(図示しない)から導出すればよい。一方、陽極室42で生成された酸素とオゾンは陽極水により迅速に持ち去られ、まずは下方気体収集導水盤30の陽極水排水流路361から陽極水排水口36に流入した後、陽極水排水口36を経由して上方から下方に向かって遮断縁39から下方の気体収集導水室391に導入される。酸素及びとオゾンは急速に気体収集導水室391の上方に収容されるため、当該酸素及びオゾンが上方の陰極水に混入するとの事態が回避される。また、陽極水を利用して、酸素及びオゾンを給排水コネクタ90の陽極水排水溝94と陽極水排水コネクタ96及び陽極水排水チューブ(図示しない)から排出する。更には、フランジ38を用いることで陽極水の水位が上昇するため、イオン膜50を十分に湿潤させられる。   FIG. 9 is an assembly cross-sectional view showing derivation of cathodic water and anodic water during electrolysis in Example 1 of the present invention, and is an assembly drawing showing JJ, FF, and RR cross sections of FIG. 9. Please refer to FIG. 10, FIG. 11, and FIG. At the time of electrolysis of the raw water, the raw water is electrolyzed in the plurality of cathode chambers 62 in the cathode electrode plate 60 and the plurality of anode chambers 42 in the anode electrode plate 40, respectively. In the plurality of anode chambers 42, oxygen, ozone, and anode water are respectively generated. Since the cathode electrode plate 60 and the anode electrode plate 40 separate the ion film 50, during electrolysis, hydrogen molecules can pass through the ion film 50, whereas oxygen molecules cannot pass through the ion film 50. . Thereby, the situation where oxygen and ozone produced | generated with the anode electrode plate 40 mix in upper cathode water is avoided. Also, the cathode water quickly dissolves and removes the nascent hydrogen produced in the cathode chamber 62, and first flows into the cathode water drain port 75 from the cathode water drain channel 76 of the upper gas collecting water guide 70. Thereafter, the gas is introduced into the upper gas collecting water introduction chamber 78 from the notch 79 of the annular blocking edge 77 from below to above through the cathode water drain port 75. Thereby, hydrogen molecules can be collected above the hydrogen dissolution chamber 83. Also, the cathode water flows in a plurality of gas collecting water conducting chambers 78 and a plurality of hydrogen dissolving chambers 83 so as to form an S-shape that is continuous vertically and vertically, and a mutual dissolution phenomenon that occurs due to the rise of hydrogen and the fall of cathode water. In this way, more hydrogen molecules are dissolved in water, and by applying pressure, more hydrogen molecules are redissolved in the cathode water, and the concentration of hydrogen molecules in the cathode water is increased. Finally, the cathode water rich in hydrogen may be derived from the cathode water drain connector 85 and the cathode water drain tube (not shown). On the other hand, oxygen and ozone generated in the anode chamber 42 are quickly taken away by the anode water, and first flow into the anode water drain port 36 from the anode water drain channel 361 of the lower gas collecting water guide plate 30 and then the anode water drain port. The gas is introduced from the blocking edge 39 to the lower gas collecting water guide chamber 391 via the upper side 36 through the lower side. Oxygen and ozone are rapidly accommodated above the gas collecting and guiding chamber 391, so that the situation where the oxygen and ozone are mixed into the upper cathode water is avoided. Moreover, oxygen and ozone are discharged from the anode water drainage groove 94 of the water supply / drainage connector 90, the anode water drainage connector 96, and the anode water drainage tube (not shown) using the anode water. Furthermore, since the water level of the anode water rises by using the flange 38, the ion membrane 50 can be sufficiently wetted.

本発明で提供するディスク型電解槽における水素分子の再溶解装置について、本発明の実施例2の立体分解図である図13と、本発明の実施例2の組立断面図及びH部の拡大図である図14を参照する。当該陽極電極板40の陽極室42及び当該陰極電極板60の陰極室62は多孔型としてもよい。当該下方気体収集導水盤30と上方気体収集導水盤70には、多孔型の陽極室42及び陰極室62に対応して複数の放射状に配置されるスペーサリブ341,741が設けられている。これにより、複数のスペーサリブ341,741の間にはそれぞれ複数の陽極水流路342と陰極水流路742が形成されるため、多孔型の陽極室42で生成された酸素及びオゾンを陽極水によって迅速に持ち去り可能であるとともに、多孔型の陰極室62で生成された発生期状態の水素が陰極水によって迅速に溶解され、持ち去られる。   FIG. 13 which is a three-dimensional exploded view of the second embodiment of the present invention, and an enlarged sectional view of the H portion of the second embodiment of the present invention regarding the hydrogen molecule remelting apparatus in the disk-type electrolytic cell provided by the present invention. Reference is made to FIG. The anode chamber 42 of the anode electrode plate 40 and the cathode chamber 62 of the cathode electrode plate 60 may be porous. The lower gas collecting water guide plate 30 and the upper gas collecting water guide plate 70 are provided with a plurality of radially arranged spacer ribs 341 and 741 corresponding to the porous anode chamber 42 and the cathode chamber 62. As a result, a plurality of anode water flow paths 342 and cathode water flow paths 742 are formed between the plurality of spacer ribs 341 and 741, respectively, so that oxygen and ozone generated in the porous anode chamber 42 can be quickly generated by the anode water. The nascent hydrogen generated in the porous cathode chamber 62 can be taken away and rapidly dissolved and removed by the cathode water.

以上述べたように、本発明で提供するディスク型電解槽における水素分子の再溶解方法及び装置は実際に作製が完了しており、陰極中の水素分子の総溶解量を効果的に30%以上にまで上昇可能なことが実証されている。また、本発明では水素溶解室と気体収集室を一体化して完全にモジュール化している。そのため、コストダウンのみならず、迅速な着脱が可能なことからアフターサービスが容易となり、将来的な水素産業への貢献が期待される。更に、本発明は現市場には存在しない初の創造であり、産業上の利用価値を有しているため、発明特許の実用性及び進歩性の成立要件を満たしている。したがって、特許法の規定に基づき貴局に対しこれを特許出願する。   As described above, the method and apparatus for re-dissolving hydrogen molecules in the disk-type electrolytic cell provided by the present invention has actually been completed, and the total dissolution amount of hydrogen molecules in the cathode is effectively 30% or more. It has been proved that it can rise to In the present invention, the hydrogen dissolution chamber and the gas collection chamber are integrated into a complete module. Therefore, not only cost reduction but also quick attachment / detachment is possible, so after-sales service becomes easy, and contribution to the future hydrogen industry is expected. Furthermore, since the present invention is the first creation that does not exist in the current market and has industrial utility value, it satisfies the requirements for the practicality and inventive step of the invention patent. Therefore, a patent application is filed with you based on the provisions of the Patent Law.

10 ベース
11 覆接凸部
111 溝
112 ほぞ
12 仕切り板
121 陽極水流路
13 挿通孔
14 導電スペーサ管
141 雌ネジ
15 原水給水スペーサリング
151 スペーサリブ
152 原水給水流路
16 陽極水排水スペーサリング
161 スペーサリブ
162 陽極水排水流路
163 陽極水排水口
164 陽極水排水孔
17 フランジ
171 結合溝
18 雄ネジ
19 溝
20 導電体
21 雄ネジ
22 位置決め凸縁
23 雄ネジ
24 位置決め凸縁
25 溝
26 導電部
30 下方気体収集導水盤
31 孔付スタッド
311 魚眼孔
32 原水給水スペーサリング
321 溝
33 原水給水口
34 原水給水溝
35 位置決め嵌設溝
36 陽極水排水口
361 陽極水排水流路
362 突設リング
37 溝
38 フランジ
39 遮断縁
391 気体収集導水室
40 陽極電極板
41 軸孔
42 陽極室
43 給水口
44 位置決め部
45 正極導電部
46 雄ネジ
50 イオン膜
51 丸孔
60 陰極電極板
61 軸孔
62 陰極室
63 給水口
64 位置決め部
70 上方気体収集導水盤
71 位置決め嵌設ブロック
72 溝
73 収容凹溝
74 原水給水溝
75 陰極水排水口
76 陰極水排水流路
77 円環状遮断縁
78 気体収集導水室
79 切欠き
80 カバー体
81 雌ネジ
82 円環状遮断縁
83 水素溶解室
84 切欠き
85 陰極水排水コネクタ
86 溝
90 給排水コネクタ
91 中空軸柱
92 覆接凹部
93 ほぞ溝
94 陽極水排水溝
95 原水給水溝
96 陽極水排水コネクタ
97 原水給水コネクタ
98 負極導電柱
99 正極導電片
S 弾性部材
R スペーサ
N ナット
Q 止水ワッシャ
DESCRIPTION OF SYMBOLS 10 Base 11 Covering convex part 111 Groove 112 Tenon 12 Partition plate 121 Anode water flow path 13 Insertion hole 14 Conductive spacer pipe 141 Female screw 15 Raw water supply spacer ring 151 Spacer rib 152 Raw water supply flow path 16 Anode water drain spacer ring 161 Spacer rib 162 Anode Water drainage passage 163 Anode drainage 164 Anode drainage 17 Flange 171 Coupling groove 18 Male thread 19 Groove 20 Conductor 21 Male screw 22 Positioning convex edge 23 Male screw 24 Positioning convex edge 25 Groove 26 Conductive part 30 Lower gas collection Water guide plate 31 Stud with hole 311 Fish eye hole 32 Raw water feed spacer ring 321 Groove 33 Raw water feed port 34 Raw water feed groove 35 Positioning fitting groove 36 Anode water drain port 361 Anode water drain channel 362 Projecting ring 37 Groove 38 Flange 39 Blocking edge 391 gas Collection water guide chamber 40 Anode electrode plate 41 Axial hole 42 Anode chamber 43 Water supply port 44 Positioning portion 45 Positive electrode conductive portion 46 Male screw 50 Ion film 51 Round hole 60 Cathode electrode plate 61 Axis hole 62 Cathode chamber 63 Water supply port 64 Positioning portion 70 Upper Gas collecting water guide 71 Positioning fitting block 72 Groove 73 Housing concave groove 74 Raw water supply groove 75 Cathode water drain port 76 Cathode water drain channel 77 Annular blocking edge 78 Gas collection water guide chamber 79 Notch 80 Cover body 81 Female screw 82 Annular blocking edge 83 Hydrogen dissolution chamber 84 Notch 85 Cathode water drainage connector 86 Groove 90 Water supply / drainage connector 91 Hollow shaft column 92 Covering recess 93 Mortise groove 94 Anode water drainage groove 95 Raw water supply groove 96 Anode water drainage connector 97 Raw water supply connector 98 Negative electrode conductive column 99 Positive electrode conductive piece S Elastic member R Spacer N Nut Q Water stop washer

Claims (17)

ディスク型電解槽における水素分子の再溶解方法であって、
主として、原水を2つの電極板における中央の給水口から導入し、2つの電極板の相応面における陰・陽極室沿いに放射状に流出させることで、陰極水と発生期状態の水素分子に溶解作用を発生させ、
電気分解後に発生する酸素分子が陰極水に混入することのないよう、当該2つの電極板の間にはイオン膜が設けられており、陰極水及び陽極水によって水素分子及び酸素分子を陰・陽極室から持ち去るとともに、上下2つの気体収集導水室にそれぞれ合流させて、気体収集導水室において水素分子と陰極水に再び相互溶解作用を発生させ、より多くの水素分子を陰極水に再溶解させることで、陰極水中の水素分子の濃度を上昇させる方法。
A method for re-dissolving hydrogen molecules in a disk-type electrolytic cell,
Mainly, the raw water is introduced from the central water supply port of the two electrode plates, and flows out radially along the negative and anode chambers on the corresponding surfaces of the two electrode plates, thereby dissolving the cathode water and the nascent hydrogen molecules. Is generated,
An ion membrane is provided between the two electrode plates so that oxygen molecules generated after electrolysis are not mixed into the cathode water, and hydrogen molecules and oxygen molecules are removed from the negative / anode chamber by the cathode water and the anode water. Take it away and merge it into the upper and lower two gas collection chambers to generate reciprocal action between hydrogen molecules and cathode water in the gas collection chamber and re-dissolve more hydrogen molecules in cathode water. A method for increasing the concentration of hydrogen molecules in the cathode water.
ディスク型電解槽における水素分子の再溶解装置であって、
主として、ディスク型電解槽は、円盤状のベースとカバー体の内部に、気体収集導水盤が2つ、陰・陽極電極板が2つ、及びイオン膜が1つ組み付けられ、当該ベースの外部に給排水コネクタが設けられ、
当該ベースの上方には気体収集導水盤が1つと陽極電極板が設けられ、当該ベースの中央には給排水コネクタが下方に延伸するよう設けられ、
当該カバー体の下方には気体収集導水盤が1つと陰極電極板が設けられ、当該カバー体の中央には陰極水排水コネクタが上方に延伸するよう設けられ、
当該2つの気体収集導水盤のうちベースの上方及びカバー体の下方に対応する箇所には2つの気体収集導水室が設けられ、
当該2つの陰・陽極電極板の中央には給水口が設けられ、当該2つの陰・陽極電極板の相応面には複数の中空且つ放射状に配置される陰・陽極室が設けられ、
当該イオン膜は2つの陰・陽極電極板の間に設けられ、
当該給排水コネクタには原水給水コネクタと陽極水排水コネクタが設けられ、
原水は2つの電極板の給水口からそれぞれ陰・陽極室に導入され、電気分解後に発生する水素分子及び酸素分子は、陰極水及び陽極水により持ち去られるとともに、それぞれ上下2つの気体収集導水室に合流し、気体収集導水室において水素分子と陰極水に相互溶解作用を発生させて、より多くの水素分子を陰極水に再溶解させることで、陰極水中の水素分子の濃度を上昇させる装置。
A device for re-dissolving hydrogen molecules in a disk-type electrolytic cell,
Mainly, the disk-type electrolytic cell has two gas collecting water guides, two negative / anode electrode plates, and one ion membrane inside the disc-shaped base and cover body. A water supply and drainage connector is provided,
Above the base is provided with one gas collection headboard and an anode electrode plate, and at the center of the base is provided with a water supply / drainage connector extending downward,
Below the cover body, one gas collection headboard and a cathode electrode plate are provided, and in the center of the cover body, a cathode water drain connector is provided to extend upward,
Two gas collection water guide chambers are provided at locations corresponding to the upper part of the base and the lower part of the cover body of the two gas collection water guide boards,
A water supply port is provided in the center of the two negative / anode electrode plates, and a plurality of hollow and radially arranged negative / anode chambers are provided on corresponding surfaces of the two negative / anode electrode plates,
The ion membrane is provided between two negative / anode electrode plates,
The water supply / drainage connector is provided with a raw water supply connector and an anode water discharge connector,
Raw water is introduced into the negative and anode chambers from the water supply ports of the two electrode plates, and hydrogen molecules and oxygen molecules generated after electrolysis are carried away by the cathode water and the anode water, and are respectively supplied to the upper and lower gas collecting water conveyance chambers. A device that increases the concentration of hydrogen molecules in the cathode water by merging and generating a mutual dissolving action between the hydrogen molecules and the cathode water in the gas collecting water conveyance chamber and re-dissolving more hydrogen molecules in the cathode water.
当該2つの陰・陽極電極板の極性は、互いに入れ替え可能である請求項1又は2に記載のディスク型電解槽における水素分子の再溶解装置。   The device for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 1 or 2, wherein the polarities of the two negative / anode electrode plates are interchangeable with each other. 当該ベースの上面には等間隔の放射状に配置された複数の仕切り板が設けられるとともに、各仕切り板の間に陽極水流路が形成され、当該ベースの中央には、内から外に向かって、導電スペーサ管、原水給水スペーサリング及び陽極水排水スペーサリングが順に設けられ、当該原水給水スペーサリングの内壁と導電スペーサ管の間には、当該原水給水スペーサリングの内壁に原水給水流路が形成されるよう、等間隔のスペーサリブが複数設けられ、当該陽極水排水スペーサリングの内壁と原水給水スペーサリングの間には、当該陽極水排水スペーサリングの内壁に陽極水排水流路が形成されるよう、等間隔のスペーサリブが複数設けられ、当該陽極水排水スペーサリングのうち陽極水流路に対応する箇所には陽極水排水口が設けられ、当該陽極水排水流路の底部における円周外縁には等間隔の陽極水排水孔が複数設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   A plurality of partition plates arranged radially at equal intervals are provided on the upper surface of the base, and an anodic water flow path is formed between the partition plates. A conductive spacer is formed in the center of the base from the inside toward the outside. A pipe, a raw water supply spacer ring and an anode water drain spacer ring are provided in order, and a raw water supply flow path is formed on the inner wall of the raw water supply spacer ring between the inner wall of the raw water supply spacer ring and the conductive spacer pipe. A plurality of equally spaced spacer ribs are provided, and an anodized water drainage channel is formed between the inner wall of the anodized water draining spacer ring and the raw water supply spacer ring on the inner wall of the anodized water draining spacer ring. A plurality of spacer ribs are provided, and an anode water drain port is provided at a location corresponding to the anode water flow path in the anode water drain spacer ring. Remelting apparatus of the hydrogen molecules in the disk-type electrolytic cell according to claim 2, equally spaced anode water drainage hole is plurality in the circumferential outer edge at the bottom of the water drainage passage. 当該ベースの上面における内縁円周箇所にフランジが設けられることで、ベースの内壁とフランジの間に気体収集導水盤を組み合わせるための結合溝が形成され、当該気体収集導水盤の外壁のうち結合溝に対応する箇所には、止水ワッシャを圧設して陰極水と陽極水の混合を防止可能とする溝が設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   By providing a flange at the inner peripheral edge of the upper surface of the base, a coupling groove for combining the gas collecting diversion board is formed between the inner wall of the base and the flange, and the coupling groove of the outer wall of the gas collecting diversion board is formed. The apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein a groove corresponding to is provided with a groove that presses a water stop washer to prevent mixing of cathode water and anode water. 当該ベースの中央には覆接凸部が下方に延伸するよう設けられ、当該給排水コネクタの中央には覆接凹部が設けられ、当該覆接凸部と覆接凹部の対応箇所には、給排水コネクタをベースに対し迅速に係接可能とするほぞ及びほぞ溝が設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   A covering convex part is provided at the center of the base so as to extend downward, a covering concave part is provided at the center of the water supply / drainage connector, and a water supply / drainage connector is provided at a corresponding position of the covering convex part and the covering concave part. The apparatus for remelting hydrogen molecules in a disk-type electrolytic cell according to claim 2, further comprising a tenon and a tenon groove that enable quick engagement with the base. 当該ベース及びカバー体には、ベースとカバー体を対合するための対応する雄ネジ及び雌ネジが設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   The apparatus for remelting hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein the base and the cover body are provided with corresponding male and female screws for mating the base and the cover body. 当該2つの電極板の円周外縁には、当該2つの電極板の陰・陽極室が完全に対応し噛合可能となるよう、2つの電極板の位置合わせを案内するための複数の等間隔に配置された位置決め部が設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   The circumferential outer edges of the two electrode plates are arranged at a plurality of equal intervals for guiding the alignment of the two electrode plates so that the negative / anode chambers of the two electrode plates completely correspond and can be engaged with each other. The apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein a positioning portion arranged is provided. 当該カバー体と気体収集導水盤の間に複数の互い違いに配置される円環状遮断縁が設けられることで、カバー体内部の上方位置に複数の水素溶解室が形成され、当該複数の円環状遮断縁には、水素分子の収集及び陰極水の導水のための複数の切欠きが設けられ、陰極水は、複数の気体収集導水室と複数の水素溶解室において上下及び上下に連続したS字形状をなすよう流動可能であり、水素の上昇と陰極水の下降により発生する相互溶解現象によって、より多くの水素分子が水中に溶解する請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   By providing a plurality of staggered annular cut-off edges between the cover body and the gas collection headboard, a plurality of hydrogen dissolution chambers are formed at an upper position inside the cover body, and the plurality of ring cut-offs are formed. The edge is provided with a plurality of notches for collecting hydrogen molecules and conducting cathodic water, and the cathodic water is an S-shape that is continuous vertically and vertically in a plurality of gas collecting water conducting chambers and a plurality of hydrogen dissolving chambers. The re-dissolution of hydrogen molecules in the disk-type electrolytic cell according to claim 2, wherein more hydrogen molecules are dissolved in water due to a mutual dissolution phenomenon caused by the rise of hydrogen and the fall of cathode water. apparatus. 当該イオン膜としてはプロトン交換膜が可能であり、当該イオン膜の外径は2つの電極板の外径よりも大きく、当該2つの気体収集導水盤の外縁円周箇所には対応する突設リングと溝が設けられ、当該溝には止水ワッシャを圧設可能であり、当該イオン膜を2つの気体収集導水盤の突設リングと止水ワッシャで圧設することで止水作用を形成し、陰極水と陽極水の混流を回避可能とする請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   The ion membrane can be a proton exchange membrane, the outer diameter of the ion membrane is larger than the outer diameter of the two electrode plates, and a corresponding projecting ring at the outer circumferential edge of the two gas collection guide plates A water stop washer can be press-fitted in the groove, and a water stop action is formed by press-fitting the ion membrane with the projecting ring and the water stop washer of the two gas collection baffles. The device for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein a mixed flow of cathode water and anode water can be avoided. 当該2つの気体収集導水盤の円周における対応箇所には、2つの気体収集導水盤を互いに嵌設及び位置決めするための複数の位置決め嵌設溝と位置決め嵌設ブロックが設けられる請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   3. The plurality of positioning fitting grooves and positioning fitting blocks for fitting and positioning the two gas collecting water guides to each other are provided at corresponding positions on the circumference of the two gas collection water guides. Device for re-dissolving hydrogen molecules in a disk-type electrolytic cell. 当該陰極電極板の中央には導電体が設けられ、当該導電体の下端には導電部が設けられ、当該ベースの中央には導電スペーサ管が設けられ、当該導電スペーサ管の内部には陰極電極板の導電体を締結可能とする雌ネジが設けられ、当該ベースの両側には、陽極電極板の両側における2つの導電部を挿通可能な2つの挿通孔が設けられ、当該給排水コネクタの中央のうち導電スペーサ管に対応する箇所には中空軸柱が設けられ、当該中空軸柱には弾性部材と導電柱が設けられ、当該弾性部材の弾性力によって当該導電柱の上端は導電体の導電部にしっかりと接触可能となり、当該導電柱の下端には負極電線を接続可能であり、当該給排水コネクタの上面には、弾性を有する2つの導電片が陽極電極板の2つの導電部に対応して設けられ、当該2つの正極導電片の下端には正極電線を接続可能である請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   A conductor is provided at the center of the cathode electrode plate, a conductive portion is provided at the lower end of the conductor, a conductive spacer tube is provided at the center of the base, and a cathode electrode is provided inside the conductive spacer tube. A female screw capable of fastening the conductor of the plate is provided, and two insertion holes through which the two conductive portions on both sides of the anode electrode plate can be inserted are provided on both sides of the base. A hollow shaft column is provided at a location corresponding to the conductive spacer tube, and an elastic member and a conductive column are provided on the hollow shaft column, and the upper end of the conductive column is a conductive portion of the conductor by the elastic force of the elastic member. The negative pole wire can be connected to the lower end of the conductive column, and two elastic pieces having elasticity correspond to the two conductive portions of the anode electrode plate on the upper surface of the water supply / drainage connector. Provided, 2 Remelting apparatus of the hydrogen molecules in the disk-type electrolytic cell according to claim 2, the lower end of the positive electrode conductive strips can be connected to the positive electrode wire. 当該2つの陰・陽極電極板における陰・陽極室はV字形状をなす請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   The apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein the negative / anode chambers of the two negative / anode electrode plates are V-shaped. 当該2つの陰・陽極電極板における陰・陽極室は多孔型であり、当該2つの気体収集導水盤には陰・陽極室に対応して放射状に配置されるスペーサリブがけられ、複数のスペーサリブの間にはそれぞれ複数の陰・陽極水流路が形成される請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   The negative / anode chambers of the two negative / anode electrode plates are of a porous type, and the two gas collecting heads are provided with spacer ribs arranged radially corresponding to the negative / anode chambers, and between the plurality of spacer ribs. The apparatus for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, wherein a plurality of negative / anodic water channels are formed in each. 当該2つの気体収集導水盤のうち2つの電極板の給水口に対応する箇所には2つの原水給水溝が設けられ、当該2つの気体収集導水盤の外縁円周箇所には、等間隔の陰・陽極水排水口が複数設けられ、当該陰・陽極水排水口の内縁円周箇所には等間隔の陰・陽極水排水流路が複数設けられ、原水は、2つの電極板の給水口から2つの気体収集導水盤における2つの原水給水溝にそれぞれ流入した後、2つの給水口から放射状に内から外へ2つの電極板における陰・陽極室に流入し、最後に、陰・陽極水排水流路から陰陽極水排水口を経由して流出可能である請求項2に記載のディスク型電解槽における水素分子の再溶解装置。   Two raw water water supply grooves are provided at locations corresponding to the water supply ports of the two electrode plates of the two gas collecting water guides, and the outer peripheral circumferential locations of the two gas collecting water guides are equidistantly shaded.・ Multiple anode water drains are provided, and there are a plurality of equally spaced negative and anode water drainage channels around the inner edge of the negative / anodic water drain, and raw water is fed from the two electrode plates. After flowing into the two raw water supply channels in the two gas collection heads, respectively, they flow radially from the inside to the outside through the two water inlets into the negative / anode chambers of the two electrode plates, and finally the negative / anodic water drainage. The device for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 2, which can be discharged from the flow path via a negative anode water drain port. 当該ベースに対応する気体収集導水盤の底面のうち複数の陽極水排水口の円周内縁に対応する箇所に遮断縁が設けられることで、気体収集導水盤の底面に酸素分子の収集及び陽極水の導水のための気体収集導水室が形成され、陽極電極板で生成された酸素及びオゾンが急速に収容されることから、上方の陰極水に対する当該酸素及びオゾンの混入が回避される請求項15に記載のディスク型電解槽における水素分子の再溶解装置。   A blocking edge is provided at a position corresponding to the circumferential inner edge of the plurality of anode water drains among the bottom surface of the gas collection guide plate corresponding to the base, thereby collecting oxygen molecules and anode water on the bottom surface of the gas collection guide plate. A gas collecting water conducting chamber for conducting water is formed and oxygen and ozone generated in the anode electrode plate are rapidly accommodated, so that mixing of the oxygen and ozone into the upper cathode water is avoided. An apparatus for re-dissolving hydrogen molecules in the disk-type electrolytic cell described in 1. 当該ベースに対応する気体収集導水盤の上面のうち複数の陽極水排水口の円周内縁に対応する箇所にはフランジが設けられ、フランジを用いて陽極水の水位を上昇させることで、イオン膜を十分に湿潤させる請求項15に記載のディスク型電解槽における水素分子の再溶解装置。   A flange is provided at a position corresponding to the circumferential inner edge of the plurality of anode water drainage ports on the upper surface of the gas collection guide board corresponding to the base, and the ion membrane is formed by raising the water level of the anode water using the flange. The device for re-dissolving hydrogen molecules in a disk-type electrolytic cell according to claim 15, wherein the device is sufficiently wetted.
JP2018098007A 2018-05-22 2018-05-22 Method and device for re-dissolving hydrogen molecules in disk type electrolytic cell Active JP6731443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098007A JP6731443B2 (en) 2018-05-22 2018-05-22 Method and device for re-dissolving hydrogen molecules in disk type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098007A JP6731443B2 (en) 2018-05-22 2018-05-22 Method and device for re-dissolving hydrogen molecules in disk type electrolytic cell

Publications (2)

Publication Number Publication Date
JP2019202258A true JP2019202258A (en) 2019-11-28
JP6731443B2 JP6731443B2 (en) 2020-07-29

Family

ID=68725662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098007A Active JP6731443B2 (en) 2018-05-22 2018-05-22 Method and device for re-dissolving hydrogen molecules in disk type electrolytic cell

Country Status (1)

Country Link
JP (1) JP6731443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789532A (en) * 2020-05-26 2021-12-14 徐文星 Device capable of storing and improving hydrogen molecule concentration in cathode water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789532A (en) * 2020-05-26 2021-12-14 徐文星 Device capable of storing and improving hydrogen molecule concentration in cathode water

Also Published As

Publication number Publication date
JP6731443B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US6855233B2 (en) Apparatus for production of strong alkali and acid electrolytic solution
US8540860B2 (en) Unit for producing sterilized water, cartridge comprising the unit and washing machine comprising the cartridge
KR101746077B1 (en) Hydrogen generating unit for producing hydrogen water
WO2016134621A1 (en) New membraneless water electrolysis method for significantly improving electrolysis efficiency
KR20150101696A (en) Generation device of hydrogen water
CA2599846A1 (en) System for the disinfection of low-conductivity liquids
TWI622666B (en) Electrolyzed water generator
WO2016134620A1 (en) Novel water electrolysis device having hole-column-structured electrodes
JP3820248B2 (en) Electrolytic water conditioner
KR20170009311A (en) Device for generating a hydrogen water
KR101191480B1 (en) Non_diaphragm apparatus for electrolysis having separator and electrolyzed-water system having the same
JP2019202258A (en) Method and apparatus for re-dissolving hydrogen molecules in disk-type electrolytic cell
CN110396697B (en) Hydrogen molecule re-fusion method and device for disk type electrolytic cell
KR101959081B1 (en) A Electrolyzer
US10774432B2 (en) Hydrogen molecule remixing device of dish-shaped electrolytic cell
KR20170048264A (en) The electrolyzer having structure for increasing dissolved hydrogen
KR101986910B1 (en) Hydrogen Water Face Cleanser
KR102136830B1 (en) Hydrogen molecule remelting method and device for circular dish type electrolytic cell
JP2004033977A (en) Operation method of electrically deionizing apparatus
KR101867370B1 (en) Portable Type Hydrogen Water Generator
KR20150097104A (en) Electrolytic bath for acid water
KR200439134Y1 (en) Apparatus for Generating Oxygen Gas
EP3569738A1 (en) Hydrogen molecule remixing device of dish-shaped electrolytic cell
WO2016114364A1 (en) Electrolyzed water generating device
JP3849470B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200601

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250