JP2019201463A - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP2019201463A
JP2019201463A JP2018093693A JP2018093693A JP2019201463A JP 2019201463 A JP2019201463 A JP 2019201463A JP 2018093693 A JP2018093693 A JP 2018093693A JP 2018093693 A JP2018093693 A JP 2018093693A JP 2019201463 A JP2019201463 A JP 2019201463A
Authority
JP
Japan
Prior art keywords
battery
power supply
electronic device
voltage
electronic equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018093693A
Other languages
Japanese (ja)
Inventor
文彦 相川
Fumihiko Aikawa
文彦 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018093693A priority Critical patent/JP2019201463A/en
Publication of JP2019201463A publication Critical patent/JP2019201463A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To enable voltage confirmation processing to be normally performed on each battery even if one battery is empty in electronic equipment to which a plurality of batteries are connected.SOLUTION: Electronic equipment (100) to which a plurality of batteries are connected includes: control means controlling the electronic equipment; power source switching means switching a power source route so that power source route is connectable to each battery in the electronic equipment; battery voltage comparing means comparing a voltage of each battery in the electronic equipment; supply mode setting means controlling the power source switching means so that electric power is supplied from a battery having a higher voltage based on the comparison result of the battery voltage comparing means; and optional designation mode setting means controlling the power source switching means so that a battery to be connected is optionally designated according to a sequence of the control means. The power source switching means is controlled so that the electronic equipment enters a supply mode immediately after starting when a consumption current is large and enters an arbitrary designation mode after an elapse of a predetermined time during which the consumption current possibly reduces.SELECTED DRAWING: Figure 1

Description

本発明は、複数の電池が接続される電子機器などに関するものである。   The present invention relates to an electronic device to which a plurality of batteries are connected.

特許文献1には、電圧の異なる複数の電池が装填されている場合に、最も高電圧の電池が給電を行うようにする方法が記載されている。   Patent Document 1 describes a method in which a battery having the highest voltage supplies power when a plurality of batteries having different voltages are loaded.

特開2008−158287号公報JP 2008-158287 A

このような機器内に複数電池が装填された場合、充電や起動などに備えた電池情報確認のため、図7に示すように電源経路をそれぞれの電池に切り替えて電池電圧を確認する処理が必要である。   When a plurality of batteries are loaded in such a device, in order to check battery information in preparation for charging or starting, processing for switching the power supply path to each battery and checking the battery voltage is required as shown in FIG. It is.

しかしながら、特許文献1に記載されている方法では、常に最も高電圧の電池に電源経路を接続するため、電源経路をそれぞれの電池に切り替えて電圧を確認することができない。また、図7のようにマイコンへの電力供給経路と電圧確認経路を兼用させている構成において、もしも片方の電池が残量がない空電池であった場合、空電池側に電源経路を切り替えると、電池からの出力がないためマイコンなどの回路への電力供給元がなくなる。図8(a)に示すように、それと消費電流が大きくなる起動処理のタイミングが重なると電力が不足して図8(b)のように電圧が低下し、マイコンが動作せず電子機器自体がシャットダウンしてしまう問題があった。   However, in the method described in Patent Document 1, since the power supply path is always connected to the battery having the highest voltage, the voltage cannot be confirmed by switching the power supply path to each battery. Also, in the configuration in which the power supply path to the microcomputer and the voltage confirmation path are combined as shown in FIG. 7, if one battery is an empty battery with no remaining power, the power path is switched to the empty battery side. Because there is no output from the battery, there is no power supply source to circuits such as microcomputers. As shown in FIG. 8 (a), when the timing of the start-up process that increases the current consumption overlaps with it, the power is insufficient and the voltage drops as shown in FIG. 8 (b), the microcomputer does not operate and the electronic device itself is There was a problem of shutting down.

ここで、図9に示すように電力供給経路とは別に、物理的に2つの電池出力をマイコンなどの電池電圧検出手段にそれぞれ接続して電圧検出する構成も考えられるが、それではマイコンのポート数が増加しコストアップに繋がってしまう。   Here, as shown in FIG. 9, a configuration in which two battery outputs are physically connected to battery voltage detection means such as a microcomputer for voltage detection separately from the power supply path can be considered. Will increase and lead to cost increase.

そこで、本発明は、複数の電池が接続される電子機器において、コストを抑えた構成としながら、片方の電池が空であってもそれぞれの電池に対しての電圧確認処理を正常に行えるようにすることを目的とする。   Therefore, the present invention enables a voltage check process for each battery to be normally performed even when one of the batteries is empty, in an electronic device to which a plurality of batteries are connected, while having a configuration with reduced cost. The purpose is to do.

本発明に係る電子機器は、複数の電池が接続される電子機器であって、前記電子機器の制御を行う制御手段と、前記電子機器内の電池それぞれに対し接続が可能なように、電源経路切り替えを行う電源切替手段と、前記電子機器内の電池それぞれの電圧を比較する電池電圧比較手段と、前記電池電圧比較手段の比較結果から、電圧が高い電池から電力を供給するよう前記電源切替手段を制御する供給モード設定手段と、接続する電池を前記制御手段のシーケンスに応じて任意に指定するよう前記電源切替手段を制御する任意指定モード設定手段とを有し、消費電流が大きい起動直後は供給モードになり、消費電流が小さくなると見込まれる所定時間経過後は任意指定モードになるように、前記電源切替手段を制御する。   An electronic device according to the present invention is an electronic device to which a plurality of batteries are connected, and a power supply path so that the control means for controlling the electronic device can be connected to each of the batteries in the electronic device. The power source switching means for switching, the battery voltage comparison means for comparing the voltages of the batteries in the electronic device, and the power source switching means for supplying power from a battery having a high voltage based on the comparison result of the battery voltage comparison means Supply mode setting means for controlling the power supply, and arbitrary designation mode setting means for controlling the power supply switching means so as to arbitrarily designate a battery to be connected according to the sequence of the control means. The power supply switching means is controlled so as to enter the arbitrarily designated mode after the elapse of a predetermined time when the current consumption is expected to be reduced.

本発明によれば、複数の電池が接続される電子機器において、コストを抑えた構成としながら、片方の電池が空であってもそれぞれの電池に対しての電圧確認処理を正常に行うことができる。   According to the present invention, in an electronic device to which a plurality of batteries are connected, it is possible to normally perform voltage confirmation processing for each battery even if one of the batteries is empty while having a configuration with reduced cost. it can.

実施形態1における電子機器100の構成例を示す図である。1 is a diagram illustrating a configuration example of an electronic device 100 according to a first embodiment. 実施形態1における電子機器100の動作例を示すフローチャートである。4 is a flowchart illustrating an operation example of the electronic device 100 according to the first embodiment. 実施形態1における電流と電圧の関係を示すグラフである。3 is a graph illustrating a relationship between current and voltage in the first embodiment. 実施形態2における電子機器200の構成例を示す図である。It is a figure which shows the structural example of the electronic device 200 in Embodiment 2. FIG. 実施形態2における電子機器200の動作例を示すフローチャートである。10 is a flowchart illustrating an operation example of the electronic device 200 according to the second embodiment. 実施形態2における電流と電圧の関係を示すグラフである。6 is a graph showing the relationship between current and voltage in Embodiment 2. 従来例1における電子機器700の構成例を示す図である。It is a figure which shows the structural example of the electronic device 700 in the prior art example 1. FIG. 従来例1における電流と電圧の関係を示すグラフである。It is a graph which shows the relationship between the electric current in the prior art example 1, and a voltage. 従来例2における電子機器900の構成例を示す図である。It is a figure which shows the structural example of the electronic device 900 in the prior art example 2. FIG.

以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

[実施形態1]
実施形態1では、消費電流が大きい起動直後は供給モードに、消費電流が小さくなると見込まれる所定時間経過後は任意指定モードに、電源切替手段を時間的に制御する電子機器100の例を述べる。
[Embodiment 1]
In the first embodiment, an example of the electronic device 100 that temporally controls the power supply switching unit will be described in a supply mode immediately after startup with a large current consumption, and in an arbitrary designation mode after a predetermined time when the current consumption is expected to decrease.

以下、図1の構成図、図2のフローチャート、図3のグラフを参照して、実施形態1における電子機器100の構成例および動作例を説明する。   Hereinafter, a configuration example and an operation example of the electronic device 100 according to the first embodiment will be described with reference to the configuration diagram of FIG. 1, the flowchart of FIG. 2, and the graph of FIG. 3.

図1を参照して、実施形態1における電子機器100の構成例を説明する。図1において、電子機器100は、マイコン101、電源切替部105、電池電圧比較部106、供給モード設定部107、充電部108、第1の電池装着検出部109、第2の電池装着検出部110、第1の電池111および第2の電池112を有する。マイコン101は、電池電圧検出部102、充電実行判定部103および任意指定モード設定部104を有する。   With reference to FIG. 1, the structural example of the electronic device 100 in Embodiment 1 is demonstrated. In FIG. 1, an electronic device 100 includes a microcomputer 101, a power supply switching unit 105, a battery voltage comparison unit 106, a supply mode setting unit 107, a charging unit 108, a first battery mounting detection unit 109, and a second battery mounting detection unit 110. The first battery 111 and the second battery 112 are included. The microcomputer 101 includes a battery voltage detection unit 102, a charge execution determination unit 103, and an arbitrary designation mode setting unit 104.

電池電圧検出部102は、電源切替部105にて接続された電池から出力される電圧の検出を行う。充電実行判定部103は、電池電圧検出部102で検出された電池の電圧値から充電を実行するか否かを判定し、充電部108を制御する。任意指定モード設定部104は、接続する電池を電子機器制御手段のシーケンスに応じて任意に指定するよう電源切替部105を制御する。電源切替部105は、第1の電池111および第2の電池112のどちらの電池から電子機器100に電力を供給するのか、第1の電池111および第2の電池112のどちらの電池に充電を行うのかの電源経路の切り替えを行う。   The battery voltage detection unit 102 detects the voltage output from the battery connected by the power supply switching unit 105. Charging execution determination unit 103 determines whether or not to execute charging from the battery voltage value detected by battery voltage detection unit 102 and controls charging unit 108. The arbitrary designation mode setting unit 104 controls the power supply switching unit 105 to arbitrarily designate a battery to be connected according to the sequence of the electronic device control means. The power supply switching unit 105 charges the battery from which the first battery 111 or the second battery 112 supplies power to the electronic device 100, or which battery is the first battery 111 or the second battery 112. Switch the power supply route.

電池電圧比較部106は、電子機器100に装填された第1の電池111および第2の電池112の電圧を比較する。供給モード設定部107は、電池電圧比較部106の結果から、第1の電池111および第2の電池112のうちで電圧が高い電池から電力を供給するよう電源切替部105を制御する。充電部108は、第1の電池111および第2の電池112の充電を行う。第1の電池装着検出部109は、第1の電池111が装着されたか否かの検出を行う。第2の電池装着検出部110は、第2の電池112が装着されたか否かの検出を行う。   The battery voltage comparison unit 106 compares the voltages of the first battery 111 and the second battery 112 loaded in the electronic device 100. Supply mode setting section 107 controls power supply switching section 105 so as to supply power from the battery having the higher voltage among first battery 111 and second battery 112 based on the result of battery voltage comparison section 106. The charging unit 108 charges the first battery 111 and the second battery 112. The first battery attachment detection unit 109 detects whether or not the first battery 111 is attached. The second battery attachment detection unit 110 detects whether or not the second battery 112 is attached.

第1の電池111および第2の電池112は、電子機器100に装着された電池である。実施形態1においては、第1の電池111が空電池、第2の電池112がある程度残量のある通常電池とする。   The first battery 111 and the second battery 112 are batteries attached to the electronic device 100. In the first embodiment, it is assumed that the first battery 111 is an empty battery and the second battery 112 is a normal battery having a certain remaining amount.

次に、図2のフローチャートを参照して、実施形態1における電子機器100の動作例を説明する。ステップS101では、第1の電池装着検出部109が、電子機器100に第1の電池111が装着されているか否かを検出する。装着されていればステップS103に、そうでなければステップS102に進む。ステップS102では、第2の電池装着検出部110が、電子機器100に第2の電池112が装着されているか否かを検出する。装着されていればステップS103に、そうでなければステップS101を繰り返す。ステップS101とS102にて、どちらか一方でも電池が装填されたことを検出してS103に進むこととしている。   Next, an operation example of the electronic device 100 according to the first embodiment will be described with reference to the flowchart of FIG. In step S <b> 101, the first battery attachment detection unit 109 detects whether or not the first battery 111 is attached to the electronic device 100. If so, the process proceeds to step S103; otherwise, the process proceeds to step S102. In step S <b> 102, the second battery attachment detection unit 110 detects whether or not the second battery 112 is attached to the electronic device 100. If it is mounted, step S103 is repeated; otherwise, step S101 is repeated. In either of steps S101 and S102, it is determined that one of the batteries is loaded and the process proceeds to S103.

ステップS103では、電池電圧比較部106が、第1の電池111と第2の電池112それぞれの電圧を比較する。ステップS104では、供給モード設定部107が、電池電圧比較部106での比較結果から、第1の電池111および第2の電池112のうちで電圧が高い電池に電源経路を接続するよう電源切替部105を制御する。ステップS105では、ステップS104の電圧が高い電池から電力を供給した状態を所定時間保持する。図3(a)に示すように起動直後からこの処理の間にマイコンの起動処理が行われ消費電流が大きくなるが、電圧が高い電池から電力を供給されているため、図3(b)に示すようにマイコンの電圧降下はない。   In step S <b> 103, the battery voltage comparison unit 106 compares the voltages of the first battery 111 and the second battery 112. In step S <b> 104, the power supply switching unit 107 connects the power supply path to the battery having the higher voltage among the first battery 111 and the second battery 112 based on the comparison result in the battery voltage comparison unit 106. 105 is controlled. In step S105, the state where power is supplied from the battery having a high voltage in step S104 is held for a predetermined time. As shown in FIG. 3 (a), the start-up process of the microcomputer is performed during this process immediately after the start-up, and the current consumption increases. However, since power is supplied from a battery having a high voltage, the process shown in FIG. As shown, there is no voltage drop across the microcomputer.

ステップS106では、第1の電池装着検出部109が、電子機器100に第1の電池111が装着されているか否かを再度検出する。装着されていればステップS107に、そうでなければステップS109に進む。   In step S <b> 106, the first battery attachment detection unit 109 detects again whether or not the first battery 111 is attached to the electronic device 100. If so, the process proceeds to step S107, and if not, the process proceeds to step S109.

ステップS107では、任意指定モード設定部104が、第1の電池111に電源経路を接続するよう電源切替部105を制御する。今回は第1の電池111は空電池のため電源の供給元がなくなり電圧が低下していくが、消費電流が大きいマイコン起動処理はステップS105のタイミングで終了しておりこの段階では消費電流は小さいため、電力は不足せずマイコン動作閾値を下回ることはない。ステップS108では、電池電圧検出部102が、現在接続されている第1の電池111の電圧の検出を行う。   In step S <b> 107, the arbitrary designation mode setting unit 104 controls the power supply switching unit 105 to connect the power supply path to the first battery 111. This time, the first battery 111 is an empty battery, so the power supply source disappears and the voltage decreases. However, the microcomputer activation process with large current consumption ends at the timing of step S105, and the current consumption is small at this stage. Therefore, power does not run short and does not fall below the microcomputer operation threshold. In step S108, the battery voltage detection unit 102 detects the voltage of the first battery 111 that is currently connected.

ステップS109では、第2の電池装着検出部110が、電子機器100に第2の電池112が装着されているか否かを再度検出する。装着されていればステップS110に、そうでなければステップS112に進む。ステップS110では、任意指定モード設定部104が、第2の電池112に電源経路を接続するよう電源切替部105を制御する。今回は第2の電池112は通常電池で電圧を出力しているため、電圧降下はない。ステップS111では、電池電圧検出部102が、現在接続されている第2の電池112の電圧の検出を行う。   In step S109, the second battery attachment detection unit 110 detects again whether or not the second battery 112 is attached to the electronic device 100. If so, the process proceeds to step S110; otherwise, the process proceeds to step S112. In step S <b> 110, the arbitrary designation mode setting unit 104 controls the power supply switching unit 105 to connect the power supply path to the second battery 112. This time, since the second battery 112 is a normal battery and outputs voltage, there is no voltage drop. In step S111, the battery voltage detection unit 102 detects the voltage of the second battery 112 that is currently connected.

ステップS112では、第1の電池装着検出部109が、電子機器100に第1の電池111が装着されているか否かを再度検出する。装着されていればステップS113に、そうでなければステップS116に進む。ステップS113では、充電実行判定部103が、ステップS108で検出した第1の電池111の電圧値が所定値以下であるかによって、第1の電池111に対し充電を行うか否かを判定する。所定値以下であれば充電を行うためにステップS114に、そうでなければ充電を行わずにステップS116に進む。   In step S112, the first battery attachment detection unit 109 detects again whether or not the first battery 111 is attached to the electronic device 100. If so, the process proceeds to step S113; otherwise, the process proceeds to step S116. In step S113, the charge execution determination unit 103 determines whether to charge the first battery 111 based on whether the voltage value of the first battery 111 detected in step S108 is equal to or less than a predetermined value. If it is equal to or less than the predetermined value, the process proceeds to step S114 to perform charging, and if not, the process proceeds to step S116 without performing charging.

ステップS114では、任意指定モード設定部104が、第1の電池111に電源経路を接続するよう電源切替部105を制御する。ステップS115では、充電部108が、第1の電池111に対し充電を行う。ステップS116では、第2の電池装着検出部110が、電子機器100に第2の電池112が装着されているか否かを再度検出する。装着されていればステップS117に、そうでなければ処理を終了する。   In step S <b> 114, the arbitrary designation mode setting unit 104 controls the power supply switching unit 105 to connect the power supply path to the first battery 111. In step S <b> 115, the charging unit 108 charges the first battery 111. In step S116, the second battery attachment detection unit 110 detects again whether or not the second battery 112 is attached to the electronic device 100. If so, the process ends at step S117. Otherwise, the process ends.

ステップS117では、充電実行判定部103が、ステップS111で検出した第2の電池112の電圧値が所定値以下であるかによって、第2の電池112に対し充電を行うか否かを判定する。所定値以下であれば充電を行うためにステップS118に、そうでなければ充電を行わずに処理を終了する。ステップS118では、任意指定モード設定部104が、第2の電池112に電源経路を接続するよう電源切替部105を制御する。ステップS119では、充電部108が、第2の電池112に対し充電を行う。   In step S117, the charging execution determination unit 103 determines whether to charge the second battery 112 based on whether the voltage value of the second battery 112 detected in step S111 is equal to or less than a predetermined value. If it is equal to or smaller than the predetermined value, the process proceeds to step S118 to perform charging, and if not, the process is terminated without performing charging. In step S118, the arbitrary designation mode setting unit 104 controls the power supply switching unit 105 to connect the power supply path to the second battery 112. In step S <b> 119, the charging unit 108 charges the second battery 112.

以上説明したように、実施形態1によれば、消費電流が大きい起動直後は供給モードに、消費電流が小さくなると見込まれる所定時間経過後は任意指定モードに、電源切替手段を時間的に制御することで、片方の電池が空であってもそれぞれの電池に対しての電圧確認処理を正常に行うことができるシステムが可能となる。   As described above, according to the first embodiment, the power supply switching unit is temporally controlled in the supply mode immediately after startup with a large current consumption, and in the arbitrarily designated mode after a predetermined time when the current consumption is expected to decrease. As a result, even if one of the batteries is empty, a system capable of normally performing the voltage confirmation process for each battery becomes possible.

なお、図1の構成図および図2のフローチャートにおいては2つの電池が装着された場合の処理を記載したが、必ずしも2つである必要はなく、1つでも複数個であってもよい。また、図1の構成図においては電源電圧比較部106と供給モード設定部107がマイコン101と別部品で構成されている例を記載したが、必ずしも別部品である必要はなく、マイコン101内に機能を内蔵させてもよい。   In the configuration diagram of FIG. 1 and the flowchart of FIG. 2, the processing when two batteries are mounted is described. However, the number is not necessarily two, and may be one or more. In the configuration diagram of FIG. 1, an example in which the power supply voltage comparison unit 106 and the supply mode setting unit 107 are configured as separate components from the microcomputer 101 is described. A function may be built in.

[実施形態2]
実施形態2では、消費電流が所定値以上なら供給モードに、消費電流が所定値以下となったら任意指定モードに、電源切替手段を消費電流に応じて制御する電子機器200の例を述べる。
[Embodiment 2]
In the second embodiment, an example of the electronic device 200 that controls the power supply switching unit according to the consumption current will be described in the supply mode if the consumption current is equal to or greater than a predetermined value, and in the arbitrary designation mode if the consumption current becomes equal to or less than the predetermined value.

以下、図4の構成図、図5のフローチャート、図6のグラフを参照して、実施形態2の構成例および動作例を説明する。図4を参照して、実施形態2における電子機器200の構成例を説明する。図4において、消費電流測定部213は、マイコン101にて消費される電流値を所定時間毎に測定する。なお、その他の構成200〜212は実施形態1における図1の100〜112と同様のため、それらの説明を省略する。   Hereinafter, a configuration example and an operation example of the second embodiment will be described with reference to the configuration diagram of FIG. 4, the flowchart of FIG. 5, and the graph of FIG. 6. With reference to FIG. 4, the structural example of the electronic device 200 in Embodiment 2 is demonstrated. In FIG. 4, a current consumption measuring unit 213 measures a current value consumed by the microcomputer 101 every predetermined time. Other configurations 200 to 212 are the same as 100 to 112 in FIG. 1 in the first embodiment, and a description thereof will be omitted.

次に、図5のフローチャートを参照して、実施形態2における電子機器200の動作例を説明する。なお、図5のステップS201〜S204およびS207〜S220は実施形態1における図2のステップS101〜S104およびS106〜S119と同様のため、それらの説明を省略する。ステップS205では、消費電流測定部213が、マイコン101にて消費される電流値を所定時間毎に測定する。   Next, an operation example of the electronic device 200 according to the second embodiment will be described with reference to the flowchart of FIG. Note that steps S201 to S204 and S207 to S220 of FIG. 5 are the same as steps S101 to S104 and S106 to S119 of FIG. In step S205, the current consumption measuring unit 213 measures the current value consumed by the microcomputer 101 every predetermined time.

ステップS206では、消費電流測定部213が、測定した消費電流が所定値以下か否かを判定する。所定値以下であればマイコンの起動処理が終了していると判定してステップS207に、そうでなければ起動処理が終了していないと判定してステップS205に戻る。図6(a)に示すように起動直後からこの処理の間にマイコンの起動処理で消費電流が大きくなるが、ステップS204で電圧が高い電池から電力を供給しているため、図6(b)に示すようにマイコン電圧の降下はない。   In step S206, the consumption current measuring unit 213 determines whether the measured consumption current is equal to or less than a predetermined value. If it is equal to or smaller than the predetermined value, it is determined that the activation process of the microcomputer has been completed, and the process returns to step S207. Otherwise, it is determined that the activation process has not been completed, and the process returns to step S205. As shown in FIG. 6 (a), the current consumption increases in the starting process of the microcomputer during this process immediately after starting, but since power is supplied from a battery with a high voltage in step S204, FIG. 6 (b). As shown in the figure, there is no drop in the microcomputer voltage.

以上説明したように、実施形態2によれば、消費電流が所定値以上なら供給モードに、消費電流が所定値以下となったら任意指定モードに、電源切替手段を消費電流に応じて制御することで、片方の電池が空であってもそれぞれの電池に対しての電圧確認処理を正常に行うことができるシステムが可能となる。   As described above, according to the second embodiment, the power supply switching unit is controlled in accordance with the consumption current in the supply mode when the consumption current is equal to or greater than the predetermined value, and in the arbitrarily designated mode when the consumption current is equal to or less than the predetermined value. Thus, a system that can normally perform voltage confirmation processing on each battery even when one battery is empty becomes possible.

なお、図4の構成図および図5のフローチャートにおいては2つの電池が装着された場合の処理を記載したが、必ずしも2つである必要はなく、1つでも複数個であってもよい。また、図4の構成図においては電源電圧比較部206、供給モード設定部207、消費電流測定部213がマイコン201と別部品で構成されている例を記載したが、必ずしも別部品である必要はなく、マイコン201内に機能を内蔵させてもよい。   In the configuration diagram of FIG. 4 and the flowchart of FIG. 5, the processing when two batteries are mounted is described. However, the number is not necessarily two, and may be one or more. In the configuration diagram of FIG. 4, an example in which the power supply voltage comparison unit 206, the supply mode setting unit 207, and the current consumption measurement unit 213 are configured separately from the microcomputer 201 is described. Alternatively, the function may be built in the microcomputer 201.

なお、本発明の実施形態は上述の実施形態1または2に限定されるものではない。発明の要旨を逸脱しない範囲で変更または修正された上述の実施形態1または2も本発明の実施形態に含まれる。   The embodiment of the present invention is not limited to the above-described first or second embodiment. The above-described first or second embodiment that is changed or modified without departing from the gist of the invention is also included in the embodiment of the present invention.

100 電子機器
200 電子機器
100 electronic equipment 200 electronic equipment

Claims (4)

複数の電池が接続される電子機器であって、
前記電子機器の制御を行う制御手段と、
前記電子機器内の電池それぞれに対し接続が可能なように、電源経路切り替えを行う電源切替手段と、
前記電子機器内の電池それぞれの電圧を比較する電池電圧比較手段と、
前記電池電圧比較手段の比較結果から、電圧が高い電池から電力を供給するよう前記電源切替手段を制御する供給モード設定手段と、
接続する電池を前記制御手段のシーケンスに応じて任意に指定するよう前記電源切替手段を制御する任意指定モード設定手段と
を有し、
消費電流が大きい起動直後は供給モードになり、消費電流が小さくなると見込まれる所定時間経過後は任意指定モードになるように、前記電源切替手段を制御することを特徴とする電子機器。
An electronic device to which a plurality of batteries are connected,
Control means for controlling the electronic device;
Power supply switching means for switching the power supply path so that connection to each of the batteries in the electronic device is possible;
Battery voltage comparison means for comparing the voltages of the batteries in the electronic device;
From the comparison result of the battery voltage comparison means, supply mode setting means for controlling the power supply switching means to supply power from a battery having a high voltage;
An arbitrary designation mode setting means for controlling the power supply switching means to arbitrarily designate a battery to be connected according to a sequence of the control means,
An electronic apparatus characterized in that the power supply switching means is controlled so as to be in a supply mode immediately after start-up with a large current consumption and to be in an arbitrarily designated mode after a lapse of a predetermined time expected to reduce the current consumption.
電池電圧検出手段を有し、前記任意指定モード設定手段で接続する電池を任意に指定して、前記電池電圧検出手段で電池電圧確認処理を行うことを特徴とする請求項1に記載の電子機器。   2. The electronic apparatus according to claim 1, further comprising a battery voltage detection unit, wherein a battery to be connected is arbitrarily designated by the arbitrary designation mode setting unit, and a battery voltage confirmation process is performed by the battery voltage detection unit. . 電池それぞれに対し充電が可能な充電手段と、
前記電池電圧検出手段での確認結果によって充電動作実行の有無を判定する充電実行判定手段と
を有することを特徴とする請求項2に記載の電子機器。
Charging means capable of charging each battery;
The electronic apparatus according to claim 2, further comprising a charge execution determination unit that determines whether or not a charge operation is performed based on a confirmation result of the battery voltage detection unit.
消費電流測定手段を有し、消費電流が所定値以上なら供給モードに、消費電流が所定値以下となったら任意指定モードに、前記電源切替手段を制御することを特徴とする請求項1に記載の電子機器。   2. The power supply switching means according to claim 1, further comprising: a current consumption measuring means, wherein the power supply switching means is controlled in a supply mode when the current consumption is equal to or greater than a predetermined value, and in an arbitrary designation mode when the current consumption is equal to or less than a predetermined value. Electronic equipment.
JP2018093693A 2018-05-15 2018-05-15 Electronic equipment Pending JP2019201463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093693A JP2019201463A (en) 2018-05-15 2018-05-15 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093693A JP2019201463A (en) 2018-05-15 2018-05-15 Electronic equipment

Publications (1)

Publication Number Publication Date
JP2019201463A true JP2019201463A (en) 2019-11-21

Family

ID=68612367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093693A Pending JP2019201463A (en) 2018-05-15 2018-05-15 Electronic equipment

Country Status (1)

Country Link
JP (1) JP2019201463A (en)

Similar Documents

Publication Publication Date Title
US7649343B2 (en) Charge control circuit, charging device, and connection checking method
US8533509B2 (en) Device and method for controlling secondary battery
US9350188B2 (en) Electronic device and power-source device
JP4965496B2 (en) Charge / discharge control circuit and battery device
JP2009050085A (en) Secondary battery pack
US9077054B2 (en) Battery pack for electric power tool with reduced difference in voltages of multiple cells constituting battery
JP2008154317A (en) Battery pack control method, battery pack control circuit, and charging circuit and battery pack equipped with the same
JP2012005160A (en) Charge/discharge circuit and built-in controller
JP2007236065A (en) Semiconductor integrated circuit for charge control, charging equipment using the semiconductor integrated circuit for charge control, and secondary battery connection detecting method
JP2008187865A (en) Charger
JP2008054416A (en) Battery pack equalizer and vehicle mounted with the battery pack
EP1427084A2 (en) Method and apparatus to charge a plurality of batteries
JP5657257B2 (en) Charging system
JP2008125180A (en) Switching step-up power supply circuit
KR100584324B1 (en) Apparatus for controlling power in complex mobile terminal
JP2009060742A (en) Vehicle system
CN107769295B (en) Battery charging method and battery charging apparatus using the same
EP2804285B1 (en) Power arbitration method and apparatus having a control logic circuit for assessing and selecting power supplies
US11110817B2 (en) Equalization control device and in-vehicle power supply device
US20120078384A1 (en) Switch supervision device, control system and control method
CN107202958B (en) Method and apparatus for testing condition of battery
CN109950964B (en) Solar power generation control device and control method
JP2019201463A (en) Electronic equipment
JP6789910B2 (en) Battery unit and battery unit control method
JP2020120500A (en) Power supply system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125