JP2008187865A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2008187865A
JP2008187865A JP2007021252A JP2007021252A JP2008187865A JP 2008187865 A JP2008187865 A JP 2008187865A JP 2007021252 A JP2007021252 A JP 2007021252A JP 2007021252 A JP2007021252 A JP 2007021252A JP 2008187865 A JP2008187865 A JP 2008187865A
Authority
JP
Japan
Prior art keywords
power supply
switching power
charging
state
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007021252A
Other languages
Japanese (ja)
Inventor
Jun Takizawa
潤 滝澤
Hiroshi Hatakeyama
浩史 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nagano Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Nagano Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nagano Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007021252A priority Critical patent/JP2008187865A/en
Publication of JP2008187865A publication Critical patent/JP2008187865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger that can improve charging efficiency to a battery to be charged and prolong the battery lifetime. <P>SOLUTION: This charger comprises a plurality of switching power sources 2a-2d, which are connected, in parallel with each other and can be controlled to either an operation state, in which a secondary battery 7 is charged or a stop state in which the operation state is stopped; a current detecting section 3, which detects the charging current Io flowing in the secondary battery 7; a power source control section 5, which shifts the switching power sources 2a-2d in the operation state to the stoppage state, to gradually reduce the number of switching power sources 2a-2d, in the operation state along the reduction of the charging current Io detected by the current detecting section 3. The power-source control section 5 determines the switching power sources 2a-2d, that shift to the stop state so as to obtain the averaged operation ratio of each of the switching power sources 2a-2d. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充電対象電池(例えば二次電池などの充電可能な電池)を充電する充電装置に関するものである。   The present invention relates to a charging device that charges a battery to be charged (for example, a rechargeable battery such as a secondary battery).

この種の充電装置として、特開平5−64376号公報に開示されている充電装置が知られている。この充電装置は、複数の充電器を並列運転して蓄電池を充電するように構成され、蓄電池の充電に際して、蓄電池を介して供給される負荷の電力を検出し、その負荷電力に応じて必要最低限の台数の充電器のみを運転し、他の充電器は完全停止状態となるように作動する。これにより、この充電装置では、電源容量の低減が図られている。
特開平5−64376号公報(第2頁、第1図)
As this type of charging device, a charging device disclosed in Japanese Patent Laid-Open No. 5-64376 is known. This charging device is configured to charge a storage battery by operating a plurality of chargers in parallel, and detects the power of a load supplied via the storage battery when charging the storage battery, and the minimum required according to the load power. Only a limited number of chargers are operated, and the other chargers are operated in a completely stopped state. Thereby, in this charging apparatus, reduction of power supply capacity is achieved.
JP-A-5-64376 (2nd page, FIG. 1)

ところで、この従来の充電装置では、運転する充電器の台数を決定する際に、負荷の電力のみが考慮されて、蓄電池の充電状態は考慮されていない。この場合、蓄電池の充電状態(例えば、満充電に近い状態なのか、ほとんど充電されていない状態なのか)によっても、各充電器から出力される電流の電流値が変わる。また、この種の充電器については、スイッチング電源を使用して構成される場合が多いが、一般的にスイッチング電源は、図4に示すように、負荷が軽くなる(出力電流が減少する)のに従い、電源効率が低下するという特性を有している。したがって、この充電装置の構成を採用しつつ各充電器にスイッチング電源を使用した充電装置には、蓄電池を充電する際に、運転する充電器の台数を充電電流に応じて決定する動作が行われないため、装置全体の充電効率が低下するという問題点が存在している。また、運転する充電器の稼働率について考慮されていないため、特定の充電器の稼働率が突出する可能性があり、これによって充電装置全体としての寿命が低下するという問題点も存在している。   By the way, in this conventional charging device, when determining the number of chargers to be operated, only the power of the load is considered, and the state of charge of the storage battery is not considered. In this case, the current value of the current output from each charger also changes depending on the state of charge of the storage battery (for example, whether the battery is almost fully charged or hardly charged). In addition, this type of charger is often configured using a switching power supply, but in general, the switching power supply has a lighter load (the output current decreases) as shown in FIG. Accordingly, the power supply efficiency is reduced. Therefore, in the charging device using the switching power supply for each charger while adopting the configuration of this charging device, an operation for determining the number of chargers to be operated according to the charging current is performed when charging the storage battery. Therefore, there is a problem that the charging efficiency of the entire apparatus is lowered. Moreover, since the operating rate of the charger to be operated is not taken into consideration, there is a possibility that the operating rate of a specific charger may protrude, thereby causing a problem that the lifetime of the entire charging device is reduced. .

本発明は、かかる課題を解決すべくなされたものであり、充電対象電池に対する充電効率を向上させると共に高寿命化を図り得る充電装置を提供することを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to provide a charging device capable of improving the charging efficiency of a battery to be charged and extending the service life.

上記目的を達成すべく請求項1記載の充電装置は、互いに並列に接続されると共に、充電対象電池を充電する作動状態および当該作動状態を停止する停止状態のいずれか一方の状態に制御可能な複数のスイッチング電源部と、前記充電対象電池に流れる充電電流を検出する電流検出部と、前記電流検出部によって検出された前記充電電流の減少に伴い、前記作動状態の前記スイッチング電源部を前記停止状態に移行させて当該作動状態にあるスイッチング電源部の数を徐々に減少させる電源制御部とを備えた充電装置であって、前記電源制御部は、前記各スイッチング電源部の稼働率が平均化されるように、前記停止状態に移行させる前記スイッチング電源部を決定する。   In order to achieve the above object, the charging device according to claim 1 is connected in parallel to each other and can be controlled to one of an operating state for charging the battery to be charged and a stopped state for stopping the operating state. A plurality of switching power supply units, a current detection unit that detects a charging current flowing through the battery to be charged, and the switching power supply unit in the operating state is stopped as the charging current detected by the current detection unit decreases. And a power supply control unit that gradually reduces the number of switching power supply units in the operating state, wherein the power supply control unit averages the operating rate of each switching power supply unit The switching power supply unit to be shifted to the stopped state is determined.

また、請求項2記載の充電装置は、請求項1記載の充電装置において、前記電源制御部は、前記停止状態に移行させる前記スイッチング電源部をランダムに決定する。   According to a second aspect of the present invention, in the charging device according to the first aspect, the power supply control unit randomly determines the switching power supply unit to be shifted to the stopped state.

また、請求項3記載の充電装置は、請求項1記載の充電装置において、前記電源制御部は、前記各スイッチング電源部についての前記作動状態の累計時間をそれぞれ算出して、当該各累計時間が平均化されるように前記停止状態に移行させる前記スイッチング電源部を決定する。   The charging device according to claim 3 is the charging device according to claim 1, wherein the power supply control unit calculates a cumulative time of the operating state for each of the switching power supply units. The switching power supply unit to be shifted to the stopped state is determined so as to be averaged.

請求項1記載の充電装置では、電源制御部が、電流検出部によって検出された充電対象電池に流れる充電電流の減少に伴い、作動状態にあるスイッチング電源部の数を徐々に減少させる。したがって、この充電装置によれば、効率の良くない軽負荷状態でスイッチング電源部が作動する状況を十分に少なくすることができるため、スイッチング電源部、ひいては装置全体の効率を高めることができる結果、充電対象電池に対する充電効率を十分に向上させることができる。また、電源制御部が、各スイッチング電源部の稼働率が平均化されるように、停止状態に移行させるスイッチング電源部を決定するため、予め設定された順番に従って作動状態のスイッチング電源部を停止状態に移行させる構成とは異なり、様々な電池容量の充電対象電池に対する充電処理を実行したとしても、特定のスイッチング電源部の稼働率だけが高まるといった偏りを回避することができる結果、装置全体としての製品寿命を十分に向上させることができる。   In the charging device according to the first aspect, the power supply control unit gradually decreases the number of the switching power supply units in the operating state as the charging current flowing through the charging target battery detected by the current detection unit decreases. Therefore, according to this charging device, it is possible to sufficiently reduce the situation where the switching power supply unit operates in a light load state that is not efficient, and as a result, the efficiency of the switching power supply unit, and thus the entire device, can be increased. Charging efficiency for the battery to be charged can be sufficiently improved. In addition, the power supply control unit determines the switching power supply unit to be shifted to the stop state so that the operation rate of each switching power supply unit is averaged, so that the switching power supply unit in the operation state is stopped according to a preset order. Unlike the configuration that shifts to the above, even if the charging process is performed on the charging target battery with various battery capacities, it is possible to avoid the bias that only the operating rate of the specific switching power supply unit is increased. Product life can be sufficiently improved.

また、請求項2記載の充電装置によれば、作動状態から停止状態に移行させるスイッチング電源部を電源制御部がランダムに決定することにより、簡易な構成で各スイッチング電源部の稼働率を平均化することができる。   According to the charging device of claim 2, the power supply control unit randomly determines the switching power supply unit to be shifted from the operation state to the stop state, thereby averaging the operation rate of each switching power supply unit with a simple configuration. can do.

また、請求項3記載の充電装置では、電源制御部が、各スイッチング電源部についての作動状態の累計時間をそれぞれ算出して、各累計時間が平均化されるように停止状態に移行させるスイッチング電源部を決定する。したがって、この充電装置によれば、各スイッチング電源部の稼働率を精度良く平均化することができるため、装置全体としての製品寿命をより一層向上させることができる。   Further, in the charging device according to claim 3, the power supply control unit calculates the accumulated time of the operation state for each switching power supply unit, and makes the switching power supply shift to the stopped state so that each accumulated time is averaged. Determine the part. Therefore, according to this charging device, the operating rates of the respective switching power supply units can be averaged with high accuracy, so that the product life of the entire device can be further improved.

以下、添付図面を参照して、本発明に係る充電装置の最良の形態について説明する。なお、充電対象電池の一例として二次電池(具体的には鉛蓄電池)を充電する構成を挙げて説明する。   Hereinafter, the best mode of a charging apparatus according to the present invention will be described with reference to the accompanying drawings. In addition, the structure which charges a secondary battery (specifically lead acid battery) as an example of a charge object battery is given and demonstrated.

図1に示すように、充電装置1は、複数のスイッチング電源部2a〜2d(以下、区別しないときには「スイッチング電源部2」ともいう)、電流検出部3、記憶部4および電源制御部5を備え、一例として交流電源6から交流電圧Viを入力して直流電圧Voを生成すると共に二次電池7に直流電圧Voを出力しての充電が可能に構成されている。   As shown in FIG. 1, the charging device 1 includes a plurality of switching power supply units 2 a to 2 d (hereinafter also referred to as “switching power supply unit 2” when not distinguished), a current detection unit 3, a storage unit 4, and a power supply control unit 5. As an example, the AC voltage Vi is input from the AC power source 6 to generate the DC voltage Vo and the secondary battery 7 can be charged by outputting the DC voltage Vo.

各スイッチング電源部2は、一例として同一の構成を備えたスイッチング方式の電源回路で形成されて、電源容量(最大出力電流)、および電流出力特性(出力電流Iに対する充電効率(電流出力効率)の変化特性)がほぼ同一となっている。一例として、各スイッチング電源部2は、最大出力電流が15[A]であり、かつ図4に示す電流出力特性を備えている。また、本例では、一例として、充電時において充電電流Ioが最大で60[A]程度流れる二次電池7を充電対象電池としているため、スイッチング電源部2の数は、スイッチング電源部2a,2b,2c,2dの4つに規定されている。また、各スイッチング電源部2a,2b,2c,2dは、各制御信号S1,S2,S3,S4により、二次電池7を充電する作動状態、およびこの作動状態を停止する停止状態のいずれか一方の状態に制御可能に構成されている。また、各スイッチング電源部2は、一対の入力端子(図示せず)が充電装置1の入力端子P1,P2にそれぞれ接続され、かつ一対の出力端子(図示せず)が一対の出力ラインL1,L2を介して充電装置1の一対の出力端子P3,P4に接続されて、互いに並列に接続されている。   Each switching power supply unit 2 is formed by a switching power supply circuit having the same configuration as an example, and has a power supply capacity (maximum output current) and current output characteristics (charging efficiency (current output efficiency) with respect to output current I). Change characteristics) are almost the same. As an example, each switching power supply unit 2 has a maximum output current of 15 [A] and has a current output characteristic shown in FIG. In this example, as an example, since the secondary battery 7 in which the charging current Io flows at a maximum of about 60 [A] during charging is used as the charging target battery, the number of the switching power supply units 2 is the switching power supply units 2a and 2b. , 2c, 2d. Each of the switching power supply units 2a, 2b, 2c, and 2d is either in an operating state in which the secondary battery 7 is charged or in a stopped state in which the operating state is stopped by each control signal S1, S2, S3, S4. It is configured to be controllable to the state. Each switching power supply unit 2 has a pair of input terminals (not shown) connected to the input terminals P1 and P2 of the charging device 1, respectively, and a pair of output terminals (not shown) as a pair of output lines L1, They are connected to a pair of output terminals P3 and P4 of the charging device 1 via L2 and connected in parallel to each other.

電流検出部3は、出力ラインL1,L2のうちのいずれか一方(本例では出力ラインL2)に接続(介装)されて、二次電池7に流れる充電電流Ioの電流値I1を検出して出力する。記憶部4は、ROMやRAMなどの半導体メモリで構成されている。また、記憶部4には、電源制御部5用の動作プログラム、充電電流Ioについての基準電流値Irが予め記憶されている。本例では、各スイッチング電源部2の数に対応させて、基準電流値Irとして、3つの基準電流値Ir1,Ir2,Ir3(Ir1>Ir2>Ir3)が予め記憶されている。電源制御部5は、CPU(図示せず)などを含んで構成されて、記憶部4に記憶されている動作プログラムに従い、充電処理を実行して二次電池7を充電する。この充電処理では、電源制御部5は、各制御信号S1,S2,S3,S4を出力することにより、各スイッチング電源部2に対する制御を実行する。   The current detection unit 3 is connected (intervened) to one of the output lines L1 and L2 (in this example, the output line L2), and detects the current value I1 of the charging current Io flowing through the secondary battery 7. Output. The storage unit 4 is composed of a semiconductor memory such as a ROM or a RAM. Further, the storage unit 4 stores in advance an operation program for the power supply control unit 5 and a reference current value Ir for the charging current Io. In this example, three reference current values Ir1, Ir2, and Ir3 (Ir1> Ir2> Ir3) are stored in advance as reference current values Ir corresponding to the number of each switching power supply unit 2. The power supply control unit 5 includes a CPU (not shown) and the like, and executes a charging process according to an operation program stored in the storage unit 4 to charge the secondary battery 7. In this charging process, the power supply control unit 5 executes control for each switching power supply unit 2 by outputting the control signals S1, S2, S3, and S4.

次に、充電装置1の動作について、図1〜図3を参照して説明する。なお、一例として、直流電圧が48[V]で、電池容量が485[Ah]の二次電池7を、残存容量が25[%]の状態からほぼ満充電に達するまで充電する例を挙げて説明する。また、残存容量がほぼ0[%]の二次電池7に流れる充電電流値I1は、最大で約60[A]である。また、各基準電流値Ir1,Ir2,Ir3は、一例として、それぞれ40[A],28[A],14[A]に設定されているものとする。   Next, operation | movement of the charging device 1 is demonstrated with reference to FIGS. As an example, an example in which the secondary battery 7 having a DC voltage of 48 [V] and a battery capacity of 485 [Ah] is charged from the state where the remaining capacity is 25 [%] until it is almost fully charged will be given. explain. The charging current value I1 flowing through the secondary battery 7 having a remaining capacity of approximately 0 [%] is about 60 [A] at the maximum. In addition, it is assumed that the reference current values Ir1, Ir2, and Ir3 are set to 40 [A], 28 [A], and 14 [A], respectively, as an example.

まず、各出力端子P3,P4間に放電状態の二次電池7が接続された状態において、充電装置1が起動されたときには、電流検出部3が二次電池7に流れる充電電流Ioの電流値I1の検出を開始すると共に、電源制御部5が二次電池7に対する充電処理を開始する。   First, when the charging device 1 is activated in a state where the discharged secondary battery 7 is connected between the output terminals P3 and P4, the current value of the charging current Io that the current detection unit 3 flows to the secondary battery 7 is activated. While the detection of I1 is started, the power supply control part 5 starts the charging process with respect to the secondary battery 7. FIG.

この充電処理において、図3に示すように、電源制御部5は、まず、各制御信号S1,S2,S3,S4を各スイッチング電源部2に対して出力することにより、各スイッチング電源部2を作動状態に移行させる(ステップ51)。これにより、二次電池7の充電状態に応じて、スイッチング電源部2aが充電電流Iaの出力を開始し、スイッチング電源部2bが充電電流Ibの出力を開始し、スイッチング電源部2cが充電電流Icの出力を開始し、スイッチング電源部2dが充電電流Idの出力を開始する。これにより、各充電電流Ia〜Idの電流値の総和に等しい電流値I1(約58[A]、図2参照)の充電電流Ioが、各出力ラインL1,L2を介して二次電池7に供給され始める。なお、各スイッチング電源部2は、電流出力特性等がほぼ同一であるため、各充電電流Ia,Ib,Ic,Idはほぼ等しい電流値(充電開始当初はそれぞれ約14.5[A])となっている。   In this charging process, as shown in FIG. 3, the power supply control unit 5 first outputs each control signal S1, S2, S3, S4 to each switching power supply unit 2, thereby causing each switching power supply unit 2 to operate. The operation state is shifted (step 51). Thereby, according to the charging state of the secondary battery 7, the switching power supply unit 2a starts to output the charging current Ia, the switching power supply unit 2b starts to output the charging current Ib, and the switching power supply unit 2c starts to output the charging current Ic. The switching power supply unit 2d starts outputting the charging current Id. As a result, the charging current Io having a current value I1 (about 58 [A], see FIG. 2) equal to the sum of the current values of the charging currents Ia to Id is supplied to the secondary battery 7 via the output lines L1 and L2. Start to be supplied. In addition, since each switching power supply part 2 has substantially the same current output characteristics and the like, the charging currents Ia, Ib, Ic, and Id are substantially equal current values (about 14.5 [A] at the beginning of charging, respectively). It has become.

次いで、電源制御部5は、電流検出部3から出力される充電電流Ioの電流値I1の検出(ステップ52)、および検出した電流値I1と記憶部4から読み出した基準電流値Ir1との比較(ステップ53)を繰り返し実行する。二次電池7の充電が進むに従って充電電流Ioの電流値I1が次第に減少し、それに伴って各スイッチング電源部2に対する負荷が徐々に軽くなる。その結果、図2に示すように、充電電流Ioの電流値I1が41〜40[A]に近づくに従い、作動状態にある各スイッチング電源部2全体の効率(充電装置1の効率でもある)が充電当初の約92%から少しずつ低下する。   Next, the power supply control unit 5 detects the current value I1 of the charging current Io output from the current detection unit 3 (step 52), and compares the detected current value I1 with the reference current value Ir1 read from the storage unit 4 (Step 53) is repeatedly executed. As the charging of the secondary battery 7 proceeds, the current value I1 of the charging current Io gradually decreases, and accordingly, the load on each switching power supply unit 2 gradually decreases. As a result, as shown in FIG. 2, as the current value I1 of the charging current Io approaches 41 to 40 [A], the efficiency of each switching power supply unit 2 in the operating state (also the efficiency of the charging device 1) is increased. It gradually decreases from about 92% at the beginning of charging.

その後、充電電流Ioの電流値I1が基準電流値Ir1(=40[A])まで低下したとき、つまり各スイッチング電源部2の充電電流値が約10[A]まで低下したときに、上記したステップ53において、電源制御部5がこれを検出して、停止させるスイッチング電源部2をランダムに1つ(一例としてスイッチング電源部2a)決定して、そのスイッチング電源部2aに対する制御信号S1の出力を停止する。これにより、スイッチング電源部2aは作動状態を停止して、充電電流Iaの生成を行わない停止状態に移行する(ステップ54)。これにより、作動状態にあるスイッチング電源部2の数が3つに減少し、その結果、各スイッチング電源部2の負荷が増大する(充電電流Ib,Ic,Idがそれぞれ約13.3[A]に増加する)ため、図2に示すように、作動状態にある各スイッチング電源部2b,2c,2dの効率(充電装置1の出力効率でもある)が充電当初の約92%に復帰する。これにより、充電装置1全体としての二次電池7に対する充電効率が向上する。   Thereafter, when the current value I1 of the charging current Io decreases to the reference current value Ir1 (= 40 [A]), that is, when the charging current value of each switching power supply unit 2 decreases to about 10 [A] In step 53, the power supply control unit 5 detects this, determines one switching power supply unit 2 to be stopped at random (switching power supply unit 2a as an example), and outputs the control signal S1 to the switching power supply unit 2a. Stop. Thereby, switching power supply part 2a stops an operation state, and shifts to a stop state which does not generate charge current Ia (Step 54). As a result, the number of switching power supply units 2 in the operating state is reduced to three, and as a result, the load of each switching power supply unit 2 increases (charging currents Ib, Ic, Id are about 13.3 [A], respectively). Therefore, as shown in FIG. 2, the efficiency of each of the switching power supply units 2b, 2c, and 2d in the operating state (which is also the output efficiency of the charging device 1) returns to about 92% at the beginning of charging. Thereby, the charging efficiency with respect to the secondary battery 7 as the whole charging device 1 improves.

続いて、電源制御部5は、上記したステップ52〜ステップ54での各動作を、基準電流値Ir1を基準電流値Ir2(=28[A])に代えて、ステップ55〜ステップ57において実行する。これにより、図2に示すように、充電電流Ioの電流値I1が30[A]を切った辺りから、各スイッチング電源部2b,2c,2d全体(充電装置1)の効率(充電効率)が低下し始めるが、電源制御部5が充電電流Ioの電流値I1を検出しつつ(ステップ55)、その電流値I1が基準電流値Ir2に達したときにこれを検出して(ステップ56)、停止させるスイッチング電源部2をランダムに1つ(一例としてスイッチング電源部2b)決定して、そのスイッチング電源部2bに対する制御信号S2の出力を停止する。これにより、スイッチング電源部2bが作動状態から停止状態に移行して(ステップ57)、作動状態にあるスイッチング電源部2の数が3つから2つに減少し、各スイッチング電源部2の負荷が増加(充電電流Ic,Idがそれぞれ約14[A]に増加)するため、図2に示すように、作動状態にある各スイッチング電源部2c,2d全体の効率(充電装置1の出力効率)が充電当初の約92%に復帰する。これにより、充電装置1全体としての二次電池7に対する充電効率が向上する。   Subsequently, the power supply control unit 5 executes the operations in Steps 52 to 54 described above in Steps 55 to 57 by replacing the reference current value Ir1 with the reference current value Ir2 (= 28 [A]). . As a result, as shown in FIG. 2, the efficiency (charging efficiency) of each switching power supply unit 2b, 2c, 2d (charging device 1) as a whole is around 30 [A] when the current value I1 of the charging current Io is cut below 30 [A]. Although it starts to decrease, the power supply controller 5 detects the current value I1 of the charging current Io (step 55), and detects this when the current value I1 reaches the reference current value Ir2 (step 56). One switching power supply unit 2 to be stopped is randomly determined (for example, the switching power supply unit 2b), and the output of the control signal S2 to the switching power supply unit 2b is stopped. As a result, the switching power supply unit 2b shifts from the operating state to the stopped state (step 57), the number of switching power supply units 2 in the operating state is reduced from three to two, and the load of each switching power supply unit 2 is reduced. Since the charging currents Ic and Id increase to about 14 [A], respectively, the overall efficiency of the switching power supply units 2c and 2d in the operating state (output efficiency of the charging device 1) is increased as shown in FIG. It will return to about 92% of the initial charge. Thereby, the charging efficiency with respect to the secondary battery 7 as the whole charging device 1 improves.

次いで、電源制御部5は、上記したステップ52〜ステップ54での各動作を、基準電流値Ir1をIr3(=14[A])に代えて、ステップ58〜ステップ60において実行する。これにより、図2に示すように、充電電流Ioの電流値I1の減少に伴い、各スイッチング電源部2c,2d全体(充電装置1)の効率が徐々に低下して約90%に達するが、電源制御部5が充電電流Ioの電流値I1を検出しつつ(ステップ58)、その電流値I1が基準電流値Ir3に達したときにこれを検出して(ステップ59)、停止させるスイッチング電源部2をランダムに1つ(一例としてスイッチング電源部2c)決定して、そのスイッチング電源部2cに対する制御信号S3の出力を停止する。これにより、スイッチング電源部2cが作動状態から停止状態に移行して(ステップ60)、作動状態にあるスイッチング電源部2の数が2つから1つに減少し、スイッチング電源部2dの負荷が増加(充電電流Idが14[A]に増加)するため、図2に示すように、作動状態にあるスイッチング電源部2dの効率(充電装置1の出力効率でもある)が充電当初の約92%に復帰する。これにより、充電装置1全体としての二次電池7に対する充電効率が向上する。   Next, the power supply controller 5 executes the operations in steps 52 to 54 in steps 58 to 60 by replacing the reference current value Ir1 with Ir3 (= 14 [A]). Thereby, as shown in FIG. 2, the efficiency of each of the switching power supply units 2c and 2d (charging device 1) gradually decreases and reaches about 90% as the current value I1 of the charging current Io decreases. The power supply control unit 5 detects the current value I1 of the charging current Io (step 58), and detects the current value I1 when it reaches the reference current value Ir3 (step 59), and stops the switching power supply unit. 2 is randomly determined (for example, the switching power supply unit 2c), and the output of the control signal S3 to the switching power supply unit 2c is stopped. As a result, the switching power supply unit 2c shifts from the operating state to the stopped state (step 60), the number of switching power supply units 2 in the operating state decreases from two to one, and the load of the switching power supply unit 2d increases. (Charging current Id increases to 14 [A]), as shown in FIG. 2, the efficiency of switching power supply unit 2d in the operating state (which is also the output efficiency of charging device 1) is about 92% of the initial charge. Return. Thereby, the charging efficiency with respect to the secondary battery 7 as the whole charging device 1 improves.

その後、電源制御部5は、二次電池7についての充電状態の検出(ステップ61)、および検出した充電状態に基づいて二次電池7が満充電状態に達したか否かの判別(ステップ62)を繰り返し実行する。なお、ステップ61においては、電源制御部5は、例えば、充電電流Ioの電流値I1や二次電池7の電池電圧(不図示の電圧検出部で検出される電池の両端間電圧)に基づいて、二次電池7の充電状態を検出する。二次電池7が満充電状態に近づくに従い、図2に示すように、充電電流Ioが次第に減少して負荷が軽くなるため、これに伴って効率が徐々に低下する。なお、充電装置1の充電電流Ioと効率との関係は、作動状態にある1つのスイッチング電源部2dの電流出力特性と等しくなる。最後に、電源制御部5は、二次電池7が満充電に達したとステップ62において判別したときに、作動状態にある1つのスイッチング電源部2dに対する制御信号S4の出力を停止する(ステップ63)。これにより、充電処理が完了する。   Thereafter, the power supply control unit 5 detects the state of charge of the secondary battery 7 (step 61), and determines whether or not the secondary battery 7 has reached a fully charged state based on the detected state of charge (step 62). ) Repeatedly. In step 61, the power supply control unit 5 is based on, for example, the current value I1 of the charging current Io or the battery voltage of the secondary battery 7 (the voltage across the battery detected by a voltage detection unit (not shown)). The charging state of the secondary battery 7 is detected. As the secondary battery 7 approaches the fully charged state, as shown in FIG. 2, the charging current Io gradually decreases and the load becomes lighter, and accordingly, the efficiency gradually decreases. Note that the relationship between the charging current Io and the efficiency of the charging device 1 is equal to the current output characteristic of one switching power supply unit 2d in the operating state. Finally, when the power supply control unit 5 determines in step 62 that the secondary battery 7 has reached full charge, the power supply control unit 5 stops outputting the control signal S4 to one switching power supply unit 2d in the operating state (step 63). ). Thereby, the charging process is completed.

このように、この充電装置1では、電源制御部5が、電流検出部3によって検出された二次電池7に流れる充電電流Ioの減少に伴い、作動状態にあるスイッチング電源部2の数を徐々に減少させる。したがって、この充電装置1によれば、効率の良くない軽負荷状態でスイッチング電源部2が作動する状況を十分に少なくすることができるため、スイッチング電源部2、ひいては充電装置1全体の効率を高めることができる結果、二次電池7に対する充電効率を十分に向上させることができる。また、この充電装置1では、電源制御部5が、充電電流Ioの減少に伴う効率の低下を抑制するために作動状態のスイッチング電源部2を停止状態に移行させる際に、各スイッチング電源部2の稼働率が平均化されるように、停止状態に移行させるスイッチング電源部2を決定する。このため、この充電装置1によれば、予め設定された順番に従って作動状態のスイッチング電源部2を停止状態に移行させる構成とは異なり、様々な電池容量の二次電池7に対する充電処理を実行したとしても、特定のスイッチング電源部2の稼働率だけが高まるといった偏りを回避することができる結果、充電装置1全体としての製品寿命を十分に向上させることができる。特に、この充電装置1によれば、作動状態から停止状態に移行させるスイッチング電源部2を電源制御部5がランダムに1つ決定することにより、簡易な構成で各スイッチング電源部2の稼働率を平均化することができる。   Thus, in this charging device 1, the power supply control unit 5 gradually reduces the number of switching power supply units 2 in the operating state as the charging current Io flowing through the secondary battery 7 detected by the current detection unit 3 decreases. Reduce to. Therefore, according to this charging device 1, since the situation where the switching power supply unit 2 operates in an inefficient light load state can be sufficiently reduced, the efficiency of the switching power supply unit 2, and thus the charging device 1 as a whole is increased. As a result, the charging efficiency for the secondary battery 7 can be sufficiently improved. Moreover, in this charging device 1, when the power supply control part 5 transfers the switching power supply part 2 of an operation state to a stop state in order to suppress the fall of the efficiency accompanying the reduction | decrease of the charging current Io, each switching power supply part 2 The switching power supply unit 2 to be shifted to the stopped state is determined so that the operation rates of the two are averaged. For this reason, according to this charging device 1, unlike the configuration in which the switching power supply unit 2 in the activated state is shifted to the stopped state in accordance with a preset order, the charging process for the secondary battery 7 having various battery capacities is performed. However, as a result of avoiding the bias that only the operating rate of the specific switching power supply unit 2 increases, the product life of the entire charging device 1 can be sufficiently improved. In particular, according to the charging apparatus 1, the power supply control unit 5 randomly determines one switching power supply unit 2 to be shifted from the operating state to the stopped state, thereby reducing the operating rate of each switching power supply unit 2 with a simple configuration. Can be averaged.

なお、本発明は、上記した実施の形態に限定されず、その構成を適宜変更することができる。例えば、作動状態から停止状態に移行させるスイッチング電源部2をランダムに決定する例について上記したが、電源制御部5が各スイッチング電源部2についての作動状態の累計時間をそれぞれ算出して、各累計時間が平均化されるように、停止状態に移行させるスイッチング電源部2を決定する構成を採用することもできる。この場合、電源制御部5は、各スイッチング電源部2a〜2dに出力する各制御信号S1〜S4の出力時間を積算することにより、各スイッチング電源部2についての作動状態の累計時間を算出する。この構成によれば、各スイッチング電源部2の稼働率を精度良く平均化することができるため、充電装置1全体としての製品寿命をより一層向上させることができる。   In addition, this invention is not limited to above-described embodiment, The structure can be changed suitably. For example, the example in which the switching power supply unit 2 to be shifted from the operating state to the stopped state is determined at random has been described above. However, the power supply control unit 5 calculates the cumulative time of the operating state for each switching power supply unit 2 respectively. It is also possible to employ a configuration that determines the switching power supply unit 2 to be shifted to the stopped state so that the time is averaged. In this case, the power supply control unit 5 calculates the accumulated time of the operating state of each switching power supply unit 2 by integrating the output times of the control signals S1 to S4 output to the switching power supply units 2a to 2d. According to this configuration, the operating rate of each switching power supply unit 2 can be averaged with high accuracy, so that the product life of the entire charging device 1 can be further improved.

また、各スイッチング電源部2の個数に対応した数(同数)の基準電流値Ir1〜Ir3を記憶部4に予め記憶させる構成について上記したが、図示はしないが、例えば操作パネルやキーボードなどの操作部を設けて、各基準電流値Ir1〜Ir3の値について任意に設定できる構成を採用することもできる。   In addition, the configuration in which the number (the same number) of reference current values Ir1 to Ir3 corresponding to the number of each switching power supply unit 2 is previously stored in the storage unit 4 has been described above, but although not illustrated, for example, operation of an operation panel, a keyboard, or the like It is also possible to employ a configuration in which a unit can be provided and the values of the respective reference current values Ir1 to Ir3 can be arbitrarily set.

本発明の実施の形態に係る充電装置1の構成図である。It is a lineblock diagram of charging device 1 concerning an embodiment of the invention. 充電装置1の充電電流Ioと効率との関係を示す特性図である。It is a characteristic view which shows the relationship between the charging current Io of the charging device 1, and efficiency. 充電装置1の充電処理での動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation in a charging process of the charging device 1; 充電装置1のスイッチング電源部2についての充電電流と効率との関係を示す特性図である。It is a characteristic view which shows the relationship between the charging current about the switching power supply part 2 of the charging device 1, and efficiency.

符号の説明Explanation of symbols

1 充電装置
2,2a,2b,2c,2d スイッチング電源部
3 電流検出部
4 記憶部
5 電源制御部
7 二次電池
Io 充電電流
DESCRIPTION OF SYMBOLS 1 Charging device 2, 2a, 2b, 2c, 2d Switching power supply unit 3 Current detection unit 4 Storage unit 5 Power supply control unit 7 Secondary battery Io Charging current

Claims (3)

互いに並列に接続されると共に、充電対象電池を充電する作動状態および当該作動状態を停止する停止状態のいずれか一方の状態に制御可能な複数のスイッチング電源部と、
前記充電対象電池に流れる充電電流を検出する電流検出部と、
前記電流検出部によって検出された前記充電電流の減少に伴い、前記作動状態の前記スイッチング電源部を前記停止状態に移行させて当該作動状態にあるスイッチング電源部の数を徐々に減少させる電源制御部とを備えた充電装置であって、
前記電源制御部は、前記各スイッチング電源部の稼働率が平均化されるように、前記停止状態に移行させる前記スイッチング電源部を決定する充電装置。
A plurality of switching power supply units connected in parallel to each other and controllable to any one of an operation state for charging the battery to be charged and a stop state for stopping the operation state;
A current detector for detecting a charging current flowing in the battery to be charged;
As the charging current detected by the current detection unit decreases, the power supply control unit gradually shifts the number of switching power supply units in the operating state by shifting the switching power supply unit in the operating state to the stopped state. A charging device comprising:
The said power supply control part is a charging device which determines the said switching power supply part made to transfer to the said stop state so that the operation rate of each said switching power supply part may be averaged.
前記電源制御部は、前記停止状態に移行させる前記スイッチング電源部をランダムに決定する請求項1記載の充電装置。   The charging device according to claim 1, wherein the power supply control unit randomly determines the switching power supply unit to be shifted to the stopped state. 前記電源制御部は、前記各スイッチング電源部についての前記作動状態の累計時間をそれぞれ算出して、当該各累計時間が平均化されるように前記停止状態に移行させる前記スイッチング電源部を決定する請求項1記載の充電装置。   The power supply control unit calculates a cumulative time of the operating state for each of the switching power supply units, and determines the switching power supply unit to shift to the stopped state so that the cumulative time is averaged. Item 2. The charging device according to Item 1.
JP2007021252A 2007-01-31 2007-01-31 Charger Pending JP2008187865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021252A JP2008187865A (en) 2007-01-31 2007-01-31 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021252A JP2008187865A (en) 2007-01-31 2007-01-31 Charger

Publications (1)

Publication Number Publication Date
JP2008187865A true JP2008187865A (en) 2008-08-14

Family

ID=39730514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021252A Pending JP2008187865A (en) 2007-01-31 2007-01-31 Charger

Country Status (1)

Country Link
JP (1) JP2008187865A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142018A (en) * 2008-12-11 2010-06-24 Daihen Corp Parallel operation power supply apparatus and method of controlling the same
JP2011130044A (en) * 2009-11-11 2011-06-30 Giga-Byte Technology Co Ltd Circuit system, and control method of the same
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
JP2012029480A (en) * 2010-07-23 2012-02-09 Chugoku Electric Power Co Inc:The Charger and charging method
WO2012086825A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Charging device and charging method
CN102780251A (en) * 2012-08-21 2012-11-14 区诗浩 Charger
JP2013027236A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp Battery charging system and vehicle charging system
US20130043831A1 (en) * 2011-08-18 2013-02-21 Chen-Yang Hu Electronic Device for Controlling Magnitude of Charging Current for Charging To-be-charged Electronic Device
JP2014236620A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Power converter device
US9048686B2 (en) 2009-09-30 2015-06-02 Fuji Electric Co., Ltd. Power supply system, controller therefor, and method of manufacture of controller
JP2016100936A (en) * 2014-11-19 2016-05-30 トヨタ自動車株式会社 vehicle
US9496725B2 (en) 2011-03-31 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Power control apparatus, method, program, and integrated circuit, and storage battery unit
JP2019054574A (en) * 2017-09-13 2019-04-04 株式会社豊田自動織機 On-vehicle charging device
JP2021090276A (en) * 2019-12-04 2021-06-10 株式会社豊田自動織機 Charging system
WO2022149526A1 (en) * 2021-01-07 2022-07-14 パナソニックIpマネジメント株式会社 Electric power converting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564376A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Parallel operation of chargers
JPH10201090A (en) * 1996-12-27 1998-07-31 Nec Eng Ltd Power unit
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564376A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Parallel operation of chargers
JPH10201090A (en) * 1996-12-27 1998-07-31 Nec Eng Ltd Power unit
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142018A (en) * 2008-12-11 2010-06-24 Daihen Corp Parallel operation power supply apparatus and method of controlling the same
US9048686B2 (en) 2009-09-30 2015-06-02 Fuji Electric Co., Ltd. Power supply system, controller therefor, and method of manufacture of controller
JP2011130044A (en) * 2009-11-11 2011-06-30 Giga-Byte Technology Co Ltd Circuit system, and control method of the same
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
JP2012029480A (en) * 2010-07-23 2012-02-09 Chugoku Electric Power Co Inc:The Charger and charging method
JPWO2012086825A1 (en) * 2010-12-21 2014-06-05 日本電気株式会社 Charging apparatus and charging method
WO2012086825A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Charging device and charging method
US9496725B2 (en) 2011-03-31 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Power control apparatus, method, program, and integrated circuit, and storage battery unit
JP2013027236A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp Battery charging system and vehicle charging system
US20130043831A1 (en) * 2011-08-18 2013-02-21 Chen-Yang Hu Electronic Device for Controlling Magnitude of Charging Current for Charging To-be-charged Electronic Device
US8963484B2 (en) * 2011-08-18 2015-02-24 Qisda Corporation Electronic device for controlling magnitude of charging current for charging to-be-charged electronic device
CN102780251A (en) * 2012-08-21 2012-11-14 区诗浩 Charger
JP2014236620A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Power converter device
JP2016100936A (en) * 2014-11-19 2016-05-30 トヨタ自動車株式会社 vehicle
JP2019054574A (en) * 2017-09-13 2019-04-04 株式会社豊田自動織機 On-vehicle charging device
JP2021090276A (en) * 2019-12-04 2021-06-10 株式会社豊田自動織機 Charging system
JP7172969B2 (en) 2019-12-04 2022-11-16 株式会社豊田自動織機 charging system
WO2022149526A1 (en) * 2021-01-07 2022-07-14 パナソニックIpマネジメント株式会社 Electric power converting device

Similar Documents

Publication Publication Date Title
JP2008187865A (en) Charger
JP4533328B2 (en) CHARGE CONTROL SEMICONDUCTOR INTEGRATED CIRCUIT, CHARGING DEVICE USING THE CHARGE CONTROL SEMICONDUCTOR INTEGRATED CIRCUIT, AND SECONDARY BATTERY CONNECTION DETECTION METHOD
JP5809329B2 (en) Power conversion system
JP4967162B2 (en) Secondary battery pack
JP2008035674A (en) Charging power supply unit
JP4805863B2 (en) Charger
JP5803446B2 (en) Semiconductor integrated circuit, protection circuit and battery pack
EP2690743B1 (en) Energy storage system and rechargeable battery control method
JP5285127B2 (en) Charge current control method
JP2009106007A (en) Battery pack, and battery system
JP2011176959A (en) Charging device and charging method
JP2011082158A (en) Charge control method of battery pack
JP2008061373A (en) Charging device
JP2012147538A (en) Vehicle power supply device
JP6415218B2 (en) Storage system and storage system precharge method
WO2012050180A1 (en) Preference circuit and electric power supply system
WO2018138843A1 (en) Electrical device
US20100231177A1 (en) Battery pack and charger system
WO2012127712A1 (en) Information processing device
JP5073436B2 (en) Uninterruptible backup power supply
JP5317245B2 (en) Secondary battery pack
JP2010187438A (en) Battery protection circuit and battery device
JP2009207253A (en) Battery-charging system and battery-charging method
JP2017216789A (en) Power supply device
JP2008220021A (en) Charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104