JP2019196873A - Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment - Google Patents

Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment Download PDF

Info

Publication number
JP2019196873A
JP2019196873A JP2018091275A JP2018091275A JP2019196873A JP 2019196873 A JP2019196873 A JP 2019196873A JP 2018091275 A JP2018091275 A JP 2018091275A JP 2018091275 A JP2018091275 A JP 2018091275A JP 2019196873 A JP2019196873 A JP 2019196873A
Authority
JP
Japan
Prior art keywords
air
air separation
waste heat
drain
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018091275A
Other languages
Japanese (ja)
Inventor
翔之介 前川
Shonosuke Maekawa
翔之介 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018091275A priority Critical patent/JP2019196873A/en
Publication of JP2019196873A publication Critical patent/JP2019196873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

To provide a recovery method of waste heat of air separation equipment in which steam generated in air separation equipment separating oxygen and nitrogen from raw material air is recovered and thermal energy of the recovered steam is utilized, and a recovery system of waste heat of air separation equipment.SOLUTION: The recovery method of waste heat of air separation equipment is provided that includes; an MS adsorption step of supplying raw material air compressed by an air compressor to an adsorption tower removing impurity in air passing therethrough and cleaning the air; and a rectification step of rectifying and separating nitrogen and oxygen from the raw material air cleaned in the MS adsorption step. The recovery method of waste heat of air separation equipment further includes: a heat exchange step of supplying a part of nitrogen gas discharged from the air separation equipment to a heat exchanger disposed in a discharge route and performing heat exchange; a regenerated gas supply step of generating regenerated gas by heating nitrogen gas in the heat exchanger and flowing the generated regenerated gas in a regenerated gas supply route thereby supplying the regenerated gas to the adsorption tower; and drain supply step of flowing steam drain generated by the generation of regenerated gas in drain supply route provided on the discharge side of the heat exchanger and supplying the steam drain to the other equipment. The recovery method of waste heat of air separation equipment recovers the generated steam drain and uses as a heat source.SELECTED DRAWING: Figure 1

Description

本発明は、原料空気から酸素と窒素を分離する空気分離設備で排出される廃蒸気を回収して、その熱エネルギーを利用する空気分離設備の廃熱回収方法および空気分離設備の廃熱回収システムに関する。   The present invention recovers waste steam discharged from an air separation facility that separates oxygen and nitrogen from raw air, and uses the heat energy of the waste heat recovery method of the air separation facility and the waste heat recovery system of the air separation facility About.

製鉄所の高炉や転炉などの設備では、大量の酸素を消費する。このように大量の酸素を必要とする場所では、一般に、製鉄所内に酸素製造設備を設置し、酸素製造設備で生成した酸素を高炉等の設備に供給している。   A large amount of oxygen is consumed in facilities such as blast furnaces and converters in steelworks. In a place where a large amount of oxygen is required in this way, generally, an oxygen production facility is installed in an ironworks, and oxygen generated by the oxygen production facility is supplied to facilities such as a blast furnace.

この酸素製造設備の一つとして、沸点差を利用して空気を分離する深冷分離型の空気分離設備を用い、酸素を製造するものがある。例えば、特許文献1には、原料空気を圧縮する圧縮機と、該圧縮機で圧縮されて昇温した原料空気を冷却する空冷又は水冷のアフタークーラーと、該アフタークーラーで冷却された原料空気中に含まれる不純物である水分および二酸化炭素を吸着除去する吸着器(以下、前処理設備とも称する場合がある。)と、該吸着器で精製された原料空気を冷却する空冷又は水冷の冷却器と、該冷却器で冷却された原料空気の深冷液化分離を行う空気分離部とを有する空気液化分離装置が記載されている。   As one of the oxygen production facilities, there is one that produces oxygen using a cryogenic separation type air separation facility that separates air using a difference in boiling points. For example, Patent Document 1 discloses a compressor that compresses raw material air, an air-cooled or water-cooled after cooler that cools the raw material air that has been compressed and heated by the compressor, and the raw material air that is cooled by the after cooler. An adsorber that adsorbs and removes moisture and carbon dioxide that are impurities contained therein (hereinafter also referred to as pretreatment equipment), an air-cooled or water-cooled cooler that cools the raw air purified by the adsorber, and And an air liquefaction separation apparatus having an air separation part for performing cryogenic liquefaction separation of the raw material air cooled by the cooler.

特開2003−56981号公報JP 2003-56981 A

上記した特許文献1の技術は、空気液化分離装置の前処理設備で吸着除去した水分および二酸化炭素の不純物に、加熱した再生ガス(加熱ガス)を導入して前処理設備の加熱再生を行う再生工程を有する。しかしながら、この再生工程で必要とされる加熱ガスを得る際に発生する廃蒸気は、空気中に放出されるだけであり、有効に活用されていないため、エネルギー効率が悪かったという問題がある。   The technique of Patent Document 1 described above is a regeneration in which heated regeneration gas (heated gas) is introduced into moisture and carbon dioxide impurities adsorbed and removed by the pretreatment facility of the air liquefaction separation apparatus, and the pretreatment facility is heated and regenerated. Process. However, the waste steam generated when the heating gas required in the regeneration process is obtained is only released into the air and is not effectively used, so that there is a problem that the energy efficiency is poor.

また、近年では、地球温暖化防止の観点より、より一層の省エネルギー化やCO排出削減が求められる。製鉄所等の施設においても、施設内で発生する廃蒸気などの熱エネルギーを回収し、鉄鋼製造プロセスのエネルギー源として再利用する新たな技術の開発も要求されている。 In recent years, further energy saving and CO 2 emission reduction are required from the viewpoint of preventing global warming. In facilities such as steelworks, it is also required to develop new technologies for recovering thermal energy such as waste steam generated in the facility and reusing it as an energy source for the steel manufacturing process.

本発明は係る問題に鑑み、原料空気から酸素と窒素を分離する空気分離設備で発生する廃蒸気を回収し、その熱エネルギーを利用する空気分離設備の廃熱回収方法および空気分離設備の廃熱回収システムを提供することを目的とする。   In view of the problem, the present invention recovers waste steam generated in an air separation facility that separates oxygen and nitrogen from raw air, and uses the heat energy of the waste heat recovery method of the air separation facility and waste heat of the air separation facility. The purpose is to provide a collection system.

本発明者らは、鋭意検討した結果、空気分離設備から排出される窒素ガスの一部を加熱する際に発生する廃蒸気を回収し、その熱エネルギーを他の設備に供給することで、上記した目的を達成できることを見出した。   As a result of intensive studies, the present inventors recovered waste steam generated when heating a part of the nitrogen gas discharged from the air separation facility, and supplied the thermal energy to other facilities. We found that we could achieve the purpose.

本発明は上述の知見に基づいてなされたものであり、以下を要旨とするものである。
[1] 通過する空気中の不純物を除去する吸着塔に、空気圧縮機で圧縮された原料空気を供給し、清浄するMS吸着工程と、
前記MS吸着工程で清浄された原料空気から窒素および酸素を精留し、分離する精留工程と、を有する空気分離設備の廃熱回収方法であって、
前記空気分離設備から排出される窒素ガスの一部を排出経路中に配置される熱交換器に供給し、熱交換を行う熱交換工程と、
前記熱交換器で窒素ガスを加熱して再生ガスを生成し、生成された前記再生ガスを再生ガス供給経路に流して前記吸着塔に供給する再生ガス供給工程と、
前記熱交換器の出口側に設けたドレン供給経路に、前記再生ガスの生成で発生した蒸気ドレンを流して他の設備に供給するドレン供給工程と、を含み、
発生した前記蒸気ドレンを回収し、熱源として利用することを特徴とする空気分離設備の廃熱回収方法。
[2] 前記ドレン供給経路中に、蒸気で駆動するメカニカルポンプを配置して前記蒸気ドレンの回収を行うことを特徴とする[1]に記載の空気分離設備の廃熱回収方法。
[3] 前記他の設備が、タンクから供給される液体を前記蒸気ドレンで加熱する液体気化送給設備であることを特徴とする[1]または[2]に記載の空気分離設備の廃熱回収方法。
[4] 通過する空気中の不純物を除去する吸着塔を有し、空気圧縮機で圧縮された原料空気を前記吸着塔に供給して清浄するMS吸着器と、
前記MS吸着器で清浄された原料空気から窒素および酸素を精留分離する精留塔と、を備える空気分離設備の廃熱回収システムであって、
前記空気分離設備から排出される窒素ガスの一部を供給する排出経路中に配置される熱交換器と、
前記熱交換器で加熱して生成された再生ガスを、前記吸着塔に供給する再生ガス供給経路と、
前記熱交換器の出口側に、前記再生ガスの生成により発生する蒸気ドレンを他の設備に供給するドレン供給経路と、を設け、
発生した前記蒸気ドレンを回収し、熱源として利用することを特徴とする空気分離設備の廃熱回収システム。
[5] 前記ドレン供給経路中に、蒸気で駆動するメカニカルポンプを配置したことを特徴とする[4]に記載の空気分離設備の廃熱回収システム。
[6] 前記他の設備が、タンクから供給される液体を前記蒸気ドレンで加熱する液体気化送給設備であることを特徴とする[4]または[5]に記載の空気分離設備の廃熱回収システム。
This invention is made | formed based on the above-mentioned knowledge, and makes the following a summary.
[1] An MS adsorption process for supplying raw air compressed by an air compressor to an adsorption tower that removes impurities in the passing air and cleaning the adsorption tower;
A rectification step of rectifying and separating nitrogen and oxygen from the raw material air cleaned in the MS adsorption step, and a waste heat recovery method for an air separation facility,
A part of nitrogen gas discharged from the air separation facility is supplied to a heat exchanger disposed in the discharge path, and a heat exchange step of performing heat exchange;
A regeneration gas supply step of heating the nitrogen gas in the heat exchanger to generate a regeneration gas, flowing the generated regeneration gas through a regeneration gas supply path, and supplying the regeneration gas to the adsorption tower;
A drain supply step of supplying the steam drain generated by the generation of the regeneration gas to the drain supply path provided on the outlet side of the heat exchanger and supplying it to other equipment,
A method for recovering waste heat from an air separation facility, wherein the generated steam drain is recovered and used as a heat source.
[2] The waste heat recovery method for an air separation facility according to [1], wherein a mechanical pump driven by steam is disposed in the drain supply path to recover the steam drain.
[3] The waste heat of the air separation facility according to [1] or [2], wherein the other facility is a liquid vaporizing and feeding facility that heats liquid supplied from a tank with the vapor drain. Collection method.
[4] An MS adsorber that has an adsorption tower that removes impurities in the passing air, and that supplies raw air compressed by an air compressor to the adsorption tower for cleaning.
A rectifying tower for rectifying and separating nitrogen and oxygen from raw air cleaned by the MS adsorber, and a waste heat recovery system for an air separation facility comprising:
A heat exchanger disposed in a discharge path for supplying a part of the nitrogen gas discharged from the air separation facility;
A regeneration gas supply path for supplying regeneration gas generated by heating in the heat exchanger to the adsorption tower;
On the outlet side of the heat exchanger, a drain supply path for supplying steam drain generated by the generation of the regeneration gas to other equipment, and
A waste heat recovery system for an air separation facility, wherein the generated steam drain is recovered and used as a heat source.
[5] The waste heat recovery system for an air separation facility according to [4], wherein a mechanical pump driven by steam is disposed in the drain supply path.
[6] The waste heat of the air separation facility according to [4] or [5], wherein the other facility is a liquid vaporizing and feeding facility that heats the liquid supplied from a tank with the vapor drain. Collection system.

本発明によれば、鉄鋼製造プロセスで使用される設備が空気中に排出していた廃蒸気を効率的に回収し、その熱エネルギーを有効に利用できるため、エネルギー効率が向上する。   According to the present invention, the waste steam discharged into the air by the equipment used in the steel manufacturing process can be efficiently recovered and its thermal energy can be used effectively, so that energy efficiency is improved.

図1は、本発明の一実施形態における空気分離設備の廃熱回収システムを説明する構成図である。FIG. 1 is a configuration diagram illustrating a waste heat recovery system for an air separation facility according to an embodiment of the present invention. 図2は、本発明の一実施形態における空気分離設備の廃熱回収方法を説明するフロー図である。FIG. 2 is a flowchart for explaining a waste heat recovery method for an air separation facility according to an embodiment of the present invention.

以下、本発明について詳細に説明する。なお、本発明はこの実施形態に限定されるものではない。   Hereinafter, the present invention will be described in detail. Note that the present invention is not limited to this embodiment.

まず、図1を参照して、本発明の空気分離設備の廃熱回収システムについて説明する。図1には、本発明の一実施形態における空気分離設備の廃熱回収システム(以下、廃熱回収システムと称する)の構成図を示す。ここでは、一例として、製鉄所の高炉や転炉等の設備に供給する酸素を製造する酸素製造設備に本発明の廃熱回収システムを適用する場合について説明する。図1では「他の設備5」として、例えば液体気化送給設備を示す。液体気化送給設備とは、貯留した液体酸素を熱交換して気体酸素として送給を行う設備である。   First, a waste heat recovery system for an air separation facility according to the present invention will be described with reference to FIG. In FIG. 1, the block diagram of the waste heat recovery system (henceforth a waste heat recovery system) of the air separation equipment in one Embodiment of this invention is shown. Here, as an example, a case will be described in which the waste heat recovery system of the present invention is applied to an oxygen production facility that produces oxygen to be supplied to facilities such as a blast furnace and a converter in an ironworks. In FIG. 1, as the “other equipment 5”, for example, a liquid vaporizing and feeding equipment is shown. The liquid vaporization / feeding equipment is equipment for exchanging heat of stored liquid oxygen and feeding it as gaseous oxygen.

本発明は、通過する空気中の不純物を除去する吸着塔を有し、空気圧縮機で圧縮された原料空気を吸着塔に供給して清浄するMS吸着器と、MS吸着器で清浄された原料空気から窒素および酸素を精留分離する精留塔と、を備える空気分離設備の廃熱回収システムである。本発明の廃熱回収システムでは、空気分離設備から排出される窒素ガスの一部を供給する排出経路中に配置される熱交換器と、熱交換器で加熱して生成された再生ガスを、吸着塔に供給する再生ガス供給経路と、熱交換器の出口側に、再生ガスの生成により発生する蒸気ドレンを他の設備に供給するドレン供給経路と、を設けることにより、発生した蒸気ドレンを回収し、熱源として利用するものである。   The present invention includes an MS adsorber having an adsorption tower that removes impurities in air passing therethrough, and supplying raw air compressed by an air compressor to the adsorption tower for cleaning, and a raw material cleaned by the MS adsorber A waste heat recovery system for an air separation facility comprising: a rectifying column for rectifying and separating nitrogen and oxygen from air. In the waste heat recovery system of the present invention, the heat exchanger disposed in the discharge path for supplying a part of the nitrogen gas discharged from the air separation facility, and the regeneration gas generated by heating with the heat exchanger, By providing a regeneration gas supply path for supplying to the adsorption tower and a drain supply path for supplying steam drain generated by the generation of the regeneration gas to other equipment on the outlet side of the heat exchanger, the generated steam drain can be reduced. It is collected and used as a heat source.

図1に示すように、空気分離設備1は、空気圧縮器10、MS吸着器11、精留塔12、および図示しない制御装置を備える。また、空気分離設備1の廃熱回収システムとして、MS吸着器11の再生の処理に用いる再生ガスを生成する熱交換器2および再生ガス供給経路3と、発生する蒸気ドレンを他の設備に供給するドレン供給経路4が設けられる。   As shown in FIG. 1, the air separation facility 1 includes an air compressor 10, an MS adsorber 11, a rectification column 12, and a control device (not shown). In addition, as a waste heat recovery system for the air separation facility 1, the heat exchanger 2 and the regeneration gas supply path 3 that generate regeneration gas used for the regeneration process of the MS adsorber 11 and the generated steam drain are supplied to other facilities. A drain supply path 4 is provided.

空気圧縮器10では、フィルタを介して取り込んだ空気を圧縮した後、アフタークーラーなどの冷却器(図示せず)で冷却し、原料空気としてMS吸着器11へ供給する。   In the air compressor 10, the air taken in through the filter is compressed, then cooled by a cooler (not shown) such as an aftercooler, and supplied to the MS adsorber 11 as raw air.

MS吸着器11では、空気圧縮機10より供給された圧縮した原料空気を吸着塔へ供給し、清浄する。吸着塔では、通過する原料空気中の水および炭化水素、二酸化炭素などの不純物を、吸着剤に吸着させて除去する。清浄した原料空気は、MS吸着器11の出口側に設けた熱交換器(図示せず)で露点付近まで冷却した後、精留塔12へ供給する。   In the MS adsorber 11, the compressed raw material air supplied from the air compressor 10 is supplied to the adsorption tower and cleaned. In the adsorption tower, impurities such as water and hydrocarbons, carbon dioxide and the like in the raw material air passing through are adsorbed and removed by an adsorbent. The purified raw material air is cooled to the vicinity of the dew point with a heat exchanger (not shown) provided on the outlet side of the MS adsorber 11 and then supplied to the rectification column 12.

図1に示す例では、2つの吸着塔11a、11bを配置し、これらを交互に切り替えて使用する。具体的には、一方の吸着塔(例えば、図1の吸着塔11a)を使用して上記した不純物の吸着除去を行っている間、他方の吸着塔(例えば、図1の吸着塔11b)を再生する。この再生の処理では、後述する再生ガスを対象の吸着塔に供給して、使用済の吸着剤の再生を行う。このように交互に切り替えて吸着塔11a、11bを使用することにより、連続して原料空気の清浄を行うことが可能となる。なお、吸着塔は3つ以上を切り替えて使用してもよい。   In the example shown in FIG. 1, two adsorption towers 11a and 11b are arranged and used by alternately switching them. Specifically, while performing the above-described adsorption removal of impurities using one adsorption tower (for example, the adsorption tower 11a in FIG. 1), the other adsorption tower (for example, the adsorption tower 11b in FIG. 1) is used. Reproduce. In this regeneration process, a regeneration gas to be described later is supplied to the target adsorption tower to regenerate the used adsorbent. By using the adsorption towers 11a and 11b by alternately switching in this way, the raw material air can be continuously cleaned. Note that three or more adsorption towers may be used by switching.

精留塔12では、MS吸着器11より供給された洗浄した原料空気をさらに冷却(深冷)し、液化温度の差を利用して窒素、酸素およびアルゴンに精留分離する。精留塔12で分離された酸素(製品酸素)や窒素(製品窒素)は、各製品ガス送給経路を経由して使用先の工場、例えば酸素の場合には高炉および転炉等の使用先工場へ供給される。   In the rectifying column 12, the washed raw air supplied from the MS adsorber 11 is further cooled (deeply cooled), and rectified and separated into nitrogen, oxygen, and argon using the difference in liquefaction temperature. Oxygen (product oxygen) and nitrogen (product nitrogen) separated in the rectification column 12 are used at the factory of the user, for example, in the case of oxygen, blast furnaces and converters, etc. Supplied to the factory.

図1に示す例では、精留塔12は、上塔12a、下塔12bおよび主凝縮器12cを有する。   In the example shown in FIG. 1, the rectifying column 12 includes an upper column 12a, a lower column 12b, and a main condenser 12c.

上記した清浄後に露点付近まで冷却した原料空気は、下塔12bの底部へ導入される。下塔12bは、導入された原料空気を精留して、窒素ガスと酸素に富む液化空気(以下、酸素富化液化空気と称する)とに分離する。窒素ガスは下塔12bの頂部に溜まり、酸素富化液化空気は下塔12bの底部に溜まる。窒素ガスは、主凝縮器12cで凝縮されて液化窒素となり、液化窒素の一部は、図示しない配管等を介して上塔12aの上段に環流液として導入される。下塔12bの底部にある酸素富化液化空気の一部は、図示しない配管塔を介して上塔12aの中段に気液混合状態で導入される。   The raw material air cooled to the vicinity of the dew point after the above-described cleaning is introduced into the bottom of the lower tower 12b. The lower tower 12b rectifies the introduced raw material air and separates it into nitrogen gas and liquefied air rich in oxygen (hereinafter referred to as oxygen-enriched liquefied air). Nitrogen gas is stored at the top of the lower tower 12b, and oxygen-enriched liquefied air is stored at the bottom of the lower tower 12b. The nitrogen gas is condensed in the main condenser 12c to become liquefied nitrogen, and a part of the liquefied nitrogen is introduced as a reflux liquid to the upper stage of the upper tower 12a through a pipe or the like (not shown). Part of the oxygen-enriched liquefied air at the bottom of the lower tower 12b is introduced into the middle stage of the upper tower 12a through a piping tower (not shown) in a gas-liquid mixed state.

上塔12a内では、導入された液化窒素および酸素富化液化空気の下降および上昇により精留され、酸素および窒素の分離が行われる。窒素ガス(製品窒素)は上塔12aの上部に溜まり、酸素ガス(製品酸素)は上塔12aの下部に溜まる。窒素ガスは、上塔12aの上部に設けた図示しない窒素抽出管を介して熱交換器に送られ、常温まで昇温される。酸素ガスは、上塔12aの下部に設けた図示しない酸素抽出管を介して熱交換器に送られ、常温まで昇温される。この熱交換後の製品窒素および製品酸素は、各製品ガス送給経路により製鉄所内の使用先工場へ供給される。   In the upper column 12a, the liquefied nitrogen and the oxygen-enriched liquefied air that has been introduced are rectified by the lowering and rising, and oxygen and nitrogen are separated. Nitrogen gas (product nitrogen) accumulates in the upper part of the upper tower 12a, and oxygen gas (product oxygen) accumulates in the lower part of the upper tower 12a. Nitrogen gas is sent to a heat exchanger through a nitrogen extraction pipe (not shown) provided in the upper part of the upper tower 12a, and the temperature is raised to room temperature. The oxygen gas is sent to a heat exchanger through an oxygen extraction pipe (not shown) provided at the lower part of the upper tower 12a, and the temperature is raised to room temperature. The product nitrogen and product oxygen after this heat exchange are supplied to the use factories in the steelworks through the product gas feed paths.

なお、上塔12aに溜まる窒素ガスの純度は、上塔12aの上部に近づくほど高い。そこで、本発明では、上塔12aの窒素抽出管の下方側に、製品窒素より純度の低い窒素(廃窒素)を取り出して排出する排出経路13を設け、抽出した廃窒素を排出経路13で供給することによりMS吸着器11の再生の処理に用いる。   In addition, the purity of the nitrogen gas which accumulates in the upper tower 12a is so high that it approaches the upper part of the upper tower 12a. Therefore, in the present invention, a discharge path 13 for extracting and discharging nitrogen having lower purity than product nitrogen (waste nitrogen) is provided below the nitrogen extraction pipe of the upper tower 12a, and the extracted waste nitrogen is supplied through the discharge path 13 Thus, it is used for the regeneration process of the MS adsorber 11.

熱交換器2では、MS吸着器11の再生に用いる再生ガスを生成する。熱交換器2は、排出経路13中に配置される。空気分離設備1から排出される窒素ガスの一部、すなわち精留塔12の上塔12aから抽出する廃窒素は、排出経路13を介して熱交換器2に供給され、加熱して再生ガスとなる。生成された再生ガスは、再生ガス供給経路3を経由して再生処理を行う吸着塔に供給され、使用済の吸着剤に吸着した二酸化炭素や水分を除去する。   In the heat exchanger 2, regeneration gas used for regeneration of the MS adsorber 11 is generated. The heat exchanger 2 is disposed in the discharge path 13. Part of the nitrogen gas discharged from the air separation facility 1, that is, the waste nitrogen extracted from the upper tower 12a of the rectifying column 12, is supplied to the heat exchanger 2 through the discharge path 13, and heated to generate regenerated gas. Become. The generated regeneration gas is supplied to an adsorption tower that performs a regeneration process via the regeneration gas supply path 3 to remove carbon dioxide and moisture adsorbed on the used adsorbent.

図1に示す例では、再生ガス供給経路3により吸着塔11bに再生ガスを供給し、使用済の吸着剤に吸着した二酸化炭素や水分を除去する再生を行う。なお、上記した吸着塔11a、11bを交互に切り替えるタイミングで、再生ガス供給経路3も交互に切り替えを行い、再生ガスの供給と停止を行なえばよい。   In the example shown in FIG. 1, regeneration gas is supplied to the adsorption tower 11b through the regeneration gas supply path 3, and regeneration is performed to remove carbon dioxide and moisture adsorbed on the used adsorbent. Note that the regeneration gas supply path 3 may be alternately switched at the timing of alternately switching the adsorption towers 11a and 11b to supply and stop the regeneration gas.

ドレン供給経路4では、再生ガスの生成により発生した蒸気ドレンを回収するとともに、経路内に蒸気ドレンを流して他の設備へ供給を行う。ドレン供給経路4は、蒸気ドレン(廃蒸気)が廃出される熱交換器2の出口側に設ける。なお、蒸気ドレンを効率的に回収するために、ドレン供給経路4中に蒸気で駆動するメカニカルポンプ4aを配置することが好ましい。メカニカルポンプに替えて、例えば配管のみの輸送も使用することができる。   In the drain supply path 4, the steam drain generated by the generation of the regeneration gas is recovered, and the steam drain is allowed to flow through the path to be supplied to other equipment. The drain supply path 4 is provided on the outlet side of the heat exchanger 2 where the steam drain (waste steam) is discarded. In order to efficiently recover the steam drain, it is preferable to dispose a mechanical pump 4 a driven by steam in the drain supply path 4. Instead of the mechanical pump, for example, transportation using only piping can also be used.

図1に示す例では、蒸気ドレンをメカニカルポンプ4aで回収し、ドレン供給経路4により液体気化送給設備5の温水槽へ供給する。これにより、蒸気ドレンを液体気化送給設備2の熱源として再利用することが可能となる。   In the example shown in FIG. 1, the steam drain is collected by the mechanical pump 4 a and supplied to the hot water tank of the liquid vaporizing and feeding equipment 5 through the drain supply path 4. Thereby, it becomes possible to reuse the vapor drain as a heat source of the liquid vaporizing and feeding equipment 2.

なお、本発明の廃熱回収システムは、図示しない制御装置を設けてもよい。制御装置は、例えばCPUやメモリなどを備えたコンピュータにより構成され、各装置や機器の制御を行うことができる。例えば、廃熱回収量を監視することにより温水槽への本来の熱源供給量を制御するようにしてもよい。   The waste heat recovery system of the present invention may be provided with a control device (not shown). The control device is constituted by a computer including, for example, a CPU and a memory, and can control each device and device. For example, the original heat source supply amount to the hot water tank may be controlled by monitoring the waste heat recovery amount.

次に、図2を参照して、本発明の空気分離設備の廃熱回収方法について説明する。図2には、本発明の一実施形態における空気分離設備の廃熱回収方法(以下、廃熱回収方法と称する)のフロー図を示す。本発明の廃熱回収方法は、例えば上述した図1の構成を有する廃熱回収システムに好適に用いることができる。以下には、図1の廃熱回収システムに本発明の廃熱回収方法を適用した場合について説明する。   Next, the waste heat recovery method for the air separation facility of the present invention will be described with reference to FIG. FIG. 2 shows a flow chart of a waste heat recovery method (hereinafter referred to as a waste heat recovery method) for an air separation facility according to an embodiment of the present invention. The waste heat recovery method of the present invention can be suitably used for, for example, the waste heat recovery system having the configuration shown in FIG. Below, the case where the waste heat recovery method of this invention is applied to the waste heat recovery system of FIG. 1 is demonstrated.

本発明の廃熱回収方法は、空気圧縮機10、MS吸着器11、精留塔12、熱交換器2、再生ガス供給経路3、ドレン供給経路4、および図示しない開閉弁や機器などを制御する処理装置により実行される。なお、各機器等の説明は、上述と同様のため省略する。   The waste heat recovery method of the present invention controls the air compressor 10, the MS adsorber 11, the rectifying column 12, the heat exchanger 2, the regeneration gas supply path 3, the drain supply path 4, and an on-off valve and equipment not shown. Executed by the processing device. In addition, since description of each apparatus etc. is the same as that of the above-mentioned, it abbreviate | omits.

図2に示すように、まず、MS吸着工程では、フィルタを介して取り込んだ空気を空気圧縮機10で圧縮した後、圧縮された原料空気をMS吸着器11の吸着塔11a、11bに供給し、清浄する(ステップs1)。吸着塔11a、11bでは、通過する空気中の不純物の除去を行う。上述のように、2つの吸着塔11a、11bは交互に切り替え使用する。MS吸着工程は、MS吸着器11で清浄した原料空気を、図示しない熱交換器で露点付近まで冷却した後、精留塔12に供給する。   As shown in FIG. 2, first, in the MS adsorption process, after the air taken in through the filter is compressed by the air compressor 10, the compressed raw material air is supplied to the adsorption towers 11 a and 11 b of the MS adsorber 11. Clean (step s1). In the adsorption towers 11a and 11b, impurities in the passing air are removed. As described above, the two adsorption towers 11a and 11b are alternately used. In the MS adsorption step, the raw material air cleaned by the MS adsorber 11 is cooled to the vicinity of the dew point by a heat exchanger (not shown), and then supplied to the rectification column 12.

次に、精留工程では、精留塔12に供給された清浄した原料空気をさらに冷却(深冷)した後、液化温度の差を利用して窒素および酸素を精留し、分離する(ステップs2)。精留工程は、精留塔12で分離した酸素(製品酸素)や窒素(製品窒素)を各製品ガス送給経路に送り出し、使用先の工場へ供給する。   Next, in the rectification step, after the purified raw material air supplied to the rectification column 12 is further cooled (deep cooling), nitrogen and oxygen are rectified using the difference in liquefaction temperature and separated (step) s2). In the rectification process, oxygen (product oxygen) and nitrogen (product nitrogen) separated in the rectification column 12 are sent to each product gas supply path and supplied to the factory of use.

次に、熱交換工程では、空気分離設備1から排出される窒素ガスの一部を抽出し、排出経路13中に配置される熱交換器2に供給して熱交換を行う(ステップs3)。抽出された窒素ガス(廃窒素ガス)は熱交換器2により加熱され、再生ガスが生成される。再生ガスは再生ガス供給経路3に供給される。   Next, in the heat exchange process, a part of the nitrogen gas discharged from the air separation facility 1 is extracted and supplied to the heat exchanger 2 arranged in the discharge path 13 to perform heat exchange (step s3). The extracted nitrogen gas (waste nitrogen gas) is heated by the heat exchanger 2 to generate a regeneration gas. The regeneration gas is supplied to the regeneration gas supply path 3.

その後、再生ガス供給工程により、供給された再生ガスを再生ガス供給経路3に流して吸着塔に供給する(ステップs4)。再生の処理を行う吸着塔は、再生ガスにより使用済の吸着剤に吸着した二酸化炭素や水分を除去する。なお、図1に示す例では、吸着塔11bが再生の処理を行う。   Thereafter, in the regeneration gas supply step, the supplied regeneration gas flows through the regeneration gas supply path 3 and is supplied to the adsorption tower (step s4). The adsorption tower that performs the regeneration treatment removes carbon dioxide and moisture adsorbed on the used adsorbent by the regeneration gas. In the example shown in FIG. 1, the adsorption tower 11b performs a regeneration process.

次に、ドレン供給工程では、上記ステップs3における再生ガスの生成で発生した蒸気ドレン(廃蒸気)を、ドレン供給経路4に流して他の設備5(ここでは、液体気化送給設備)へ供給する(ステップs5)。ドレン供給経路4は、蒸気ドレンが廃出される熱交換器2の出口側に設けられる。なお、蒸気ドレンを効率的に回収するために、上記したメカニカルポンプ4aを設けてもよい。   Next, in the drain supply process, the steam drain (waste steam) generated by the generation of the regeneration gas in step s3 flows through the drain supply path 4 and is supplied to the other equipment 5 (here, liquid vaporizing and feeding equipment). (Step s5). The drain supply path 4 is provided on the outlet side of the heat exchanger 2 where the steam drain is discarded. In addition, in order to collect | recover vapor | steam drains efficiently, you may provide the above-mentioned mechanical pump 4a.

なお、上記の通り、図示しない制御装置で熱源供給量等の制御を行うことができる。例えば、熱源供給量の制御を行う場合には、ステップs5の後で行えばよい。   As described above, the heat source supply amount and the like can be controlled by a control device (not shown). For example, when controlling the heat source supply amount, it may be performed after step s5.

以上に説明した各処理は、空気分離設備を稼働中繰り返される。空気分離設備の稼働で発生した蒸気ドレンを効果的に回収することにより、熱源として利用することができる。すなわち、本発明によれば、廃熱エネルギーを利用することで、蒸気使用量が低減されるので、エネルギー効率を向上できる。   Each process described above is repeated while the air separation facility is in operation. By effectively recovering the steam drain generated by the operation of the air separation facility, it can be used as a heat source. That is, according to the present invention, by using waste heat energy, the amount of steam used is reduced, so that energy efficiency can be improved.

以下、実施例に基づいて本発明を説明する。なお、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples.

製鉄所内の液体気化送給設備2では、温水槽に蒸気を供給して加熱し、温水を介して液化ガスを気化させて、使用先工場へ供給している。この時に供給される蒸気は、一般に、ボイラーを用いて生成する。   In the liquid vaporization / feeding facility 2 in the ironworks, steam is supplied to the hot water tank and heated, and the liquefied gas is vaporized through the hot water and supplied to the use factory. The steam supplied at this time is generally generated using a boiler.

本発明例として、上記した構成を有する酸素製造工場に本発明の廃熱回収システムおよび方法を適用して、4つの設備で操業を行った。空気分離設備1から回収した蒸気ドレンの熱源は、ドレン供給経路4を介して液体気化送給設備5の温水槽へ供給した。すなわち、温水槽の加熱には、通常供給されるボイラーで生成した蒸気に加えて、空気分離設備1から供給される蒸気ドレン(廃蒸気)も用いた。この時に使用した各設備(A号機〜D号機)における蒸気ドレン量を表1に示す。   As an example of the present invention, the waste heat recovery system and method of the present invention were applied to an oxygen production factory having the above-described configuration, and operations were performed with four facilities. The heat source of the steam drain recovered from the air separation facility 1 was supplied to the hot water tank of the liquid vaporizing and feeding facility 5 via the drain supply path 4. That is, in order to heat the hot water tank, steam drain (waste steam) supplied from the air separation facility 1 was used in addition to the steam generated by the normally supplied boiler. Table 1 shows the amount of steam drain in each facility (Units A to D) used at this time.

なお、操業における温度条件は、回収する蒸気ドレンの温度を60〜100℃、液体気化送給設備5に供給される液化ガスの温度を約−200℃、温水槽内の温度を60℃、液体気化送給設備5から使用先工場へ供給される製品ガスの温度を約10〜25℃とした。   The temperature conditions in the operation are: the temperature of the vapor drain to be recovered is 60 to 100 ° C., the temperature of the liquefied gas supplied to the liquid vaporizing and feeding equipment 5 is about −200 ° C., the temperature in the hot water tank is 60 ° C., and the liquid The temperature of the product gas supplied from the vaporizing and feeding facility 5 to the user factory was about 10 to 25 ° C.

一方、従来例として、上記構成の廃熱回収システムを有さない従来の設備を用いて操業を行った。液体気化送給設備5の温水槽の加熱には、通常供給されるボイラーで生成した蒸気のみを用いた。なお、その他の条件は本発明例と同じとした。この時に使用した従来の設備(X号機)における蒸気ドレン量を表1に示す。   On the other hand, as a conventional example, operation was performed using conventional equipment that does not have the waste heat recovery system having the above-described configuration. For the heating of the hot water tank of the liquid vaporizing and feeding equipment 5, only the steam generated by the normally supplied boiler was used. The other conditions were the same as in the example of the present invention. Table 1 shows the amount of steam drain in the conventional equipment (No. X machine) used at this time.

Figure 2019196873
Figure 2019196873

表1より、従来例の場合には廃蒸気の使用量がゼロであったのに対し、本発明例の場合にはA号:1.3t/h、B号:1.5t/h、C号:1.5t/h、D号:1.5t/hであった。本発明によれば、液体気化送給器の蒸気使用量が平均して0.04t/h削減したため、従来例と比較してエネルギー効率が5%上昇した。これにより、廃蒸気ドレン1.0t/h以上を有効活用できることが分かった。また、蒸気使用量の低減により約8百万円のコスト削減効果も得られた。   From Table 1, the amount of waste steam used was zero in the case of the conventional example, whereas in the case of the present invention example, A No .: 1.3 t / h, B No .: 1.5 t / h, C No .: 1.5 t / h, D No .: 1.5 t / h. According to the present invention, the average amount of steam used in the liquid vaporizer is reduced by 0.04 t / h, so that the energy efficiency is increased by 5% compared to the conventional example. Thereby, it turned out that waste steam drain 1.0t / h or more can be used effectively. In addition, a cost reduction effect of about 8 million yen was obtained by reducing the amount of steam used.

1 空気分離設備
10 空気圧縮機
11 MS吸着器
11a、11b 吸着塔
12 精留塔
12a 上塔
12b 下塔
12c 主凝縮器
13 排出経路
2 熱交換器
3 再生ガス供給経路
4 ドレン供給経路
5 他の設備
DESCRIPTION OF SYMBOLS 1 Air separation equipment 10 Air compressor 11 MS adsorber 11a, 11b Adsorption tower 12 Rectifying tower 12a Upper tower 12b Lower tower 12c Main condenser 13 Discharge path 2 Heat exchanger 3 Regeneration gas supply path 4 Drain supply path 5 Other Facility

Claims (6)

通過する空気中の不純物を除去する吸着塔に、空気圧縮機で圧縮された原料空気を供給し、清浄するMS吸着工程と、
前記MS吸着工程で清浄された原料空気から窒素および酸素を精留し、分離する精留工程と、を有する空気分離設備の廃熱回収方法であって、
前記空気分離設備から排出される窒素ガスの一部を排出経路中に配置される熱交換器に供給し、熱交換を行う熱交換工程と、
前記熱交換器で窒素ガスを加熱して再生ガスを生成し、生成された前記再生ガスを再生ガス供給経路に流して前記吸着塔に供給する再生ガス供給工程と、
前記熱交換器の出口側に設けたドレン供給経路に、前記再生ガスの生成で発生した蒸気ドレンを流して他の設備に供給するドレン供給工程と、を含み、
発生した前記蒸気ドレンを回収し、熱源として利用することを特徴とする空気分離設備の廃熱回収方法。
An MS adsorption process for supplying raw material air compressed by an air compressor to an adsorption tower that removes impurities in the air passing therethrough and cleaning the adsorption tower;
A rectification step of rectifying and separating nitrogen and oxygen from the raw material air cleaned in the MS adsorption step, and a waste heat recovery method for an air separation facility,
A part of nitrogen gas discharged from the air separation facility is supplied to a heat exchanger disposed in the discharge path, and a heat exchange step of performing heat exchange;
A regeneration gas supply step of heating the nitrogen gas in the heat exchanger to generate a regeneration gas, flowing the generated regeneration gas through a regeneration gas supply path, and supplying the regeneration gas to the adsorption tower;
A drain supply step of supplying the steam drain generated by the generation of the regeneration gas to the drain supply path provided on the outlet side of the heat exchanger and supplying it to other equipment,
A method for recovering waste heat from an air separation facility, wherein the generated steam drain is recovered and used as a heat source.
前記ドレン供給経路中に、蒸気で駆動するメカニカルポンプを配置して前記蒸気ドレンの回収を行うことを特徴とする請求項1に記載の空気分離設備の廃熱回収方法。   The waste heat recovery method for an air separation facility according to claim 1, wherein a mechanical pump driven by steam is disposed in the drain supply path to recover the steam drain. 前記他の設備が、タンクから供給される液体を前記蒸気ドレンで加熱する液体気化送給設備であることを特徴とする請求項1または2に記載の空気分離設備の廃熱回収方法。   The waste heat recovery method for an air separation facility according to claim 1 or 2, wherein the other facility is a liquid vaporizing and feeding facility for heating a liquid supplied from a tank with the vapor drain. 通過する空気中の不純物を除去する吸着塔を有し、空気圧縮機で圧縮された原料空気を前記吸着塔に供給して清浄するMS吸着器と、
前記MS吸着器で清浄された原料空気から窒素および酸素を精留分離する精留塔と、を備える空気分離設備の廃熱回収システムであって、
前記空気分離設備から排出される窒素ガスの一部を供給する排出経路中に配置される熱交換器と、
前記熱交換器で加熱して生成された再生ガスを、前記吸着塔に供給する再生ガス供給経路と、
前記熱交換器の出口側に、前記再生ガスの生成により発生する蒸気ドレンを他の設備に供給するドレン供給経路と、を設け、
発生した前記蒸気ドレンを回収し、熱源として利用することを特徴とする空気分離設備の廃熱回収システム。
An MS adsorber having an adsorption tower for removing impurities in the passing air, and supplying raw air compressed by an air compressor to the adsorption tower for cleaning;
A rectifying tower for rectifying and separating nitrogen and oxygen from raw air cleaned by the MS adsorber, and a waste heat recovery system for an air separation facility comprising:
A heat exchanger disposed in a discharge path for supplying a part of the nitrogen gas discharged from the air separation facility;
A regeneration gas supply path for supplying regeneration gas generated by heating in the heat exchanger to the adsorption tower;
On the outlet side of the heat exchanger, a drain supply path for supplying steam drain generated by the generation of the regeneration gas to other equipment, and
A waste heat recovery system for an air separation facility, wherein the generated steam drain is recovered and used as a heat source.
前記ドレン供給経路中に、蒸気で駆動するメカニカルポンプを配置したことを特徴とする請求項4に記載の空気分離設備の廃熱回収システム。 The waste heat recovery system for an air separation facility according to claim 4, wherein a mechanical pump driven by steam is disposed in the drain supply path. 前記他の設備が、タンクから供給される液体を前記蒸気ドレンで加熱する液体気化送給設備であることを特徴とする請求項4または5に記載の空気分離設備の廃熱回収システム。   The waste heat recovery system for an air separation facility according to claim 4 or 5, wherein the other facility is a liquid vaporizing and feeding facility for heating the liquid supplied from the tank with the vapor drain.
JP2018091275A 2018-05-10 2018-05-10 Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment Pending JP2019196873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091275A JP2019196873A (en) 2018-05-10 2018-05-10 Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091275A JP2019196873A (en) 2018-05-10 2018-05-10 Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment

Publications (1)

Publication Number Publication Date
JP2019196873A true JP2019196873A (en) 2019-11-14

Family

ID=68538381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091275A Pending JP2019196873A (en) 2018-05-10 2018-05-10 Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment

Country Status (1)

Country Link
JP (1) JP2019196873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251469A (en) * 2021-05-12 2021-08-13 成都绿建工程技术有限公司 Multi-section waste heat recovery heat supply oxygen generating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251469A (en) * 2021-05-12 2021-08-13 成都绿建工程技术有限公司 Multi-section waste heat recovery heat supply oxygen generating unit
CN113251469B (en) * 2021-05-12 2023-10-27 四川零碳工程科技有限公司 Multistage waste heat recovery heat supply oxygenerator group

Similar Documents

Publication Publication Date Title
CN102583281B (en) Method and device for recovering and purifying argon in monocrystalline silicon production
CN107438475B (en) Method for energy-efficient recovery of carbon dioxide from an absorbent and apparatus suitable for operating the method
JP2009536913A5 (en)
JP2008007378A (en) Method for recovering gaseous ammonia and recovering device therefor
KR20200008559A (en) Recovery of C2 + hydrocarbon streams from residual refinery gas and associated equipment
CN103123203A (en) Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
WO2012070304A1 (en) System and method for recovering gas containing c02 and h2s
US20220274050A1 (en) Method for treating gas by adsorption using thermally optimised hot flash solvent regeneration
JP3842526B2 (en) PFC recovery using condensation
JP2019196873A (en) Recovery method of waste heat of air separation equipment and recovery system of waste heat of air separation equipment
US20140353886A1 (en) Purification, Recovery, and Recycle of Vent Gas
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
KR101548883B1 (en) Liquefying and collecting apparatus of high purity carbon dioxide from bio gas
CN116332139A (en) Argon recovery device integrating high-purity nitrogen and enhancing efficiency and application method thereof
JP6427359B2 (en) Method and apparatus for producing ultra-high purity oxygen
CN107278167B (en) Process for recovering carbon dioxide from an absorbent with a reduced supply of stripping steam
RU2659991C2 (en) Method of absorption distribution of carbon dioxide from gas mixtures by absorbents containing water solutions of amines
JP4960277B2 (en) Method for producing ultra-high purity oxygen
JP4430351B2 (en) Fluorine compound gas separation and purification equipment
US20180023888A1 (en) Method for recovering helium
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
KR101964331B1 (en) Air separation plant

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327