JP2019196543A - Dissimilar metal joint material and production method thereof - Google Patents

Dissimilar metal joint material and production method thereof Download PDF

Info

Publication number
JP2019196543A
JP2019196543A JP2019003185A JP2019003185A JP2019196543A JP 2019196543 A JP2019196543 A JP 2019196543A JP 2019003185 A JP2019003185 A JP 2019003185A JP 2019003185 A JP2019003185 A JP 2019003185A JP 2019196543 A JP2019196543 A JP 2019196543A
Authority
JP
Japan
Prior art keywords
thermal expansion
corrosion
layer
plating layer
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019003185A
Other languages
Japanese (ja)
Other versions
JP6924785B2 (en
Inventor
絢子 西村
Ayako Nishimura
絢子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to EP19169284.7A priority Critical patent/EP3564028B1/en
Priority to US16/386,672 priority patent/US20190337086A1/en
Publication of JP2019196543A publication Critical patent/JP2019196543A/en
Application granted granted Critical
Publication of JP6924785B2 publication Critical patent/JP6924785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B1/00Sensitive elements capable of producing movement or displacement for purposes not limited to measurement; Associated transmission mechanisms therefor
    • G12B1/02Compound strips or plates, e.g. bimetallic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a dissimilar metal joint material that has anticorrosion, which can extend the lifespan against corrosion, and that has a property with little difference from the inherent property thereof.SOLUTION: A dissimilar metal joint material 1 has a high thermal expansion layer 2 composed of an alloy including Mn and a low thermal expansion layer 3 composed of an alloy including Ni, which are joined directly or through an interlayer. An anticorrosion plating layer 4 with its thickness between 10 nm and 120 nm is provided at least on the surface of the high thermal expansion layer 2.SELECTED DRAWING: None

Description

本発明は、異種金属接合材およびその製造方法に関する。   The present invention relates to a dissimilar metal bonding material and a method for manufacturing the same.

バイメタルやトリメタルなどの異種金属接合材が知られている。異種金属接合材は、少なくとも二種類の互いに異なる金属を重ね合わせることで構成されている。このような異種金属接合材は、温度変化によってわん曲の度合いが変化する。このため、異種金属接合材は、温度変化によって作動するサーモスタットやサーマルスイッチなどとして、民生用や工業用の様々な分野で利用されている。
特許文献1は、異種金属接合材の表面に不動態膜を形成して耐食性を高めることを提案している。
Dissimilar metal bonding materials such as bimetal and trimetal are known. The dissimilar metal bonding material is formed by superposing at least two kinds of different metals. In such a dissimilar metal bonding material, the degree of bending changes depending on the temperature change. For this reason, dissimilar metal bonding materials are used in various fields for consumer and industrial use as thermostats and thermal switches that operate according to temperature changes.
Patent Document 1 proposes to form a passive film on the surface of a dissimilar metal bonding material to enhance corrosion resistance.

特公平3−57438号公報Japanese Patent Publication No. 3-57438

異種金属接合材にはより長い寿命を有することが求められるようになっている。異種金属接合材は腐食によって寿命を迎えることがあるので、異種金属接合材にはより良い耐食性を有することが求められる。しかしながら、特許文献1が提案する不動態膜は、金属の酸化膜であり、硬くて脆い。また、特許文献1が提案する手法により形成される不動態膜の厚みは2〜3nm程度である。このため、異種金属接合材がわん曲を繰り返すたびに不動態膜が割れてしまう可能性があり、長期間に亘って耐食性を保つことが難しい。なお、不動態膜の厚みを大きくすることができたとしても、さらに割れやすく、また、異種金属接合材のわん曲係数や体積抵抗率といった特性に影響を及ぼす可能性がある。   Different metal bonding materials are required to have a longer life. Since the dissimilar metal joining material may reach the end of its life due to corrosion, the dissimilar metal joining material is required to have better corrosion resistance. However, the passive film proposed in Patent Document 1 is a metal oxide film, which is hard and brittle. Moreover, the thickness of the passive film formed by the technique proposed in Patent Document 1 is about 2 to 3 nm. For this reason, whenever a dissimilar metal joining material repeats a curvature, a passive film may break and it is difficult to maintain corrosion resistance over a long period of time. Even if the thickness of the passive film can be increased, the passive film is more likely to be cracked and may affect the characteristics such as the bending coefficient and volume resistivity of the dissimilar metal bonding material.

そこで本発明は、腐食に起因する寿命を延ばすことが可能な耐食性を有し、かつ、本来特性との差異が小さい異種金属接合材を提供することを目的とする。   Therefore, an object of the present invention is to provide a dissimilar metal bonding material having corrosion resistance capable of extending the life due to corrosion and having a small difference from the original characteristics.

本発明の一側面に係る異種金属接合材は、Mnを含む合金から構成される高熱膨張層と、Niを含む合金から構成される低熱膨張層が、直接もしくは中間層を介して接合されているクラッド材から構成される異種金属接合材であって、少なくとも前記高熱膨張層の表面に厚み10nm以上120nm以下の耐食性めっき層を有する。   In the dissimilar metal bonding material according to one aspect of the present invention, a high thermal expansion layer composed of an alloy containing Mn and a low thermal expansion layer composed of an alloy containing Ni are joined directly or via an intermediate layer. It is a dissimilar metal bonding material composed of a clad material, and has a corrosion-resistant plating layer having a thickness of 10 nm to 120 nm on at least the surface of the high thermal expansion layer.

また、本発明の一側面に係る異種金属接合材の製造方法は、Mnを含む合金から構成される高熱膨張層と、Niを含む合金から構成される低熱膨張層とが、直接または中間層を介して接合されているクラッド材の表面を脱脂する脱脂処理と、前記クラッド材の少なくとも前記高熱膨張層の表面を洗浄する表面洗浄処理と、前記クラッド材の少なくとも前記高熱膨張層の表面に耐食性めっき層を設ける耐食性めっき処理を行い、前記高熱膨張層の表面からめっき液を除去する脱めっき液処理と、前記クラッド材を乾燥させる乾燥処理と、をこの順に行って、少なくとも前記高熱膨張層の表面に厚さ10nm以上120nm以下の前記耐食性めっき層を有する異種金属接合材を形成する。   Further, in the method for producing a dissimilar metal bonding material according to one aspect of the present invention, a high thermal expansion layer composed of an alloy containing Mn and a low thermal expansion layer composed of an alloy containing Ni are directly or intermediately formed. A degreasing process for degreasing the surface of the clad material bonded via the surface, a surface cleaning process for cleaning at least the surface of the high thermal expansion layer of the clad material, and a corrosion-resistant plating on the surface of at least the high thermal expansion layer of the clad material A corrosion-resistant plating treatment is performed to provide a layer, and a deplating solution treatment for removing the plating solution from the surface of the high thermal expansion layer and a drying treatment for drying the clad material are performed in this order, and at least the surface of the high thermal expansion layer A dissimilar metal bonding material having the corrosion-resistant plating layer with a thickness of 10 nm to 120 nm is formed.

本発明によれば、腐食に起因する寿命を延ばすことが可能な耐食性を有し、かつ、本来特性との差異が小さい異種金属接合材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the dissimilar metal joining material which has the corrosion resistance which can prolong the lifetime resulting from corrosion, and has a small difference with an original characteristic is provided.

本実施形態に係る異種金属接合材の断面図である。It is sectional drawing of the dissimilar metal joining material which concerns on this embodiment. 変形例1に係る異種金属接合材の断面図である。6 is a cross-sectional view of a dissimilar metal bonding material according to Modification 1. FIG. 変形例2に係る異種金属接合材の断面図である。It is sectional drawing of the dissimilar metal joining material which concerns on the modification 2. FIG. 変形例3に係る異種金属接合材の断面図である。It is sectional drawing of the dissimilar metal joining material which concerns on the modification 3. FIG. 耐食性めっき層の厚みと体積抵抗率の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a corrosion-resistant plating layer, and volume resistivity. 耐食性めっき層の厚みとわん曲係数の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a corrosion-resistant plating layer, and a curvature coefficient. バイメタルに腐食試験を行った後の高熱膨張層の表面を示す写真である。It is a photograph which shows the surface of the high thermal expansion layer after performing a corrosion test to bimetal.

以下、本発明の異種金属接合材およびその製造方法の実施形態の例を、図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、金属材料組成および元素含有割合は、特に断らない限り、質量%で示される。   Hereinafter, an example of an embodiment of a dissimilar metal bonding material and a manufacturing method thereof according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included. Moreover, unless otherwise indicated, a metal material composition and an element content rate are shown by the mass%.

図1は、本実施形態に係るバイメタル1(異種金属接合材の一例)の断面図である。図1に示すように、バイメタル1は、高熱膨張層2と、低熱膨張層3と、耐食性めっき層4を有している。図示した例では、耐食性めっき層4、高熱膨張層2、低熱膨張層3がこの順に並んで設けられている。   FIG. 1 is a cross-sectional view of a bimetal 1 (an example of a dissimilar metal bonding material) according to the present embodiment. As shown in FIG. 1, the bimetal 1 has a high thermal expansion layer 2, a low thermal expansion layer 3, and a corrosion-resistant plating layer 4. In the illustrated example, the corrosion-resistant plating layer 4, the high thermal expansion layer 2, and the low thermal expansion layer 3 are provided in this order.

高熱膨張層2および低熱膨張層3は、圧延および拡散焼鈍などを経て接合されたクラッド材から構成されている。なお、高熱膨張層2と低熱膨張層3との間に中間層(図示せず)を加えて、圧延および拡散焼鈍などを経て接合されたクラッド材から構成されたトリメタル(異種金属接合材の一例)にも、本発明の適用は可能である。耐食性めっき層4を有さないクラッド材の全厚みは50μm以上1mm以下であってよい。なお、全厚みが50μm以上0.5mm以下の比較的薄いクラッド材の場合は特に腐食の影響度合いが大きいと考えられるので、耐食性めっき層4を有して耐食性を得ることは特に有効である。   The high thermal expansion layer 2 and the low thermal expansion layer 3 are made of a clad material joined through rolling and diffusion annealing. In addition, an intermediate layer (not shown) is added between the high thermal expansion layer 2 and the low thermal expansion layer 3, and a trimetal (an example of a dissimilar metal bonding material) composed of a clad material joined through rolling, diffusion annealing, or the like. The application of the present invention is also possible. The total thickness of the clad material not having the corrosion-resistant plating layer 4 may be 50 μm or more and 1 mm or less. In the case of a relatively thin clad material having a total thickness of 50 μm or more and 0.5 mm or less, it is considered that the degree of influence of corrosion is particularly large. Therefore, it is particularly effective to obtain the corrosion resistance by having the corrosion resistant plating layer 4.

高熱膨張層2(高熱膨張層2を構成する素材板の材質)は、Mnを含む合金(金属)から構成されている。この高熱膨張層2は、熱膨張係数を高める効果が期待されるMnを意図的に添加して含ませることによって、低熱膨張層3よりも熱膨張係数が大きくなるように構成されている。この高熱膨張層2は、Mnを含むFe−Ni−Mn系合金であって、15%以上30%以下(好ましくは20%以上26%以下、より好ましくは22%以上24%以下)のNi、2%以上10%以下(好ましくは5%以上6%以下)のMn、残部Feおよび不可避不純物から構成されていてもよい。
この高熱膨張層2は、Mnを含むCu−Mn−Ni系合金であって、60%以上80%以下(好ましくは65%以上75%以下、より好ましくは70%以上73%以下)のMn、5%以上20%以下(好ましくは7%以上15%以下、より好ましくは9%以上11%以下)のNi、残部Cuおよび不可避不純物から構成されていてもよい。
この高熱膨張層2を構成する素材板の材質は、上記Fe−Ni−Mn系合金および上記Cu−Mn−Ni系合金の他、JIS C2530に準拠するTM1(Mn−8Cu−20NiなどのMn−Cu−Ni系)やTM2およびTM4〜6(Fe−Ni−Mn系)などを例示することができる。こうした材質(合金組成)から構成される素材板(高熱膨張層)であれば、材質の選択によって30℃から100℃までの平均熱膨張係数を18×10−6/℃以上28.5×10−6/℃以下の範囲内で設定可能であって、過度な通電によって発熱した際の熱膨張が大きいので、バイメタルおよびトリメタルに好適である。なお、高熱膨張層2の厚みは、耐食性めっき層4を有さないクラッド材の全厚みの50%以上60%以下(例えば25μm以上0.6mm以下)であってよい。
The high thermal expansion layer 2 (the material of the material plate constituting the high thermal expansion layer 2) is made of an alloy (metal) containing Mn. The high thermal expansion layer 2 is configured to have a larger thermal expansion coefficient than the low thermal expansion layer 3 by intentionally adding and containing Mn, which is expected to increase the thermal expansion coefficient. This high thermal expansion layer 2 is an Fe—Ni—Mn based alloy containing Mn, and is 15% or more and 30% or less (preferably 20% or more and 26% or less, more preferably 22% or more and 24% or less) Ni, It may be composed of 2% or more and 10% or less (preferably 5% or more and 6% or less) of Mn, the remaining Fe, and inevitable impurities.
The high thermal expansion layer 2 is a Cu—Mn—Ni-based alloy containing Mn, and has a Mn of 60% to 80% (preferably 65% to 75%, more preferably 70% to 73%), It may be composed of 5% or more and 20% or less (preferably 7% or more and 15% or less, more preferably 9% or more and 11% or less) of Ni, the remaining Cu, and inevitable impurities.
In addition to the Fe—Ni—Mn alloy and the Cu—Mn—Ni alloy, TM1 (Mn—such as Mn-8Cu-20Ni, etc.) conforming to JIS C2530 can be used. Cu-Ni-based), TM2 and TM4-6 (Fe-Ni-Mn-based) can be exemplified. If it is a raw material board (high thermal expansion layer) comprised from such a material (alloy composition), the average thermal expansion coefficient from 30 degreeC to 100 degreeC will be 18x10 < -6 > / degrees C or more and 28.5x10 by selection of a material. It can be set within a range of −6 / ° C. or less, and is suitable for bimetals and trimetals because of its large thermal expansion when it generates heat due to excessive energization. The thickness of the high thermal expansion layer 2 may be 50% or more and 60% or less (for example, 25 μm or more and 0.6 mm or less) of the total thickness of the clad material that does not have the corrosion-resistant plating layer 4.

低熱膨張層3(低熱膨張層3を構成する素材板の材質)は、Niを含む合金(金属)から構成されている。この低熱膨張層3は、熱膨張係数を高める可能性があるMnやCuなどの元素を、不可避不純物として含むことはあっても意図的な添加元素として合金に含まないことによって、高熱膨張層2よりも熱膨張係数が小さくなるように構成されている。この低熱膨張層3は、Niを含むFe−Ni系合金であって、30%以上60%以下(好ましくは33%以上55%以下、より好ましくは33%以上51%以下)のNi、残部Feおよび不可避不純部から構成されていてもよい。
この低熱膨張層3を構成する素材板の材質は、Fe−42Ni系(42アロイ)またはFe−36Ni系(36アロイ)などの上記Fe−Ni系合金の他、Fe−29Ni−17Co系、Fe−36Ni−12Cr、Fe−36Ni−9Cr、Fe−42Ni−5.5Cr−1Ti、Fe−43Ni−5Cr−3Ti−1Coなどの合金を例示することができる。
こうした材質(合金組成)から構成される素材板(低熱膨張層)であれば、材質の選択によって30℃から100℃までの平均熱膨張係数を0.5×10−6/℃以上11.0×10−6/℃以下の範囲内で設定可能であって、過度な通電によって発熱した際の熱膨張が小さいので、バイメタルおよびトリメタルに好適である。また、低熱膨張層および高熱膨張層の素材板の組合せの選択によって、30℃から100℃までの低熱膨張層と高熱膨張層の平均熱膨張係数の差を7×10−6/℃以上28×10−6/℃以下の範囲内で設定可能であって、わん曲係数を多様に選択できるので、バイメタルおよびトリメタルに好適である。なお、低熱膨張層3の厚みは、耐食性めっき層4を有さないクラッド材の全厚みの40%以上50%以下(例えば20μm以上0.5mm以下)であってよい。
The low thermal expansion layer 3 (the material of the material plate constituting the low thermal expansion layer 3) is made of an alloy (metal) containing Ni. The low thermal expansion layer 3 includes elements such as Mn and Cu that may increase the thermal expansion coefficient as inevitable impurities, but does not include them as an intentional additive element in the alloy. It is comprised so that a thermal expansion coefficient may become small. This low thermal expansion layer 3 is an Fe—Ni alloy containing Ni, and is 30% or more and 60% or less (preferably 33% or more and 55% or less, more preferably 33% or more and 51% or less), and the remaining Fe. And it may consist of inevitable impure parts.
The material of the material plate constituting the low thermal expansion layer 3 includes the Fe-Ni alloy such as Fe-42Ni (42 alloy) or Fe-36Ni (36 alloy), Fe-29Ni-17Co, Fe Examples of the alloy include -36Ni-12Cr, Fe-36Ni-9Cr, Fe-42Ni-5.5Cr-1Ti, and Fe-43Ni-5Cr-3Ti-1Co.
If it is a raw material board (low thermal expansion layer) comprised from such a material (alloy composition), the average thermal expansion coefficient from 30 degreeC to 100 degreeC will be 0.5 * 10 < -6 > / degreeC or more 11.0 or more by selection of a material. × 10 −6 / ° C. or less can be set, and since thermal expansion is small when heat is generated by excessive energization, it is suitable for bimetals and trimetals. Further, by selecting a combination of material plates of the low thermal expansion layer and the high thermal expansion layer, the difference in average thermal expansion coefficient between the low thermal expansion layer and the high thermal expansion layer from 30 ° C. to 100 ° C. is 7 × 10 −6 / ° C. or more and 28 × Since it can be set within a range of 10 −6 / ° C. or less and the curvature coefficient can be selected variously, it is suitable for bimetal and trimetal. The thickness of the low thermal expansion layer 3 may be 40% or more and 50% or less (for example, 20 μm or more and 0.5 mm or less) of the total thickness of the clad material that does not have the corrosion-resistant plating layer 4.

耐食性めっき層4は、耐食性が期待できる金属から構成されるめっき層であって、少なくとも高熱膨張層2の表面に設けられている。なお、高熱膨張層2の表面とは、高熱膨張層2の低熱膨張層3が接合される面(もしくは中間層が接合される面)に対向する面に相当する。耐食性めっき層4としては、例えば、ニッケルめっき層(Niめっき層)およびニッケルリンめっき層(Ni−Pめっき層)の他、ニッケルボロンめっき層(Ni−Bめっき層)およびニッケルクロム(3価)めっき層(Ni−3価Crめっき層)などが適用可能と考えられる。上記したNi系めっき層はいずれも耐食性に優れる。一例を挙げると、Niめっき層は電気抵抗が小さく、電解めっき処理で形成されたNiめっき層は電気抵抗がより小さい。Pを例えば2質量%以上13質量%以下で含むNi−Pめっき層は、P量の増加とともに耐食性(特に耐酸性)が向上する。Bを例えば0.3質量%以上1質量%以下で含むNi−Bめっき層は、表面酸化しにくく加熱しても変色しにくい、比抵抗が例えば5μΩ・cm以上7μΩ・cm以下で小さい、はんだ付け性がよいなどの利点がある。   The corrosion-resistant plating layer 4 is a plating layer made of a metal that can be expected to have corrosion resistance, and is provided on at least the surface of the high thermal expansion layer 2. The surface of the high thermal expansion layer 2 corresponds to a surface facing the surface to which the low thermal expansion layer 3 of the high thermal expansion layer 2 is bonded (or the surface to which the intermediate layer is bonded). Examples of the corrosion-resistant plating layer 4 include a nickel plating layer (Ni plating layer) and a nickel phosphorus plating layer (Ni-P plating layer), a nickel boron plating layer (Ni-B plating layer), and nickel chromium (trivalent). A plating layer (Ni-3valent Cr plating layer) or the like is considered applicable. Any of the above-described Ni-based plating layers is excellent in corrosion resistance. For example, the Ni plating layer has a low electric resistance, and the Ni plating layer formed by the electrolytic plating process has a low electric resistance. For example, a Ni—P plating layer containing P in an amount of 2% by mass or more and 13% by mass or less improves the corrosion resistance (particularly acid resistance) as the amount of P increases. The Ni-B plating layer containing B in an amount of 0.3% by mass to 1% by mass, for example, is less likely to be surface oxidized and discolored even when heated, and has a small specific resistance of, for example, 5 μΩ · cm to 7 μΩ · cm. There are advantages such as good attachment.

耐食性めっき層4として好ましくはNiめっき層である。Niめっき層は、電解Niめっき処理(電気Niめっき処理ともいう)または無電解Niめっき処理により容易に作製することができる。一般的に、電解Niめっき処理は、無電解Niめっき処理に比べて処理時間が短く、低コスト化が可能なので好ましい。この耐食性めっき層4の厚みは10nm以上120nm以下とする。耐食性めっき層4は厚みが10nm以上120nm以下とされているので、耐食性めっき層4の剛性は、Mnを含む合金から構成される高熱膨張層2およびNiを含む合金から構成される低熱膨張層3と比べて、極めて小さい。このため、耐食性めっき層4を有していたとしてもバイメタル1のわん曲係数が変化しにくい。つまり、本実施形態に係る耐食性めっき層4を有するバイメタル1は、耐食性めっき層を有さないバイメタルのわん曲係数と近いわん曲係数を有することができる。   The corrosion resistant plating layer 4 is preferably a Ni plating layer. The Ni plating layer can be easily produced by electrolytic Ni plating treatment (also referred to as electric Ni plating treatment) or electroless Ni plating treatment. In general, the electrolytic Ni plating treatment is preferable because the treatment time is shorter than that of the electroless Ni plating treatment and the cost can be reduced. The thickness of the corrosion-resistant plating layer 4 is 10 nm or more and 120 nm or less. Since the corrosion-resistant plating layer 4 has a thickness of 10 nm to 120 nm, the corrosion-resistant plating layer 4 has a high thermal expansion layer 2 made of an alloy containing Mn and a low thermal expansion layer 3 made of an alloy containing Ni. Compared to For this reason, even if it has the corrosion-resistant plating layer 4, the curvature coefficient of the bimetal 1 does not change easily. That is, the bimetal 1 having the corrosion-resistant plating layer 4 according to this embodiment can have a curvature coefficient close to that of the bimetal that does not have the corrosion-resistant plating layer.

耐食性めっき層4は厚みが10nm以上120nm以下とされているので、耐食性めっき層を有さずに高熱膨張層および低熱膨張層から構成されたバイメタルと比べて、耐食性めっき層4による体積抵抗率の変化は極めて小さい。このため、バイメタル1に通電しようとする際に、電流は高熱膨張層2と低熱膨張層3を流れることができる。このため、耐食性めっき層4を有していてもバイメタル1の体積抵抗率が変化しにくい。つまり、本実施形態に係る耐食性めっき層4を有するバイメタル1は、耐食性めっき層を有さないバイメタルの体積抵抗率と近い体積抵抗率を有することができる。   Since the corrosion-resistant plating layer 4 has a thickness of 10 nm or more and 120 nm or less, the volume resistivity of the corrosion-resistant plating layer 4 is higher than that of a bimetal composed of a high thermal expansion layer and a low thermal expansion layer without the corrosion resistance plating layer. The change is very small. For this reason, when energizing the bimetal 1, current can flow through the high thermal expansion layer 2 and the low thermal expansion layer 3. For this reason, even if it has the corrosion-resistant plating layer 4, the volume resistivity of the bimetal 1 hardly changes. That is, the bimetal 1 having the corrosion-resistant plating layer 4 according to the present embodiment can have a volume resistivity close to that of a bimetal that does not have a corrosion-resistant plating layer.

このように、厚みが10nm以上120nm以下の耐食性めっき層4を有する本実施形態のバイメタル1は、耐食性めっき層4によって腐食に起因する寿命を延ばすことができ、かつ、耐食性めっき層を有さない本来のバイメタルの特性との差異が小さい。このバイメタル1の耐食性は、耐食性めっき層4の厚みを20nm、30nm、さらに40nmと厚くすることによって、より高くすることができる。このバイメタル1の耐食性めっき層を有さない本来のバイメタルの特性との差異は、耐食性めっき層4の厚みを110nm、100nm、90nm、80nm、さらに70nmと薄くすることによって、より小さくすることができる。こうした観点から、この耐食性めっき層4の厚みは、例えば30nm以上80nm以下(もしくは40nm以上70nm以下)とすることによって、腐食に起因する寿命をさらに延ばすことができ、かつ、耐食性めっき層を有さない本来のバイメタルの特性(体積抵抗率)との差異がより小さくなる。   Thus, the bimetal 1 of this embodiment having the corrosion-resistant plating layer 4 having a thickness of 10 nm to 120 nm can extend the life due to corrosion by the corrosion-resistant plating layer 4 and does not have a corrosion-resistant plating layer. The difference from the original bimetal characteristics is small. The corrosion resistance of the bimetal 1 can be further increased by increasing the thickness of the corrosion-resistant plating layer 4 to 20 nm, 30 nm, and 40 nm. The difference between the characteristics of the original bimetal without the corrosion-resistant plating layer of the bimetal 1 can be further reduced by reducing the thickness of the corrosion-resistant plating layer 4 to 110 nm, 100 nm, 90 nm, 80 nm, and 70 nm. . From such a viewpoint, the thickness of the corrosion-resistant plating layer 4 is, for example, not less than 30 nm and not more than 80 nm (or not less than 40 nm and not more than 70 nm), so that the life due to corrosion can be further extended and the corrosion-resistant plating layer is provided. The difference from the original bimetal characteristics (volume resistivity) becomes smaller.

ところで、高熱膨張層2を構成する金属は上述した理由でMnを含む合金から構成されている。一般的にMnを含む合金は腐食しやすいため、上述した理由でMnを含まずにNiを含む合金から構成される低熱膨張層3よりも、高熱膨張層2は腐食しやすい。このため、バイメタル1の腐食は高熱膨張層2から先に進む。バイメタル1の腐食による劣化を抑制するために、特許文献1のように不動態膜を高熱膨張層2の表面に設けることが考えられる。しかし、高熱膨張層2は低熱膨張層3よりも熱膨張係数が大きいため、温度変化によって寸法が大きく変化する。このため、高熱膨張層2の表面に不動態膜を設けた場合には、不動態膜が高熱膨張層2の寸法変化に追従できず、不動態膜が割れてしまいやすいことに気が付いた。さらに、不動態膜が割れている箇所から高熱膨張層2の腐食が急激に進むことに気が付いた。   By the way, the metal which comprises the high thermal expansion layer 2 is comprised from the alloy containing Mn for the reason mentioned above. In general, an alloy containing Mn is easily corroded. Therefore, the high thermal expansion layer 2 is more easily corroded than the low thermal expansion layer 3 made of an alloy containing Ni without containing Mn for the above-described reason. For this reason, the corrosion of the bimetal 1 proceeds from the high thermal expansion layer 2. In order to suppress deterioration of the bimetal 1 due to corrosion, it is conceivable to provide a passive film on the surface of the high thermal expansion layer 2 as in Patent Document 1. However, since the high thermal expansion layer 2 has a larger coefficient of thermal expansion than the low thermal expansion layer 3, the dimensions change greatly due to temperature changes. For this reason, when a passive film was provided on the surface of the high thermal expansion layer 2, it was found that the passive film could not follow the dimensional change of the high thermal expansion layer 2 and the passive film was likely to break. Furthermore, it was noticed that the corrosion of the high thermal expansion layer 2 rapidly progresses from the location where the passive film is cracked.

そこで本実施形態に係るバイメタル1によれば、厚みが10nm以上120nm以下の耐食性めっき層4が高熱膨張層2の表面に設けられている。金属から構成される厚みが小さい耐食性めっき層4は、硬くて脆い金属の酸化膜である不動態膜に比べて熱膨張係数が大きく、また、弾性係数も小さい。このため、耐食性めっき層4は高熱膨張層2の寸法変化に追従しやすく、バイメタル1に繰り返し温度変化が作用しても耐食性めっき層4に割れが生じにくい。このため、高熱膨張層2の表面に厚みが10nm以上120nm以下の耐食性めっき層4が設けられた本実施形態に係るバイメタル1は腐食しにくく、腐食に起因する寿命が長い。   Therefore, according to the bimetal 1 according to the present embodiment, the corrosion-resistant plating layer 4 having a thickness of 10 nm or more and 120 nm or less is provided on the surface of the high thermal expansion layer 2. The corrosion-resistant plating layer 4 made of metal and having a small thickness has a larger coefficient of thermal expansion and a smaller elastic coefficient than a passive film that is a hard and brittle metal oxide film. For this reason, the corrosion-resistant plating layer 4 can easily follow the dimensional change of the high thermal expansion layer 2, and the corrosion-resistant plating layer 4 is not easily cracked even if the temperature change is repeatedly applied to the bimetal 1. For this reason, the bimetal 1 according to the present embodiment in which the corrosion-resistant plating layer 4 having a thickness of 10 nm or more and 120 nm or less is provided on the surface of the high thermal expansion layer 2 is hardly corroded and has a long lifetime due to the corrosion.

なお、図1では高熱膨張層2の表面にのみ耐食性めっき層4を設ける構成を説明したが、本発明はこの例に限られない。図2に示すように、高熱膨張層2の表面とバイメタル1の側面を被覆するように耐食性めっき層4を設けてもよい。あるいは、図3に示すように、高熱膨張層2の表面と低熱膨張層3の表面にそれぞれ耐食性めっき層4を設けてもよい。さらには、図4に示すように、バイメタル1の全周を被覆するように耐食性めっき層4を設けてもよい。   In addition, although the structure which provides the corrosion-resistant plating layer 4 only on the surface of the high thermal expansion layer 2 was demonstrated in FIG. 1, this invention is not limited to this example. As shown in FIG. 2, a corrosion-resistant plating layer 4 may be provided so as to cover the surface of the high thermal expansion layer 2 and the side surface of the bimetal 1. Or as shown in FIG. 3, you may provide the corrosion-resistant plating layer 4 in the surface of the high thermal expansion layer 2, and the surface of the low thermal expansion layer 3, respectively. Furthermore, as shown in FIG. 4, a corrosion-resistant plating layer 4 may be provided so as to cover the entire circumference of the bimetal 1.

また、図1〜図4に示す例では、高熱膨張層2と低熱膨張層3とが直接接合されているバイメタル1を示したが、高熱膨張層2と低熱膨張層3が中間層を介して接合されているトリメタルに本発明を適用してもよい。トリメタルに本発明を適用する場合でも、少なくとも高熱膨張層2の表面に、厚みが10nm以上120nm以下の耐食性めっき層4を設ける。中間層を構成する素材板の材質としては、Cu(純Cu)またはCu合金(耐熱Cu合金など)、Ni(純Ni)またはNi合金、Ni−Cu系合金およびZr−Cu系合金などを例示することができる。   1 to 4 show the bimetal 1 in which the high thermal expansion layer 2 and the low thermal expansion layer 3 are directly joined, the high thermal expansion layer 2 and the low thermal expansion layer 3 are interposed via an intermediate layer. The present invention may be applied to a joined trimetal. Even when the present invention is applied to the trimetal, the corrosion-resistant plating layer 4 having a thickness of 10 nm to 120 nm is provided on at least the surface of the high thermal expansion layer 2. Examples of the material of the material plate constituting the intermediate layer include Cu (pure Cu) or Cu alloy (such as heat-resistant Cu alloy), Ni (pure Ni) or Ni alloy, Ni—Cu alloy, and Zr—Cu alloy. can do.

なお、バイメタル1は、識別用マーク5が付されて市場に流通することが多い。この識別用マーク5は、バイメタル1を取り扱う際に高熱膨張層2側または低熱膨張層3側の表面を識別するためなどに用いられる。図1から図4において、識別用マークを符号5で表している。   The bimetal 1 is often distributed in the market with an identification mark 5 attached. The identification mark 5 is used for identifying the surface of the high thermal expansion layer 2 side or the low thermal expansion layer 3 side when the bimetal 1 is handled. In FIG. 1 to FIG. 4, the identification mark is denoted by reference numeral 5.

この識別用マーク5は、図1および図3に示したように高熱膨張層2側の耐食性めっき層4の表面に設けることができる。あるいは、図2に示したように識別用マーク5は外部に露出した低熱膨張層3の表面に設けることができる。あるいは、図4に示したように識別用マーク5は低熱膨張層3側の耐食性めっき層4の表面に設けることができる。   This identification mark 5 can be provided on the surface of the corrosion-resistant plating layer 4 on the high thermal expansion layer 2 side as shown in FIGS. Alternatively, as shown in FIG. 2, the identification mark 5 can be provided on the surface of the low thermal expansion layer 3 exposed to the outside. Alternatively, as shown in FIG. 4, the identification mark 5 can be provided on the surface of the corrosion-resistant plating layer 4 on the low thermal expansion layer 3 side.

この識別用マーク5は、酸エッチング、インク印刷(インクジェットプリンタなど)、レーザー照射(レーザーマーキング)、あるいは刻印などの方法によって形成することができる。この識別用マーク5は、バイメタル1の表面を実質的に傷付けないインク印刷、あるいはバイメタル1の表面を比較的浅く傷付ける酸エッチングによって形成するのが好ましい。なお、識別用マーク5をレーザー照射や刻印によって形成すると、識別用マーク5を形成する耐食性めっき層4の下地である高熱膨張層2または低熱膨張層3まで傷付いて機械的特性を変化させてしまい、バイメタル1のわん曲係数が変化してしまう可能性があるので注意を要する。   The identification mark 5 can be formed by a method such as acid etching, ink printing (such as an ink jet printer), laser irradiation (laser marking), or marking. The identification mark 5 is preferably formed by ink printing that does not substantially damage the surface of the bimetal 1 or acid etching that damages the surface of the bimetal 1 relatively shallowly. When the identification mark 5 is formed by laser irradiation or engraving, the high thermal expansion layer 2 or the low thermal expansion layer 3 which is the base of the corrosion-resistant plating layer 4 forming the identification mark 5 is damaged and mechanical characteristics are changed. Therefore, care should be taken because the curvature coefficient of the bimetal 1 may change.

なお、図示は略すが、識別用マーク5を耐食性めっき層4で覆われる高熱膨張層2または低熱膨張層3の表面に設けることも可能である。この場合、耐食性めっき層4の厚みが大きくなると、識別用マーク5が不鮮明あるいは透過しにくく読み取り困難になる可能性がある。このため、識別用マーク5は耐食性めっき層4の表面、または、外部に露出した低熱膨張層3の表面に設けることが好ましい。   Although not shown, the identification mark 5 can be provided on the surface of the high thermal expansion layer 2 or the low thermal expansion layer 3 covered with the corrosion-resistant plating layer 4. In this case, if the thickness of the corrosion-resistant plating layer 4 is increased, the identification mark 5 may be unclear or difficult to be read and difficult to read. For this reason, the identification mark 5 is preferably provided on the surface of the corrosion-resistant plating layer 4 or on the surface of the low thermal expansion layer 3 exposed to the outside.

<製造方法>
次に、上述したバイメタル1の製造方法を説明する。
まず、高熱膨張層2と低熱膨張層3とが接合されたクラッド材を作製する。クラッド材は、一般的なクラッド圧延技術によって作製することができる。まず、軟化焼鈍や調質圧延などによりクラッド圧延に適する伸びや硬さに調整した各々所定厚みの高熱膨張層2となる素材板および低熱膨張層3となる素材板の2種類の素材板を準備する。次に、この2種の素材板をクラッド圧延し、適宜、焼鈍し、所定の厚みのクラッド材を作製する。なお、クラッド圧延を行う際に、クラッド材が適切な厚みになったときに、元素の拡散作用によって接合強度を高めるための拡散焼鈍(熱処理)を行う。また、拡散焼鈍を行った後でも、必要に応じてさらに圧延し、厚みを薄くすることができる。こうしたクラッド圧延を行って、高熱膨張層2および低熱膨張層3となる2種類の素材板を接合するとともに薄肉化し、所定の厚みのクラッド材を作製する。
<Manufacturing method>
Next, the manufacturing method of the bimetal 1 mentioned above is demonstrated.
First, a clad material in which the high thermal expansion layer 2 and the low thermal expansion layer 3 are joined is manufactured. The clad material can be produced by a general clad rolling technique. First, two types of material plates are prepared: a material plate to be a high thermal expansion layer 2 and a material plate to be a low thermal expansion layer 3 each having a predetermined thickness adjusted to elongation and hardness suitable for clad rolling by soft annealing or temper rolling. To do. Next, the two types of material plates are clad-rolled and appropriately annealed to produce a clad material having a predetermined thickness. In addition, when performing clad rolling, when the clad material has an appropriate thickness, diffusion annealing (heat treatment) is performed to increase the bonding strength by the element diffusion action. Moreover, even after performing the diffusion annealing, the thickness can be reduced by further rolling as necessary. Such clad rolling is performed to join two kinds of material plates to be the high thermal expansion layer 2 and the low thermal expansion layer 3 and reduce the thickness to produce a clad material having a predetermined thickness.

次に、このようにして得られた全厚みが例えば50μm以上1mm以下のクラッド材の表面を脱脂する脱脂処理を行う。脱脂処理は、温度が10〜80℃程度の脱脂液に約20秒間浸漬する(シャワー浴でもよい)。こうした脱脂処理は、フープのクラッド材をそのまま脱脂する連続処理でもよいし、クラッド材を個片化してからバレル処理で脱脂してもよい。   Next, a degreasing process for degreasing the surface of the clad material having a total thickness of 50 μm or more and 1 mm or less is performed. The degreasing treatment is immersed in a degreasing solution having a temperature of about 10 to 80 ° C. for about 20 seconds (a shower bath may be used). Such degreasing treatment may be a continuous treatment in which the hoop clad material is degreased as it is, or the clad material may be separated into individual pieces and then degreased by barrel treatment.

次に、脱脂処理で用いた脱脂液をクラッド材の表面から除去する表面洗浄処理を行う。洗浄処理は、温度が10〜80℃程度の水を用いた約10秒間のシャワー浴でもよいし、浸漬でもよい。こうした洗浄処理は、フープのクラッド材をそのまま洗浄する連続処理でもよいし、クラッド材を個片化してからバレル処理で洗浄してもよい   Next, the surface cleaning process which removes the degreasing liquid used by the degreasing process from the surface of a clad material is performed. The cleaning treatment may be a shower bath for about 10 seconds using water having a temperature of about 10 to 80 ° C., or may be immersed. Such a cleaning process may be a continuous process in which the hoop cladding material is cleaned as it is, or may be cleaned by barrel processing after the cladding material has been separated into pieces.

さらに、クラッド材の少なくとも高熱膨張層2の表面に耐食性めっき層4を設ける耐食性めっき処理を行う。この耐食性めっき処理により、少なくとも高熱膨張層2の表面に厚みが10nm以上120nm以下の耐食性めっき層4を形成する。
耐食性めっき処理は、上記のように好ましいと考える電解めっき処理であって、pHが4.5〜6.0程度、温度が20〜35℃の電解Niめっき液を用いて約2秒間の電解めっき処理を行う。こうした電解めっき処理を用いて耐食性めっき層4を形成する場合は、フープのクラッド材をそのままめっきする連続処理でも、クラッド材を個片化してからのバレル処理でめっきしてもよい。耐食性めっき処理は、処理時間や処理コストの低減の観点では電解Niめっき処理が好ましいが、めっき膜の厚みの寸法精度を高めたい場合は無電解めっき処理が好ましい。
Further, a corrosion-resistant plating process is performed in which the corrosion-resistant plating layer 4 is provided on the surface of at least the high thermal expansion layer 2 of the clad material. By this corrosion-resistant plating treatment, a corrosion-resistant plating layer 4 having a thickness of 10 nm to 120 nm is formed at least on the surface of the high thermal expansion layer 2.
The corrosion-resistant plating treatment is an electrolytic plating treatment that is considered preferable as described above, and is an electrolytic plating for about 2 seconds using an electrolytic Ni plating solution having a pH of about 4.5 to 6.0 and a temperature of 20 to 35 ° C. Process. When the corrosion-resistant plating layer 4 is formed by using such an electrolytic plating process, the plating may be performed by a continuous process in which the hoop clad material is plated as it is or by a barrel process after the clad material is separated into pieces. The corrosion-resistant plating treatment is preferably electrolytic Ni plating treatment from the viewpoint of reducing treatment time and treatment cost, but electroless plating treatment is preferred when it is desired to increase the dimensional accuracy of the thickness of the plating film.

このとき、図1に示したバイメタル1においては、クラッド材の側面および低熱膨張層3の表面をマスキングし、高熱膨張層2の表面にのみ耐食性めっき層4を形成する。図2に示したバイメタル1においては、クラッド材の側面をマスキングせず、低熱膨張層3の表面をマスキングし、クラッド材の側面および高熱膨張層2の表面に耐食性めっき層4を形成する。図3に示したバイメタル1においては、クラッド材の側面をマスキングし、高熱膨張層2の表面と低熱膨張層3の表面に耐食性めっき層4を形成する。図4に示したバイメタル1においては、クラッド材をマスキングせず、高熱膨張層2の表面と低熱膨張層3の表面を含む全周に耐食性めっき層4を形成する。   At this time, in the bimetal 1 shown in FIG. 1, the side surface of the clad material and the surface of the low thermal expansion layer 3 are masked, and the corrosion-resistant plating layer 4 is formed only on the surface of the high thermal expansion layer 2. In the bimetal 1 shown in FIG. 2, the side surface of the cladding material is not masked, the surface of the low thermal expansion layer 3 is masked, and the corrosion-resistant plating layer 4 is formed on the side surface of the cladding material and the surface of the high thermal expansion layer 2. In the bimetal 1 shown in FIG. 3, the side surface of the clad material is masked, and the corrosion-resistant plating layer 4 is formed on the surface of the high thermal expansion layer 2 and the surface of the low thermal expansion layer 3. In the bimetal 1 shown in FIG. 4, the corrosion resistant plating layer 4 is formed on the entire circumference including the surface of the high thermal expansion layer 2 and the surface of the low thermal expansion layer 3 without masking the clad material.

次に、少なくとも高熱膨張層2の表面からめっき液を除去する脱めっき液処理を行う。脱めっき液処理は、温度が10〜80℃程度の水を用いた約10秒間のシャワー浴でもよいし、浸漬でもよい。こうした脱めっき液処理は、フープのクラッド材をそのまま連続処理してもよいし、クラッド材を個片化してからのバレル処理を行ってもよい。   Next, a deplating solution treatment for removing the plating solution from at least the surface of the high thermal expansion layer 2 is performed. The deplating solution treatment may be a shower bath for about 10 seconds using water having a temperature of about 10 to 80 ° C., or may be immersed. In such a deplating solution treatment, the hoop clad material may be continuously treated as it is, or the clad material may be separated into individual barrels.

次に、クラッド材を乾燥させる乾燥処理を行う。乾燥処理は、温度が100〜150℃程度の大気を用いて温風浴(保温炉に入れてもよい)を約10秒間行う。こうした乾燥処理は、フープのクラッド材をそのまま連続処理して乾燥させてもよいし、クラッド材を個片化してからバレル処理で乾燥させてもよい。   Next, a drying process for drying the clad material is performed. In the drying process, a warm air bath (which may be placed in a heat-retaining furnace) is performed for about 10 seconds using an atmosphere having a temperature of about 100 to 150 ° C. In such a drying process, the clad material of the hoop may be continuously treated and dried as it is, or the clad material may be separated into individual pieces and dried by barrel treatment.

なお、耐食性めっき層4を形成した後に識別用マーク5を付与することが好ましい。識別用マーク5は、高熱膨張層2の表面に形成してもよいし、低熱膨張層3の表面に形成してもよい。   In addition, it is preferable to provide the identification mark 5 after forming the corrosion-resistant plating layer 4. The identification mark 5 may be formed on the surface of the high thermal expansion layer 2 or may be formed on the surface of the low thermal expansion layer 3.

この識別用マーク5は、酸エッチングやインク印刷(インクジェットプリンタ)などの方法によって付与することができる。なお、高熱膨張層2の表面に酸エッチングにより識別用マーク5を付与することが好ましい。Mnを含む合金から構成される高熱膨張層2は、酸エッチングで腐食しやすく、腐食(酸化)により鮮明に着色された識別用マーク5が得られるからである。   The identification mark 5 can be applied by a method such as acid etching or ink printing (inkjet printer). In addition, it is preferable to provide the identification mark 5 on the surface of the high thermal expansion layer 2 by acid etching. This is because the high thermal expansion layer 2 made of an alloy containing Mn is easily corroded by acid etching, and the identification mark 5 that is clearly colored by corrosion (oxidation) is obtained.

なお、クラッド材に耐食性めっき処理を行う前でも後でも、また、識別用マーク5を形成する前でも後でも、スリット加工や個片加工を行うことができる。スリット加工とは、条取加工とも呼ばれ、クラッド材を長手方向(一般的には圧延方向)に沿って切断して所定寸法(幅)の加工材を得る加工である。個片加工とは、クラッド材を幅方向(一般的には圧延方向と直交する方向)に沿って切断して所定寸法(長さ)の加工材を得る加工である。   Note that slit processing or individual piece processing can be performed before or after the clad material is subjected to the corrosion-resistant plating treatment, or before or after the identification mark 5 is formed. The slit processing is also called striping processing, and is a processing for obtaining a processed material having a predetermined dimension (width) by cutting the clad material along the longitudinal direction (generally the rolling direction). The piece processing is processing in which a clad material is cut along a width direction (generally, a direction orthogonal to the rolling direction) to obtain a processed material having a predetermined dimension (length).

<実施例>
Cu−Mn−Ni系の金属(Cu−72Mn−10Ni)からなり、30℃から100℃までの平均熱膨張係数が約27.7×10−6/℃の高熱膨張層と、Fe−Ni系の金属(Fe−36Ni)からなり、30℃から100℃までの平均熱膨張係数が約1.3×10−6/℃の低熱膨張層とを有し、長さが100m、幅が70mm、全厚みが0.175mm(高熱膨張層の厚みが0.093mm、低熱膨張層の厚みが0.082mm)のバイメタルを作製した。
<Example>
A high thermal expansion layer made of a Cu-Mn-Ni-based metal (Cu-72Mn-10Ni) and having an average thermal expansion coefficient of about 27.7 × 10 −6 / ° C. from 30 ° C. to 100 ° C .; A low thermal expansion layer having an average thermal expansion coefficient of about 1.3 × 10 −6 / ° C. from 30 ° C. to 100 ° C., a length of 100 m, a width of 70 mm, A bimetal having a total thickness of 0.175 mm (the thickness of the high thermal expansion layer is 0.093 mm and the thickness of the low thermal expansion layer is 0.082 mm) was produced.

以下の工程により、バイメタルを作製した。
バイメタルを構成するクラッド材の作製工程として、Cu−72Mn−10Niの金属からなる素材板およびFe−36Niの金属からなる素材板を準備し、2種類の素材板を厚み方向に積層してクラッド圧延を行うことにより、最終的に全厚みが0.175mm(高熱膨張層の厚みが0.093mm、低熱膨張層の厚みが0.082mm)となるクラッド材を作製した。なお、クラッド圧延では、圧延および軟化焼鈍を必要に応じて繰り返す間に拡散焼鈍を行って接合を強化し、仕上げ圧延によってクラッド材の全厚みを調整するようにした。
A bimetal was produced by the following steps.
As a manufacturing process of a clad material constituting a bimetal, a material plate made of Cu-72Mn-10Ni metal and a material plate made of Fe-36Ni metal are prepared, and two kinds of material plates are laminated in the thickness direction to perform clad rolling. As a result, a clad material having an overall thickness of 0.175 mm (the thickness of the high thermal expansion layer is 0.093 mm and the thickness of the low thermal expansion layer is 0.082 mm) was produced. In addition, in the clad rolling, diffusion annealing was performed while repeating rolling and softening annealing as necessary to strengthen the bonding, and the total thickness of the clad material was adjusted by finish rolling.

脱脂処理として、水酸化カリウム1.0質量%を含有する液温28℃の脱脂液を、スプレーによりクラッド材の全面に吹き付けた。   As a degreasing treatment, a degreasing liquid having a liquid temperature of 28 ° C. containing 1.0% by mass of potassium hydroxide was sprayed on the entire surface of the clad material.

洗浄処理として、液温28℃の純水を、スプレーによりクラッド材の全面に吹き付けた。   As a cleaning treatment, pure water having a liquid temperature of 28 ° C. was sprayed on the entire surface of the clad material.

耐食性めっき処理として、上記のように好ましいと考える電解めっき処理であって、pH4.7に調整された、硫酸ニッケル250g/L、塩化ニッケル40g/L、ホウ酸40g/Lを含む液温28℃のめっき液により、電解Niめっきを行った。この電解Niめっきにより、Niから構成される耐食性めっき層(Niめっき層)を高熱膨張層の表面に形成した。   Electrolytic plating treatment considered to be preferable as a corrosion-resistant plating treatment as described above, and a liquid temperature of 28 ° C. containing 250 g / L of nickel sulfate, 40 g / L of nickel chloride, and 40 g / L of boric acid adjusted to pH 4.7. Electrolytic Ni plating was performed with this plating solution. By this electrolytic Ni plating, a corrosion-resistant plating layer (Ni plating layer) composed of Ni was formed on the surface of the high thermal expansion layer.

脱めっき液処理として、液温28℃の純水をスプレーにより耐食性めっき層を有するクラッド材の全面に吹き付けた。   As the deplating solution treatment, pure water having a solution temperature of 28 ° C. was sprayed on the entire surface of the clad material having the corrosion-resistant plating layer.

乾燥処理として温度100〜120℃の熱風を、耐食性めっき層を有するクラッド材の全面に吹き付ける熱風乾燥を行った。   As the drying treatment, hot air drying was performed by blowing hot air at a temperature of 100 to 120 ° C. over the entire surface of the clad material having the corrosion-resistant plating layer.

識別用マークを酸エッチングにより高熱膨張層側の耐食性めっき層の表面に付与した。   An identification mark was applied to the surface of the corrosion-resistant plating layer on the high thermal expansion layer side by acid etching.

このような工程により、耐食性めっき層の厚みが相異なる各種のバイメタルを作製した。また、参考例として耐食性めっき層を有さない(耐食性めっき層の厚みを0nmとする)のバイメタルも作製した。   By such a process, various bimetals having different thicknesses of the corrosion-resistant plating layers were produced. As a reference example, a bimetal having no corrosion-resistant plating layer (the thickness of the corrosion-resistant plating layer is 0 nm) was also produced.

<評価>
次に、上述のように作製した各種のバイメタルについて、耐食性めっき層の厚みと体積抵抗率の関係を評価した。図5は、耐食性めっき層の厚みと体積抵抗率の関係を示すグラフである。図5の横軸が耐食性めっき層の厚みを示し、縦軸が体積抵抗率を示す。なお、図5において、耐食性めっき層を有さないバイメタル(参考例)を厚み0nmとして表示している。
<Evaluation>
Next, the relationship between the thickness of the corrosion-resistant plating layer and the volume resistivity was evaluated for the various bimetals produced as described above. FIG. 5 is a graph showing the relationship between the thickness of the corrosion-resistant plating layer and the volume resistivity. The horizontal axis in FIG. 5 indicates the thickness of the corrosion-resistant plating layer, and the vertical axis indicates the volume resistivity. In FIG. 5, a bimetal (reference example) that does not have a corrosion-resistant plating layer is shown as having a thickness of 0 nm.

耐食性めっき層の厚みは、GD−OES(Glow discharge optical emission spectrometry)法を用いて測定した。この測定には、堀場製作所製の型式名GD‐Profailer2の装置を用いた。
(測定条件)
方式:パルススパッタリング
測定径:φ7mm
出力:35W
周波数:100Hz
Arガス圧力:600Pa
The thickness of the corrosion-resistant plating layer was measured using a GD-OES (Glow Discharge Optical Emission Spectrometry) method. For this measurement, an apparatus of model name GD-Profiler 2 manufactured by Horiba Seisakusho was used.
(Measurement condition)
Method: Pulse sputtering Measurement diameter: φ7mm
Output: 35W
Frequency: 100Hz
Ar gas pressure: 600 Pa

上記測定では、Niの含有割合がより小さい高熱膨張層(Cu−72Mn−10Ni)側の耐食性めっき層(実質的に純Ni)表面からスパッタを開始し、Niの含有割合が大きく変化する位置に到達したときのスパッタ経過時間を求めた。このスパッタ経過時間をスパッタ長さ(表面からの深さ)に変換し、耐食性めっき層の厚みとした。   In the above measurement, sputtering is started from the surface of the corrosion-resistant plating layer (substantially pure Ni) on the high thermal expansion layer (Cu-72Mn-10Ni) side where the Ni content ratio is smaller, and the Ni content ratio changes greatly. The sputter elapsed time when it reached was obtained. This sputter elapsed time was converted into the sputter length (depth from the surface), which was the thickness of the corrosion-resistant plating layer.

このような測定方法により、各種のバイメタルの耐食性めっき層について、それぞれ任意の3か所の厚みを測定し、3か所の厚みの平均を該バイメタルの耐食性めっき層の厚みとした。バイメタルの耐食性めっき層の厚みはそれぞれ、0nm(参考例)、38nm、48nm、62nm、68nm、88nmおよび106nmであった。   With such a measuring method, the thicknesses of three arbitrary locations were measured for each of the various bimetal corrosion-resistant plating layers, and the average of the three thicknesses was taken as the thickness of the bimetal corrosion-resistant plating layer. The thicknesses of the bimetal corrosion-resistant plating layers were 0 nm (reference example), 38 nm, 48 nm, 62 nm, 68 nm, 88 nm, and 106 nm, respectively.

バイメタルの体積抵抗率の測定は、JIS C2525に準拠した4端子法により行った。作製したそれぞれのバイメタル(全厚み0.175mm)から、長さ120mm、幅10mmの試験片を3個ずつ切り出して測定に用いた。測定温度は23℃とした。   The volume resistivity of the bimetal was measured by a 4-terminal method based on JIS C2525. Three test pieces each having a length of 120 mm and a width of 10 mm were cut out from each of the produced bimetals (total thickness: 0.175 mm) and used for measurement. The measurement temperature was 23 ° C.

図5に示すように、耐食性めっき層の厚みが10nm以上120nm以下の範囲において、それぞれのバイメタルから切り出した3個の試験片の体積抵抗率の変動が±5%以内に収まっている。このため、厚みが10nm以上120nm以下の耐食性めっき層を有するバイメタルの体積抵抗率は、耐食性めっき層を有さないバイメタルの体積抵抗率との差異が小さいことが確認された。この体積抵抗率の変動が±5%以内という結果はJIS Z8703(表2、体積抵抗率の許容差を参照)に準拠し、厚みが10nm以上120nm以下の耐食性めっき層を有するバイメタルが実用に適していることを示している。また、図5に示すように、試験片の体積抵抗率は、耐食性めっき層の厚みが大きくなるにつれてばらつきながらも小さくなる傾向が確認された。このため、バイメタルの耐食性めっき層の厚みが120nmを超えてさらに大きくなって行くと、バイメタルの体積抵抗率は耐食性めっき層(Niめっき層)の体積抵抗率に近づくように小さくなって行くと解することが妥当である。   As shown in FIG. 5, in the range where the thickness of the corrosion-resistant plating layer is 10 nm or more and 120 nm or less, the variation in volume resistivity of the three test pieces cut out from each bimetal is within ± 5%. For this reason, it was confirmed that the volume resistivity of the bimetal having a corrosion-resistant plating layer having a thickness of 10 nm or more and 120 nm or less has a small difference from the volume resistivity of the bimetal having no corrosion-resistant plating layer. The result that the variation in volume resistivity is within ± 5% is based on JIS Z8703 (see Table 2, Volume resistivity tolerance), and a bimetal having a corrosion-resistant plating layer with a thickness of 10 nm to 120 nm is suitable for practical use. It shows that. Further, as shown in FIG. 5, it was confirmed that the volume resistivity of the test piece tended to decrease with variation as the thickness of the corrosion-resistant plating layer increased. For this reason, when the thickness of the bimetal corrosion-resistant plating layer is further increased beyond 120 nm, it is understood that the volume resistivity of the bimetal decreases as it approaches the volume resistivity of the corrosion-resistant plating layer (Ni plating layer). It is reasonable to do.

次に、上述のように作製したバイメタルについて、耐食性めっき層の厚みとわん曲係数の関係を評価した。図6は、耐食性めっき層の厚みとわん曲係数の関係を示すグラフである。図6の横軸が耐食性めっき層の厚みを示し、縦軸がわん曲係数を示す。なお、図6において、耐食性めっき層を有さないバイメタル(参考例)を厚み0nmとして表示している。   Next, the relationship between the thickness of the corrosion-resistant plating layer and the curvature coefficient of the bimetal produced as described above was evaluated. FIG. 6 is a graph showing the relationship between the thickness of the corrosion-resistant plating layer and the curvature coefficient. The horizontal axis in FIG. 6 indicates the thickness of the corrosion-resistant plating layer, and the vertical axis indicates the curvature coefficient. In FIG. 6, a bimetal (reference example) that does not have a corrosion-resistant plating layer is displayed with a thickness of 0 nm.

耐食性めっき層の厚みは、上記と同様にGD−OES法を用いて測定した。バイメタルのわん曲係数の測定は、JIS C2530に準拠した測定方法により行った。作製したそれぞれのバイメタル(全厚み0.175mm)から、長さ50mm、幅2mmの試験片を3個ずつ切り出して測定に用いた。測定温度は23℃とした。   The thickness of the corrosion-resistant plating layer was measured using the GD-OES method as described above. The bimetallic curvature coefficient was measured by a measuring method based on JIS C2530. Three test pieces each having a length of 50 mm and a width of 2 mm were cut out from each of the produced bimetals (total thickness 0.175 mm) and used for measurement. The measurement temperature was 23 ° C.

図6に示すように、耐食性めっき層の厚みが10nm以上120nm以下の範囲において、それぞれのバイメタルから切り出した3個の試験片のわん曲係数の変動が±5%以内に収まっている。このため、厚みが10nm以上120nm以下の耐食性めっき層を有するバイメタルのわん曲係数は、耐食性めっき層を有さないバイメタルのわん曲係数との差異が小さいことが確認された。このわん曲係数の変動が±5%以内という結果はJIS Z8703(表2、わん曲係数の許容差を参照)に準拠し、厚みが10nm以上120nm以下の耐食性めっき層を有するバイメタルが実用に適していることを示している。また、図6に示すように、試験片のわん曲係数は、耐食性めっき層の厚みが大きくなるにつれてややばらつくが、大きくなる傾向も小さくなる傾向もないことが確認された。このため、バイメタルの耐食性めっき層の厚みが120nmを超えてさらに大きくなって例えば150nm程度になったとしても、バイメタルのわん曲係数の実質的な変化量は小さいと解することが妥当である。   As shown in FIG. 6, in the range where the thickness of the corrosion-resistant plating layer is 10 nm or more and 120 nm or less, the variation of the curvature coefficient of the three test pieces cut out from each bimetal is within ± 5%. For this reason, it was confirmed that the bending coefficient of the bimetal having a corrosion-resistant plating layer having a thickness of 10 nm or more and 120 nm or less has a small difference from the bending coefficient of a bimetal having no corrosion-resistant plating layer. The result that the variation of the bending coefficient is within ± 5% is based on JIS Z8703 (see Table 2, tolerance of bending coefficient), and a bimetal having a corrosion-resistant plating layer with a thickness of 10 nm to 120 nm is suitable for practical use. It shows that. Further, as shown in FIG. 6, it was confirmed that the curvature coefficient of the test piece varies slightly as the thickness of the corrosion-resistant plating layer increases, but does not tend to increase or decrease. For this reason, even if the thickness of the bimetallic corrosion-resistant plating layer exceeds 120 nm and is further increased to, for example, about 150 nm, it is reasonable to understand that the substantial change amount of the bimetal bending coefficient is small.

次に、耐食性めっき層の厚みが0nm(参考例)、48nm、68nm、88nmおよび106nmのバイメタルについて、耐食性めっき層の厚みと耐食性の関係を評価した。図7は、それぞれのバイメタルに腐食試験を行った後の高熱膨張層の表面を示す写真である。なお、図7において、耐食性めっき層を有さないバイメタル(参考例)を厚み0nmとして表示している。   Next, the relationship between the thickness of the corrosion-resistant plating layer and the corrosion resistance was evaluated for bimetals having a corrosion-resistant plating layer thickness of 0 nm (reference example), 48 nm, 68 nm, 88 nm, and 106 nm. FIG. 7 is a photograph showing the surface of the high thermal expansion layer after performing a corrosion test on each bimetal. In FIG. 7, a bimetal (reference example) that does not have a corrosion-resistant plating layer is shown as having a thickness of 0 nm.

腐食試験は、スガ試験機製の塩水噴霧試験機を用いておこなった。作製したそれぞれのバイメタル(全厚み0.175mm)から、長さ100mm、幅10mmの試験片を切り出して測定に用いた。5%の塩化ナトリウム水溶液を、35±2℃噴霧室内の温度で、60分間に亘ってバイメタルに噴霧した。この試験後のそれぞれのバイメタルの高熱膨張層側の表面を顕微鏡により撮影した。この顕微鏡写真を熟練工の目により評価し、腐食度合いに応じて評点1〜3の3段階に区分した。評点1は腐食が激しく実用に堪えないもの、評点2はバイメタル特性に影響しない程度の腐食が認められるもの、および評点3は腐食がほとんどなく十分に実用に耐えるもの、をそれぞれ示している。   The corrosion test was performed using a salt spray tester manufactured by Suga Test Instruments. A test piece having a length of 100 mm and a width of 10 mm was cut out from each of the produced bimetals (total thickness 0.175 mm) and used for measurement. A 5% aqueous sodium chloride solution was sprayed onto the bimetal for 60 minutes at a temperature in the 35 ± 2 ° C. spray chamber. The surface of each bimetal on the high thermal expansion layer side after this test was photographed with a microscope. The photomicrograph was evaluated by the eyes of a skilled worker, and was divided into three grades of 1 to 3 according to the degree of corrosion. Score 1 indicates that the corrosion is severe and unbearable for practical use, Rating 2 indicates that corrosion that does not affect the bimetal characteristics is recognized, and Rating 3 indicates that there is almost no corrosion and that it can withstand practical use.

図7に示すように、耐食性めっき層の厚みが0nmのバイメタル(参考例)は評点1であった。耐食性めっき層の厚みが48nmおよび68nmのバイメタルは評点2であった。耐食性めっき層の厚みが88nmおよび106nmのバイメタルは評点3であった。この結果から、耐食性めっき層を設けることによりバイメタルに耐食性が付与されることが確認できた。また、耐食性めっき層の厚みが大きくなるとともに、バイメタルの耐食性が向上することが確認できた。   As shown in FIG. 7, the bimetal (reference example) having a corrosion-resistant plating layer with a thickness of 0 nm was rated 1. Bimetals with a corrosion-resistant plating layer thickness of 48 nm and 68 nm were rated 2. Bimetals with a corrosion-resistant plating layer thickness of 88 nm and 106 nm were rated 3. From this result, it was confirmed that the corrosion resistance was imparted to the bimetal by providing the corrosion resistant plating layer. It was also confirmed that the corrosion resistance of the bimetal was improved as the thickness of the corrosion-resistant plating layer was increased.

1 バイメタル(異種金属接合材)
2 高熱膨張層
3 低熱膨張層
4 耐食性めっき層
5 識別用マーク
1 Bimetal (dissimilar metal bonding material)
2 High thermal expansion layer 3 Low thermal expansion layer 4 Corrosion-resistant plating layer 5 Identification mark

Claims (6)

Mnを含む合金から構成される高熱膨張層と、Niを含む合金から構成される低熱膨張層が、直接もしくは中間層を介して接合されているクラッド材から構成される異種金属接合材であって、
少なくとも前記高熱膨張層の表面に厚み10nm以上120nm以下の耐食性めっき層を有する、異種金属接合材。
A high thermal expansion layer composed of an alloy containing Mn and a low thermal expansion layer composed of an alloy containing Ni are dissimilar metal joining materials composed of a cladding material joined directly or via an intermediate layer. ,
A dissimilar metal bonding material having a corrosion-resistant plating layer having a thickness of 10 nm to 120 nm on at least the surface of the high thermal expansion layer.
前記耐食性めっき層が、Niめっき層、Ni−Bめっき層、Ni−3価Crめっき層またはNi−Pめっき層のうちのいずれかである、請求項1に記載の異種金属接合材。   The dissimilar metal bonding material according to claim 1, wherein the corrosion-resistant plating layer is any one of a Ni plating layer, a Ni-B plating layer, a Ni-3valent Cr plating layer, or a Ni-P plating layer. 前記耐食性めっき層がNiめっき層である、請求項2に記載の異種金属接合材。   The dissimilar metal bonding material according to claim 2, wherein the corrosion-resistant plating layer is a Ni plating layer. 識別用マークが、表面に設けられている、請求項1乃至3のいずれか1項に記載の異種金属接合材。   The dissimilar metal bonding material according to claim 1, wherein an identification mark is provided on a surface. Mnを含む合金から構成される高熱膨張層と、Niを含む合金から構成される低熱膨張層とが、直接または中間層を介して接合されているクラッド材の表面を脱脂する脱脂処理と、
前記クラッド材の少なくとも前記高熱膨張層の表面を洗浄する表面洗浄処理と、
前記クラッド材の少なくとも前記高熱膨張層の表面に耐食性めっき層を設ける耐食性めっき処理を行い、
前記高熱膨張層の表面からめっき液を除去する脱めっき液処理と、
前記クラッド材を乾燥させる乾燥処理と、
をこの順に行って、少なくとも前記高熱膨張層の表面に厚さ10nm以上120nm以下の前記耐食性めっき層を有する異種金属接合材を形成する、異種金属接合材の製造方法。
A degreasing treatment in which a high thermal expansion layer composed of an alloy containing Mn and a low thermal expansion layer composed of an alloy containing Ni are degreased directly or via an intermediate layer;
A surface cleaning treatment for cleaning at least the surface of the high thermal expansion layer of the cladding material;
Corrosion-resistant plating treatment is performed to provide a corrosion-resistant plating layer on the surface of at least the high thermal expansion layer of the cladding material,
A deplating solution treatment for removing the plating solution from the surface of the high thermal expansion layer;
A drying treatment for drying the clad material;
Are performed in this order, and a dissimilar metal bonding material having the corrosion-resistant plating layer having a thickness of 10 nm to 120 nm on at least the surface of the high thermal expansion layer is formed.
前記耐食性めっき処理は、pHが4.5以上6.0以下の前記めっき液を用いて行うNiめっき処理である、請求項5に記載の異種金属接合材の製造方法。   The said corrosion-resistant plating process is a manufacturing method of the dissimilar-metal joining material of Claim 5 which is Ni plating process performed using the said plating solution whose pH is 4.5 or more and 6.0 or less.
JP2019003185A 2018-05-02 2019-01-11 Dissimilar metal bonding material and its manufacturing method Active JP6924785B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19169284.7A EP3564028B1 (en) 2018-05-02 2019-04-15 Dissimilar metal joined material and method of manufacturing same
US16/386,672 US20190337086A1 (en) 2018-05-02 2019-04-17 Dissimilar metal joined material and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018088838 2018-05-02
JP2018088838 2018-05-02

Publications (2)

Publication Number Publication Date
JP2019196543A true JP2019196543A (en) 2019-11-14
JP6924785B2 JP6924785B2 (en) 2021-08-25

Family

ID=68428157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003185A Active JP6924785B2 (en) 2018-05-02 2019-01-11 Dissimilar metal bonding material and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6924785B2 (en)
CN (1) CN110438451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923099B1 (en) * 2021-03-23 2021-08-18 秋田県 Dissimilar metal joints and their manufacturing methods
CN114563481A (en) * 2021-04-01 2022-05-31 北京航空航天大学 Damage monitoring and online maintenance system for metal material structure
KR102405839B1 (en) * 2021-11-22 2022-06-07 대영소결금속 주식회사 Manufacturing method of manganese sulfides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646591A (en) * 1968-12-18 1972-02-29 Texas Instruments Inc Method for making thermostat metal
EP0659548B1 (en) * 1993-12-27 2001-07-18 Sumitomo Special Metals Company Limited Bimetal
JP5495093B2 (en) * 2008-01-17 2014-05-21 日産自動車株式会社 Joining method and structure of dissimilar metals
JP5929693B2 (en) * 2012-10-15 2016-06-08 マツダ株式会社 Bonding structure of dissimilar metal parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923099B1 (en) * 2021-03-23 2021-08-18 秋田県 Dissimilar metal joints and their manufacturing methods
WO2022202221A1 (en) * 2021-03-23 2022-09-29 秋田県 Dissimilar metal joined body and method for manufacturing same
JP2022147724A (en) * 2021-03-23 2022-10-06 秋田県 Dissimilar metal joined body, and method for producing the same
CN114563481A (en) * 2021-04-01 2022-05-31 北京航空航天大学 Damage monitoring and online maintenance system for metal material structure
KR102405839B1 (en) * 2021-11-22 2022-06-07 대영소결금속 주식회사 Manufacturing method of manganese sulfides

Also Published As

Publication number Publication date
CN110438451A (en) 2019-11-12
JP6924785B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP2019196543A (en) Dissimilar metal joint material and production method thereof
JP5064935B2 (en) Anodized aluminum alloy that combines durability and low contamination
JP6762879B2 (en) Steel plate with a coating that provides sacrificial cathodic protection containing lanterns
KR101979991B1 (en) Titanium copper foil with plated layer
EP1580286B1 (en) High strength long-life aluminium tube material with high sagging resistance
TW200844267A (en) Sn-plated copper alloy material for printed board terminal
JP5561920B2 (en) Al-containing copper alloy coated steel and method for producing the same
EP3564028A1 (en) Dissimilar metal joined material and method of manufacturing same
JP4881049B2 (en) Conductor roll for electroplating
JP4023663B2 (en) Stainless steel contacts
TWI647503B (en) Titanium copper foil with plating layer, electronic component, joint body, method for connecting titanium copper foil and conductive member, autofocus module, autofocus camera module, and method for manufacturing titanium copper foil
WO2016167304A1 (en) Plated steel sheet and method for manufacturing same
JP2005272922A (en) HOT DIP Zn-Al-BASED ALLOY COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDING WORKABILITY AND METHOD FOR MANUFACTURING THE SAME
JP2003105500A (en) Stainless steel/copper clad, and manufacturing method therefor
JP2009161801A (en) Stainless steel sheet having composite plated layer for soldering, and product manufactured by using the same
JP2022079007A (en) Plating method
JP5494223B2 (en) Zinc-based two-layer plated steel material and manufacturing method thereof
JP7432305B2 (en) Surface treated base materials for brazing and heat exchangers
JP2007023311A (en) Clad material and manufacturing method therefor
JP3096407B2 (en) Manufacturing method of mold for continuous casting
JP7277823B2 (en) hot stamped body
CN112041471B (en) Heat exchanger made of aluminum alloy
JP6518804B2 (en) Method of manufacturing aluminum alloy pipe for heat exchanger
JP2003181652A (en) Clad plate for induction heating member and its manufacturing method and cooking device for induction heating cooking appliance
KR100515030B1 (en) MAGNETIC STEEL-CONTAINING CLAD MATERIAL FOR CLADING Al AND ITS FABRICATION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200218

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200513

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210323

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210622

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210727

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6924785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350