JP5561920B2 - Al-containing copper alloy coated steel and method for producing the same - Google Patents

Al-containing copper alloy coated steel and method for producing the same Download PDF

Info

Publication number
JP5561920B2
JP5561920B2 JP2008211413A JP2008211413A JP5561920B2 JP 5561920 B2 JP5561920 B2 JP 5561920B2 JP 2008211413 A JP2008211413 A JP 2008211413A JP 2008211413 A JP2008211413 A JP 2008211413A JP 5561920 B2 JP5561920 B2 JP 5561920B2
Authority
JP
Japan
Prior art keywords
less
copper alloy
steel material
mass
containing copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008211413A
Other languages
Japanese (ja)
Other versions
JP2010047791A (en
Inventor
孝浩 藤井
政義 多々納
正司 平岡
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008211413A priority Critical patent/JP5561920B2/en
Publication of JP2010047791A publication Critical patent/JP2010047791A/en
Application granted granted Critical
Publication of JP5561920B2 publication Critical patent/JP5561920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面にAl含有銅合金被覆層を有する鋼材およびその製造方法に関する。   The present invention relates to a steel material having an Al-containing copper alloy coating layer on the surface and a method for producing the same.

Alを含有する銅合金は従来よりアルミニウム青銅として知られており、例えばJIS H3100には合金番号C6140、C6161、C6280、C6301の各種Cu−Al系合金が規定されている。Al含有銅合金は耐食性、耐海水性、耐高温酸化性、耐摩耗性等に優れることから、車両用、機械用、化学工業用、船舶用等のギヤーピニオン、シャフト、ブッシュといった様々な用途に使用されている。   A copper alloy containing Al is conventionally known as aluminum bronze. For example, JIS H3100 defines various Cu-Al alloys of alloy numbers C6140, C6161, C6280, and C6301. Al-containing copper alloy is excellent in corrosion resistance, seawater resistance, high temperature oxidation resistance, wear resistance, etc., so it can be used in various applications such as gear pinions, shafts, bushes for vehicles, machinery, chemical industry, and ships. It is used.

しかし近年、銅原料価格の高騰が銅合金の価格上昇を招いており、相場の変動に伴う銅合金価格の不安定さも問題となっている。また銅合金は一般的に強靱性の点で鋼材に劣り、機械部品などでは更なる高強度化が望まれる場合も多い。このような状況において、Al含有銅合金の上記長所を具備したまま、より強靱性に優れ、かつ安価な材料の出現が望まれるところである。   However, in recent years, the rise in the price of copper raw materials has led to an increase in the price of copper alloys, and the instability of copper alloy prices accompanying fluctuations in market prices has also become a problem. Copper alloys are generally inferior to steel materials in terms of toughness, and mechanical parts are often required to have higher strength. Under such circumstances, it is desired to develop a material that is superior in toughness and inexpensive while maintaining the above-mentioned advantages of the Al-containing copper alloy.

特開平3−236952号公報Japanese Patent Laid-Open No. 3-236852 特表2007−510809号公報Special table 2007-510809 gazette

Al含有銅合金の長所を具備した強靱な材料として、芯材に鋼材を用い、その表層にCu−Al合金を設けた複合材料を採用することが有効であると考えられる。しかしながら、現状においてそのような複合材料を生産性良く安価に製造する技術は確立されていない。   As a tough material having the advantages of an Al-containing copper alloy, it is considered effective to employ a composite material in which a steel material is used as a core material and a Cu—Al alloy is provided on the surface layer. However, at present, a technique for manufacturing such a composite material with high productivity and low cost has not been established.

例えば特許文献1には、Alを含有する銅合金皮膜を金属やセラミックスの表面に形成する技術が記載されている。しかし、これは真空蒸着法、イオンプレーティング法、スパッタリング法などのドライめっき法によるものであり、成膜速度が遅いことから生産性に劣る。同文献にはCuめっき上にAlめっき皮膜を形成したのち熱拡散によって合金化する方法も記載されているが、Alは標準電極電位が低いため水溶性電解液からの電気めっきが不可能であり、特殊有機溶媒浴あるいは溶融塩浴を用いる必要がある。このような非水系の浴を使用した電気めっきは厳密な浴管理が必要となりコスト的に大量生産化は難しい。   For example, Patent Document 1 describes a technique for forming a copper alloy film containing Al on a metal or ceramic surface. However, this is due to a dry plating method such as a vacuum deposition method, an ion plating method, or a sputtering method, and is inferior in productivity because the film forming speed is low. The same document also describes a method in which an Al plating film is formed on Cu plating and then alloyed by thermal diffusion. However, since Al has a low standard electrode potential, electroplating from a water-soluble electrolyte is impossible. It is necessary to use a special organic solvent bath or a molten salt bath. Electroplating using such a non-aqueous bath requires strict bath management and is difficult to mass-produce in terms of cost.

特許文献2には、Al、Cu、Niなどの金属層で被覆されたステンレス鋼ストリップを、電子ビーム蒸着法を用いて製造する方法が提案されている。しかし、この手法もドライめっきの欠点である生産性の低さによりコスト上昇は免れない。   Patent Document 2 proposes a method of manufacturing a stainless steel strip coated with a metal layer such as Al, Cu, or Ni by using an electron beam evaporation method. However, this method is also unavoidable due to low productivity, which is a disadvantage of dry plating.

また、従来から一般的に知られている鋼材表面への異種金属の被覆方法として、合金箔を圧延(熱間、温間または冷間)によりクラッディングする方法、合金粉末のペーストを鋼材表面に塗布したのち焼結させる方法、溶融した合金を鋼材表面に溶射する方法などがある。しかし、これらの方法は皮膜密着性や生産性の面で問題があり、品質の良い銅合金被覆鋼材を安定的に低コストで製造することは難しい。   In addition, conventionally known methods for coating dissimilar metals on the surface of steel materials include a method of cladding an alloy foil by rolling (hot, warm or cold), and a paste of alloy powder on the surface of the steel material. There are a method of sintering after coating, a method of spraying a molten alloy on the surface of a steel material, and the like. However, these methods have problems in terms of film adhesion and productivity, and it is difficult to stably produce a high-quality copper alloy-coated steel material at a low cost.

本発明は、Alを含有する銅合金の表面特性(耐食性や耐摩耗性)を有し、工業的に生産性良く製造することができる金属材料を提供しようというものである。   The present invention is intended to provide a metal material that has the surface characteristics (corrosion resistance and wear resistance) of a copper alloy containing Al and can be manufactured industrially with high productivity.

上記目的は、平均厚さ0.5〜100μm、Al含有量1〜15質量%の銅合金層を鋼材表面に有するAl含有銅合金被覆鋼材によって達成される。その銅合金層は例えば、Al含有鋼にCuめっきを施したCuめっき鋼材において、鋼中に存在するAlが、Cuめっき層側に加熱拡散することにより形成されたものである。銅合金層の組成としては、質量%でAl:1〜15%を含有し、Ni:7%以下、Fe:6%以下、Cr:2%以下、Mn:2%以下の1種以上を含有し、残部Cuおよび不可避的不純物であるものが挙げられる。   The above object is achieved by an Al-containing copper alloy-coated steel material having a copper alloy layer having an average thickness of 0.5 to 100 μm and an Al content of 1 to 15% by mass on the surface of the steel material. The copper alloy layer is formed by, for example, Cu-plated steel material obtained by performing Cu plating on Al-containing steel by heat diffusion of Al present in the steel to the Cu plating layer side. The composition of the copper alloy layer includes Al: 1 to 15% by mass, Ni: 7% or less, Fe: 6% or less, Cr: 2% or less, and Mn: 2% or less. And the remainder Cu and inevitable impurities.

また本発明では、Al含有量1〜20質量%の鋼材を基材として、その表面にCuめっき層を形成したCuめっき鋼材を、非酸化性雰囲気中600〜1050℃に加熱保持することにより、基材中のAlがCuめっき層側に拡散する現象を利用して鋼材表面にAl含有量1質量%以上の銅合金層を形成させるAl含有銅合金被覆鋼材の製造方法が提供される。   In the present invention, by using a steel material having an Al content of 1 to 20% by mass as a base material, a Cu plated steel material having a Cu plating layer formed on the surface thereof is heated and held at 600 to 1050 ° C. in a non-oxidizing atmosphere. There is provided a method for producing an Al-containing copper alloy-coated steel material in which a copper alloy layer having an Al content of 1% by mass or more is formed on the steel material surface by utilizing a phenomenon in which Al in the base material diffuses toward the Cu plating layer.

前記の基材としては、質量%で、C:1%以下、Al:1〜20%を含有し、その他の合金成分として、Si:3%以下、Mn:5%以下、P:0.1%以下、S:0.03%以下、Cr:35%以下、Ni:24%以下、Mo:5%以下、Cu:6%以下、Ti:1%以下、Nb:1%以下、V:1%以下、N:0.5%以下、B:1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物からなる鋼を採用することができる。   As said base material, it contains C: 1% or less, Al: 1-20% by mass%, As other alloy components, Si: 3% or less, Mn: 5% or less, P: 0.1 %: S: 0.03% or less, Cr: 35% or less, Ni: 24% or less, Mo: 5% or less, Cu: 6% or less, Ti: 1% or less, Nb: 1% or less, V: 1 %: N: 0.5% or less, B: 1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Y: 0.1% or less, REM (rare earth element): 0.1 It is possible to employ steel that contains one or more elements of not more than% and the balance being Fe and inevitable impurities.

特にフェライト系ステンレス鋼等の高Crフェライト系鋼種を基材として採用する場合には、質量%で、C:0.1%以下、Cr:9〜32%、Al:1〜6%であり、その他の合金成分として、Si:1%以下、Mn:1%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Mo:5%以下、Cu:3.5%以下、Ti:0.8%以下、Nb:0.8%以下、V:1%以下、N:0.025%以下、B:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物からなるフェライト系鋼種を採用することができる。   In particular, when a high Cr ferritic steel type such as ferritic stainless steel is used as a base material, the mass% is C: 0.1% or less, Cr: 9 to 32%, Al: 1 to 6%, As other alloy components, Si: 1% or less, Mn: 1% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Mo: 5% or less, Cu: 3.5% or less, Ti: 0.8% or less, Nb: 0.8% or less, V: 1% or less, N: 0.025% or less, B: 0.1% or less, Ca: 0.1% Hereinafter, a ferritic steel type containing at least one of Mg: 0.1% or less, Y: 0.1% or less, REM (rare earth element): 0.1% or less, with the balance being Fe and inevitable impurities. Can be adopted.

基材表面のCuめっき層としては、例えば平均厚さ0.5μm以上の電気Cuめっき層を採用することができる。その電気Cuめっき層は、基材鋼材の表面に形成させたNiストライクめっき層の上に形成させても構わない。   As the Cu plating layer on the substrate surface, for example, an electric Cu plating layer having an average thickness of 0.5 μm or more can be employed. The electric Cu plating layer may be formed on the Ni strike plating layer formed on the surface of the base steel material.

本発明は以下のようなメリットを有する。
(1)電気Cuめっき法を採用することで高生産性、低コストでの製造が可能である。
(2)本発明の鋼材表面を被覆するAl含有銅合金層の構成元素であるAlは、基材側からの拡散により供給されるため、ドライめっきや非水系浴を用いたAlめっきによってAlを供給する必要がなく、簡便な方法で均一性の高いAl含有銅合金層が形成可能である。
(3)Al含有銅合金層は加熱拡散処理により形成されたものであるため基材との密着性に優れる。
(4)本発明の手法により形成されたAl含有銅合金層は優れた耐酸化性、耐食性、耐高温酸化性および耐摩耗性を有し、ギヤーピニオン、シャフトなどの機械部品、船舶用スクリューなど、従来Cu−Al系合金が使用されていた用途の他、SOFC(固体酸化物形燃料電池)のインターコネクタ(金属セパレータ)等への適用が期待される。
The present invention has the following merits.
(1) High electric productivity and low cost are possible by adopting the electric Cu plating method.
(2) Since Al, which is a constituent element of the Al-containing copper alloy layer covering the surface of the steel material of the present invention, is supplied by diffusion from the base material side, Al is applied by dry plating or Al plating using a non-aqueous bath. There is no need to supply, and a highly uniform Al-containing copper alloy layer can be formed by a simple method.
(3) Since the Al-containing copper alloy layer is formed by heat diffusion treatment, it has excellent adhesion to the substrate.
(4) The Al-containing copper alloy layer formed by the method of the present invention has excellent oxidation resistance, corrosion resistance, high temperature oxidation resistance, and wear resistance, and mechanical parts such as gear pinions and shafts, marine screws, etc. In addition to applications in which Cu—Al based alloys have been conventionally used, application to SOFC (solid oxide fuel cell) interconnectors (metal separators) and the like is expected.

〔Al含有銅合金層〕
本発明によって提供されるAl含有銅合金被覆鋼材は、表面に、平均厚さ0.5μm以上、Al含有量1〜15質量%のAl含有銅合金層を有するものである。Al含有銅合金層の平均厚さが0.5μm未満では銅にAlを添加することによる耐食性や耐摩耗性などの向上作用を効果的に発揮させることが難しい。1μm以上を確保することがより望ましい。Al含有銅合金層の厚さ上限については特に制限しなくてもよいが、用途に応じて平均厚さ100μm以下の範囲で調整すればよい。Al含有銅合金層の厚さは拡散処理前のCuめっき層の形成厚さに依存する。過剰な膜厚とすることは不経済となるので、Al含有銅合金層の平均厚さは例えば10μm以下に管理しても構わない。
[Al-containing copper alloy layer]
The Al-containing copper alloy-coated steel material provided by the present invention has an Al-containing copper alloy layer having an average thickness of 0.5 μm or more and an Al content of 1 to 15% by mass on the surface. When the average thickness of the Al-containing copper alloy layer is less than 0.5 μm, it is difficult to effectively exhibit the improving action such as corrosion resistance and wear resistance by adding Al to copper. It is more desirable to ensure 1 μm or more. The upper limit of the thickness of the Al-containing copper alloy layer is not particularly limited, but may be adjusted within a range of an average thickness of 100 μm or less depending on the application. The thickness of the Al-containing copper alloy layer depends on the formation thickness of the Cu plating layer before the diffusion treatment. Since it is uneconomical to use an excessive film thickness, the average thickness of the Al-containing copper alloy layer may be controlled to 10 μm or less, for example.

Al含有銅合金層の組成は、当該合金層の厚さ中央部で測定すればよい。Al含有銅合金層中のAl含有量は1質量%以上とすることが望ましい。それよりAl含有量が少ないとCu−Al系合金の特長を発揮させる効果が薄い。ただし、拡散処理による基材側からのAlの供給においては、15質量%を超えるAl含有量を実現させることは難しい。通常、Al含有銅合金層中のAl含有量は12質量%以下とすればよく、10質量以下、あるいは8質量%以下としても構わない。   What is necessary is just to measure the composition of Al containing copper alloy layer in the thickness center part of the said alloy layer. The Al content in the Al-containing copper alloy layer is preferably 1% by mass or more. If the Al content is less than that, the effect of exhibiting the characteristics of the Cu-Al alloy is thin. However, in the supply of Al from the base material side by the diffusion treatment, it is difficult to realize an Al content exceeding 15% by mass. Usually, the Al content in the Al-containing copper alloy layer may be 12 mass% or less, and may be 10 mass% or less, or 8 mass% or less.

Al含有銅合金層を構成するAl以外の残部元素は、質量%で例えばNi:7%以下、Fe:6%以下、Cr:2%以下、Mn:2%以下の1種以上を含有し、残部Cuおよび不可避的不純物とすることができる。これらの元素は後述のNiストライクめっき層や基材の鋼からの拡散により混入し得る。また、これらの元素がCuめっき層中に含まれる場合も、Al含有銅合金層の構成成分となる。Cu、Al、Ni、Fe、Cr、Mn以外の混入元素の含有量は合計1質量%以下であることが望ましい。   The remaining elements other than Al constituting the Al-containing copper alloy layer contain, by mass%, for example, one or more of Ni: 7% or less, Fe: 6% or less, Cr: 2% or less, Mn: 2% or less, The remaining Cu and inevitable impurities can be used. These elements can be mixed by diffusion from the Ni strike plating layer described later or the steel of the base material. Moreover, also when these elements are contained in a Cu plating layer, it becomes a structural component of an Al containing copper alloy layer. The total content of mixed elements other than Cu, Al, Ni, Fe, Cr, and Mn is desirably 1% by mass or less.

〔基材〕
本発明のAl含有銅合金被覆鋼材は、後述のようにCuめっき鋼材を加熱拡散処理に供することにより好適に製造することができる。そのCuめっき鋼材の基材となる鋼としては、Alを1〜20質量%含有するものが適用される。基材のAl含有量が1質量%未満だと拡散処理によって表層Cu皮膜中のAl濃度を十分に増大させることが難しくなる。一方、鋼中のAl含有量が多くなると鋼の金属組織においてFe−Al系金属間化合物相の存在量が増大し、鋼材の製造が難しくなるので、基材中のAl含有量は20質量%以下の範囲とする。製造性を重視する場合はFe−Al系金属間化合物相がほとんど生成しないAl含有量10質量%以下の範囲とすることが望ましく、8質量%以下あるいは6質量%以下に管理しても構わない。
〔Base material〕
The Al-containing copper alloy-coated steel material of the present invention can be suitably manufactured by subjecting a Cu-plated steel material to a heat diffusion treatment as will be described later. As steel used as the base material of the Cu plated steel material, one containing 1 to 20% by mass of Al is applied. When the Al content of the substrate is less than 1% by mass, it is difficult to sufficiently increase the Al concentration in the surface layer Cu film by the diffusion treatment. On the other hand, when the Al content in the steel increases, the abundance of the Fe-Al intermetallic compound phase increases in the steel microstructure, making it difficult to produce the steel material, so the Al content in the base material is 20% by mass. The following range. When emphasizing manufacturability, it is desirable that the Al content is within a range of 10% by mass or less, in which almost no Fe—Al intermetallic phase is generated, and it may be controlled to 8% by mass or less or 6% by mass or less. .

基材の鋼は、Al含有量が上記の範囲にある鋼であれば、種々の鋼種が適用可能である。例えば鋼板素材に加工して使用することを想定すると、以下のような成分組成を例示することができる。
質量%で、C:0.5%以下、Al:1〜20%を含有し、その他の合金成分として、Si:3%以下、Mn:5%以下、P:0.1%以下、S:0.03%以下、Cr:35%以下、Ni:24%以下、Mo:5%以下、Cu:6%以下、Ti:1%以下、Nb:1%以下、V:1%以下、N:0.5%以下、B:1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部Feおよび不可避的不純物
As the base steel, various steel types can be applied as long as the Al content is in the above range. For example, assuming that it is processed into a steel plate material, the following component composition can be exemplified.
In mass%, C: 0.5% or less, Al: 1-20%, and other alloy components, Si: 3% or less, Mn: 5% or less, P: 0.1% or less, S: 0.03% or less, Cr: 35% or less, Ni: 24% or less, Mo: 5% or less, Cu: 6% or less, Ti: 1% or less, Nb: 1% or less, V: 1% or less, N: 0.5% or less, B: 1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Y: 0.1% or less, REM (rare earth element): 0.1% or less Contains the remainder, Fe and unavoidable impurities

また、耐食性が要求される用途ではステンレス鋼を採用することが望まれる。特にSOFCのインターコネクタなどの用途には熱膨張係数が比較的小さく、応力腐食割れの問題も生じないフェライト系ステンレス鋼の採用が有利となる。フェライト系ステンレス鋼としては、鋼板素材に加工して使用することを想定すると、以下のような成分組成を例示することができる。
質量%で、C:0.1%以下、Cr:9〜32%、Al:1〜6%であり、その他の合金成分として、Si:1%以下、Mn:1%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Mo:5%以下、Cu:3.5%以下、Ti:0.8%以下、Nb:0.8%以下、V:1%以下、N:0.025%以下、B:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部Feおよび不可避的不純物
In applications where corrosion resistance is required, it is desirable to use stainless steel. In particular, for applications such as SOFC interconnectors, it is advantageous to use ferritic stainless steel that has a relatively low thermal expansion coefficient and does not cause the problem of stress corrosion cracking. As a ferritic stainless steel, the following component composition can be illustrated assuming that it is processed into a steel plate material.
In mass%, C: 0.1% or less, Cr: 9 to 32%, Al: 1 to 6%. As other alloy components, Si: 1% or less, Mn: 1% or less, P: 0.00%. 04% or less, S: 0.03% or less, Ni: 0.6% or less, Mo: 5% or less, Cu: 3.5% or less, Ti: 0.8% or less, Nb: 0.8% or less, V: 1% or less, N: 0.025% or less, B: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Y: 0.1% or less, REM (rare earth element) ): Contains one or more of 0.1% or less, the balance Fe and inevitable impurities

〔Cuめっき層の形成〕
上記の基材の表面にCuめっきを施す。めっき方法としては大量生産に適する電気Cuめっき法を採用することができる。電気めっき浴は例えば従来一般的な硫酸銅浴、シアン化銅浴、ピロりん酸銅浴などを使用すればよい。Cuめっき層の平均厚さは0.5μm以上とすることが望ましい。それより薄いと拡散処理後に十分な厚さのAl含有銅合金層を安定して形成させることが難しくなる場合ある。Cuめっき層の厚さは用途に応じて例えば100μm以下の範囲で調整すればよい。10μm以下の範囲に管理しても構わない。
[Formation of Cu plating layer]
Cu plating is performed on the surface of the substrate. As a plating method, an electric Cu plating method suitable for mass production can be employed. For example, a conventional copper sulfate bath, copper cyanide bath, copper pyrophosphate bath, or the like may be used as the electroplating bath. The average thickness of the Cu plating layer is preferably 0.5 μm or more. If it is thinner than that, it may be difficult to stably form an Al-containing copper alloy layer having a sufficient thickness after the diffusion treatment. What is necessary is just to adjust the thickness of Cu plating layer in the range of 100 micrometers or less, for example according to a use. You may manage in the range of 10 micrometers or less.

Cuめっきに先立ち、鋼材表面には下地処理としてNiストライクめっき、あるいはCuストライクめっきを施しても構わない。Cuストライクめっきを施した場合は、上記Cuめっき層の厚さとしてストライクめっき層の厚さが含まれる。Niストライクめっきの場合は膜厚0.05〜0.3μm程度のNi薄膜層を形成させることが望ましい。NiストライクめっきによるNi薄膜層は拡散処理を行うことでほとんど消失し、Al含有銅合金層中には拡散してきたNiストライクめっき由来のNiが観測される。   Prior to Cu plating, Ni strike plating or Cu strike plating may be applied to the steel surface as a base treatment. When Cu strike plating is performed, the thickness of the strike plating layer is included as the thickness of the Cu plating layer. In the case of Ni strike plating, it is desirable to form a Ni thin film layer having a thickness of about 0.05 to 0.3 μm. The Ni thin film layer formed by Ni strike plating almost disappears by performing a diffusion treatment, and diffused Ni derived from Ni strike plating is observed in the Al-containing copper alloy layer.

以下に、Niストライクめっきを施す場合を例に挙げて、Cuめっき層を形成させる一般的な手順を例示する。
(1)基材(めっき原板)となる鋼材(鋼板)を脱脂、酸洗処理する。
(2)Niストライクめっきを施す。条件は例えば、塩化ニッケル200〜300g/L、塩酸100〜150mL/Lを含有する水溶液をめっき浴として、浴温30〜40℃、電流密度5〜10A/dm2にて、平均膜厚0.05〜0.3μm程度のNi薄膜層を形成させる。
(3)Cuめっきを施す。条件は例えば、硫酸銅150〜250g/L、硫酸30〜80g/Lを含有する水溶液をめっき浴(硫酸銅浴)として、浴温20〜60℃、電流密度3〜10A/dm2にて、平均膜厚0.5〜100μm、好ましくは1〜10μm程度のCuめっき層を形成させる。
Below, the case where Ni strike plating is given is mentioned as an example, and the general procedure which forms Cu plating layer is illustrated.
(1) A steel material (steel plate) to be a base material (plating original plate) is degreased and pickled.
(2) Ni strike plating is performed. The conditions are, for example, an aqueous solution containing nickel chloride 200 to 300 g / L and hydrochloric acid 100 to 150 mL / L as a plating bath, a bath temperature of 30 to 40 ° C., a current density of 5 to 10 A / dm 2 , and an average film thickness of 0. A Ni thin film layer of about 05 to 0.3 μm is formed.
(3) Apply Cu plating. The conditions are, for example, an aqueous solution containing copper sulfate 150 to 250 g / L and sulfuric acid 30 to 80 g / L as a plating bath (copper sulfate bath) at a bath temperature of 20 to 60 ° C. and a current density of 3 to 10 A / dm 2 . A Cu plating layer having an average film thickness of 0.5 to 100 μm, preferably about 1 to 10 μm is formed.

〔Al含有銅合金層の形成〕
基材表面にCuめっき層を形成した「Cuめっき鋼材」を高温に加熱すると、基材中に存在するAlがCuめっき層の内部に拡散し、鋼材表層部にはAl含有銅合金層が形成される。加熱温度は600〜1050℃とすることが望ましく、700℃〜1020℃とすることがより好ましい。加熱時間は0〜24hの範囲で最適条件を設定すればよい。ここで加熱時間0hとは、上記温度範囲に設定した所定の加熱温度に材料温度が到達した後、直ちに降温過程に移行させるヒートパターンを採用する場合を意味する。加熱温度および加熱時間は、Cuめっき層の厚さ、基材中のAl含有量などに応じて、Al含有銅合金層の膜厚およびAl含有量が目的の範囲となるように条件を設定すればよい。
[Formation of Al-containing copper alloy layer]
When "Cu-plated steel" with a Cu-plated layer formed on the substrate surface is heated to a high temperature, Al present in the substrate diffuses into the Cu-plated layer, and an Al-containing copper alloy layer is formed on the steel surface layer. Is done. The heating temperature is preferably 600 to 1050 ° C, more preferably 700 to 1020 ° C. What is necessary is just to set optimal conditions for the heating time in the range of 0-24h. Here, the heating time 0h means a case in which a heat pattern is adopted in which the material temperature immediately reaches the predetermined heating temperature set in the above temperature range and is immediately shifted to the temperature lowering process. The heating temperature and heating time should be set so that the film thickness and Al content of the Al-containing copper alloy layer are within the target range depending on the thickness of the Cu plating layer and the Al content in the substrate. That's fine.

この拡散処理の加熱は非酸化性雰囲気で行う。例えば、真空雰囲気、窒素ガスやアルゴンガスなどの不活性ガス雰囲気、水素ガスなどの還元性ガス雰囲気などが例示できる。さらに露点を−20℃以下好ましくは−30℃以下に低く保つことが表面酸化を抑制する上で特に効果的である。   The diffusion treatment is heated in a non-oxidizing atmosphere. Examples thereof include a vacuum atmosphere, an inert gas atmosphere such as nitrogen gas and argon gas, and a reducing gas atmosphere such as hydrogen gas. Furthermore, keeping the dew point at -20 ° C or lower, preferably -30 ° C or lower, is particularly effective in suppressing surface oxidation.

表1に示す鋼種Aからなる板厚1mmの鋼板を用意した。この鋼板の表面を#1000耐水研磨紙で研磨したのち、60℃の5質量%オルソ珪酸ナトリウム水溶液中で電解脱脂し、次いで5質量%塩酸水溶液で中和処理することにより基材(めっき原板)とした。
この基材に、硫酸銅200g/L、硫酸50g/Lを含有する硫酸銅浴を用いて、浴温40℃、電流密度10A/dm2にて電気Cuめっきを施し、平均厚さ1μmのCuめっき層を表面に有するCuめっき鋼材を得た。
このCuめっき鋼材を、露点−60℃の100%窒素ガス雰囲気中にて、加熱温度1000℃、加熱時間5minの拡散処理に供した。
A steel plate having a thickness of 1 mm made of steel type A shown in Table 1 was prepared. After polishing the surface of this steel plate with # 1000 water-resistant abrasive paper, it is electrolytically degreased in a 5% by mass sodium orthosilicate aqueous solution at 60 ° C., and then neutralized with a 5% by mass hydrochloric acid aqueous solution to form a base material (plating original plate) It was.
This substrate was subjected to electro Cu plating at a bath temperature of 40 ° C. and a current density of 10 A / dm 2 using a copper sulfate bath containing 200 g / L of copper sulfate and 50 g / L of sulfuric acid, and Cu having an average thickness of 1 μm. A Cu plated steel material having a plating layer on the surface was obtained.
This Cu plated steel material was subjected to a diffusion treatment at a heating temperature of 1000 ° C. and a heating time of 5 minutes in a 100% nitrogen gas atmosphere having a dew point of −60 ° C.

拡散処理後の材料について、表面付近の断面をSEM−EDXで観察・分析したところ、鋼材表面に平均厚さ約1μmのAl含有銅合金層が形成されていた。その組成は、Cu、Al、Ni、Feの分析値によると、厚さ中央部10箇所の測定結果の平均値で、Al:2.1質量%、Ni:0.02質量%、Fe:0.6質量%であり、残部はCuであった。
このAl含有銅合金層は厚さ変動および組成変動が少なく、均一性の高いものであった。
When the cross section near the surface was observed and analyzed for the material after the diffusion treatment by SEM-EDX, an Al-containing copper alloy layer having an average thickness of about 1 μm was formed on the steel material surface. According to the analysis values of Cu, Al, Ni, and Fe, the composition is the average value of the measurement results at 10 locations in the thickness center, Al: 2.1 mass%, Ni: 0.02 mass%, Fe: 0 0.6% by mass, and the balance was Cu.
This Al-containing copper alloy layer had little variation in thickness and composition, and was highly uniform.

表1に示す鋼種Bからなる板厚1mmの鋼板を用意した。この鋼板の表面を#1000耐水研磨紙で研磨したのち、60℃の5質量%オルソ珪酸ナトリウム水溶液中で電解脱脂し、次いで5質量%塩酸水溶液で中和処理することにより基材(めっき原板)とした。
この基材に、塩化ニッケル240g/L、塩酸120mL/Lを含有する塩化ニッケル浴を用いて、浴温30℃、電流密度5A/dm2にてNiストライクめっきを施し、平均厚さ0.3μmのNi薄膜層を表面に有する鋼材を得た。
このNi薄膜層の上に、硫酸銅200g/L、硫酸50g/Lを含有する硫酸銅浴を用いて、浴温40℃、電流密度10A/dm2にて電気Cuめっきを施し、平均厚さ3μmのCuめっき層を表面に有するCuめっき鋼材を得た。
このCuめっき鋼材を、露点−30℃の100%水素ガス雰囲気中にて、加熱温度800℃、加熱時間2hの拡散処理に供した。
A steel plate having a thickness of 1 mm made of steel type B shown in Table 1 was prepared. After polishing the surface of this steel plate with # 1000 water-resistant abrasive paper, it is electrolytically degreased in a 5% by mass sodium orthosilicate aqueous solution at 60 ° C., and then neutralized with a 5% by mass hydrochloric acid aqueous solution to form a base material (plating original plate) It was.
This substrate was subjected to Ni strike plating at a bath temperature of 30 ° C. and a current density of 5 A / dm 2 using a nickel chloride bath containing 240 g / L of nickel chloride and 120 mL / L of hydrochloric acid, and an average thickness of 0.3 μm. A steel material having a Ni thin film layer on its surface was obtained.
On this Ni thin film layer, using a copper sulfate bath containing 200 g / L of copper sulfate and 50 g / L of sulfuric acid, electro Cu plating was performed at a bath temperature of 40 ° C. and a current density of 10 A / dm 2 to obtain an average thickness. A Cu plated steel material having a 3 μm Cu plated layer on the surface was obtained.
This Cu plated steel material was subjected to a diffusion treatment at a heating temperature of 800 ° C. and a heating time of 2 hours in a 100% hydrogen gas atmosphere having a dew point of −30 ° C.

拡散処理後の材料について、表面付近の断面をSEM−EDXで観察・分析したところ、鋼材表面に平均厚さ約3μmのAl含有銅合金層が形成されていた。その組成は、Cu、Al、Ni、Feの分析値によると、厚さ中央部10箇所の測定結果の平均値で、Al:6.2質量%、Ni:0.6質量%、Fe:1.2質量%であり、残部はCuであった。   When the cross section near the surface of the material after the diffusion treatment was observed and analyzed by SEM-EDX, an Al-containing copper alloy layer having an average thickness of about 3 μm was formed on the steel surface. According to the analysis values of Cu, Al, Ni, and Fe, the composition is the average value of the measurement results at 10 locations in the central portion of the thickness, Al: 6.2% by mass, Ni: 0.6% by mass, Fe: 1 0.2% by mass, and the balance was Cu.

図1に、拡散処理後の材料の表面付近の断面SEM写真を示す。図2に、拡散処理前のCuめっき鋼材および拡散処理後のAl含有銅合金被覆鋼材について、高周波グロー放電分光分析(GDS)による表面から深さ方向への元素濃度分布の測定結果を示す。拡散処理により基材の鋼中に存在していたAlがCuめっき層側に拡散し、厚さ方向の濃度変動が少ない均質性の高いAl含有銅合金層が形成されていることがわかる。   FIG. 1 shows a cross-sectional SEM photograph near the surface of the material after the diffusion treatment. FIG. 2 shows the measurement results of the element concentration distribution from the surface to the depth direction by high frequency glow discharge spectroscopic analysis (GDS) for the Cu-plated steel material before the diffusion treatment and the Al-containing copper alloy coated steel material after the diffusion treatment. It can be seen that Al present in the steel of the base material diffuses to the Cu plating layer side by the diffusion treatment, and a highly homogeneous Al-containing copper alloy layer with little concentration fluctuation in the thickness direction is formed.

実施例2で得られた拡散処理後の材料の表面付近の断面SEM写真。FIG. 3 is a cross-sectional SEM photograph near the surface of the material after diffusion treatment obtained in Example 2. FIG. 実施例2で得られた拡散処理前・後の材料についてGDSによる表面から深さ方向への元素濃度分布の測定結果を示すグラフ。The graph which shows the measurement result of the element concentration distribution from the surface to the depth direction by GDS about the material before and after the diffusion treatment obtained in Example 2.

Claims (7)

Al含有鋼材を基材とするCuめっき鋼材のCuめっき層中に前記基材中のAlが加熱拡散することにより形成された平均厚さ0.5〜100μm、Al含有量1〜15質量%の銅合金層を、前記Al含有鋼材表面に有するAl含有銅合金被覆鋼材。 An average thickness of 0.5 to 100 μm and an Al content of 1 to 15% by mass formed by heating and diffusing Al in the Cu plating layer of a Cu-plated steel material having an Al-containing steel material as a base material . An Al-containing copper alloy-coated steel material having a copper alloy layer on the surface of the Al-containing steel material. 銅合金層は、厚さ中央部において、質量%でAl:1〜15%を含有し、Ni:7%以下、Fe:6%以下、Cr:2%以下、Mn:2%以下の1種以上を含有し、残部Cuおよび不可避的不純物の組成を有するものである請求項に記載のAl含有銅合金被覆鋼材。 The copper alloy layer contains Al: 1 to 15% by mass% in the center of the thickness, Ni: 7% or less, Fe: 6% or less, Cr: 2% or less, Mn: 2% or less The Al-containing copper alloy-coated steel material according to claim 1 , comprising the above, and having a composition of the balance Cu and inevitable impurities. Al含有量1〜20質量%の鋼材を基材として、その表面にCuめっき層を形成したCuめっき鋼材を、非酸化性雰囲気中600〜1050℃に加熱保持することにより、基材中のAlがCuめっき層側に拡散する現象を利用して鋼材表面にAl含有量1質量%以上の銅合金層を形成させるAl含有銅合金被覆鋼材の製造方法。   By using a steel material having an Al content of 1 to 20% by mass as a base material, a Cu-plated steel material having a Cu plating layer formed on the surface thereof is heated and held at 600 to 1050 ° C. in a non-oxidizing atmosphere, whereby Al A method for producing an Al-containing copper alloy-coated steel material, in which a copper alloy layer having an Al content of 1% by mass or more is formed on the surface of a steel material by utilizing the phenomenon of diffusion to the Cu plating layer side. 基材は、質量%で、C:1%以下、Al:1〜20%を含有し、その他の合金成分として、Si:3%以下、Mn:5%以下、P:0.1%以下、S:0.03%以下、Cr:35%以下、Ni:24%以下、Mo:5%以下、Cu:6%以下、Ti:1%以下、Nb:1%以下、V:1%以下、N:0.5%以下、B:1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物からなる鋼である請求項に記載のAl含有銅合金被覆鋼材の製造方法。 The base material contains, by mass%, C: 1% or less, Al: 1 to 20%, and other alloy components: Si: 3% or less, Mn: 5% or less, P: 0.1% or less, S: 0.03% or less, Cr: 35% or less, Ni: 24% or less, Mo: 5% or less, Cu: 6% or less, Ti: 1% or less, Nb: 1% or less, V: 1% or less, N: 0.5% or less, B: 1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Y: 0.1% or less, REM (rare earth element): 0.1% or less The method for producing an Al-containing copper alloy-coated steel material according to claim 3 , wherein the steel contains one or more types and the balance is Fe and inevitable impurities. 基材は、質量%で、C:0.1%以下、Cr:9〜32%、Al:1〜6%であり、その他の合金成分として、Si:1%以下、Mn:1%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Mo:5%以下、Cu:3.5%以下、Ti:0.8%以下、Nb:0.8%以下、V:1%以下、N:0.025%以下、B:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Y:0.1%以下、REM(希土類元素):0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物からなるフェライト系鋼種である請求項に記載のAl含有銅合金被覆鋼材の製造方法。 The base material is, in mass%, C: 0.1% or less, Cr: 9 to 32%, Al: 1 to 6%, and other alloy components are Si: 1% or less, Mn: 1% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Mo: 5% or less, Cu: 3.5% or less, Ti: 0.8% or less, Nb: 0.00% 8% or less, V: 1% or less, N: 0.025% or less, B: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Y: 0.1% or less, The method for producing an Al-containing copper alloy-coated steel material according to claim 3 , wherein the REM (rare earth element) is a ferritic steel type containing at least one element of 0.1% or less and the balance being Fe and inevitable impurities. 基材表面のCuめっき層は平均厚さ0.5μm以上の電気Cuめっき層である請求項3〜5のいずれかに記載のAl含有銅合金被覆鋼材の製造方法。 The method for producing an Al-containing copper alloy-coated steel material according to any one of claims 3 to 5 , wherein the Cu plating layer on the substrate surface is an electric Cu plating layer having an average thickness of 0.5 µm or more. 基材表面のCuめっき層は、Niストライクめっき層を介して基材表面に形成された平均厚さ0.5μm以上の電気Cuめっき層である請求項3〜5のいずれかに記載のAl含有銅合金被覆鋼材の製造方法。 Cu plating layer of the substrate surface, Al content according to any one of claims 3 to 5 Ni strike plating layer is Cu electroplating layer over an average thickness of 0.5μm was formed on the substrate surface through the A method for producing a copper alloy coated steel material.
JP2008211413A 2008-08-20 2008-08-20 Al-containing copper alloy coated steel and method for producing the same Expired - Fee Related JP5561920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211413A JP5561920B2 (en) 2008-08-20 2008-08-20 Al-containing copper alloy coated steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211413A JP5561920B2 (en) 2008-08-20 2008-08-20 Al-containing copper alloy coated steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010047791A JP2010047791A (en) 2010-03-04
JP5561920B2 true JP5561920B2 (en) 2014-07-30

Family

ID=42065107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211413A Expired - Fee Related JP5561920B2 (en) 2008-08-20 2008-08-20 Al-containing copper alloy coated steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5561920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834957A (en) * 2016-12-10 2017-06-13 天长市天龙泵阀成套设备厂 Double-deck extrusion molding dies steel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176277B1 (en) 2014-07-29 2020-05-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel material for fuel cell, and method for producing same
JP5902253B2 (en) * 2014-07-29 2016-04-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells and method for producing the same
JP6006759B2 (en) * 2014-07-29 2016-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP6006893B2 (en) * 2016-01-25 2016-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells
JP6190498B2 (en) * 2016-07-15 2017-08-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel and manufacturing method thereof
CN111349847B (en) * 2018-12-24 2022-03-18 宝山钢铁股份有限公司 Seawater corrosion resistant steel and manufacturing method thereof
CN109988958B (en) * 2019-03-08 2020-05-22 北京矿冶科技集团有限公司 Nickel-based alloy powder, corresponding corrosion-resistant coating and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032720B2 (en) * 1979-03-08 1985-07-30 日新製鋼株式会社 Manufacturing method of copper-plated stainless steel sheet for double-wound pipe
JPS62149887A (en) * 1985-12-24 1987-07-03 Kawasaki Steel Corp Surface coated steel pipe having superior corrosion resistance and its manufacture
JPH0794153A (en) * 1993-09-28 1995-04-07 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery and negative electrode vessel
JP4947565B2 (en) * 2001-02-16 2012-06-06 新日本製鐵株式会社 A method for producing a high-strength hot-dip galvanized steel sheet excellent in plating adhesion and press formability.
JP2005113225A (en) * 2003-10-09 2005-04-28 Taiho Kogyo Co Ltd SLIDING MEMBER THERMAL-SPRAYED WITH Pb-FREE COPPER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834957A (en) * 2016-12-10 2017-06-13 天长市天龙泵阀成套设备厂 Double-deck extrusion molding dies steel

Also Published As

Publication number Publication date
JP2010047791A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5561920B2 (en) Al-containing copper alloy coated steel and method for producing the same
KR101079472B1 (en) Method for Manufacturing High Manganese Hot Dip Galvanizing Steel Sheet with Superior Surface Property
EP2794950B1 (en) Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
WO2011052797A1 (en) Hot-pressed member and process for producing same
JPWO2018221738A1 (en) Hot stamp member
KR101243433B1 (en) Slide member fabrication method, slide member, and slide member base material
KR101762555B1 (en) Al-plated steel sheet for hot pressing and process for manufacturing al-plated steel sheet for hot pressing
KR20190133754A (en) Hot stamp moldings
CN106795643A (en) The excellent connection member conductive material of resistance to micro- skimming wear
CN113025937A (en) Hot-dip galvanized steel plate and preparation method thereof
KR101207767B1 (en) High manganese and aluminium galvanizing steel sheet having excellent galvanizing proprety and method for manufacturing the same
JP2012041610A (en) Steel sheet for hot pressing, manufacturing method therefor and method for manufacturing hot press member
WO2007126010A1 (en) HEAT-RESISTANT Sn-PLATED Cu-Zn ALLOY STRIP SUPPRESSED IN WHISKERING
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
CN105925775B (en) A kind of production method of the corrosion resistance decoration composite deposite steel band of thickness≤0.1mm
JP2007092173A (en) Cu-Ni-Si-Zn BASED ALLOY TINNED STRIP
WO2016167304A1 (en) Plated steel sheet and method for manufacturing same
WO2014203445A1 (en) Hot-pressed member and production method for same
JPH10263793A (en) Manufacture of al-based composite body
CN110592515B (en) Hot-dip tinned copper material and manufacturing method thereof
CN111304654B (en) Method for plating platinum on surface of steel strip
CN114182188A (en) Hot-dip zinc-aluminum-magnesium-coated steel plate and preparation method thereof
CN114318202A (en) Nickel-based alloy surface wear-resistant coating and preparation method thereof
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
CN115443350A (en) Al-plated hot-stamped steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5561920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees