JP2019196527A - Cr-CONTAINING ELECTROSEAMED STEEL PIPE, AND MANUFACTURING METHOD THEREOF - Google Patents

Cr-CONTAINING ELECTROSEAMED STEEL PIPE, AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2019196527A
JP2019196527A JP2018091870A JP2018091870A JP2019196527A JP 2019196527 A JP2019196527 A JP 2019196527A JP 2018091870 A JP2018091870 A JP 2018091870A JP 2018091870 A JP2018091870 A JP 2018091870A JP 2019196527 A JP2019196527 A JP 2019196527A
Authority
JP
Japan
Prior art keywords
mass
less
steel pipe
erw
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018091870A
Other languages
Japanese (ja)
Other versions
JP7087653B2 (en
Inventor
史徳 渡辺
Fuminori Watanabe
史徳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018091870A priority Critical patent/JP7087653B2/en
Publication of JP2019196527A publication Critical patent/JP2019196527A/en
Application granted granted Critical
Publication of JP7087653B2 publication Critical patent/JP7087653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

To provide an electroseamed steel pipe excellent in corrosion resistance, and containing Cr over 3%.SOLUTION: In a Cr-containing electroseamed steel pipe containing Cr as much as 3.0-32.0 mass%, concerning Cr oxide defects existing on a welding surface, an evaluation length L, the maximum defective length Lin L, and a ratio Lbetween the evaluation length Land a total defect length (total of line lengths of exposed defects) satisfy following formulas (1), (2), and thereby corrosion resistance of a weld zone becomes equivalent to that of a parent metal: L[mm]≤0.1...(1) (100×L/L)[%]<-0.5×L[mm]+0.1...(2).SELECTED DRAWING: Figure 5

Description

本発明は、油井管やラインパイプ等として用いるに適したCr含有電縫鋼管及びその製造方法に関するものである。   The present invention relates to a Cr-containing ERW steel pipe suitable for use as an oil well pipe, a line pipe, and the like, and a method for manufacturing the same.

電縫溶接は高い真円度と小さい偏肉を満たす鋼管を高い生産性で製造でき、構造管、ラインパイプ、油井管等に幅広く用いられている。しかしながら、溶接管であるがゆえに、鋼管の品質は溶接部の品質で決まることが多く、溶接部の品質が確保しにくい材質で製造するのは困難であった。   ERW welding can produce steel pipes with high roundness and small uneven thickness with high productivity, and is widely used for structural pipes, line pipes, oil well pipes, etc. However, since it is a welded pipe, the quality of the steel pipe is often determined by the quality of the welded portion, and it has been difficult to manufacture the material with a material in which the quality of the welded portion is difficult to ensure.

石油・ガス等の産出・輸送用の油井管やラインパイプ等では、通常の中性湿潤環境下では、炭素鋼、低合金鋼の材料が用いられている。しかし、炭酸ガスを多く含む石油・ガス等では、通常の中性湿潤環境下での腐食や大気腐食に比べて腐食速度が非常に速くなるため、このような炭酸ガス腐食性の高い石油・ガスの産出・輸送用の油井管やラインパイプ等に対しては、油に腐食抑制剤などを添加したり、材料として耐炭酸ガス腐食性に優れた13%超のCrを含むステンレス鋼のシームレス鋼管あるいはアーク溶接管が主に用いられてきた。   In oil well pipes and line pipes for producing and transporting oil and gas, carbon steel and low alloy steel materials are used in a normal neutral wet environment. However, oil and gas containing a large amount of carbon dioxide gas has a much faster corrosion rate than corrosion under normal neutral and humid environments and atmospheric corrosion. For oil well pipes and line pipes for the production and transportation of steel, stainless steel seamless steel pipes containing more than 13% Cr with excellent corrosion resistance to carbon dioxide as a material, and adding oil to the oil Alternatively, arc welded pipes have been mainly used.

しかしながら、油への腐食抑制剤の使用は、環境保全の点から好ましくなく、ラインパイプ等へのステンレス鋼の適用は素材費が高く、使用期間が限られていたり、その腐食条件が余り過酷ではない環境への適用には、費用対効果の点でオーバースペックとなる。また、シームレス鋼管やアーク溶接鋼管は電縫溶接に比べ生産性の低いことから、電縫溶接管でステンレス鋼よりも合金コストを抑えた鋼管が望まれている。そのため、使用環境に対して必要十分な合金成分系の材質で高い電縫溶接品質を確保する必要がある。炭素鋼よりも明らかに優れた耐食性能を確保するという観点から、Cr添加量は3%超の範囲をカバーすることが望ましい。   However, the use of corrosion inhibitors in oil is not desirable from the viewpoint of environmental protection, and the application of stainless steel to line pipes is expensive, and the usage period is limited or the corrosion conditions are not so severe. It is over-spec in terms of cost-effectiveness for application to a new environment. In addition, since seamless steel pipes and arc welded steel pipes are less productive than ERW welding, steel pipes with lower alloy costs than stainless steel are desired for ERW welded pipes. Therefore, it is necessary to ensure high ERW welding quality with a material of an alloy component system necessary and sufficient for the use environment. From the viewpoint of securing corrosion resistance that is clearly superior to that of carbon steel, it is desirable that the Cr addition amount covers a range of more than 3%.

これらに対し、特許文献1である特開昭56−93856号公報や、特許文献2である特許第4499949号公報には、炭酸ガスによる全面腐食とともに溶接部の局部腐食を向上させることが可能なラインパイプ用鋼が開示されている。しかしながら、これらの公報には、電縫溶接方法について記載がない。Crを1%程度以上含む鋼は、酸化物欠陥が発生しやすいため、安定した溶接品質を実現するためには酸化物欠陥を抑制するための配慮が不可欠である。   On the other hand, Japanese Patent Application Laid-Open No. 56-93856, which is Patent Document 1, and Japanese Patent No. 4,499,949, which is Patent Document 2, can improve the local corrosion of the welded portion as well as the general corrosion caused by carbon dioxide gas. Steel for line pipes is disclosed. However, these publications do not describe an electric resistance welding method. Since steel containing about 1% or more of Cr is likely to generate oxide defects, consideration for suppressing oxide defects is indispensable in order to achieve stable welding quality.

また、特許文献3である特許第4890609号公報では、プラズマシールドを用いた電縫溶接でCrを0.5〜26%程度以上含む鋼にて欠陥面積率を0.01%以下に抑える技術を提案している。Crを含む鋼の利点である耐食性を確保するためには欠陥を減らす必要があり、突合せ面全体の欠陥量も低いことが望ましいものの、耐食性に関する溶接欠陥の量は突合せの面でなく表面で規定する必要がある。というのは材料の腐食は鋼管の材料表面で発生するので、突合せ部の面としては欠陥率が低くても欠陥が表面に露出してしまえば鋼管の耐食性を劣化させてしまうからである。   Moreover, in patent 4890609 which is patent document 3, the technique which suppresses a defect area ratio to 0.01% or less with the steel which contains about 0.5 to 26% or more of Cr by the electric resistance welding using a plasma shield. is suggesting. To ensure corrosion resistance, which is an advantage of steel containing Cr, it is necessary to reduce defects, and it is desirable that the amount of defects on the entire butt surface be low, but the amount of weld defects related to corrosion resistance is specified not on the butt surface but on the surface. There is a need to. This is because the corrosion of the material occurs on the material surface of the steel pipe, and even if the defect rate is low on the surface of the butt portion, if the defect is exposed on the surface, the corrosion resistance of the steel pipe is deteriorated.

そのため、耐食性を確保するための溶接欠陥の面積率よりも適した指標を明確化し、その指標を満たす鋼管およびそれを可能にする製造方法を確立することが必要である。   Therefore, it is necessary to clarify an index more suitable than the area ratio of weld defects for ensuring corrosion resistance, and to establish a steel pipe that satisfies the index and a manufacturing method that enables it.

特開昭56−93856号公報JP-A-56-93856 特許第4499949号公報Japanese Patent No. 4499949 特許第4890609号公報Japanese Patent No. 4890609

従って本発明の目的は上記した従来の問題点を解決し、炭酸ガス(CO)を多く含む環境での使用あるいはCOを多く含む石油・ガス等の輸送に好適である、3%超のCrを含む電縫鋼管とその製造方法を提供することである。 Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and is suitable for use in an environment containing a large amount of carbon dioxide (CO 2 ) or for transporting oil and gas containing a large amount of CO 2 . It is to provide an electric resistance welded steel pipe containing Cr and a method for manufacturing the same.

上記の課題を解決するためになされた本発明は、次の(1)から(9)の通りである。
(1)成分が、mass%で、
Cr:3.0mass%以上32.0mass%以下、
C:0.01mass%以上0.45mass%以下、
Si:0.02mass%以上1.00mass%以下、
Mn:0.05mass%以上2.00mass%以下、
P:0.0008mass%以上0.0450mass%以下、
S:0.0003mass%以上0.0300mass%以下、
Al:0.005mass%以上1.000mass%以下、
N:0.0005mass%以上0.4000mass%以下、
を含み、残Feおよび不可避的不純物からなるCr含有電縫鋼管において、溶接表面に存在するCr酸化物欠陥について、評価長さL、L内の最大欠陥長さLdmax、評価長さLと全欠陥長さ(露出した欠陥の線の長さの合計)Ldtotの比が、下記式(1)、(2)を満足することを特徴とするCr含有電縫鋼管。
dmax[mm] ≦0.1 (1)
(100×Ldtot/L)[%]<−0.5×Ldmax[mm]+0.1 (2)
The present invention made to solve the above-described problems is as follows (1) to (9).
(1) The ingredient is mass%,
Cr: 3.0 mass% or more and 32.0 mass% or less,
C: 0.01 mass% or more and 0.45 mass% or less,
Si: 0.02 mass% or more and 1.00 mass% or less,
Mn: 0.05 mass% or more and 2.00 mass% or less,
P: 0.0008 mass% or more and 0.0450 mass% or less,
S: 0.0003 mass% or more and 0.0300 mass% or less,
Al: 0.005 mass% or more and 1.000 mass% or less,
N: 0.0005 mass% or more and 0.4000 mass% or less,
In a Cr-containing ERW steel pipe comprising residual Fe and unavoidable impurities, the evaluation length L w , the maximum defect length L dmax in L w , and the evaluation length L for Cr oxide defects present on the weld surface A Cr-containing electric-welded steel pipe, wherein the ratio of w to the total defect length (total length of exposed defect lines) L dtot satisfies the following formulas (1) and (2).
L dmax [mm] ≦ 0.1 (1)
(100 × L dtot / L w ) [%] <− 0.5 × L dmax [mm] +0.1 (2)

(2)さらに成分が、mass%で、
B:0.0001mass%以上0.0200mass%以下、
Ni:0.03mass%以上28.00mass%以下、
Mo:0.02mass%以上7.00mass%以下、
W:0.02mass%以上8.0mass%以下、
Cu:0.01mass%以上4.00mass%以下、
Ti:0.01mass%以上1.00mass%以下、
Nb:0.01mass%以上1.00mass%以下、
Zr:0.01mass%以上1.00mass%以下、
V:0.01mass%以上1.00mass%以下、
の1種または2種以上を含有することを特徴とする(1)のCr含有電縫鋼管。
(2) In addition, the component is mass%,
B: 0.0001 mass% or more and 0.0200 mass% or less,
Ni: 0.03 mass% or more and 28.00 mass% or less,
Mo: 0.02 mass% to 7.00 mass%,
W: 0.02 mass% or more and 8.0 mass% or less,
Cu: 0.01 mass% or more and 4.00 mass% or less,
Ti: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.01 mass% or more and 1.00 mass% or less,
Zr: 0.01 mass% or more and 1.00 mass% or less,
V: 0.01 mass% or more and 1.00 mass% or less,
(1) Cr-containing ERW steel pipe characterized by containing one or more of the above.

(3)成分が、mass%で、
Cr:3.0mass%以上32.0mass%以下、
C:0.01mass%以上0.45mass%以下、
Si:0.02mass%以上1.00mass%以下、
Mn:0.05mass%以上2.00mass%以下、
P:0.0008mass%以上0.0450mass%以下、
S:0.0003mass%以上0.0300mass%以下、
Al:0.005mass%以上1.000mass%以下、
N:0.0005mass%以上0.4000mass%以下、
を含み、残Feおよび不可避的不純物からなるCr含有鋼板を造管、電縫溶接してCr含有電縫鋼管とする際に、電縫溶接に用いる給電コイルとして、コイル本体の外面と裏面の一方または双方が水路で仕切られ、それを覆って冷却水がもれないようなカバーで被覆された給電コイルを用いて電縫溶接することを特徴とするCr含有電縫鋼管の製造方法。
(3) The component is mass%,
Cr: 3.0 mass% or more and 32.0 mass% or less,
C: 0.01 mass% or more and 0.45 mass% or less,
Si: 0.02 mass% or more and 1.00 mass% or less,
Mn: 0.05 mass% or more and 2.00 mass% or less,
P: 0.0008 mass% or more and 0.0450 mass% or less,
S: 0.0003 mass% or more and 0.0300 mass% or less,
Al: 0.005 mass% or more and 1.000 mass% or less,
N: 0.0005 mass% or more and 0.4000 mass% or less,
As a power supply coil used for ERW welding, one of the outer surface and the back surface of the coil main body is formed as a Cr-containing ERW steel pipe by making a Cr-containing steel sheet containing residual Fe and inevitable impurities. Alternatively, a method for producing a Cr-containing electric-welded steel pipe, characterized in that both are partitioned by a water channel and electro-welded using a power supply coil covered with a cover that covers the water channel and prevents leakage of cooling water.

(4)前記水路および前記カバーが、前記コイル本体の外側に配置された給電コイルを用いて電縫溶接することを特徴とする(3)のCr含有電縫鋼管の製造方法。
(5)前記水路は前記給電コイルの造管側下流を優先的に冷却できるように配置された給電コイルを用いて電縫溶接することを特徴とする(3)または(4)のCr含有電縫鋼管の製造方法。
(6)前記水路を備えた給電コイルにおいて、冷却水元管と給電コイル側水路の接続部では冷却水元管側の方が管路が同等もしくは広い給電コイルを用いて電縫溶接することを特徴とする(3)乃至(5)5のいずれか1項のCr含有電縫鋼管の製造方法。
(7)前記給電コイルはスクイズロールの上流に備えられていることを特徴とする(3)乃至(6)のいずれか1項のCr含有電縫鋼管の製造方法。
(8)さらに電縫溶接部をプラズマシールドすることを特徴とする(3)乃至(7)のいずれか1項のCr含有電縫鋼管の製造方法。
(4) The method for producing a Cr-containing ERW steel pipe according to (3), wherein the water channel and the cover are electro-welded using a power feeding coil arranged outside the coil body.
(5) The Cr-containing battery according to (3) or (4), wherein the water channel is electro-welded using a power feeding coil disposed so as to preferentially cool the pipe-forming side downstream of the power feeding coil. Manufacturing method of sewn steel pipe.
(6) In the power feeding coil provided with the water channel, at the connection portion between the cooling water main pipe and the power feeding coil side water channel, the cooling water main pipe side should be electro-welded using a power feeding coil having the same or wider pipe. The method for producing a Cr-containing electric resistance welded steel pipe according to any one of (3) to (5) 5.
(7) The method for producing a Cr-containing ERW steel pipe according to any one of (3) to (6), wherein the feeding coil is provided upstream of a squeeze roll.
(8) The method for producing a Cr-containing ERW steel pipe according to any one of (3) to (7), further comprising plasma shielding the ERW weld.

(9)さらに成分が、mass%で、
B:0.0001mass%以上0.0200mass%以下、
Ni:0.03mass%以上28.00mass%以下、
Mo:0.02mass%以上7.00mass%以下、
W:0.02mass%以上8.0mass%以下、
Cu:0.01mass%以上4.00mass%以下、
Ti:0.01mass%以上1.00mass%以下、
Nb:0.01mass%以上1.00mass%以下、
Zr:0.01mass%以上1.00mass%以下、
V:0.01mass%以上1.00mass%以下、
の1種または2種以上を含有することを特徴とする(3)乃至(8)のいずれか1のCr含有電縫鋼管の製造方法。
(9) In addition, the component is mass%,
B: 0.0001 mass% or more and 0.0200 mass% or less,
Ni: 0.03 mass% or more and 28.00 mass% or less,
Mo: 0.02 mass% to 7.00 mass%,
W: 0.02 mass% or more and 8.0 mass% or less,
Cu: 0.01 mass% or more and 4.00 mass% or less,
Ti: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.01 mass% or more and 1.00 mass% or less,
Zr: 0.01 mass% or more and 1.00 mass% or less,
V: 0.01 mass% or more and 1.00 mass% or less,
The method for producing a Cr-containing electric-welded steel pipe according to any one of (3) to (8), comprising one or more of the following.

本発明の技術を用いることにより、3%超のCrを含み、耐食性に優れた電縫鋼管を提供することが可能となった。   By using the technique of the present invention, it is possible to provide an ERW steel pipe containing 3% or more of Cr and having excellent corrosion resistance.

Cr鋼におけるCr酸化物の析出状況を示す図である。It is a figure which shows the precipitation condition of Cr oxide in Cr steel. 鋼管の表面に露出した欠陥のサイズおよび密度と、耐食性の劣化との関係を示す図である。It is a figure which shows the relationship between the size and density of the defect exposed on the surface of a steel pipe, and deterioration of corrosion resistance. 鋼管の内表面に露出した欠陥のサイズおよび密度と、耐食性の劣化との関係を示す図である。It is a figure which shows the relationship between the size and density of the defect exposed to the inner surface of a steel pipe, and deterioration of corrosion resistance. dmaxと耐食性の劣化との関係を示すグラフである。It is a graph which shows the relationship between Ldmax and deterioration of corrosion resistance. 横軸をLdmax、縦軸を(Ldtot/L)として、Ldmaxt以下の実験データをプロットしたグラフである。The horizontal axis is L dmax and the vertical axis is (L dtot / L w ), which is a graph plotting experimental data below L dmaxt . 給電コイルのコイル本体を示す斜視図である。It is a perspective view which shows the coil main body of a feed coil. コイル本体に水路を形成した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which formed the water channel in the coil main body. 実施例で使用した仕切り無しの水路パターンを示す図である。It is a figure which shows the channel pattern without a partition used in the Example. 実施例で使用した仕切り有りの水路パターンを示す図である。It is a figure which shows the channel pattern with a partition used in the Example.

以下に本発明の実施形態を説明する。
表面腐食が問題になる環境での耐食性は、溶接面の欠陥が多くても、それが表面に露出しなければ腐食しない。しかし溶接面の欠陥が極めて少なくても、それが溶接表面に出ると局部腐食を引き起こし、母材に比べて耐食性が劣化してしまう。特にCO湿潤環境では、鋼材表面は
O+CO→H+HCO
という反応で低pHの腐食環境に曝される。したがって鋼材表面の耐食性を確保しないと腐食が進んでしまう。そこで発明者らはCr鋼の耐食性に着目し、Cr鋼活用により改善を試みた。CO湿潤環境におけるCr鋼の耐食性は、Crが固溶していればCr含有量によって決まることが実験事実として知られている。しかし、Cr鋼の場合であっても、Cr含有により母材としての耐食性は向上するものの、やはり溶接部、特に溶接表面におけるCr化合物、さらには溶接表面におけるCr酸化物のサイズ・分布によっては従来同様に耐食性に影響を及ぼすことが判明した。
Embodiments of the present invention will be described below.
Corrosion resistance in an environment where surface corrosion is a problem does not corrode if there are many defects on the weld surface unless they are exposed to the surface. However, even if there are very few defects on the weld surface, if it comes out on the weld surface, it causes local corrosion and deteriorates the corrosion resistance compared to the base metal. Particularly in a CO 2 humid environment, the surface of the steel material is H 2 O + CO 2 → H + + HCO 3
It is exposed to a low pH corrosive environment. Therefore, corrosion will progress unless the corrosion resistance of the steel material surface is ensured. Therefore, the inventors focused on the corrosion resistance of Cr steel and tried to improve it by utilizing Cr steel. It is known as an experimental fact that the corrosion resistance of Cr steel in a CO 2 wet environment is determined by the Cr content if Cr is dissolved. However, even in the case of Cr steel, the corrosion resistance as a base material is improved by the inclusion of Cr, but depending on the size and distribution of the Cr compound on the welded part, particularly the welded surface, and also the Cr oxide on the welded surface Similarly, it has been found to affect the corrosion resistance.

図1にCr酸化物の析出状況を示す。Cr鋼においてCr酸化物が発生すると、酸化物へのCr濃化に伴い、化合物周囲のCr量は母材より低下してしまうので、酸化物生成位置は母材に比べて耐食性が劣化する。大きな酸化物ほど、広いCr欠乏層が生じてしまう。そのため、耐食性にとって有害となる化合物にはサイズの下限がある。言い換えれば、あるサイズ以下の酸化物であれば単体での耐食性の劣化代は小さい。しかしながら小さい酸化物でも密度が大きければ耐食性を劣化させてしまう。そこで、本発明ではCr酸化物による耐食性の劣化有無を判定する指標を規定し、その指標を満たすプロセスを見出した。以下、詳細に説明する。   FIG. 1 shows the state of precipitation of Cr oxide. When Cr oxide is generated in Cr steel, the Cr content around the compound decreases with the concentration of Cr in the oxide, so that the corrosion resistance of the oxide generation position deteriorates as compared with the base material. A larger oxide results in a wider Cr-depleted layer. Therefore, compounds that are detrimental to corrosion resistance have a lower size limit. In other words, if the oxide is smaller than a certain size, the degradation allowance of corrosion resistance alone is small. However, even with small oxides, if the density is large, the corrosion resistance is degraded. Therefore, in the present invention, an index for determining the presence or absence of deterioration of corrosion resistance due to Cr oxide is defined, and a process satisfying the index has been found. Details will be described below.

(溶接部の耐食性を母材と同等にするCr酸化物欠陥に係る規定)
上記した通り、Cr鋼溶接部における酸化物欠陥は、Cr酸化物が主体となり、同時に欠陥周囲へのCr欠乏層の発生を引き起こした形態となる。Cr鋼の電縫溶接においては、突合せ前の加熱中に突合せ表面で酸化反応が起こり、Cr酸化物欠陥の大部分はアプセット時に引き伸ばされながら排出されるが、適正な溶接条件にしてもCr酸化物欠陥を完全に無くすことは不可能である。そしてCr酸化物欠陥は突合せ面に沿って引き伸ばされるため、鋼管表面に露出したCr酸化物欠陥は、鋼管表面の溶接線に沿ってほぼ線状に位置することになる。
(Rules related to Cr oxide defects that make the corrosion resistance of welds equal to that of the base metal)
As described above, the oxide defects in the Cr steel weld are mainly composed of Cr oxides, and at the same time, a form in which a Cr-depleted layer is generated around the defects. In electric resistance welding of Cr steel, an oxidation reaction occurs on the butt surface during heating before butting, and most of the Cr oxide defects are discharged while being stretched during upsetting. It is impossible to completely eliminate physical defects. And since a Cr oxide defect is extended along a butt | matching surface, the Cr oxide defect exposed on the steel pipe surface will be located substantially linearly along the weld line on the steel pipe surface.

このようにCr酸化物欠陥が外表面に位置していると、表面のその位置は母材に対して耐食性が劣化しているため、CO湿潤環境の腐食の起点となりうる。つまり、図2に示すように露出した欠陥のサイズと密度によって耐食性の劣化が起こってしまう。具体的には、粗大な欠陥が露出すると耐食性が劣化するが、粗大な欠陥があっても露出していないと、耐食性は劣化しない。また、微細な欠陥が露出していても低密度であれば耐食性は劣化せず、微細な欠陥が高密度で露出していると耐食性は劣化する。 When the Cr oxide defect is located on the outer surface in this manner, the corrosion resistance of the surface on the surface is deteriorated with respect to the base material, which can be a starting point for corrosion in a CO 2 wet environment. That is, as shown in FIG. 2, the corrosion resistance is deteriorated depending on the size and density of the exposed defects. Specifically, when a coarse defect is exposed, the corrosion resistance deteriorates. However, even if a coarse defect is not exposed, the corrosion resistance does not deteriorate. Further, even if fine defects are exposed, the corrosion resistance is not deteriorated if the density is low, and if the fine defects are exposed at a high density, the corrosion resistance is deteriorated.

また欠陥が内表面に位置する場合も同様に、表面のその位置は母材に対して耐食性が劣化しているため、CO湿潤流体を輸送する場合の腐食の起点となりうる。つまり、図3に示すように露出した欠陥のサイズと密度によって耐食性の劣化が起こってしまう。 Similarly, when the defect is located on the inner surface, the corrosion resistance of the surface at the position is deteriorated with respect to the base material, so that it can be a starting point of corrosion when the CO 2 wet fluid is transported. That is, as shown in FIG. 3, the corrosion resistance deteriorates depending on the size and density of the exposed defects.

上述のように、耐食性に影響を及ぼすのは溶接表面に存在するCr酸化物欠陥なので、表面上での溶接線に沿ったCr酸化物欠陥の分布で、耐食性が劣化するか否かを規定できる可能性がある。Cr酸化物欠陥は前述の様に線状であり、Cr酸化物欠陥による劣化を表すパラメータとして、所定の評価長さ(例えばサンプルの長さ)L、L内の最大欠陥長さLdmax、欠陥の密集度合を表すパラメータとして評価長さLと全欠陥長さ(露出した欠陥の線の長さの合計)Ldtotの比で耐食性を整理した。耐食性の劣化は目視可能な凹みの発生で評価した。その結果、溶接表面のCr酸化物欠陥が以下(1)(2)式を同時に満足することで、溶接部の耐食性が母材と同等になることを知見した。
dmax[mm] ≦0.1 (1)
(100×Ldtot/L)[%]<−0.5×Ldmax[mm]+0.1 (2)
As described above, since it is the Cr oxide defects present on the weld surface that affect the corrosion resistance, the distribution of the Cr oxide defects along the weld line on the surface can specify whether or not the corrosion resistance deteriorates. there is a possibility. The Cr oxide defect is linear as described above, and the maximum defect length L dmax within a predetermined evaluation length (for example, sample length) L w and L w is used as a parameter representing deterioration due to the Cr oxide defect. It was organized corrosion resistance ratio of (the total length of the exposed defect line) L dtot evaluation length L w and the total defect length as a parameter representing the dense degree of defect. The deterioration of corrosion resistance was evaluated by the occurrence of visible dents. As a result, it has been found that the Cr oxide defects on the weld surface simultaneously satisfy the following expressions (1) and (2), whereby the corrosion resistance of the welded portion is equivalent to that of the base material.
L dmax [mm] ≦ 0.1 (1)
(100 × L dtot / L w ) [%] <− 0.5 × L dmax [mm] +0.1 (2)

なお、評価長さLwは200mmとしてサンプルを採取、溶接ビードを切削し、ピクリン酸エッチングで溶接線位置を確認し、鏡面研磨した表面の溶接線上を溶接線に沿って、溶接線中心に500μmの領域を500倍で200mm長さをSEМ観察し、反射電子像において母材部よりも輝度が半分以下の暗部(反射電子像では軽元素が暗くなるため、酸化物は輝度が鋼材に比べ低くなる。)に対し、EDSで分析して酸化物だった物を欠陥とみなした。   The evaluation length Lw is 200 mm, a sample is taken, the weld bead is cut, the position of the weld line is confirmed by picric acid etching, the surface of the mirror-polished surface is along the weld line, and the center of the weld line is 500 μm. The area is 500 times and the length of 200 mm is observed by SEМ, and in the reflected electron image, the brightness is less than half that of the base material (the light element is darker in the reflected electron image, so the oxide has lower brightness than the steel) )), An oxide that was analyzed by EDS was regarded as a defect.

(式(1)について)
この根拠は以下の通りである。Cr含有鋼の電縫溶接部を5MPaのCO環境で浸漬する試験を行い、前述の凹みを観察した。図4にその結果を示す。最大欠陥長さLdmaxが1×10−4m(=0.1mm)より大きい場合には目視可能な凹みが確実に目視観察され、耐食性が劣化することが明らかになった。
(About formula (1))
The basis for this is as follows. The electric resistance welding of Cr-containing steels were tested for immersion in 5MPa of CO 2 environment, to observe the recess described above. FIG. 4 shows the result. When the maximum defect length L dmax is larger than 1 × 10 −4 m (= 0.1 mm), it was revealed that a visible dent was surely observed and the corrosion resistance deteriorated.

また、Ldmaxが1×10−4m(=0.1mm)よりも小さい場合、耐食性劣化の程度にばらつきがあった。種々の指標で劣化有無の判定を試みた結果、欠陥長さの合計Ldtotと評価する溶接線長さLの比(Ldtot/L)で整理できることを見出した。横軸をLdmax、縦軸を(Ldtot/L)として、Ldmaxt以下の実験データをプロットしたものを図5に示す。図中の(2)式の点線によって劣化の有無を判別できることが分かる。 Further, when L dmax was smaller than 1 × 10 −4 m (= 0.1 mm), the degree of corrosion resistance deterioration varied. A result of attempting a determination of deterioration presence in various indicators, found that organize the ratio of the weld wire length L w of evaluating the sum L dtot defect length (L dtot / L w). FIG. 5 shows a plot of experimental data below L dmaxt , where the horizontal axis is L dmax and the vertical axis is (L dtot / L w ). It can be seen that the presence or absence of deterioration can be discriminated by the dotted line in the equation (2) in the figure.

(Cr含有鋼の成分範囲について)
本発明におけるCr含有鋼の成分範囲は以下の通りである。鋼管に用いるCr含有鋼には、低合金Cr鋼、マルテンサイトステンレス鋼、フェライト系ステンレス鋼、オーステナイトステンレス鋼、二相(フェライト−オーステナイト)ステンレス鋼などが挙げられるが、本発明におけるそれらの成分範囲は以下の通りである。
Cr:3.0mass%以上32.0mass%以下
C:0.01mass%以上0.45mass%以下
Si:0.02mass%以上1.00mass%以下
Mn:0.05mass%以上2.00mass%以下
P:0.0008mass%以上0.0450mass%以下
S:0.0003mass%以上0.0300mass%以下
Al:0.005mass%以上1.000mass%以下
N:0.0005mass%以上0.4000mass%以下
(About the component range of Cr-containing steel)
The component ranges of the Cr-containing steel in the present invention are as follows. Examples of the Cr-containing steel used in the steel pipe include low alloy Cr steel, martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, and duplex (ferrite-austenitic) stainless steel. Is as follows.
Cr: 3.0 mass% or more and 32.0 mass% or less C: 0.01 mass% or more and 0.45 mass% or less Si: 0.02 mass% or more and 1.00 mass% or less Mn: 0.05 mass% or more and 2.00 mass% or less P: 0.0008 mass% to 0.0450 mass% S: 0.0003 mass% to 0.0300 mass% Al: 0.005 mass% to 1.000 mass% N: 0.0005 mass% to 0.4000 mass%

さらに選択元素として以下の元素を1種または2種以上含有することも好ましい。
B:0.0001mass%以上0.0200mass%以下
Ni:0.03mass%以上28.00mass%以下
Mo:0.02mass%以上7.00mass%以下
W:0.02mass%以上8.0mass%以下
Cu:0.01mass%以上4.00mass%以下
Ti:0.01mass%以上1.00mass%以下
Nb:0.01mass%以上1.00mass%以下
Zr:0.01mass%以上1.00mass%以下
V:0.01mass%以上1.00mass%以下
Furthermore, it is also preferable to contain one or more of the following elements as selective elements.
B: 0.0001 mass% or more and 0.0200 mass% or less Ni: 0.03 mass% or more and 28.00 mass% or less Mo: 0.02 mass% or more and 7.00 mass% or less W: 0.02 mass% or more and 8.0 mass% or less Cu: 0.01 mass% to 4.00 mass% Ti: 0.01 mass% to 1.00 mass% Nb: 0.01 mass% to 1.00 mass% Zr: 0.01 mass% to 1.00 mass% V: 0.00% 01 mass% or more and 1.00 mass% or less

以下に各成分の数値限定の理由を説明する。
Crは鋼材に耐食性を付与する。耐CO環境での耐食性を確保するためには3.0mass%以上の含有量が必要である。また、Cr添加量が増えるとコストが嵩み、一般的なステンレスで用いられる上限の26.0mass%(JIS G 4304)を超えるメリットがないため、適正範囲は3.0≦Cr≦32.0mass%である。
The reason for limiting the numerical value of each component will be described below.
Cr imparts corrosion resistance to the steel material. In order to ensure corrosion resistance in a CO 2 environment, a content of 3.0 mass% or more is required. In addition, as the amount of added Cr increases, the cost increases and there is no merit exceeding the upper limit of 26.0 mass% (JIS G 4304) used in general stainless steel, so the appropriate range is 3.0 ≦ Cr ≦ 32.0 mass. %.

Cは強度を向上させる。0.01mass%未満では強度が向上しないこと、0.45mass%を超えるとCrとCが結合して有効Cr量が減少し耐食性が著しく低下することから、適正範囲は0.01≦C≦0.45mass%である。   C improves strength. If it is less than 0.01 mass%, the strength is not improved. If it exceeds 0.45 mass%, Cr and C are combined to reduce the effective Cr amount and the corrosion resistance is remarkably reduced. Therefore, the appropriate range is 0.01 ≦ C ≦ 0. .45 mass%.

Siは耐酸化性を向上させる。0.03mass%未満では耐酸化性が向上しないこと、1.00mass%を超えるとHAZの靱性が著しく低下して加工時に割れやすいことから、適正範囲は0.03≦Si≦1.00mass%である。   Si improves oxidation resistance. If it is less than 0.03 mass%, the oxidation resistance will not be improved, and if it exceeds 1.00 mass%, the toughness of HAZ will be significantly reduced and it will be easily cracked during processing. Therefore, the appropriate range is 0.03 ≦ Si ≦ 1.00 mass%. is there.

Mnは強度を向上させる。0.05mass%未満では強度が向上しないこと、5.00mass%を超えると耐酸化性が著しく低下することから、適正範囲は0.05≦Mn≦5.00mass%である。   Mn improves strength. If it is less than 0.05 mass%, the strength is not improved, and if it exceeds 5.00 mass%, the oxidation resistance is remarkably lowered. Therefore, the appropriate range is 0.05 ≦ Mn ≦ 5.00 mass%.

Pは内部傷発生や靱性低下の原因となるため、少なければ少ないほど良い。0.045mass%を超えると内部欠陥発生や靱性低下が顕著になることから、Pは0.045mass%以下でなければならない。下限はコストと生産性の観点から0.0008mass%とする。   Since P causes internal scratches and lowers toughness, the smaller the amount, the better. If it exceeds 0.045 mass%, the occurrence of internal defects and a decrease in toughness become remarkable. Therefore, P must be 0.045 mass% or less. The lower limit is set to 0.0008 mass% from the viewpoint of cost and productivity.

Sは耐食性低下や靭性低下の原因となる。0.0300mass%を超えると耐食性が著しく悪化することから、Sは0.0300mass%でなければならない。下限はコストと生産性の観点から0.0003mass%とする。   S causes a decrease in corrosion resistance and a decrease in toughness. Since corrosion resistance will deteriorate remarkably when it exceeds 0.0300 mass%, S must be 0.0300 mass%. The lower limit is set to 0.0003 mass% from the viewpoint of cost and productivity.

Alは脱酸材であり、耐酸化性を向上させる。0.005mass%未満ではその効果が無いこと、1.000mass%を超えると介在物が著しく増加して延性や靭性を大きく損なうことから、適正範囲は0.005≦Al≦1.000mass%である。   Al is a deoxidizing material and improves oxidation resistance. If it is less than 0.005 mass%, there is no effect, and if it exceeds 1.000 mass%, inclusions are remarkably increased and ductility and toughness are greatly impaired. Therefore, the appropriate range is 0.005 ≦ Al ≦ 1.000 mass%. .

Nは不可避的に混入し、Cr含有鋼では耐食性を向上させる効果を示す。0.0005mass%未満に低減することは困難であり、0.4000mass%を超えると溶接時のブローホールが著しく増加することから、適正範囲は0.0005≦N≦0.4000mass%である。   N is inevitably mixed, and Cr-containing steel has an effect of improving corrosion resistance. It is difficult to reduce to less than 0.0005 mass%, and if it exceeds 0.4000 mass%, blowholes during welding increase remarkably, so the appropriate range is 0.0005 ≦ N ≦ 0.4000 mass%.

Niは靭性および耐食性を向上させる。0.003mass%未満ではその効果が無いこと、また、Ni添加量が増えるとコストが嵩み、一般的なステンレスなどのCr含有鋼で用いられる上限の28.00mass%(例えばJIS G 4304)を超えるメリットがないため、適正範囲は0.03mass%≦Ni≦28.00mass%である。   Ni improves toughness and corrosion resistance. If less than 0.003 mass%, there is no effect, and if the amount of Ni added increases, the cost increases, and the upper limit of 28.00 mass% (for example, JIS G 4304) used for Cr-containing steels such as general stainless steel. Since there is no merit to exceed, the appropriate range is 0.03 mass% ≦ Ni ≦ 28.00 mass%.

Moは耐食性および高温強度を向上させる。0.02mass%未満ではその効果が無いこと、また、Mo添加量が増えるとコストが嵩み、一般的なステンレスなどのCr含有鋼で用いられる上限の7.00mass%(例えばJIS G 4304)を超えるメリットがないため、適正範囲は0.03mass%≦Mo≦7.00mass%である。   Mo improves corrosion resistance and high temperature strength. If the amount is less than 0.02 mass%, the effect is not obtained, and if the amount of added Mo increases, the cost increases, and the upper limit of 7.00 mass% used for Cr-containing steel such as general stainless steel (for example, JIS G 4304). Since there is no merit to exceed, an appropriate range is 0.03 mass% <= Mo <= 7.00 mass%.

Wは耐食性および高温強度を向上させる。0.02mass%未満ではその効果が無いこと、また、W添加量が増えるとコストが嵩み、一般的な耐熱鋼で用いられる上限の3.00mass%(例えばJIS G 4312)を超えるメリットがないため、適正範囲は0.02mass%≦W≦3.00mass%である。   W improves corrosion resistance and high temperature strength. If it is less than 0.02 mass%, there is no effect, and if the amount of added W increases, the cost increases, and there is no merit exceeding the upper limit of 3.00 mass% (for example, JIS G 4312) used in general heat-resistant steel. Therefore, the appropriate range is 0.02 mass% ≦ W ≦ 3.00 mass%.

Cuは耐食性を向上させる。0.01mass%未満ではその効果が無いこと、4.00mass%を超えると靱性が著しく低下することから、適正範囲は0.01≦Cu≦4.00mass%である。   Cu improves corrosion resistance. If it is less than 0.01 mass%, the effect is not obtained, and if it exceeds 4.00 mass%, the toughness is remarkably lowered. Therefore, the appropriate range is 0.01 ≦ Cu ≦ 4.00 mass%.

Bは焼入性を向上させる。0.0001mass%未満ではその効果が無く、0.0200mass%を超えると靱性が著しく低下することから、適正範囲は0.0001≦B≦0.0200mass%である。   B improves hardenability. If it is less than 0.0001 mass%, the effect is not obtained, and if it exceeds 0.0200 mass%, the toughness is remarkably lowered. Therefore, the appropriate range is 0.0001 ≦ B ≦ 0.0200 mass%.

Tiは高温強度を向上させる。0.01mass%未満ではその効果が無く、1.00mass%を超えると溶接部の靭性が著しく低下することから、適正範囲は0.01≦Ti≦1.00mass%である。   Ti improves high temperature strength. If it is less than 0.01 mass%, the effect is not obtained, and if it exceeds 1.00 mass%, the toughness of the welded portion is remarkably lowered. Therefore, the appropriate range is 0.01 ≦ Ti ≦ 1.00 mass%.

Nbは高温強度を向上させる。0.01mass%未満ではその効果が無く、1.00mass%を超えると溶接部の靭性が著しく低下することから、適正範囲は0.01≦Nb≦1.00mass%である。   Nb improves high temperature strength. If it is less than 0.01 mass%, the effect is not obtained, and if it exceeds 1.00 mass%, the toughness of the welded portion is remarkably lowered. Therefore, the appropriate range is 0.01 ≦ Nb ≦ 1.00 mass%.

Zrは高温強度を向上させる。0.01mass%未満ではその効果が無く、1.00mass%を超えると溶接部の靭性が著しく低下することから、適正範囲は0.01≦Zr≦1.00mass%である。   Zr improves high temperature strength. If it is less than 0.01 mass%, the effect is not obtained, and if it exceeds 1.00 mass%, the toughness of the welded portion is remarkably lowered. Therefore, the appropriate range is 0.01 ≦ Zr ≦ 1.00 mass%.

Vは高温強度を向上させる。0.01mass%未満ではその効果が無く、1.00mass%を超えると溶接部の靭性が著しく低下することから、適正範囲は0.01≦V≦1.00mass%である。   V improves high temperature strength. If it is less than 0.01 mass%, the effect is not obtained, and if it exceeds 1.00 mass%, the toughness of the welded portion is remarkably lowered. Therefore, the appropriate range is 0.01 ≦ V ≦ 1.00 mass%.

(溶接部の耐食性を母材と同等にすべく規定のCr酸化物欠陥とする製法)
単に電縫溶接電流等、溶接に係る条件を適正化するだけではCr酸化物欠陥を抑制できないのは従来と同じである。そこで、電縫溶接時の周辺環境の改善による酸化物生成の抑制による品質確保を検討した。
(Manufacturing method with the specified Cr oxide defect to make the corrosion resistance of the welded part equal to the base metal)
It is the same as in the past that Cr oxide defects cannot be suppressed simply by optimizing welding-related conditions such as electric welding current. Therefore, we examined quality assurance by suppressing oxide formation by improving the surrounding environment during ERW welding.

従来から周辺環境の改善および溶接品位の向上策としてプラズマシールドを用いることが推奨されている。しかしプラズマシールドも、冷却水起因の水蒸気によりシールドを乱され、あるいは水蒸気や水滴の飛び込みによる溶接部の品位劣化に悩まされてきた。そこで、溶接部の品位劣化の主たる原因となる冷却水起因の水蒸気、水滴発生の抑制を検討した。その結果、以下のような給電コイルの構造が好ましいことが分かった。なお、給電コイルは周知の電縫造管設備のスクイズロールの上流に備えられている。   Conventionally, it has been recommended to use a plasma shield as a measure for improving the surrounding environment and welding quality. However, the plasma shield is also disturbed by the water vapor caused by the cooling water, or has suffered from the deterioration of the quality of the weld due to the intrusion of water vapor or water droplets. Therefore, we investigated the suppression of the generation of water vapor and water droplets caused by cooling water, which is the main cause of quality deterioration of welds. As a result, it was found that the following structure of the feeding coil is preferable. The feeding coil is provided upstream of a squeeze roll of a well-known electric sewing pipe facility.

給電コイル自体に穴を明けたり空洞化、あるいは水冷パイプを接続するのではなく、給電コイル表面は水路で仕切られ、それを覆って冷却水が漏れないようなカバーで被覆した構造とする。仕切り及びカバーは、冷却が十分であれば必ずしも給電コイルと同一材質でなくても構わないが、施工上、および熱膨張の観点からは同一材質であることが好ましい。水路およびそのカバーは給電コイルの内側(造管中の鋼管が通過する側)および/または外側(前記の反対面)に設置することが好ましいが、給電コイルの加熱能力および水路の施工し易さから、給電コイルの外側に配置されていることが好ましい。   Instead of making a hole in the power supply coil itself, making it hollow, or connecting a water cooling pipe, the surface of the power supply coil is partitioned by a water channel and covered with a cover that prevents the cooling water from leaking. The partition and the cover may not necessarily be made of the same material as that of the power feeding coil as long as the cooling is sufficient. However, the partition and the cover are preferably made of the same material from the viewpoint of construction and thermal expansion. It is preferable to install the water channel and its cover on the inside (side through which the steel pipe in the pipe passes) and / or outside (the opposite side) of the feeding coil. However, the heating capacity of the feeding coil and the ease of construction of the water channel Therefore, it is preferable to be disposed outside the feeding coil.

図6、図7に給電コイルの一例の構造を示す。給電コイルのコイル本体20は図6に示すような形状であり、円形部21と高周波電源に接続される平板部22とからなる。コイル本体20は銅板製とすることが望ましい。このコイル本体20の表面に、図7に示すように仕切り棒23をろう付けすることにより、コイル本体20の表面にジグザグ状の水路24を形成する。水流が妨げられないように、仕切り棒23の長さは短く設定されている。そしてその上からカバー25を被せることにより、冷却水が漏れることがない構造とする。仕切り棒23は必須のものではなく、省略することも可能である。水路24は給電コイルの造管下流側を優先的に冷却することが好ましく、そのように水路が仕切られていることが好ましい。これは給電コイルの造管下流側がプラズマシールドおよび絵電縫溶接の熱に曝されているためである。   6 and 7 show an example of the structure of the feeding coil. The coil body 20 of the power feeding coil has a shape as shown in FIG. 6 and includes a circular portion 21 and a flat plate portion 22 connected to a high frequency power source. The coil body 20 is preferably made of a copper plate. As shown in FIG. 7, a zigzag water channel 24 is formed on the surface of the coil body 20 by brazing a partition bar 23 on the surface of the coil body 20. The length of the partition bar 23 is set short so that the water flow is not hindered. And it is set as the structure where a cooling water does not leak by covering the cover 25 from the top. The partition bar 23 is not essential and can be omitted. It is preferable that the water channel 24 preferentially cools the pipe-forming downstream side of the power feeding coil, and it is preferable that the water channel is partitioned as such. This is because the pipe-forming downstream side of the power feeding coil is exposed to the heat of the plasma shield and ERW welding.

冷却水元管と給電コイル側水路の接続部では、冷却水元管側の方が管路が同等もしくは広い方が好ましい。これは給電コイル側水路の方が広い場合その接続部の隅でよどみが発生して冷却不足となり、コイルや水路、カバーが損壊、溶融する虞があるためである。尚、冷却水量が多ければ給電コイルや水路、カバーの損壊、溶解が軽減されるのは言うまでもない。また入熱量を適切に保たなければ、他の条件によらず給電コイルや水路、カバーの損壊、溶解は発生し得ることも同様である。   In the connection portion between the cooling water main pipe and the power feeding coil side water passage, it is preferable that the cooling water main pipe side has the same or wider pipe passage. This is because when the power supply coil side water channel is wider, stagnation occurs at the corner of the connecting portion, resulting in insufficient cooling, and the coil, water channel, and cover may be damaged or melted. Needless to say, if the amount of cooling water is large, breakage and dissolution of the feeding coil, water channel and cover are reduced. Similarly, if the heat input is not properly maintained, the power supply coil, the water channel, and the cover may be damaged or melted regardless of other conditions.

給電コイルへの冷却水の給水取り回しは、造管上流側からが好ましい。これは、冷却効果からすれば前述のように下流から冷却するのが好ましいが、給電コイル下流には造管および電縫用のスクイズロールが控えており、冷却水管の路確保が困難な場合があるからである。この様な給電コイルを用いることで、冷却水が水蒸気となったり水滴となったりして溶接部に取りつくこともなくなり、溶接部の品位が向上、即ち規定のCr酸化物欠陥が達成されることとなる。さらにプラズマシールドを用いれば、溶接部の品位が向上することは言うまでもない。   The supply of cooling water to the power supply coil is preferably performed from the upstream side of the pipe making. In view of the cooling effect, it is preferable to cool from the downstream as described above, but there are squeeze rolls for pipe making and electric sewing downstream from the feeding coil, and it may be difficult to secure the path of the cooling water pipe. Because there is. By using such a power supply coil, the cooling water becomes water vapor or water droplets and does not adhere to the welded portion, so that the quality of the welded portion is improved, that is, the prescribed Cr oxide defect is achieved. It will be. Furthermore, it goes without saying that the use of a plasma shield improves the quality of the weld.

以下に水路配置による給電コイルの冷却状況の試験結果を、表1−Aから表1−Jに示す。図8は試験に用いた仕切り無しの水路パターンを示し、図9は仕切り有の水路パターンを示している。鋼管の成分は、後述の表2の鋼種Gを用い、給電コイルは外径11-3/4インチの鋼管用であり、通電部(のコイル本体20)は銅製で肉厚3mmとし、流路の仕切りは同じく銅製で厚さ6mmの仕切り棒23をろう付けし、薄いカバー25(t1.5mm)を重ね端部をろう付けで塞いだ。この構造は給電コイルの寸法や溶接電源、成形ロールの構造に依らず共通である。   Tables 1-A to 1-J show the results of cooling the power supply coil according to the water channel arrangement. FIG. 8 shows a water channel pattern without a partition used in the test, and FIG. 9 shows a water channel pattern with a partition. The steel pipe component is steel grade G shown in Table 2 to be described later, the feeding coil is for a steel pipe having an outer diameter of 11-3 / 4 inch, the current-carrying part (coil body 20) is made of copper and has a wall thickness of 3 mm, and a flow path. The partition was also made of copper, and a 6 mm thick partition rod 23 was brazed, and a thin cover 25 (t1.5 mm) was overlapped to close the end portion by brazing. This structure is common regardless of the dimensions of the feeding coil, the welding power source, and the structure of the forming roll.

次に、Cr含有電縫鋼管の成分を表2に示す通り変更した試験を行い、その品質評価結果を表3に示す。なお、表3において、水切有は水冷コイル(仕切り有11)を使用して造管した。加熱方式は高周波誘導加熱、突き合わせはI型、水切無は外水冷ワークコイル使用(通常造管)、水切有は内水冷ワークコイル使用、電縫鋼管のサイズ:外径298mm、板厚9.5mm、評価長:各200mmである。   Next, the test which changed the component of Cr containing ERW steel pipe as shown in Table 2 was done, and the quality evaluation result is shown in Table 3. In Table 3, the water drainage was made using a water-cooled coil (partitioned 11). Heating method is high frequency induction heating, butting is I type, without water draining, using an external water-cooled work coil (normal pipe making), with water draining, using an internal water-cooled work coil, ERW steel pipe size: outer diameter 298mm, plate thickness 9.5mm, Evaluation length: 200 mm each.

上記した実施例1,2に示すように、本発明によれば、炭酸ガス(CO)を多く含む環境での使用あるいはCOを多く含む石油・ガス等の輸送に好適な、耐食性に優れた3%超のCrを含む電縫鋼管を提供することができる。 As shown in Examples 1 and 2 described above, according to the present invention, it is excellent in corrosion resistance, suitable for use in an environment containing a large amount of carbon dioxide (CO 2 ) or for transporting oil and gas containing a large amount of CO 2. In addition, it is possible to provide an ERW steel pipe containing more than 3% Cr.

20 コイル本体
21 円形部
22 平板部
23 仕切り棒
24 水路
25 カバー
20 coil body 21 circular portion 22 flat plate portion 23 partition bar 24 water channel 25 cover

Claims (9)

成分が、mass%で、
Cr:3.0mass%以上32.0mass%以下、
C:0.01mass%以上0.45mass%以下、
Si:0.02mass%以上1.00mass%以下、
Mn:0.05mass%以上2.00mass%以下、
P:0.0008mass%以上0.0450mass%以下、
S:0.0003mass%以上0.0300mass%以下、
Al:0.005mass%以上1.000mass%以下、
N:0.0005mass%以上0.4000mass%以下、
を含み、残Feおよび不可避的不純物からなるCr含有電縫鋼管において、溶接表面に存在するCr酸化物欠陥について、評価長さL、L内の最大欠陥長さLdmax、評価長さLと全欠陥長さ(露出した欠陥の線の長さの合計)Ldtotの比が、下記式(1)、(2)を満足することを特徴とするCr含有電縫鋼管。
dmax[mm] ≦0.1 (1)
(100×Ldtot/L)[%]<−0.5×Ldmax[mm]+0.1 (2)
Ingredient is mass%,
Cr: 3.0 mass% or more and 32.0 mass% or less,
C: 0.01 mass% or more and 0.45 mass% or less,
Si: 0.02 mass% or more and 1.00 mass% or less,
Mn: 0.05 mass% or more and 2.00 mass% or less,
P: 0.0008 mass% or more and 0.0450 mass% or less,
S: 0.0003 mass% or more and 0.0300 mass% or less,
Al: 0.005 mass% or more and 1.000 mass% or less,
N: 0.0005 mass% or more and 0.4000 mass% or less,
In a Cr-containing ERW steel pipe comprising residual Fe and unavoidable impurities, the evaluation length L w , the maximum defect length L dmax in L w , and the evaluation length L for Cr oxide defects present on the weld surface A Cr-containing electric-welded steel pipe, wherein the ratio of w to the total defect length (total length of exposed defect lines) L dtot satisfies the following formulas (1) and (2).
L dmax [mm] ≦ 0.1 (1)
(100 × L dtot / L w ) [%] <− 0.5 × L dmax [mm] +0.1 (2)
さらに成分が、mass%で、
B:0.0001mass%以上0.0200mass%以下、
Ni:0.03mass%以上28.00mass%以下、
Mo:0.02mass%以上7.00mass%以下、
W:0.02mass%以上8.0mass%以下、
Cu:0.01mass%以上4.00mass%以下、
Ti:0.01mass%以上1.00mass%以下、
Nb:0.01mass%以上1.00mass%以下、
Zr:0.01mass%以上1.00mass%以下、
V:0.01mass%以上1.00mass%以下、
の1種または2種以上を含有することを特徴とする請求項1に記載のCr含有電縫鋼管。
In addition, the ingredients are mass%,
B: 0.0001 mass% or more and 0.0200 mass% or less,
Ni: 0.03 mass% or more and 28.00 mass% or less,
Mo: 0.02 mass% to 7.00 mass%,
W: 0.02 mass% or more and 8.0 mass% or less,
Cu: 0.01 mass% or more and 4.00 mass% or less,
Ti: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.01 mass% or more and 1.00 mass% or less,
Zr: 0.01 mass% or more and 1.00 mass% or less,
V: 0.01 mass% or more and 1.00 mass% or less,
The Cr-containing ERW steel pipe according to claim 1, comprising one or more of the following.
成分が、mass%で、
Cr:3.0mass%以上32.0mass%以下、
C:0.01mass%以上0.45mass%以下、
Si:0.02mass%以上1.00mass%以下、
Mn:0.05mass%以上2.00mass%以下、
P:0.0008mass%以上0.0450mass%以下、
S:0.0003mass%以上0.0300mass%以下、
Al:0.005mass%以上1.000mass%以下、
N:0.0005mass%以上0.4000mass%以下、
を含み、残Feおよび不可避的不純物からなるCr含有鋼板を造管、電縫溶接してCr含有電縫鋼管とする際に、電縫溶接に用いる給電コイルとして、コイル本体の外面と裏面の一方または双方が水路で仕切られ、それを覆って冷却水がもれないようなカバーで被覆された給電コイルを用いて電縫溶接することを特徴とするCr含有電縫鋼管の製造方法。
Ingredient is mass%,
Cr: 3.0 mass% or more and 32.0 mass% or less,
C: 0.01 mass% or more and 0.45 mass% or less,
Si: 0.02 mass% or more and 1.00 mass% or less,
Mn: 0.05 mass% or more and 2.00 mass% or less,
P: 0.0008 mass% or more and 0.0450 mass% or less,
S: 0.0003 mass% or more and 0.0300 mass% or less,
Al: 0.005 mass% or more and 1.000 mass% or less,
N: 0.0005 mass% or more and 0.4000 mass% or less,
As a power supply coil used for ERW welding, one of the outer surface and the back surface of the coil main body is formed as a Cr-containing ERW steel pipe by making a Cr-containing steel sheet containing residual Fe and inevitable impurities. Alternatively, a method for producing a Cr-containing electric-welded steel pipe, characterized in that both are partitioned by a water channel and electro-welded using a power supply coil covered with a cover that covers the water channel and prevents leakage of cooling water.
前記水路および前記カバーが、前記コイル本体の外側に配置された給電コイルを用いて電縫溶接することを特徴とする請求項3に記載のCr含有電縫鋼管の製造方法。   4. The method for producing a Cr-containing ERW steel pipe according to claim 3, wherein the water channel and the cover are ERW welded using a power feeding coil disposed outside the coil body. 前記水路は前記給電コイルの造管側下流を優先的に冷却できるように配置された給電コイルを用いて電縫溶接することを特徴とする請求項3または4に記載のCr含有電縫鋼管の製造方法。   5. The Cr-containing ERW steel pipe according to claim 3, wherein the water channel is ERW welded using a power feeding coil disposed so that the downstream side of the feeding coil can be preferentially cooled. Production method. 前記水路を備えた給電コイルにおいて、冷却水元管と給電コイル側水路の接続部では冷却水元管側の方が管路が同等もしくは広い給電コイルを用いて電縫溶接することを特徴とする請求項3乃至5のいずれか1項に記載のCr含有電縫鋼管の製造方法。   In the power feeding coil provided with the water channel, at the connection portion between the cooling water main pipe and the power feeding coil side water channel, the cooling water main pipe side is electro-welded using a power feeding coil having the same or wider pipe. A method for producing a Cr-containing ERW steel pipe according to any one of claims 3 to 5. 前記給電コイルはスクイズロールの上流に備えられていることを特徴とする請求項3乃至6のいずれか1項に記載のCr含有電縫鋼管の製造方法。   The method for producing a Cr-containing ERW steel pipe according to any one of claims 3 to 6, wherein the feeding coil is provided upstream of a squeeze roll. さらに電縫溶接部をプラズマシールドすることを特徴とする請求項3乃至7のいずれか1項に記載のCr含有電縫鋼管の製造方法。   The method for producing a Cr-containing ERW steel pipe according to any one of claims 3 to 7, further comprising plasma shielding the ERW weld. さらに成分が、mass%で、
B:0.0001mass%以上0.0200mass%以下、
Ni:0.03mass%以上28.00mass%以下、
Mo:0.02mass%以上7.00mass%以下、
W:0.02mass%以上8.0mass%以下、
Cu:0.01mass%以上4.00mass%以下、
Ti:0.01mass%以上1.00mass%以下、
Nb:0.01mass%以上1.00mass%以下、
Zr:0.01mass%以上1.00mass%以下、
V:0.01mass%以上1.00mass%以下、
の1種または2種以上を含有することを特徴とする請求項3乃至8のいずれか1に記載のCr含有電縫鋼管の製造方法。
In addition, the ingredients are mass%,
B: 0.0001 mass% or more and 0.0200 mass% or less,
Ni: 0.03 mass% or more and 28.00 mass% or less,
Mo: 0.02 mass% to 7.00 mass%,
W: 0.02 mass% or more and 8.0 mass% or less,
Cu: 0.01 mass% or more and 4.00 mass% or less,
Ti: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.01 mass% or more and 1.00 mass% or less,
Zr: 0.01 mass% or more and 1.00 mass% or less,
V: 0.01 mass% or more and 1.00 mass% or less,
1 or 2 types or more of these are contained, The manufacturing method of the Cr containing ERW steel pipe of any one of Claim 3 thru | or 8 characterized by the above-mentioned.
JP2018091870A 2018-05-11 2018-05-11 Cr-containing electric pipe and its manufacturing method Active JP7087653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091870A JP7087653B2 (en) 2018-05-11 2018-05-11 Cr-containing electric pipe and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091870A JP7087653B2 (en) 2018-05-11 2018-05-11 Cr-containing electric pipe and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019196527A true JP2019196527A (en) 2019-11-14
JP7087653B2 JP7087653B2 (en) 2022-06-21

Family

ID=68537507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091870A Active JP7087653B2 (en) 2018-05-11 2018-05-11 Cr-containing electric pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7087653B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184637A (en) * 1992-12-22 1994-07-05 Nippon Steel Corp Production of steel tube for automotive exhaust system
JPH0835010A (en) * 1994-07-22 1996-02-06 Nippon Steel Corp Production of steel and steel tube, excellent in high temperature characteristic
WO2011034119A1 (en) * 2009-09-16 2011-03-24 新日本製鐵株式会社 Welding device for manufacturing electric resistance welded tube
JP2014036983A (en) * 2012-08-16 2014-02-27 Nippon Steel & Sumitomo Metal Induction heating apparatus
JP2017179480A (en) * 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184637A (en) * 1992-12-22 1994-07-05 Nippon Steel Corp Production of steel tube for automotive exhaust system
JPH0835010A (en) * 1994-07-22 1996-02-06 Nippon Steel Corp Production of steel and steel tube, excellent in high temperature characteristic
WO2011034119A1 (en) * 2009-09-16 2011-03-24 新日本製鐵株式会社 Welding device for manufacturing electric resistance welded tube
JP2014036983A (en) * 2012-08-16 2014-02-27 Nippon Steel & Sumitomo Metal Induction heating apparatus
JP2017179480A (en) * 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust component excellent in processability, steel tube and manufacturing method therefor

Also Published As

Publication number Publication date
JP7087653B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US10844993B2 (en) Electric-resistance-welded stainless clad steel pipe or tube
CN109689240B (en) Composite welded pipe and manufacturing method thereof
CN109689239B (en) Electric resistance welded clad steel pipe and method for manufacturing same
WO2014045590A1 (en) Electric-resistance-welded steel pipe exhibiting excellent hic resistance and low-temperature toughness at electric-resistance-welded parts, and production method therefor
JP4400568B2 (en) Welded structure with excellent stress corrosion cracking resistance
WO2008111656A1 (en) Hot water container and process for production thereof
JP2011025311A (en) Method for manufacturing electric resistance welded steel tube for high-strength thick-walled line pipe having excellent sour resistant characteristic of electric resistance welded part
JP2019196527A (en) Cr-CONTAINING ELECTROSEAMED STEEL PIPE, AND MANUFACTURING METHOD THEREOF
JP5799610B2 (en) Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds
JP7343691B2 (en) Welded structures, stainless steel welded structures, stainless steel welded vessels and stainless steel
TWI703005B (en) Method of producing tig welded stainless steel pipe,tig welded stainless steel pipe,and tig welded stainless steel member
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JP5796370B2 (en) High-strength, thick-walled ERW steel pipe with excellent sour resistance in ERW welds
JP2011026695A (en) Electroseamed steel pipe superior in sour resistance at electroseamed weld part for high-strength thick-wall line pipe
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP2021074738A (en) Two-phase stainless steel weld joint and two-phase stainless steel welding method
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP2892450B2 (en) Circumferential welding method for ERW line pipe for reel barge installation
WO2017209282A1 (en) Method for producing tig welded stainless steel tube, tig welded stainless steel tube, and tig welded stainless member
JP2024076285A (en) Welded joints and tanks
JP2022114890A (en) Ferrite-austenite duplex stainless steel welded structures, ferrite-austenite duplex stainless steel welded joints, and methods of welding ferrite-austenite duplex stainless steel materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151