JP2019195051A5 - - Google Patents

Download PDF

Info

Publication number
JP2019195051A5
JP2019195051A5 JP2019063132A JP2019063132A JP2019195051A5 JP 2019195051 A5 JP2019195051 A5 JP 2019195051A5 JP 2019063132 A JP2019063132 A JP 2019063132A JP 2019063132 A JP2019063132 A JP 2019063132A JP 2019195051 A5 JP2019195051 A5 JP 2019195051A5
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
film
particles
hollow particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019063132A
Other languages
Japanese (ja)
Other versions
JP2019195051A (en
Filing date
Publication date
Application filed filed Critical
Priority to US16/393,257 priority Critical patent/US11069729B2/en
Priority to CN201910364191.2A priority patent/CN110429090B/en
Publication of JP2019195051A publication Critical patent/JP2019195051A/en
Publication of JP2019195051A5 publication Critical patent/JP2019195051A5/ja
Pending legal-status Critical Current

Links

Description

図1は光電変換装置100の構成を示した断面図の一例である。
該光電変換装置100は、光電変換部1とマイクロレンズアレイ2を有する光電変換基板3と透光板4と機能膜5により構成される。機能膜5は後述するように光学的および/または機械的な様々な機能を有する多機能膜でありうる。機能膜5がとりわけ光学的特性に優れる観点において、機能膜5を光学膜と称することができる。以下、特段の断りがない限り、「膜」と記載した場合にはこの機能膜5を指すものとする。
図1では、機能膜5は、マイクロレンズアレイ2と透光板4との間に配され、マイクロレンズアレイ2の凹凸に沿った面と透光板4に沿った面とを有する。マイロレンズアレイ2は複数のマイクロレンズが2次元状に配列されてなり、各々のマイクロレンズの幅は例えば0.5μm~10μm、各々のマイクロレンズの高さは例えば0.3μm~3μmである。そのため、マイクロレンズアレイ2の凹凸の高低差は例えば0.3μm~3μmである。
該光電変換装置100は、機能膜5が光電変換基板3と透光板4との間に配置されているキャビティレス構造であるため、光電変換基板3と透光板4の間が中空であるキャビティ構造より、機械的強度に優れている。機能膜5が光電変換基板3と透光板4の間を充填するという観点で、機能膜5を充填膜と称することもできる。
FIG. 1 is an example of a cross-sectional view showing the configuration of the photoelectric conversion device 100.
The photoelectric conversion device 100 is composed of a photoelectric conversion substrate 3 having a photoelectric conversion unit 1, a microlens array 2, a translucent plate 4, and a functional film 5. The functional film 5 can be a multifunctional film having various optical and / or mechanical functions as described later. The functional film 5 can be referred to as an optical film from the viewpoint that the functional film 5 is particularly excellent in optical characteristics. Hereinafter, unless otherwise specified, the term "membrane" refers to this functional membrane 5.
In FIG. 1, the functional film 5 is arranged between the microlens array 2 and the translucent plate 4, and has a surface along the unevenness of the microlens array 2 and a surface along the translucent plate 4. In the microlens array 2, a plurality of microlenses are arranged two-dimensionally, the width of each microlens is, for example, 0.5 μm to 10 μm, and the height of each microlens is, for example, 0.3 μm to 3 μm. be. Therefore, the height difference of the unevenness of the microlens array 2 is, for example, 0.3 μm to 3 μm.
Since the photoelectric conversion device 100 has a cavityless structure in which the functional film 5 is arranged between the photoelectric conversion substrate 3 and the translucent plate 4, the space between the photoelectric conversion substrate 3 and the translucent plate 4 is hollow. It has better mechanical strength than the cavity structure. The functional film 5 can also be referred to as a filling film from the viewpoint that the functional film 5 fills the space between the photoelectric conversion substrate 3 and the translucent plate 4.

中空粒子を含有する機能膜5の屈折率nと空隙率X(以下、単にXともいう)、空隙率Y(以下、単にYともいう)の関係の一例を図9に示す。
図9中、N1は、屈折率1.25の中実粒子および/または空隙のみで機能膜5を構成した場合の機能膜5の中実粒子間の空隙率と機能膜5の屈折率nとの関係を示すと考えることができる。ここで、屈折率n=1.46である外殻を有し、中空粒子内の空隙が所定の体積である場合、当該中空粒子1個の屈折率nは1.25である中空粒子が存在するものと仮定する。そうすると、N1は、屈折率n=1.46である外殻を有し、中空粒子1個の屈折率n=1.25である中空粒子および/または中空粒子間の空隙のみで機能膜5を構成した場合の機能膜5の中空粒子間の空隙率と屈折率nの関係をも示してい
ることになる。また、N2は、屈折率1.46の固体物質(例えば中実粒子)および/または空隙のみで機能膜5を構成した場合の機能膜5の中実粒子間の空隙率と機能膜5の屈折率nとの関係を示す。なお、当該構成はn、X及びYの関係を説明するための一例であり、本開示を何ら限定するものではない。
図9の関係N1は、屈折率1.25の中実粒子を用いて屈折率1.20の機能膜を得ようとする場合、中実粒子間の空隙率がy2であることを示している。また、関係N1は、屈折率1.25の中実粒子を用いて屈折率1.15の機能膜を得ようとする場合、中実粒子間の空隙率がy1であることを示している。また、図9は、屈折率1.46の固体物質(例えば中実粒子)を用いて屈折率1.20の機能膜を得ようとする場合、空隙率がx2+y2であることを示している。また、屈折率1.46の固体物質(例えば中実粒子)を用いて屈折率1.15の機能膜を得ようとする場合、空隙率がx1+y1であることを示している。
ここで、屈折率1.25の中実粒子を、これに等価とみなせる、粒子1個の屈折率n=1.25である中空粒子で置き換えて屈折率1.20の機能膜を得ようとすると、中空粒子内の空隙の合計体積は(x2+y2)-y2=x2と見積もることができる。同様に、屈折率1.25の中実粒子を、これに等価とみなせる、粒子1個の屈折率n=1.25である中空粒子で置き換えて屈折率1.15の機能膜を得ようとすると、中空粒子内の空隙の合計体積は(x1+y1)-y1=x1と見積もることができる。
図9において中空粒子1個の屈折率n=1.25である中空粒子を含む機能膜の屈折率が1.20を示す場合、x2>y2となっている。これに対して、図9において中空粒子1個の屈折率n=1.25である中空粒子を含む機能膜の屈折率が1.15を示す場合、x1<y1となっている。このように、x2>y2(X>Y)よりもx1<y1(X<Y)とする方が、機能膜の屈折率が低くなることが理解されよう。
図9によれば、例えば機能膜5の屈折率nを1.20とする場合、当該中空粒子のみで構成された機能膜5であればy2(%)の空隙率で足りるが、当該中実粒子のみで構成された機能膜5の場合はy2+x2(%)の空隙率が必要となる。すなわち、この場合、y2+x2(%)とy2(%)の差x2が、上記空隙率Xであり、該y2が上記空隙率Yとなる。
また、図9によれば、Xが大きくなると、Yが小さくなり、その結果、X+Yの値は小さくなり、nは高くなることがわかる。このことは、中空粒子が密に配置されると、中空粒子の間に存在する空隙の体積分率が減少し、空気よりも高い屈折率を有する成分である外殻の体積分率が大きくなるため、機能膜5の屈折率が高くなるということを意味している。
一方、図9のy2+x2とy1+x1とを対比すると明らかなように、Xを小さくすると、Yが大きくなり、その結果、X+Yの値は大きくなり、nは低くなることがわかる。このことは、中空粒子が疎に配置されると、中空粒子の間に存在する空隙の体積分率が増加し、外殻の体積分率が小さくなるため、機能膜5の屈折率が低くなるということを意味している。
すなわち、機能膜5の屈折率をより低くするためには、Y/Xを大きくするとよい。
具体的には、Y/X>1つまりX<Yの関係を満たしていることが好ましい。
また、該X及び該Yは、X<(100-X-Y)<Yの関係を満たすことが好ましい。
機能膜5は、固体物質で構成された粒子、及び、高強度化のため、該粒子を結合するバインダを含有してもよい。
バインダを使用した場合、機能膜5中に含まれる固体は、中空粒子の外殻とバインダであり、機能膜5の単位体積に対する固体の体積分率は(100-X-Y)(%)で表される。
X<(100-X-Y)の関係を満たす場合、機能膜5の強度がより向上する。一方、(100-X-Y)<Yの関係を満たす場合、機能膜5の屈折率がより低くなる。
FIG. 9 shows an example of the relationship between the refractive index n of the functional film 5 containing hollow particles, the porosity X (hereinafter, also simply referred to as X), and the porosity Y (hereinafter, also simply referred to as Y).
In FIG. 9, N1 is the void ratio between the solid particles of the functional film 5 and the refractive index n of the functional film 5 when the functional film 5 is composed of only the solid particles having a refractive index of 1.25 and / or the voids. Can be thought of as showing the relationship between. Here, when the hollow particles have an outer shell having a refractive index n s = 1.46 and the voids in the hollow particles have a predetermined volume, the refractive index n p of the hollow particles is 1.25. Suppose that exists. Then, N1 has an outer shell having a refractive index n s = 1.46, and is a functional film consisting only of voids between hollow particles and / or hollow particles having a refractive index n p = 1.25 of one hollow particle. It also shows the relationship between the void ratio between the hollow particles of the functional film 5 and the refractive index n when 5 is configured. Further, N2 is the void ratio between the solid particles of the functional film 5 and the refraction of the functional film 5 when the functional film 5 is composed of only a solid substance having a refractive index of 1.46 (for example, solid particles) and / or voids. The relationship with the rate n is shown. It should be noted that the configuration is an example for explaining the relationship between n, X and Y, and does not limit the present disclosure at all.
The relationship N1 in FIG. 9 shows that when a functional film having a refractive index of 1.20 is to be obtained using solid particles having a refractive index of 1.25, the porosity between the solid particles is y2. .. Further, the relation N1 indicates that the porosity between the solid particles is y1 when a functional film having a refractive index of 1.15 is to be obtained by using the solid particles having a refractive index of 1.25. Further, FIG. 9 shows that when a solid substance having a refractive index of 1.46 (for example, solid particles) is used to obtain a functional film having a refractive index of 1.20, the porosity is x2 + y2. Further, using a solid substance having a refractive index of 1.46 (for example, solid particles), the refractive index is 1. When trying to obtain 15 functional films, it is shown that the porosity is x1 + y1.
Here, let's replace the solid particles with a refractive index of 1.25 with hollow particles having a refractive index of n p = 1.25 for one particle, which can be regarded as equivalent to this, to obtain a functional film having a refractive index of 1.20. Then, the total volume of the voids in the hollow particles can be estimated as (x2 + y2) −y2 = x2. Similarly, let's replace the solid particles with a refractive index of 1.25 with hollow particles having a refractive index of n p = 1.25 for one particle, which can be regarded as equivalent to this, to obtain a functional film having a refractive index of 1.15. Then, the total volume of the voids in the hollow particles can be estimated as (x1 + y1) −y1 = x1.
In FIG. 9, when the refractive index of the functional film containing the hollow particles having the refractive index n p = 1.25 of one hollow particle is 1.20, x2> y2. On the other hand, in FIG. 9, when the refractive index of the functional film containing the hollow particles having the refractive index n p = 1.25 of one hollow particle is 1.15, x1 <y1. As described above, it can be understood that the refractive index of the functional film is lower when x1 <y1 (X <Y) is set than when x2> y2 (X> Y).
According to FIG. 9, for example, when the refractive index n of the functional film 5 is 1.20, the porosity of y2 (%) is sufficient for the functional film 5 composed of only the hollow particles. In the case of the functional film 5 composed of only particles, a porosity of y2 + x2 (%) is required. That is, in this case, the difference x2 between y2 + x2 (%) and y2 (%) is the porosity X, and y2 is the porosity Y.
Further, according to FIG. 9, it can be seen that as X becomes larger, Y becomes smaller, and as a result, the value of X + Y becomes smaller and n becomes higher. This means that when the hollow particles are densely arranged, the volume fraction of the voids existing between the hollow particles decreases, and the volume fraction of the outer shell, which is a component having a higher refractive index than air, increases. Therefore, it means that the refractive index of the functional film 5 becomes high.
On the other hand, as is clear when comparing y2 + x2 and y1 + x1 in FIG. 9, when X is made small, Y becomes large, and as a result, the value of X + Y becomes large and n becomes low. This is because when the hollow particles are sparsely arranged, the volume fraction of the voids existing between the hollow particles increases and the volume fraction of the outer shell decreases, so that the refractive index of the functional film 5 decreases. It means that.
That is, in order to lower the refractive index of the functional film 5, it is preferable to increase Y / X.
Specifically, it is preferable that Y / X> 1, that is, the relationship of X <Y is satisfied.
Further, it is preferable that the X and the Y satisfy the relationship of X <(100-XY) <Y.
The functional film 5 may contain particles made of a solid substance and a binder for binding the particles in order to increase the strength.
When a binder is used, the solids contained in the functional film 5 are the outer shell of hollow particles and the binder, and the volume fraction of the solid with respect to the unit volume of the functional film 5 is (100-XY) (%). expressed.
When the relationship of X <(100-XY) is satisfied, the strength of the functional film 5 is further improved. On the other hand, when the relationship of (100-XY) <Y is satisfied, the refractive index of the functional film 5 becomes lower.

光ラジカル重合開始剤としては以下のものが挙げられる。
例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-又はp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の置換基を有してもよい2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン誘導体;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノ-プロパン-1-オン等のα―アミノ芳香族ケトン誘導体;2-エチルアントラキノン、フェナントレンキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル誘導体;ベンゾイン、メチルベンゾイン、エチルベンゾイン、プロピルベンゾイン等のベンゾイン誘導体;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン等のN-フェニルグリシン誘導体;アセトフェノン、3-メチルアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン誘導体;チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン誘導体;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルフォスフィンオキサイド誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル誘導体;キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられるが、これらに限定はされない。
光ラジカル重合開始剤の市販品としては、Irgacure184、369、651、500、819、907、784、2959、CGI-1700、-1750、-1850、CG24-61、Darocur1173、LucirinTPO、LR8893、LR8970(以上、BASF製、「Darocur」及び「Lucirin」は登録商標)、ベクリルP36(UCB製)等が挙げられるが、これらに限定はされない。
Examples of the photoradical polymerization initiator include the following.
For example, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl). 2,4,5-Triaryl which may have a substituent such as -4,5-diphenylimidazole dimer, 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer, etc. Imidazole dimer; benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michlerketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylamino Benzophenone derivatives such as benzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone; 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, Α-Amino aromatic ketone derivatives such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1-one; 2-ethylanthraquinone, phenanthrenquinone, 2-t-butylanthraquinone, octa Methylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-fe Kinones such as nantaraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone; benzoin ether derivatives such as benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether; benzoin, methyl benzoin, ethyl benzoin, propyl Benzoin derivatives such as benzoin; benzyl derivatives such as benzyldimethylketal; aclysine derivatives such as 9-phenylaclydin, 1,7-bis (9,9'-acrydinyl) heptane; N-phenylglycine derivatives such as N-phenylglycine; Acetphenone derivatives such as acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexylphenylketone, 2,2-dimethoxy-2-phenylacetophenone; thioxanthone such as thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone. Derivatives; 2,4,6- Acylphosphine such as trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphinoxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide Oxide derivatives; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H- Oxime ester derivatives such as carbazole-3-yl]-, 1- (O-acetyloxime); xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 1- (4-isopropylphenyl) -2-hydroxy -2-Methylpropane-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1-one and the like can be mentioned, but the present invention is not limited thereto.
Commercially available photo-radical polymerization initiators include Irgacure 184, 369, 651, 500, 819, 907, 784, 2959, CGI-1700, -1750, -1850, CG24-61, Darocur 1173, Lucirin TPO, LR8883, LR8970 (and above). , BASF, "Darocur" and "Lucirin" are registered trademarks), Evecryl P36 (UCB) and the like, but are not limited thereto.

バインダを含有し、固体物質で構成された粒子がバインダで結合された結合体を含有する膜の他の構造を、図10を用いて説明する。
図10に、固体物質で構成された粒子(例えば、中空粒子)とバインダを含有する膜の模式図を示す。表面積が小さく、中空粒子同士の接点が少ない中空粒子309を含む膜に、バインダ308を導入し、バインダ308と中空粒子309とが結合体を形成すると、中空粒子同士の接点に位置するバインダ308が中空粒子309同士の結着に寄与するため、膜の強度が向上する。
一方、バインダの含有量が過剰であると、中空粒子309の結着に寄与しないバインダが増加する。このようなバインダは、機能膜5の
強度の向上に寄与しないどころか、機能膜5の屈折率nが高くなる要因となり得る。したがって、機能膜5中のバインダの含有量は多すぎないことが好ましく、上述の通り、(100-X-Y)<Yの関係を満たすことが好ましい。
Other structures of the membrane containing the binder and the conjugate of the particles composed of the solid substance bound by the binder will be described with reference to FIG.
FIG. 10 shows a schematic diagram of a film containing particles (for example, hollow particles) composed of a solid substance and a binder. When the binder 308 is introduced into a film containing the hollow particles 309 having a small surface area and few contacts between the hollow particles, and the binder 308 and the hollow particles 309 form a bond, the binder 308 located at the contact points between the hollow particles is formed. Since it contributes to the binding of the hollow particles 309 to each other, the strength of the film is improved.
On the other hand, if the binder content is excessive, the number of binders that do not contribute to the binding of the hollow particles 309 increases. Such a binder does not contribute to the improvement of the strength of the functional film 5, but may be a factor of increasing the refractive index n of the functional film 5. Therefore, it is preferable that the content of the binder in the functional film 5 is not too large, and it is preferable that the relationship of (100-XY) <Y is satisfied as described above.

<例02-1、02-2、及び32-1~32-4>
例01-1において、AEROSIL 200の固形分濃度、分散時間、スピンコート条件を1-1、1-5の記載に変更する以外は同様にした。
<Examples 02-1, 02-2, and 32-1 to 32-4>
In Example 01-1, the solid content concentration, dispersion time, and spin coating conditions of AEROSIL 200 were changed to those shown in Tables 1-1 and 1-5.

<(例II-7)塗工液7の調製>
フュームドシリカ粒子と鎖状シリカ粒子の固形分質量比は、9.0:1.0としたこと以外、塗工液の調製方法は例II-6と同様に行った。
<(例II-8)塗工液8の調製>
フュームドシリカ粒子と鎖状シリカ粒子の固形分質量比は、8.5:1.5としたこと以外、塗工液の調製方法は例II-6と同様に行った。
<(例II-9)塗工液9の調製>
フュームドシリカ粒子と鎖状シリカ粒子の固形分質量比は、9.75:0.25、2種の粒子総量とシルセスキオキサンの固形分質量比は、10:2.25としたこと以外、塗工液の調製方法は例II-6と同様に行った。
<(例II-10)塗工液10の調製>
2種類の粒子総量とシルセスキオキサンの固形分質量比は、10:2.25としたこと以外、塗工液の調製方法は例II-6と同様に行った。
<(例II-11)塗工液11の調製>
例II-1のフュームドシリカ粒子を鎖状シリカ粒子に変えた以外、塗工液の調製方法は例II-1と同様に行った。
<(Example II-7) Preparation of coating liquid 7>
The method for preparing the coating liquid was the same as in Example II-6, except that the solid content mass ratio of the fused silica particles and the chain silica particles was 9.0: 1.0.
<(Example II-8) Preparation of coating liquid 8>
The method for preparing the coating liquid was the same as in Example II-6, except that the solid content mass ratio of the fused silica particles and the chain silica particles was 8.5: 1.5.
<(Example II-9) Preparation of coating liquid 9>
The solid content mass ratio of the fused silica particles and the chain silica particles was 9.75: 0.25, except that the total mass ratio of the two types of particles and the solid content mass ratio of silsesquioxane were 10: 2.25. The method for preparing the coating liquid was the same as in Example II-6.
<(Example II-10) Preparation of coating liquid 10>
The method for preparing the coating liquid was the same as in Example II-6, except that the total amount of the two types of particles and the solid content mass ratio of silsesquioxane were 10: 2.25.
<(Example II -11) Preparation of coating liquid 11>
The method for preparing the coating liquid was the same as that for Example II-1, except that the fumed silica particles of Example II-1 were changed to chain silica particles.

<膜の空隙率の算出方法>
膜における、空隙率X(%)及び空隙率Y(%)の算出は、下記の通り行った。
まず、基材上に形成した膜に、Model681 イオンビームコーターIBC(Gaan製)を用いてカーボン膜をコートした後、収束イオンビーム加工装置(FIB-SM、FEI製、Nova600)内で、イオンビームによる断面出し加工(30kV-.1nA)を行った後、走査型電子顕微鏡(以降、SEMという)により加速電圧2kVでSEM画像を取得した。
SEM画像の観察倍率は、少なくとも厚み方向には膜全体をカバーし、かつ、例えば、空粒子の一つ一つの形状が判別できる倍率とした。具体的には、5万倍から20万倍程度とした。
また、膜の単位体積は、1000nm×1000nm×(厚さ方向)100nmとした。
取得した断面SEM像における空隙率の算出には、グレースケール画像の二値化により中空粒子と、中空粒子の間の空隙とを区分して、各領域の面積計算を行った。画像処理は、画像解析ソフトウェアImage J(NIH Image、https://imagej.nih.gov/ij/より入手可能)を用いた。
具体的には、求めた中空粒子の面積A(%)に、中空粒子の全体積に対する内部の空隙の体積分率Vをかけたものが、空隙率X(%)であり、X=A×Vとした。また
隙率Y(%)は、Y=100-Aとした。
<Calculation method of film porosity>
The porosity X (%) and the porosity Y (%) in the membrane were calculated as follows.
First, the film formed on the substrate is coated with a carbon film using a Model 681 ion beam coater IBC (manufactured by Gaan), and then the ion beam is applied in a focused ion beam processing device (FIB-SM, manufactured by FEI, Nova600). After performing the cross-sectioning process (30 kV-1 nA), an SEM image was acquired with an acceleration voltage of 2 kV by a scanning electron microscope (hereinafter referred to as SEM).
The observation magnification of the SEM image was set to a magnification that covers the entire film at least in the thickness direction and that, for example, the shape of each empty particle can be discriminated. Specifically, it was set to about 50,000 to 200,000 times.
The unit volume of the film was 1000 nm × 1000 nm × (thickness direction) 100 nm.
In the calculation of the porosity in the acquired cross-sectional SEM image, the hollow particles and the voids between the hollow particles were separated by binarization of the gray scale image, and the area of each region was calculated. For image processing, image analysis software ImageJ (available from NIH Image, https: //imagej.nih.gov/ij/) was used.
Specifically, the porosity X (%) is obtained by multiplying the obtained area A (%) of the hollow particles by the volume fraction Va of the internal voids with respect to the total volume of the hollow particles, and X = A. It was set to × Va . Also ,
The porosity Y (%) was Y = 100-A.

Claims (34)

光電変換装置であって、
複数の光電変換部、及び、前記複数の光電変換部の上に配されたマイクロレンズアレイを有する光電変換基板と、
前記マイクロレンズアレイを覆う透光板と、
前記マイクロレンズアレイと前記透光板との間に配された膜と、を備え、
前記膜は、
屈折率が1.05~1.15であり、
400nm~700nmの波長域における光の平均透過率が98.5%以上であり、
膜厚が500nm~5000nmである
ことを特徴とする光電変換装置。
It is a photoelectric conversion device
A photoelectric conversion board having a plurality of photoelectric conversion units and a microlens array arranged on the plurality of photoelectric conversion units.
A translucent plate covering the microlens array and
A film disposed between the microlens array and the translucent plate.
The membrane is
The refractive index is 1.05 to 1.15, and it has a refractive index of 1.05 to 1.15.
The average transmittance of light in the wavelength range of 400 nm to 700 nm is 98.5% or more.
A photoelectric conversion device having a film thickness of 500 nm to 5000 nm.
前記膜の空隙率が、65.0%~90.0%である、
請求項1に記載の光電変換装置。
The porosity of the film is 65.0% to 90.0%.
The photoelectric conversion device according to claim 1.
前記膜が、固体物質を含有し、
前記固体物質の主成分が二酸化ケイ素である、および/または、前記固体物質の屈折率が1.20~1.60である、
請求項1または2に記載の光電変換装置。
The film contains a solid substance and
The main component of the solid substance is silicon dioxide and / or the refractive index of the solid substance is 1.20 to 1.60.
The photoelectric conversion device according to claim 1 or 2.
前記膜が、前記固体物質で構成された一次粒子が三次元構造を形成した二次粒子、前記固体物質で構成された一次粒子が鎖状に連結した鎖状二次粒子、及び、前記固体物質で構成された一次粒子が分鎖状に連結した分鎖状二次粒子からなる群より選ばれる少なくとも一の粒子を含有する、
請求項3に記載の光電変換装置。
The film is a secondary particle in which primary particles composed of the solid substance form a three-dimensional structure, a chain secondary particle in which primary particles composed of the solid substance are linked in a chain, and the solid substance. Contains at least one particle selected from the group consisting of split-chain secondary particles in which the primary particles composed of are linked in a split-chain manner.
The photoelectric conversion device according to claim 3.
前記固体物質で構成された一次粒子の個数平均粒径が、5nm~100nmである、請求項4に記載の光電変換装置。 The photoelectric conversion device according to claim 4, wherein the number average particle diameter of the primary particles composed of the solid substance is 5 nm to 100 nm. 前記二次粒子の個数平均粒径が、50nm~500nmである、
請求項4または5に記載の光電変換装置。
The number average particle size of the secondary particles is 50 nm to 500 nm.
The photoelectric conversion device according to claim 4 or 5.
前記膜は、複数の中空粒子と、前記複数の中空粒子間に空隙と、を含み、 The film comprises a plurality of hollow particles and voids between the plurality of hollow particles.
前記膜の単位体積に対する前記中空粒子間の空隙の合計体積の割合が30.0%~80.0%である、 The ratio of the total volume of the voids between the hollow particles to the unit volume of the film is 30.0% to 80.0%.
請求項1~6のいずれか一項に記載の光電変換装置。The photoelectric conversion device according to any one of claims 1 to 6.
前記膜の単位体積に対する前記中空粒子間の空隙の合計体積の割合が40.0%~70.0%である、 The ratio of the total volume of the voids between the hollow particles to the unit volume of the film is 40.0% to 70.0%.
請求項7に記載の光電変換装置。The photoelectric conversion device according to claim 7.
前記膜は、複数の中空粒子を含有し、
前記膜の単位体積に対する前記複数の中空粒子内の空隙の合計体積の割合を空隙率X(%)とし、前記膜の単位体積に対する前記中空粒子間の空隙の合計体積の割合を空隙率Y(%)としたときに、X<Yの関係を満たす、
請求項3~のいずれか一項に記載の光電変換装置。
The film contains a plurality of hollow particles and contains a plurality of hollow particles.
The ratio of the total volume of voids in the plurality of hollow particles to the unit volume of the film is defined as porosity X (%), and the ratio of the total volume of voids between the hollow particles to the unit volume of the film is defined as porosity Y (). %), Satisfying the relationship of X <Y,
The photoelectric conversion device according to any one of claims 3 to 8 .
前記X及び前記Yが、X<(100-X-Y)<Yの関係を満たす、
請求項に記載の光電変換装置。
The X and the Y satisfy the relationship of X <(100-XY) <Y.
The photoelectric conversion device according to claim 9 .
前記膜が、前記固体物質で構成された粒子、及び、前記粒子を結合するバインダを含有する、
請求項3~10のいずれか一項に記載の光電変換装置。
The film contains particles made of the solid substance and a binder that binds the particles together.
The photoelectric conversion device according to any one of claims 3 to 10 .
前記膜中の前記バインダの含有量が、前記固体物質の前記粒子100質量部に対して、7.0質量部~30.0質量部である、
請求項11に記載の光電変換装置。
The content of the binder in the film is 7.0 parts by mass to 30.0 parts by mass with respect to 100 parts by mass of the particles of the solid substance.
The photoelectric conversion device according to claim 11 .
前記バインダが、シロキサンを含有する、
請求項11または12に記載の光電変換装置。
The binder contains siloxane,
The photoelectric conversion device according to claim 11 or 12 .
前記バインダが、組成式[R(SiO1.5]、で表されるT3単位構造を有する物質を含有し、
前記Rが、重合性基、水酸基、塩素原子、炭素数1~6のアルキル基および炭素数1~6のアルコキシ基からなる群より選ばれる少なくとも一を表す、
請求項1113のいずれか一項に記載の光電変換装置。
The binder contains a substance having a T3 unit structure represented by the composition formula [R 1 (SiO 1.5 ) n ].
R 1 represents at least one selected from the group consisting of a polymerizable group, a hydroxyl group, a chlorine atom, an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms.
The photoelectric conversion device according to any one of claims 11 to 13 .
前記Rが、アクリロイル基、メタクリロイル基、オキセタニル基及びエポキシ基からなる群より選ばれる少なくとも一の重合性基である、
請求項14に記載の光電変換装置。
R 1 is at least one polymerizable group selected from the group consisting of an acryloyl group, a methacryloyl group, an oxetanyl group and an epoxy group.
The photoelectric conversion device according to claim 14 .
前記二酸化ケイ素が、その表面に有機基および水酸基の少なくとも一を有する、
請求項3~15のいずれか一項に記載の光電変換装置。
The silicon dioxide has at least one organic group and a hydroxyl group on its surface.
The photoelectric conversion device according to any one of claims 3 to 15 .
前記膜の前記マイクロレンズアレイ側の面よりも、前記膜の前記透光板側の面が平坦である、
請求項1~16のいずれか一項に記載の光電変換装置。
The surface of the film on the translucent plate side is flatter than the surface of the film on the microlens array side.
The photoelectric conversion device according to any one of claims 1 to 16 .
前記マイクロレンズアレイが、樹脂材料を含有する、
請求項1~17のいずれか一項に記載の光電変換装置。
The microlens array contains a resin material.
The photoelectric conversion device according to any one of claims 1 to 17 .
前記膜のSAICAS法により測定した強度が、3.0N/m~100.0N/mである、
請求項1~18のいずれか一項に記載の光電変換装置。
The strength of the film measured by the SAICAS method is 3.0 N / m to 100.0 N / m.
The photoelectric conversion device according to any one of claims 1 to 18 .
前記膜のSAICAS法により測定した強度が、3.0N/m~25.0N/mである、
請求項19に記載の光電変換装置。
The strength of the film measured by the SAICAS method is 3.0 N / m to 25.0 N / m.
The photoelectric conversion device according to claim 19 .
請求項1~20のいずれか一項に記載の光電変換装置と、
前記光電変換装置に光学像を形成するための光学系、前記光電変換装置を制御する制御装置、前記光電変換装置から出力される信号を処理する処理装置、前記光電変換装置を移動させる移動装置、および、前記光電変換装置から出力される信号に基づく情報を表示する表示装置からなる群から選択される少なくとも一と、
を備えることを特徴とする、機器。
The photoelectric conversion device according to any one of claims 1 to 20 and the photoelectric conversion device.
An optical system for forming an optical image on the photoelectric conversion device, a control device for controlling the photoelectric conversion device, a processing device for processing a signal output from the photoelectric conversion device, a moving device for moving the photoelectric conversion device, and the like. And at least one selected from the group consisting of a display device that displays information based on a signal output from the photoelectric conversion device.
A device characterized by being equipped with.
光電変換装置であって、
複数の光電変換部、及び、前記複数の光電変換部の上に配されたマイクロレンズアレイを有する光電変換基板と、
前記マイクロレンズアレイを覆う透光板と、
前記マイクロレンズアレイと前記透光板との間に配された膜と、を備え、
前記膜は、複数の中空粒子を含有し、
前記膜の単位体積に対する前記複数の中空粒子内の空隙の合計体積の割合を空隙率X(%)とし、前記膜の単位体積に対する前記中空粒子間の空隙の合計体積の割合を空隙率Y(%)としたときに、X<Yの関係を満たす、
ことを特徴とする、光電変換装置。
It is a photoelectric conversion device
A photoelectric conversion board having a plurality of photoelectric conversion units and a microlens array arranged on the plurality of photoelectric conversion units.
A translucent plate covering the microlens array and
A film disposed between the microlens array and the translucent plate.
The film contains a plurality of hollow particles and contains a plurality of hollow particles.
The ratio of the total volume of voids in the plurality of hollow particles to the unit volume of the film is defined as porosity X (%), and the ratio of the total volume of voids between the hollow particles to the unit volume of the film is defined as porosity Y (). %), Satisfying the relationship of X <Y,
A photoelectric conversion device characterized by this.
前記Yが30.0%~80.0%である、 The Y is 30.0% to 80.0%.
請求項22に記載の光電変換装置。The photoelectric conversion device according to claim 22.
前記Yが40.0%~70.0%である、 The Y is 40.0% to 70.0%.
請求項23に記載の光電変換装置。The photoelectric conversion device according to claim 23.
前記X及び前記Yが、X<(100-X-Y)<Yの関係を満たす、
請求項22~24のいずれか一項に記載の光電変換装置。
The X and the Y satisfy the relationship of X <(100-XY) <Y.
The photoelectric conversion device according to any one of claims 22 to 24 .
前記X及び前記Yの和(X+Y)が、65.0%~90.0%である、
請求項22~25のいずれか一項に記載の光電変換装置。
The sum (X + Y) of the X and the Y is 65.0% to 90.0%.
The photoelectric conversion device according to any one of claims 22 to 25 .
前記Xが8.0%~32.0%であり、前記Yが30.0%~80.0%である、
請求項22~26のいずれか一項に記載の光電変換装置。
The X is 8.0% to 32.0%, and the Y is 30.0% to 80.0%.
The photoelectric conversion device according to any one of claims 22 to 26 .
前記Xが12.0%~24.0%であり、前記Yが40.0%~70.0%である、
請求項22~27のいずれか一項に記載の光電変換装置。
The X is 12.0% to 24.0%, and the Y is 40.0% to 70.0%.
The photoelectric conversion device according to any one of claims 22 to 27 .
前記中空粒子内の前記空隙を囲む固体物質の主成分が、二酸化ケイ素である、
請求項22~28のいずれか一項に記載の光電変換装置。
The main component of the solid substance surrounding the voids in the hollow particles is silicon dioxide.
The photoelectric conversion device according to any one of claims 22 to 28 .
前記膜が、前記複数の粒子を結合するバインダを含有し、
前記バインダが、シロキサンを含有する、
請求項29に記載の光電変換装置。
The film contains a binder that binds the plurality of particles.
The binder contains siloxane,
The photoelectric conversion device according to claim 29 .
前記中空粒子の一次粒子の個数平均粒径が、20nm~100nmである、
請求項22~30のいずれか一項に記載の光電変換装置。
The number average particle size of the primary particles of the hollow particles is 20 nm to 100 nm.
The photoelectric conversion device according to any one of claims 22 to 30 .
前記中空粒子1個の空隙率nが、30.0%~70.0%である、
請求項22~31のいずれか一項に記載の光電変換装置。
The porosity np of one hollow particle is 30.0% to 70.0%.
The photoelectric conversion device according to any one of claims 22 to 31 .
前記膜の膜厚が、500nm~2000nmである、
請求項22~32のいずれか一項に記載の光電変換装置。
The film thickness of the film is 500 nm to 2000 nm.
The photoelectric conversion device according to any one of claims 22 to 32 .
前記単位体積は1000nm×1000nm×(厚さ方向)100nmである、
請求項22~33のいずれか一項に記載の光電変換装置。
The unit volume is 1000 nm × 1000 nm × (thickness direction) 100 nm.
The photoelectric conversion device according to any one of claims 22 to 33 .
JP2019063132A 2018-05-01 2019-03-28 Photoelectric conversion device and equipment Pending JP2019195051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/393,257 US11069729B2 (en) 2018-05-01 2019-04-24 Photoelectric conversion device, and equipment
CN201910364191.2A CN110429090B (en) 2018-05-01 2019-04-30 Photoelectric conversion device and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018088352 2018-05-01
JP2018088352 2018-05-01

Publications (2)

Publication Number Publication Date
JP2019195051A JP2019195051A (en) 2019-11-07
JP2019195051A5 true JP2019195051A5 (en) 2022-04-01

Family

ID=68469440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063132A Pending JP2019195051A (en) 2018-05-01 2019-03-28 Photoelectric conversion device and equipment

Country Status (1)

Country Link
JP (1) JP2019195051A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023125213A (en) * 2022-02-28 2023-09-07 日東電工株式会社 Laminate film
WO2023163185A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical member and ar glasses and head-mounted display using said optical member
JP2023166718A (en) * 2022-05-10 2023-11-22 Toppanホールディングス株式会社 Microlens array and solid-state imaging element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482669B1 (en) * 2001-05-30 2002-11-19 Taiwan Semiconductor Manufacturing Company Colors only process to reduce package yield loss
JP2008016648A (en) * 2006-07-06 2008-01-24 Konica Minolta Holdings Inc Organic electroluminescence element, method of manufacturing the same illuminator, and display
JP2009175671A (en) * 2007-12-27 2009-08-06 Hitachi Chem Co Ltd Antireflection film for microstructure and method for manufacturing the film
JP2010040621A (en) * 2008-08-01 2010-02-18 Toshiba Corp Solid-state imaging device, and method of manufacturing the same
JP5449061B2 (en) * 2010-06-30 2014-03-19 富士フイルム株式会社 Photosensitive composition, pattern forming material, and photosensitive film using the same, pattern forming method, pattern film, low refractive index film, optical device, and solid-state imaging device
JP5922013B2 (en) * 2011-12-28 2016-05-24 富士フイルム株式会社 Optical member set and solid-state imaging device using the same
JP2014228614A (en) * 2013-05-21 2014-12-08 豊田通商株式会社 Light transmissive composition and optical functional member using the same and method of producing light transmissive composition
JP2015004753A (en) * 2013-06-19 2015-01-08 キヤノン株式会社 Optical element, optical system, and optical device
JP7152130B2 (en) * 2015-09-07 2022-10-12 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
JP2018060921A (en) * 2016-10-05 2018-04-12 キヤノン株式会社 Photoelectric conversion device and system

Similar Documents

Publication Publication Date Title
US10509313B2 (en) Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
JP2019195051A5 (en)
US20130158148A1 (en) Photosensitive silicone resin composition
JP6561831B2 (en) Photosensitive element, photosensitive element roll, resist pattern manufacturing method, and electronic component
JP6921975B2 (en) Substrate pretreatment composition for nanoimprint lithography
JP6621948B2 (en) Curable composition for imprint, cured product, pattern forming method, lithography method, pattern, and mask for lithography
JP6424832B2 (en) Negative photosensitive resin composition, cured resin film, partition wall and optical element
JP2008216875A (en) Photosensitive resin composition, photosensitive resin composition film, photosensitive resin composition film stacked substrate, photosensitive resin composition cured film and photosensitive resin composition cured film stacked substrate
JP6255859B2 (en) Curable composition
CN103901725B (en) A kind of light curing resin composition
JP6084055B2 (en) Pattern formation method by imprint
CN106200264B (en) White photosensitive resin composition, white matrix, color filter, reflective display device, white frame and display device
JP2009133966A (en) Photosensitive resin composition
US11774605B2 (en) Scintillator unit and radiation detector
TWI770237B (en) Curable composition for imprint, cured product, pattern manufacturing method, lithography method, pattern, mask for lithography, and polymeric composition for imprint
CN117295797A (en) Additives for build materials and related printed 3D articles
JP2018127522A (en) Photocurable composition for imprint, article having fine pattern on surface thereof and method for producing the same
KR101187881B1 (en) Photosensitive resin composition for column spacer and display device having the same
JP2015063623A (en) (meth)acrylic acid-based copolymer, negative photosensitive resin composition, and cured product of the same
Shin et al. Fabrication of contact lens containing high‐performance wire grid polarizer
JP2017003706A (en) Photosensitive resin composition
CN108727537B (en) Composition for flexible mold and flexible mold manufactured by using the same
JP2010249926A (en) Photosensitive resin composition, photosensitive element using the same, and method of forming resist pattern
JP2012014860A (en) Photocurable resin composition for overcoat, and photocurable element for overcoat, method for forming conductive pattern and conductive film substrate using the composition
JP2018049055A (en) Photosensitive conductive film, method for forming conductive pattern and method for forming conductive pattern substrate