JP2019191116A - Radiation detection device and inspection device - Google Patents

Radiation detection device and inspection device Download PDF

Info

Publication number
JP2019191116A
JP2019191116A JP2018087485A JP2018087485A JP2019191116A JP 2019191116 A JP2019191116 A JP 2019191116A JP 2018087485 A JP2018087485 A JP 2018087485A JP 2018087485 A JP2018087485 A JP 2018087485A JP 2019191116 A JP2019191116 A JP 2019191116A
Authority
JP
Japan
Prior art keywords
radiation
shielding member
radiation shielding
detection apparatus
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018087485A
Other languages
Japanese (ja)
Inventor
武裕 中村
Takehiro Nakamura
武裕 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Components Inc
Original Assignee
Canon Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Components Inc filed Critical Canon Components Inc
Priority to JP2018087485A priority Critical patent/JP2019191116A/en
Publication of JP2019191116A publication Critical patent/JP2019191116A/en
Pending legal-status Critical Current

Links

Images

Abstract

To achieve improvement in quality of a radiation detection device with a comparatively simple configuration.SOLUTION: A radiation detection device comprises: a sensor substrate that has a plurality of sensor parts for detecting radiation arrayed in a prescribed direction; a phosphor that is arranged in a location separated from the sensor substrate in a direction going across either direction of an array direction of the plurality of sensor parts and an incidence direction of radiation, and is configured to be capable of converting the radiation to light; a first radiation shield member that is arranged lateral to an array direction of the sensor substrate; and a second radiation shield member that is arranged between the sensor substrate and the phosphor, and is configured to allow light of the phosphor to pass to the plurality of sensor parts. When viewing in the going-across direction, the second radiation shield member is arranged so as to overlap with the first radiation shield member.SELECTED DRAWING: Figure 1

Description

本発明は、放射線検出装置および検査装置に関する。   The present invention relates to a radiation detection apparatus and an inspection apparatus.

特許文献1には、放射線検出装置に入射した放射線が該装置の各部材で散乱して該装置から漏れ出すことにより医師等のユーザが被曝することを防止するため、放射線遮蔽部材を配置することが記載されている。   In Patent Document 1, a radiation shielding member is disposed in order to prevent a user such as a doctor from being exposed to radiation incident on the radiation detection apparatus by being scattered by each member of the apparatus and leaking from the apparatus. Is described.

特開2006−322745号公報JP 2006-322745 A 特開2008−082764号公報JP 2008-082664 A

特許文献2には、放射線を光に変換する蛍光体と、該光を検出する複数のセンサ部が配列されたラインセンサと、を備える放射線検出装置が記載されている。多くの部材は一般に放射線に晒されることによって劣化するが、このことは、センサ部についても同様であり、例えば、上記散乱に起因する放射線によってセンサ特性が変動することがある。特許文献2の構成の場合、上記散乱に起因する放射線量はラインセンサの端部領域において比較的(例えば中央部領域に比べて)大きくなると考えられ、そのため、ラインセンサの特性が不均一になる可能性があった。このことは、放射線検出装置の品質の低下の原因となりうるため、構造上の改善の余地があった。   Patent Document 2 describes a radiation detection apparatus including a phosphor that converts radiation into light and a line sensor in which a plurality of sensor units that detect the light are arranged. Many members generally deteriorate due to exposure to radiation, but this is also the case with the sensor unit. For example, the sensor characteristics may vary due to radiation caused by the scattering. In the case of the configuration of Patent Document 2, it is considered that the radiation dose due to the scattering is relatively large (for example, compared with the central region) in the end region of the line sensor, and therefore the characteristics of the line sensor become non-uniform. There was a possibility. This can cause a deterioration in the quality of the radiation detection apparatus, so there is room for improvement in structure.

本発明は、放射線検出装置の品質の向上を比較的簡素な構成で実現することを目的とする。   An object of this invention is to implement | achieve the improvement of the quality of a radiation detection apparatus with a comparatively simple structure.

本発明の一つの側面は放射線検出装置にかかり、前記放射線検出装置は、放射線を検出するための複数のセンサ部が所定方向に配列されたセンサ基板と、前記センサ基板から前記複数のセンサ部の配列方向および前記放射線の入射方向の双方と交差する方向に離間した位置に配置され、放射線を光に変換可能に構成された蛍光体と、前記センサ基板の前記配列方向側方に配置された第1の放射線遮蔽部材と、前記センサ基板と前記蛍光体との間に配置され、前記蛍光体の光を前記複数のセンサ部に通過可能に構成された第2の放射線遮蔽部材と、を備え、前記交差する方向で見たときに、前記第2の放射線遮蔽部材は前記第1の放射線遮蔽部材と重なるように位置していることを特徴とする。   One aspect of the present invention relates to a radiation detection apparatus, and the radiation detection apparatus includes: a sensor substrate in which a plurality of sensor units for detecting radiation are arranged in a predetermined direction; and a plurality of sensor units from the sensor substrate. A phosphor arranged at a position spaced in a direction intersecting both the arrangement direction and the incident direction of the radiation and configured to convert radiation into light, and a first arranged on the side of the arrangement direction of the sensor substrate. 1 radiation shielding member, and a second radiation shielding member disposed between the sensor substrate and the phosphor, and configured to allow the light of the phosphor to pass through the plurality of sensor units, The second radiation shielding member is positioned so as to overlap with the first radiation shielding member when viewed in the intersecting direction.

本発明によれば、放射線検出装置の品質を向上させることができる。   According to the present invention, the quality of the radiation detection apparatus can be improved.

放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の内部構造の例を説明するための図である。It is a figure for demonstrating the example of the internal structure of a radiation detection apparatus. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 検査装置の構成例を説明するための図である。It is a figure for demonstrating the structural example of an inspection apparatus.

以下、添付図面を参照しながら本発明の好適な実施形態について説明する。なお、各図は、構造ないし構成を説明する目的で記載された模式図に過ぎず、図示された各部材の寸法は必ずしも現実のものを反映するものではない。また、各図において、同一の部材または同一の要素には同一の参照番号を付しており、以下、重複する内容については説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Each figure is only a schematic diagram described for the purpose of explaining the structure or configuration, and the dimensions of each member shown do not necessarily reflect actual ones. Moreover, in each figure, the same reference number is attached | subjected to the same member or the same element, and description is abbreviate | omitted about the overlapping content hereafter.

[第1実施形態]
図1(A)は、第1実施形態に係る放射線検出装置1の構成を示す斜視図である。本実施形態では、放射線検出装置1は長尺状に延設され、放射線ラインセンサ等と表現されてもよい。
[First Embodiment]
FIG. 1A is a perspective view showing the configuration of the radiation detection apparatus 1 according to the first embodiment. In the present embodiment, the radiation detection apparatus 1 may be elongated and may be expressed as a radiation line sensor or the like.

後述の他の図においても同様であるが、図中には、構造の理解の容易化のため、互いに交差あるいは実質的に直交するX方向、Y方向およびZ方向を示す。X方向は、上記長尺状の放射線検出装置1の短手方向に対応し、Y方向は該装置1の長手方向に対応し、また、Z方向は該装置1の高さ方向に対応する。本明細書では、説明の簡易化のため、放射線検出装置1内の2以上の部材または要素間の相対的な位置関係を示す表現が用いられる。例えば、本明細書では、+X/−X方向にシフトした位置関係を「X方向側方」等と表現する場合があるが、短手方向側方等と表現されてもよい。また、本明細書では、+Y/−Y方向にシフトした位置関係を「Y方向側方」等と表現する場合があるが、長手方向側方等と表現されてもよい。また、本明細書では、+Z方向にシフトした位置関係を「上」、「上方」等と表現し、また、−Z方向にシフトした位置関係を「下」、「下方」等と表現する場合がある。   The same applies to other figures described later, but in the figure, the X direction, the Y direction, and the Z direction that intersect or substantially orthogonal to each other are shown for easy understanding of the structure. The X direction corresponds to the short direction of the long radiation detection apparatus 1, the Y direction corresponds to the longitudinal direction of the apparatus 1, and the Z direction corresponds to the height direction of the apparatus 1. In this specification, for simplification of description, an expression indicating a relative positional relationship between two or more members or elements in the radiation detection apparatus 1 is used. For example, in this specification, the positional relationship shifted in the + X / −X direction may be expressed as “X direction side” or the like, but may be expressed as a lateral direction side or the like. In this specification, the positional relationship shifted in the + Y / −Y direction may be expressed as “Y direction side” or the like, but may be expressed as “longitudinal direction side” or the like. In this specification, the positional relationship shifted in the + Z direction is expressed as “up”, “upward”, and the positional relationship shifted in the −Z direction is expressed as “down”, “downward”, etc. There is.

図1(B)は、切断面をX−Z平面(垂直面)とする放射線検出装置1の断面構造を示す。図1(C)は、図1(B)を+Y方向で見た側面図を示す。図2(A)は、切断面をX−Y平面(水平面)とする放射線検出装置1の断面構造を示す。図2(B)は、図2(A)を−Z方向で見た上面図を示す。放射線検出装置1は、筐体10、センサ基板11、蛍光体(シンチレータ)12、及び、放射線遮蔽部材131〜133を備える。   FIG. 1B shows a cross-sectional structure of the radiation detection apparatus 1 in which the cut surface is an XZ plane (vertical surface). FIG. 1C shows a side view of FIG. 1B viewed in the + Y direction. FIG. 2A shows a cross-sectional structure of the radiation detection apparatus 1 having a cut surface as an XY plane (horizontal plane). FIG. 2B shows a top view of FIG. 2A viewed in the −Z direction. The radiation detection apparatus 1 includes a housing 10, a sensor substrate 11, a phosphor (scintillator) 12, and radiation shielding members 131 to 133.

筐体10は、1以上の部材で構成されて放射線検出装置1を構成する部材ないし要素を直接的/間接的に支持し、支持体等とも表現される。筐体10は、その形状によっては、支持フレーム、或いは単にフレーム等と表現されてもよい。本実施形態では、筐体10は、センサ基板11を支持する第1の支持部材101、及び、蛍光体12を支持する第2の支持部材102を含む。筐体10、ここでは支持部材101及び102には、樹脂等の絶縁性の材料が用いられてもよいが、より好適には、放射線耐性の比較的高い材料が用いられるとよい。例えば、タングステン(W)、鉛(Pb)等、放射線を遮蔽(ないし吸収)可能な粒子を含有する材料、例えばタングステン含有樹脂、が好適に用いられうる。   The housing 10 is composed of one or more members and directly / indirectly supports members or elements constituting the radiation detection apparatus 1 and is also expressed as a support or the like. The housing 10 may be expressed as a support frame, or simply a frame, depending on its shape. In the present embodiment, the housing 10 includes a first support member 101 that supports the sensor substrate 11 and a second support member 102 that supports the phosphor 12. An insulating material such as a resin may be used for the housing 10, here, the support members 101 and 102, but a material having a relatively high radiation resistance is more preferably used. For example, a material containing particles capable of shielding (or absorbing) radiation, such as tungsten (W) and lead (Pb), for example, a tungsten-containing resin can be suitably used.

尚、本実施形態では、支持部材101及び102は、締結部材、接着剤等により相互に固定されるものとするが、他の実施形態として、支持部材101及び102は一体成形されてもよい。   In this embodiment, the support members 101 and 102 are fixed to each other by a fastening member, an adhesive, or the like. However, as another embodiment, the support members 101 and 102 may be integrally formed.

詳細については後述とするが、支持部材101は、Y方向で向かい合う一対の端部101Ea及び101Ebを含み、図2(A)及び図2(B)に示されるように、それら一対の端部101Ea及び101Ebの間においてセンサ基板11を支持する。端部101Ebについても同様とするが、本実施形態では、図2(B)に示されるように、端部101Eaの厚さ(Y方向での厚さ)T1は、端部101Eaからセンサ基板11までの距離L1よりも大きいものとする。尚、支持部材101は、一対の端部101Ea及び101Ebを接続する側壁部(Y−Z平面を形成する板部)および底面部(X−Y平面を形成する板部)を更に含み、支持部材101の各部分と放射線遮蔽部材132とで形成される空間にセンサ基板11を収容可能となっている。   Although details will be described later, the support member 101 includes a pair of end portions 101Ea and 101Eb that face each other in the Y direction, and as shown in FIGS. 2A and 2B, the pair of end portions 101Ea. And 101Eb, the sensor substrate 11 is supported. Although the same applies to the end portion 101Eb, in this embodiment, as shown in FIG. 2B, the thickness (thickness in the Y direction) T1 of the end portion 101Ea is changed from the end portion 101Ea to the sensor substrate 11. It is assumed that the distance is larger than the distance L1. The support member 101 further includes a side wall portion (a plate portion forming a YZ plane) and a bottom surface portion (a plate portion forming an XY plane) connecting the pair of end portions 101Ea and 101Eb. The sensor substrate 11 can be accommodated in a space formed by each part 101 and the radiation shielding member 132.

支持部材102は、支持部材101のX方向側方に配置されて蛍光体12を支持する。本実施形態では、支持部材102の上面は支持部材101を向くように傾斜しており、よって、蛍光体12は傾斜姿勢で固定される。尚、傾斜とは水平でない且つ垂直でない状態をいい、支持部材102の上面の傾斜角(水平面との成す角)は、例えば10〜80度の範囲内、好適には20〜70度の範囲内、とすればよい。   The support member 102 is disposed on the side of the support member 101 in the X direction and supports the phosphor 12. In the present embodiment, the upper surface of the support member 102 is inclined so as to face the support member 101, and thus the phosphor 12 is fixed in an inclined posture. The inclination means a state that is not horizontal and not vertical, and the inclination angle (angle formed with the horizontal plane) of the upper surface of the support member 102 is, for example, in the range of 10 to 80 degrees, and preferably in the range of 20 to 70 degrees. ,And it is sufficient.

センサ基板11は、本実施形態では垂直姿勢(面方向がY−Z平面と平行となる姿勢)で固定されるものとする。センサ基板11は、例えばエポキシガラスで構成されたプリント基板であり、センサ基板11上にはラインセンサ111が形成されている。ラインセンサ111は、Y方向に延設されており、複数のセンサ部が1以上の列を形成するようにY方向に配列されて成る。   In the present embodiment, the sensor substrate 11 is fixed in a vertical posture (a posture in which the surface direction is parallel to the YZ plane). The sensor board 11 is a printed board made of, for example, epoxy glass, and a line sensor 111 is formed on the sensor board 11. The line sensor 111 extends in the Y direction, and a plurality of sensor units are arranged in the Y direction so as to form one or more rows.

ラインセンサ111の例としてはCCD/CMOSイメージセンサ等が挙げられ、上記複数のセンサ部は、例えばフォトダイオード等の光電変換素子、及び、該光電変換素子を駆動する回路部を含む。尚、この回路部の概念には、光電変換素子と共に画素を形成して該光電変換素子から信号を読み出す1以上のトランジスタの他、それ/それらを制御するための画素外の回路部、例えばシフトレジスタ、ラッチ回路、デコーダ等、も含まれる。   Examples of the line sensor 111 include a CCD / CMOS image sensor, and the plurality of sensor units include, for example, a photoelectric conversion element such as a photodiode, and a circuit unit for driving the photoelectric conversion element. The concept of this circuit part includes one or more transistors that form a pixel together with a photoelectric conversion element and read signals from the photoelectric conversion element, as well as a circuit part outside the pixel for controlling them, such as a shift Registers, latch circuits, decoders, and the like are also included.

蛍光体12は、放射線を光に変換可能に構成される。蛍光体12の材料としては、例えば、酸硫化ガドリニウム(GdS:Tb(GOS))粒子を樹脂等のバインダに含有させたものを用いることができる。蛍光体12の材料としては、GOS粒子の他、酸硫化ルテチウム(LuS:Tb(LOS))粒子等、公知の他の蛍光体粒子を含有する材料が用いられてもよい。このような構成により、蛍光体12は、放射線検出装置1に放射線が入射したことに応じて、その線量に応じた強度(光量)の光を発生する。この光は、シンチレーション光とも称される。 The phosphor 12 is configured to convert radiation into light. As a material of the phosphor 12, for example, a material in which gadolinium oxysulfide (Gd 2 O 2 S: Tb (GOS)) particles are contained in a binder such as a resin can be used. As a material of the phosphor 12, a material containing other known phosphor particles such as lutetium oxysulfide (Lu 2 O 2 S: Tb (LOS)) particles in addition to GOS particles may be used. With such a configuration, the phosphor 12 generates light having an intensity (light quantity) corresponding to the dose in response to radiation incident on the radiation detection apparatus 1. This light is also called scintillation light.

放射線遮蔽部材131〜133には、筐体10、ここでは支持部材101及び102、よりも放射線透過率の低い材料で構成される。例えば、放射線遮蔽部材101〜103は、タングステン、鉛等、放射線を遮蔽可能な材料で構成される。或いは、放射線遮蔽部材101〜103は、放射線を遮蔽可能な粒子(例えばタングステン、鉛等の粒子)を含有する材料(例えばタングステン含有樹脂)で構成されてもよく、その場合、該粒子の含有量が筐体10より大きくなるように構成されればよい。   The radiation shielding members 131 to 133 are made of a material having a lower radiation transmittance than the housing 10, here, the support members 101 and 102. For example, the radiation shielding members 101 to 103 are made of a material capable of shielding radiation, such as tungsten or lead. Alternatively, the radiation shielding members 101 to 103 may be made of a material (for example, a tungsten-containing resin) containing particles (for example, particles of tungsten, lead, etc.) that can shield radiation, and in that case, the content of the particles May be configured to be larger than the housing 10.

第1の放射線遮蔽部材131は、一対の端部101Ea及び101Ebのそれぞれとセンサ基板11との間に配置される。本実施形態では、放射線遮蔽部材131は、X−Z方向と平行姿勢で設置された板状部材である。よって、センサ基板11のY方向両側方において2つの放射線遮蔽部材131が互いに向かい合って設置されることとなる。本実施形態では、放射線遮蔽部材131は、端部101Ea(又は101Eb)に対して接着剤により固定される。詳細については後述とするが、放射線遮蔽部材131は、X方向で見たときに(X方向での視点において)蛍光体12と重なるように配置される。   The first radiation shielding member 131 is disposed between each of the pair of end portions 101Ea and 101Eb and the sensor substrate 11. In the present embodiment, the radiation shielding member 131 is a plate-like member installed in a posture parallel to the XZ direction. Therefore, the two radiation shielding members 131 are installed facing each other on both sides in the Y direction of the sensor substrate 11. In the present embodiment, the radiation shielding member 131 is fixed to the end portion 101Ea (or 101Eb) with an adhesive. Although the details will be described later, the radiation shielding member 131 is disposed so as to overlap the phosphor 12 when viewed in the X direction (from the viewpoint in the X direction).

第2の放射線遮蔽部材132は、X方向におけるセンサ基板11および蛍光体12の間かつY方向における一対の端部101Ea及び101Ebの間に配置される。本実施形態では、放射線遮蔽部材132は、支持部材101の端部101Ea及び101Eb並びに底面部に対して接着剤により固定される。放射線遮蔽部材132は、蛍光体12からのシンチレーション光を通過可能に構成され、本実施形態では、Y方向に延び且つ光が通過可能な開口(スリット孔)132OPを有する。   The second radiation shielding member 132 is disposed between the sensor substrate 11 and the phosphor 12 in the X direction and between the pair of end portions 101Ea and 101Eb in the Y direction. In the present embodiment, the radiation shielding member 132 is fixed to the end portions 101Ea and 101Eb and the bottom surface portion of the support member 101 with an adhesive. The radiation shielding member 132 is configured to be able to pass scintillation light from the phosphor 12, and in the present embodiment, has an opening (slit hole) 132OP extending in the Y direction and allowing light to pass therethrough.

また、詳細については後述とするが、放射線遮蔽部材132は、X方向で見たときに放射線遮蔽部材131と重なるように位置している。また、放射線遮蔽部材131と放射線遮蔽部材132とは直接的に接触していてもよいし、間接的に(接着剤等を介して)接触していてもよい。   Although details will be described later, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Further, the radiation shielding member 131 and the radiation shielding member 132 may be in direct contact with each other or indirectly (via an adhesive or the like).

第3の放射線遮蔽部材133は、図1(A)等に示されるように、支持部材101上に天板として配置され、支持部材101および放射線遮蔽部材132と共に、それらにより形成される空間内にセンサ基板11及びラインセンサ111を収容する。放射線遮蔽部材133は、Z方向で見たときに(Z方向での視点において)放射線遮蔽部材131及び132の双方と重なるように配置される。   As shown in FIG. 1A and the like, the third radiation shielding member 133 is arranged as a top plate on the support member 101, and together with the support member 101 and the radiation shielding member 132, in a space formed by them. The sensor substrate 11 and the line sensor 111 are accommodated. The radiation shielding member 133 is disposed so as to overlap both the radiation shielding members 131 and 132 when viewed in the Z direction (from the viewpoint in the Z direction).

上述の構造により、放射線検出装置1は放射線(典型的にはエックス線が用いられるが、アルファ線、ベータ線等、他の電磁波が用いられてもよい。)を検出可能である。本実施形態では、放射線は、−Z方向に入射するものとし、蛍光体12により光(シンチレーション光)に変換される。シンチレーション光は、蛍光体12から+X方向に出射され、開口132OPを通過してセンサ基板11に向かい、ラインセンサ111により検出されることとなる。放射線検出装置1は、ラインセンサ111による検出結果に基づいて放射線画像データを生成し、これを外部装置(例えばディスプレイ、汎用コンピュータ等)に出力する。   With the above-described structure, the radiation detection apparatus 1 can detect radiation (typically X-rays are used, but other electromagnetic waves such as alpha rays and beta rays may be used). In this embodiment, radiation is assumed to be incident in the −Z direction, and is converted into light (scintillation light) by the phosphor 12. The scintillation light is emitted from the phosphor 12 in the + X direction, passes through the opening 132OP, travels toward the sensor substrate 11, and is detected by the line sensor 111. The radiation detection apparatus 1 generates radiation image data based on the detection result by the line sensor 111, and outputs this to an external apparatus (for example, a display, a general-purpose computer).

前述のとおり蛍光体12は傾斜姿勢で固定され、これにより、放射線の入射方向である−Z方向とは異なる方向である+X方向に、即ちセンサ基板11に向けて、シンチレーション光を出射可能となっている。これを適切に実現するため、支持部材102の上面の傾斜角は、蛍光体12と開口132OPとの相対位置、蛍光体12のシンチレーション光の指向性、開口132OPのサイズ(Z方向のサイズ)等に基づいて、好適な値が選択されればよい。付随的に、より適切にシンチレーション光をセンサ基板11に導くため、開口132OPにはロッドレンズアレイ等の導光部が配置されてもよい。   As described above, the phosphor 12 is fixed in an inclined posture, so that scintillation light can be emitted in the + X direction, which is a direction different from the −Z direction, which is the incident direction of radiation, that is, toward the sensor substrate 11. ing. In order to achieve this appropriately, the inclination angle of the upper surface of the support member 102 is such that the relative position between the phosphor 12 and the opening 132OP, the directivity of the scintillation light of the phosphor 12, the size of the opening 132OP (size in the Z direction), etc. A suitable value may be selected based on the above. In addition, in order to more appropriately guide the scintillation light to the sensor substrate 11, a light guide unit such as a rod lens array may be disposed in the opening 132OP.

ところで、放射線検査装置1に照射された放射線は、放射線検査装置1の各部材において多様な方向に散乱する。このような放射線は散乱線、散乱放射線等とも称される。図2(B)には、支持部材101の一端部101Eb及びその周辺領域の拡大模式図が更に示される。この拡大模式図において一点鎖線の矢印で示されるように、−Z方向に入射した放射線の一部は、蛍光体12及び支持部材102において散乱し、例えば端部101Ebに向かって散乱されうる(一次散乱)。また、この拡大模式図において二点鎖線の矢印で図示されるように、蛍光体12及び支持部材102からの散乱線の一部は、端部101Ebで更に散乱されうる(二次散乱)。尚、ここでは詳細な説明を省略とするが、実際には放射線検査装置1外からの散乱線(例えば、放射線検査装置1の周辺に配置される不図示の他の装置からの散乱線)も存在しうるため、これに起因する二次散乱も生じうる。上述の一次散乱および二次散乱は端部101Eaにおいても同様に生じうる。   By the way, the radiation irradiated to the radiation inspection apparatus 1 is scattered in various directions in each member of the radiation inspection apparatus 1. Such radiation is also called scattered radiation, scattered radiation, and the like. FIG. 2B further shows an enlarged schematic view of the one end portion 101Eb of the support member 101 and its peripheral region. As indicated by the one-dot chain line arrow in this enlarged schematic diagram, a part of the radiation incident in the −Z direction is scattered by the phosphor 12 and the support member 102 and can be scattered, for example, toward the end portion 101Eb (primary order). scattering). Further, as shown by the two-dot chain line arrow in this enlarged schematic diagram, part of the scattered radiation from the phosphor 12 and the support member 102 can be further scattered by the end portion 101Eb (secondary scattering). Although detailed description is omitted here, actually, scattered rays from outside the radiation inspection apparatus 1 (for example, scattered rays from other devices (not shown) arranged around the radiation inspection apparatus 1) are also included. Because it can exist, secondary scattering due to this can also occur. The above-described primary scattering and secondary scattering can occur in the end portion 101Ea as well.

放射線は、蛍光体12に向けて照射されるので、上記一次散乱は蛍光体12及びその周辺部で生じやすい。一次散乱に起因する散乱線の一部はラインセンサ111側に向かって進むため、このことはラインセンサ111に特性変動を生じさせる可能性がある。この特性変動は、例えば、トランジスタ特性(閾値電圧)やセンサ感度(光電変換効率)等の変動、それに起因する出力値(信号値)の変動等が挙げられる。これに対し、本実施形態では、X方向で見たときに放射線遮蔽部材132は放射線遮蔽部材131と重なるように位置しているため、上記一次散乱に起因する散乱線が放射線遮蔽部材131及び132の間からラインセンサ111に漏れ込むこともない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   Since the radiation is irradiated toward the phosphor 12, the primary scattering is likely to occur in the phosphor 12 and its peripheral portion. Since part of the scattered radiation due to the primary scattering travels toward the line sensor 111 side, this may cause a characteristic variation in the line sensor 111. This characteristic variation includes, for example, variation in transistor characteristics (threshold voltage), sensor sensitivity (photoelectric conversion efficiency), and the like, variation in output value (signal value) resulting therefrom, and the like. On the other hand, in the present embodiment, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Therefore, the scattered radiation caused by the primary scattering is caused by the radiation shielding members 131 and 132. It does not leak into the line sensor 111 from between. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

また、上記二次散乱に起因する散乱線は、センサ基板11に入射してラインセンサ111の特性を変動させる可能性がある。放射線遮蔽部材131を配置しない場合には、ラインセンサ111の端部領域において上記散乱線の線量が大きくなり、ラインセンサ111の特性均一性が失われる可能性がある。これに対し、本実施形態によれば、端部101Ea及び101Ebのそれぞれと、センサ基板11との間に放射線遮蔽部材131が配置されているため、上記二次散乱に起因する散乱線がセンサ基板11に入射することもない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   Further, the scattered radiation caused by the secondary scattering may enter the sensor substrate 11 and change the characteristics of the line sensor 111. When the radiation shielding member 131 is not disposed, the dose of the scattered radiation increases in the end region of the line sensor 111, and the characteristic uniformity of the line sensor 111 may be lost. On the other hand, according to the present embodiment, since the radiation shielding member 131 is disposed between each of the end portions 101Ea and 101Eb and the sensor substrate 11, the scattered radiation caused by the secondary scattering is not detected by the sensor substrate. 11 does not enter. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

放射線検査装置1の周辺における他の装置の配置態様によっては、端部(一端部)101Eaとセンサ基板11との間、及び、端部(他端部)101Ebとセンサ基板11との間、の一方についての放射線遮蔽部材131は省略可能である。即ち、放射線遮蔽部材131は、端部101Eaとセンサ基板11との間および端部101Ebとセンサ基板11との間の少なくとも一方に配置されればよい。   Depending on the arrangement of other devices in the vicinity of the radiation inspection apparatus 1, between the end (one end) 101Ea and the sensor substrate 11 and between the end (other end) 101Eb and the sensor substrate 11 The radiation shielding member 131 on one side can be omitted. That is, the radiation shielding member 131 may be disposed between at least one of the end portion 101Ea and the sensor substrate 11 and between the end portion 101Eb and the sensor substrate 11.

また、蛍光体12は、シンチレーション光の光量均一性の向上のため、開口132OPより長く延設されることから、蛍光体12からの散乱線は比較的大きくなりうる。よって、放射線遮蔽部材131は、X方向で見たときに蛍光体12と重なるように配置されるとよい。   Further, since the phosphor 12 is extended longer than the opening 132OP in order to improve the uniformity of the amount of scintillation light, the scattered radiation from the phosphor 12 can be relatively large. Therefore, the radiation shielding member 131 is preferably arranged so as to overlap the phosphor 12 when viewed in the X direction.

また、放射線の散乱が生じる部材が肉厚であるほど、及び/又は、その部材からの距離が小さいほど、散乱線の線量は大きくなりうる。本実施形態では、端部101Ea及び101Ebのそれぞれは、厚さT1がセンサ基板11までの距離L1より大きい。そのため、本実施形態によれば、上記散乱線がラインセンサ111に与え得た影響は、放射線遮蔽部材131により適切に抑制ないし低減されることとなる。   In addition, the dose of scattered radiation can increase as the member that causes radiation scattering is thicker and / or the distance from the member is smaller. In the present embodiment, each of the end portions 101Ea and 101Eb has a thickness T1 larger than the distance L1 to the sensor substrate 11. Therefore, according to the present embodiment, the influence that the scattered radiation may have on the line sensor 111 is appropriately suppressed or reduced by the radiation shielding member 131.

また、本実施形態では、X方向で見たときに、放射線遮蔽部材132は放射線遮蔽部材131と重なるように位置している。そのため、上記一次散乱に起因する散乱線が放射線遮蔽部材131及び132間からセンサ基板11に漏れ込むこともない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   In the present embodiment, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Therefore, the scattered radiation resulting from the primary scattering does not leak into the sensor substrate 11 from between the radiation shielding members 131 and 132. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

[第2実施形態]
第1実施形態で示された放射線遮蔽部材132は、蛍光体12からの散乱線を遮蔽可能かつシンチレーション光を通過可能に構成されるとよく、例えば、開口132OPには放射線遮蔽用ガラスが設けられてもよい。
[Second Embodiment]
The radiation shielding member 132 shown in the first embodiment may be configured to shield scattered radiation from the phosphor 12 and to allow scintillation light to pass therethrough. For example, the opening 132OP is provided with radiation shielding glass. May be.

図3(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図3(B)は、切断面をX−Z平面とする該装置1の断面構造を+Y方向で見た側面図を示す。図3(C)は、切断面をX−Y平面とする該装置1の断面構造を−Z方向で見た上面図を示す。   FIG. 3A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 3B shows a side view of the cross-sectional structure of the device 1 with the cut surface taken as an XZ plane as viewed in the + Y direction. FIG. 3C shows a top view of the cross-sectional structure of the device 1 with the cut surface taken as an XY plane, as viewed in the −Z direction.

放射線検出装置1は、放射線遮蔽部材132の開口132OPを覆うように配置された透光性の板材14を更に備える。この板材14は、シンチレーション光を通過可能かつ放射線を遮蔽可能に構成され、この板材14として、例えば鉛ガラス等の放射線遮蔽用ガラスが用いられる。   The radiation detection apparatus 1 further includes a translucent plate 14 arranged to cover the opening 132OP of the radiation shielding member 132. The plate member 14 is configured to be able to pass scintillation light and shield radiation, and as the plate member 14, for example, radiation shielding glass such as lead glass is used.

本実施形態によれば、シンチレーション光を通過可能かつ放射線を遮蔽可能に構成された板材14を開口132OPに配置することで、蛍光体12からセンサ基板11への散乱線を適切に遮蔽可能となる。よって、本実施形態によれば、第1実施形態同様の効果の加え、蛍光体12からセンサ基板11への散乱線を更に適切に遮蔽可能となり、放射線検出装置の品質の向上に更に有利となる。   According to the present embodiment, by arranging the plate member 14 configured to be able to pass scintillation light and shield radiation, the scattered rays from the phosphor 12 to the sensor substrate 11 can be appropriately shielded. . Therefore, according to the present embodiment, in addition to the same effects as those of the first embodiment, the scattered radiation from the phosphor 12 to the sensor substrate 11 can be more appropriately shielded, which is further advantageous in improving the quality of the radiation detection apparatus. .

尚、板材14は、開口132OP内に配置されてもよいが、開口132OPから+X方向または−X方向にシフトして配置されてもよい。開口132OPにロッドレンズアレイ等の導光部が配置される場合には、板材14は、開口132OPから−X方向にシフトして配置されるとよい。   The plate member 14 may be arranged in the opening 132OP, but may be arranged by shifting from the opening 132OP in the + X direction or the −X direction. When a light guide unit such as a rod lens array is disposed in the opening 132OP, the plate member 14 may be disposed so as to be shifted in the −X direction from the opening 132OP.

[第3実施形態]
第1実施形態で図2(B)を参照しながら述べたとおり、蛍光体12からの散乱線は、端部101Ea及び101Ebで更に散乱し、二次散乱を生じる可能性がある。そのため、第1実施形態で示された放射線遮蔽部材131及び132は、互いに係合あるいは嵌合するように設置されるとよい。即ち、放射線遮蔽部材131及び132の一方が他方に対して単に当接するのではなく、一方が他方に対して係合あるいは嵌合し、Y方向で見たときもそれらが互いに重なるとよい。
[Third Embodiment]
As described with reference to FIG. 2B in the first embodiment, the scattered radiation from the phosphor 12 may be further scattered at the end portions 101Ea and 101Eb, resulting in secondary scattering. Therefore, the radiation shielding members 131 and 132 shown in the first embodiment may be installed so as to engage or fit with each other. That is, it is preferable that one of the radiation shielding members 131 and 132 is not simply brought into contact with the other, but one of the radiation shielding members 131 and 132 is engaged or fitted with the other, and they overlap each other when viewed in the Y direction.

図4(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図4(B)は、切断面をX−Y平面とする該装置1の断面構造を示す。図4(C)は、図4(B)を−Z方向で見た上面図を示す。   FIG. 4A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 4B shows a cross-sectional structure of the apparatus 1 in which the cut surface is an XY plane. FIG. 4C illustrates a top view of FIG. 4B viewed in the −Z direction.

本実施形態では、図4(B)及び図4(C)に示されるように、放射線遮蔽部材132の放射線遮蔽部材131と近接する部分には切欠き132Cが設けられ、放射線遮蔽部材131の端部は、この切欠き132Cに係合する。本実施形態によれば、放射線遮蔽部材132は、X方向で見たときだけでなく、Y方向で見たときも、放射線遮蔽部材131と重なるように配置される。よって、放射線遮蔽部材131及び132は、2つの面で近接し、即ち、X方向およびY方向の双方で向かい合うこととなる。   In the present embodiment, as shown in FIGS. 4B and 4C, a notch 132 </ b> C is provided in a portion of the radiation shielding member 132 adjacent to the radiation shielding member 131, and the end of the radiation shielding member 131 is provided. The portion engages with this notch 132C. According to the present embodiment, the radiation shielding member 132 is disposed so as to overlap the radiation shielding member 131 not only when viewed in the X direction but also when viewed in the Y direction. Therefore, the radiation shielding members 131 and 132 are close to each other on the two surfaces, that is, face each other in both the X direction and the Y direction.

本実施形態によれば、二次散乱に伴う端部101Ea及び101Ebからの散乱線が放射線遮蔽部材131及び132の間からセンサ基板11に漏れ込むことを適切に防ぐことができる。よって、本実施形態によれば、放射線検出装置1の品質向上に更に有利である。   According to the present embodiment, it is possible to appropriately prevent the scattered radiation from the end portions 101Ea and 101Eb accompanying secondary scattering from leaking into the sensor substrate 11 from between the radiation shielding members 131 and 132. Therefore, according to this embodiment, it is further advantageous for quality improvement of the radiation detection apparatus 1.

本実施形態では、切欠き132Cは略矩形状であるが、他の実施形態として、切欠き132Cは、丸みを帯びた形状であってもよい。更に他の実施形態として、切欠き132Cに代替して、U字状、V字状、W字状等の1以上の凹部が放射線遮蔽部材132に設けられてもよい。その場合、放射線遮蔽部材131及び132は2以上の面で互いに近接して嵌合することとなり、散乱線のセンサ基板11への漏れ込みをより適切に防ぐことが可能となる。更に他の実施形態として、切欠き132C(或いは上記凹部)に代替して、放射線遮蔽部材131に切欠き又は凹部が設けられてもよい。   In the present embodiment, the cutout 132C has a substantially rectangular shape, but as another embodiment, the cutout 132C may have a rounded shape. As yet another embodiment, one or more concave portions such as a U shape, a V shape, and a W shape may be provided in the radiation shielding member 132 in place of the notch 132C. In that case, the radiation shielding members 131 and 132 are fitted in close proximity to each other on two or more surfaces, and it becomes possible to more appropriately prevent the scattered rays from leaking into the sensor substrate 11. As still another embodiment, the radiation shielding member 131 may be provided with a notch or a recess in place of the notch 132C (or the recess).

[適用例]
上述の各実施形態の放射線検出装置1は、所定の検査を行うための検査装置(検査システム)に適用される。この検査装置の例としては、工場等の製造ラインにおける製品検査装置、空港等の搭乗手続の際に用いられる荷物検査装置、医療用の放射線撮像装置等、多様な放射線検査装置が挙げられる。
[Application example]
The radiation detection apparatus 1 of each embodiment described above is applied to an inspection apparatus (inspection system) for performing a predetermined inspection. Examples of this inspection apparatus include various radiation inspection apparatuses such as a product inspection apparatus in a production line such as a factory, a baggage inspection apparatus used in boarding procedures at an airport, and a medical radiation imaging apparatus.

図5は、放射線検出装置1が適用された検査装置SYのシステム構成の一例を示す。検査装置SYは、放射線検出装置1と、放射線を発生する放射線源2と、それらと通信可能なシステムコントローラ3とを具備する。放射線源2は、システムコントローラ3からの制御信号に基づいて放射線を発生する。放射線検出装置1は、放射線源2から照射されて検査対象OBを通過した放射線を検出する。システムコントローラ3は、放射線検出装置1から放射線画像データを受け取って、該放射線画像データに基づく放射線画像を所定のディスプレイに表示させる。放射線画像データは、放射線検出装置1外で生成されてもよく、他の実施形態として、例えば、放射線検出装置1から受け取った信号群に基づいてシステムコントローラ3により生成されてもよい。このような構成により、検査対象OBについての検査を実現可能となる。   FIG. 5 shows an example of a system configuration of the inspection apparatus SY to which the radiation detection apparatus 1 is applied. The inspection apparatus SY includes a radiation detection apparatus 1, a radiation source 2 that generates radiation, and a system controller 3 that can communicate with them. The radiation source 2 generates radiation based on a control signal from the system controller 3. The radiation detection apparatus 1 detects radiation that has been irradiated from the radiation source 2 and passed through the inspection object OB. The system controller 3 receives radiation image data from the radiation detection apparatus 1 and displays a radiation image based on the radiation image data on a predetermined display. The radiation image data may be generated outside the radiation detection apparatus 1, and as another embodiment, for example, may be generated by the system controller 3 based on a signal group received from the radiation detection apparatus 1. With such a configuration, it is possible to realize inspection for the inspection object OB.

以上の各実施形態では幾つかの好適な態様を例示したが、本発明はこれらの例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、実施形態の一部が変更され或いは組み合わされてもよい。また、本明細書に記載された個々の用語は、本発明を説明する目的で用いられたものに過ぎず、本発明は、その用語の厳密な意味に限定されるものでないことは言うまでもなく、その均等物をも含みうる。   In the above-described embodiments, some preferred aspects have been illustrated, but the present invention is not limited to these examples, and some of the embodiments may be modified or combined without departing from the spirit of the present invention. May be. In addition, it is needless to say that each term described in this specification is merely used for the purpose of describing the present invention, and the present invention is not limited to the strict meaning of the term. The equivalent can also be included.

10:筐体、101:(第1の)支持部材、102:(第2の)支持部材、11:センサ基板、12:蛍光体、131:(第1の)放射線遮蔽部材)、132:(第2の)放射線遮蔽部材。   10: housing, 101: (first) support member, 102: (second) support member, 11: sensor substrate, 12: phosphor, 131: (first) radiation shielding member), 132: ( Second) radiation shielding member.

Claims (11)

放射線を検出するための複数のセンサ部が所定方向に配列されたセンサ基板と、
前記センサ基板から前記複数のセンサ部の配列方向および前記放射線の入射方向の双方と交差する方向に離間した位置に配置され、放射線を光に変換可能に構成された蛍光体と、
前記センサ基板の前記配列方向側方に配置された第1の放射線遮蔽部材と、
前記センサ基板と前記蛍光体との間に配置され、前記蛍光体の光を前記複数のセンサ部に通過可能に構成された第2の放射線遮蔽部材と、を備え、
前記交差する方向で見たときに、前記第2の放射線遮蔽部材は前記第1の放射線遮蔽部材と重なるように位置している
ことを特徴とする放射線検出装置。
A sensor substrate on which a plurality of sensor units for detecting radiation are arranged in a predetermined direction;
A phosphor arranged at a position spaced from the sensor substrate in a direction intersecting both the arrangement direction of the plurality of sensor units and the incident direction of the radiation, and configured to convert radiation into light; and
A first radiation shielding member disposed on the side of the sensor substrate in the arrangement direction;
A second radiation shielding member disposed between the sensor substrate and the phosphor and configured to allow the light of the phosphor to pass through the plurality of sensor units;
The radiation detection apparatus, wherein the second radiation shielding member is positioned so as to overlap the first radiation shielding member when viewed in the intersecting direction.
前記第1の放射線遮蔽部材は、前記センサ基板の前記配列方向両側方にそれぞれ配置されている
ことを特徴とする請求項1記載の放射線検出装置。
The radiation detection apparatus according to claim 1, wherein the first radiation shielding member is disposed on each side of the sensor substrate in the arrangement direction.
前記センサ基板、前記蛍光体、前記第1の放射線遮蔽部材および前記第2の放射線遮蔽部材を収容する筐体を更に備え、
前記第1の放射線遮蔽部材および前記第2の放射線遮蔽部材は、前記筐体よりも放射線透過率の低い材料で構成されている
ことを特徴とする請求項1または請求項2記載の放射線検出装置。
A housing that houses the sensor substrate, the phosphor, the first radiation shielding member, and the second radiation shielding member;
The radiation detection apparatus according to claim 1, wherein the first radiation shielding member and the second radiation shielding member are made of a material having a radiation transmittance lower than that of the housing. .
前記第2の放射線遮蔽部材は、更に前記配列方向で見たときも前記第1の放射線遮蔽部材と重なっている
ことを特徴とする請求項1から請求項3の何れか1項記載の放射線検出装置。
The radiation detection according to any one of claims 1 to 3, wherein the second radiation shielding member further overlaps the first radiation shielding member when viewed in the arrangement direction. apparatus.
前記第1の放射線遮蔽部材は、前記第2の放射線遮蔽部材側の端部において前記第2の放射線遮蔽部材と係合している
ことを特徴とする請求項1から請求項4の何れか1項記載の放射線検出装置。
The said 1st radiation shielding member is engaging with the said 2nd radiation shielding member in the edge part by the side of the said 2nd radiation shielding member. The any one of Claims 1-4 characterized by the above-mentioned. The radiation detection apparatus according to item.
前記第2の放射線遮蔽部材の前記第1の放射線遮蔽部材と近接する部分には凹部が設けられている
ことを特徴とする請求項5記載の放射線検出装置。
The radiation detecting apparatus according to claim 5, wherein a concave portion is provided in a portion of the second radiation shielding member adjacent to the first radiation shielding member.
前記第1の放射線遮蔽部材と前記第2の放射線遮蔽部材とは2以上の面で近接している
ことを特徴とする請求項1から請求項6の何れか1項記載の放射線検出装置。
The radiation detection apparatus according to any one of claims 1 to 6, wherein the first radiation shielding member and the second radiation shielding member are adjacent to each other on two or more surfaces.
前記第1の放射線遮蔽部材は前記第2の放射線遮蔽部材と接触している
ことを特徴とする請求項1から請求項7の何れか1項記載の放射線検出装置。
The radiation detection apparatus according to any one of claims 1 to 7, wherein the first radiation shielding member is in contact with the second radiation shielding member.
前記第2の放射線遮蔽部材は、前記蛍光体の光を前記複数のセンサ部に通過させるための開口を有する
ことを特徴とする請求項1から請求項8の何れか1項記載の放射線検出装置。
The radiation detection apparatus according to any one of claims 1 to 8, wherein the second radiation shielding member has an opening for allowing the light of the phosphor to pass through the plurality of sensor units. .
前記第2の放射線遮蔽部材の前記開口を覆うように配置され且つ前記放射線を遮蔽可能な透光性の板材を更に備える
ことを特徴とする請求項9記載の放射線検出装置。
The radiation detection apparatus according to claim 9, further comprising a translucent plate that is disposed so as to cover the opening of the second radiation shielding member and shields the radiation.
請求項1から請求項10の何れか1項記載の放射線検出装置と、
放射線を発生する放射線源と、を具備する
ことを特徴とする検査装置。
The radiation detection apparatus according to any one of claims 1 to 10,
An inspection apparatus comprising: a radiation source that generates radiation.
JP2018087485A 2018-04-27 2018-04-27 Radiation detection device and inspection device Pending JP2019191116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087485A JP2019191116A (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087485A JP2019191116A (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Publications (1)

Publication Number Publication Date
JP2019191116A true JP2019191116A (en) 2019-10-31

Family

ID=68390026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087485A Pending JP2019191116A (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Country Status (1)

Country Link
JP (1) JP2019191116A (en)

Similar Documents

Publication Publication Date Title
US10032813B2 (en) Active pixel radiation detector array and use thereof
JP5827856B2 (en) Cassette
US10283557B2 (en) Radiation detector assembly
US9917133B2 (en) Optoelectronic device with flexible substrate
JP2005526961A (en) X-ray image sensor
KR20160122068A (en) Radiation imaging apparatus and imaging system
US9620256B2 (en) X-ray imaging device including anti-scatter grid
JP4911966B2 (en) Radiation detection apparatus and radiation imaging system
KR20160022549A (en) X-ray detecting apparatus
JP2015161560A (en) Radiation detection device
JP2018141781A (en) Radiation detector and radiation detection device
US20140061485A1 (en) Radiation imaging apparatus, method for manufacturing the same, and radiation imaging system
CN101939667B (en) Device and method for checking an image
KR101882351B1 (en) Hybrid scintillator for radiation imaging device
JP2019191116A (en) Radiation detection device and inspection device
JP4464998B2 (en) Semiconductor detector module, and radiation detection apparatus or nuclear medicine diagnostic apparatus using the semiconductor detector module
JP7016287B2 (en) Radiation detection device and inspection device
JP7016286B2 (en) Radiation detector and inspection equipment
JP2016033516A (en) Cassette
US20180067047A1 (en) Radiation detector
JP2018004570A (en) Radiation detection device and radiation detection system
JP7023605B2 (en) Radiation detector and radiation detector
JP7062362B2 (en) Radiation detector and radiation detector
JP2016128790A (en) Radiographic imaging apparatus and radiographic imaging system
US20230135695A1 (en) Targeted Collimation of Detectors Using Rear Collimators