JP2019191115A - Radiation detection device and inspection device - Google Patents

Radiation detection device and inspection device Download PDF

Info

Publication number
JP2019191115A
JP2019191115A JP2018087484A JP2018087484A JP2019191115A JP 2019191115 A JP2019191115 A JP 2019191115A JP 2018087484 A JP2018087484 A JP 2018087484A JP 2018087484 A JP2018087484 A JP 2018087484A JP 2019191115 A JP2019191115 A JP 2019191115A
Authority
JP
Japan
Prior art keywords
radiation
sensor
detection apparatus
phosphor
sensor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087484A
Other languages
Japanese (ja)
Other versions
JP7016287B2 (en
Inventor
武裕 中村
Takehiro Nakamura
武裕 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Components Inc
Original Assignee
Canon Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Components Inc filed Critical Canon Components Inc
Priority to JP2018087484A priority Critical patent/JP7016287B2/en
Publication of JP2019191115A publication Critical patent/JP2019191115A/en
Application granted granted Critical
Publication of JP7016287B2 publication Critical patent/JP7016287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To achieve improvement in quality of a radiation detection device with a comparatively simple configuration.SOLUTION: A radiation detection device comprises: a sensor substrate that has a plurality of sensor parts for detecting radiation arrayed in a prescribed direction; a support member that supports the sensor substrate; an end part of the support member in an array direction of the plurality of sensor parts; and a radiation shield member that is arranged between the end part and the sensor substrate.SELECTED DRAWING: Figure 1

Description

本発明は、放射線検出装置および検査装置に関する。   The present invention relates to a radiation detection apparatus and an inspection apparatus.

特許文献1には、放射線検出装置に入射した放射線が該装置の各部材で散乱して該装置から漏れ出すことにより医師等のユーザが被曝することを防止するため、放射線遮蔽部材を配置することが記載されている。   In Patent Document 1, a radiation shielding member is disposed in order to prevent a user such as a doctor from being exposed to radiation incident on the radiation detection apparatus by being scattered by each member of the apparatus and leaking from the apparatus. Is described.

特開2006−322745号公報JP 2006-322745 A 特開2008−082764号公報JP 2008-082664 A

特許文献2には、放射線を光に変換する蛍光体と、該光を検出する複数のセンサ部が配列されたラインセンサと、を備える放射線検出装置が記載されている。多くの部材は一般に放射線に晒されることによって劣化するが、このことは、センサ部についても同様であり、例えば、上記散乱に起因する放射線によってセンサ特性が変動することがある。特許文献2の構成の場合、上記散乱に起因する放射線量はラインセンサの端部領域において比較的(例えば中央部領域に比べて)大きくなると考えられ、そのため、ラインセンサの特性が不均一になる可能性があった。このことは、放射線検出装置の品質の低下の原因となりうるため、構造上の改善の余地があった。   Patent Document 2 describes a radiation detection apparatus including a phosphor that converts radiation into light and a line sensor in which a plurality of sensor units that detect the light are arranged. Many members generally deteriorate due to exposure to radiation, but this is also the case with the sensor unit. For example, the sensor characteristics may vary due to radiation caused by the scattering. In the case of the configuration of Patent Document 2, it is considered that the radiation dose due to the scattering is relatively large (for example, compared with the central region) in the end region of the line sensor, and therefore the characteristics of the line sensor become non-uniform. There was a possibility. This can cause a deterioration in the quality of the radiation detection apparatus, so there is room for improvement in structure.

本発明は、放射線検出装置の品質の向上を比較的簡素な構成で実現することを目的とする。   An object of this invention is to implement | achieve the improvement of the quality of a radiation detection apparatus with a comparatively simple structure.

本発明の一つの側面は放射線検出装置にかかり、前記放射線検出装置は、放射線を検出するための複数のセンサ部が所定方向に配列されたセンサ基板と、前記センサ基板を支持する支持部材と、前記複数のセンサ部の配列方向における前記支持部材の端部と、該端部と前記センサ基板との間に配置された放射線遮蔽部材と、を備えることを特徴とする。   One aspect of the present invention relates to a radiation detection apparatus, and the radiation detection apparatus includes a sensor substrate in which a plurality of sensor units for detecting radiation are arranged in a predetermined direction, a support member that supports the sensor substrate, An end portion of the support member in the arrangement direction of the plurality of sensor portions, and a radiation shielding member disposed between the end portion and the sensor substrate are provided.

本発明によれば、放射線検出装置の品質を向上させることができる。   According to the present invention, the quality of the radiation detection apparatus can be improved.

放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の内部構造の例を説明するための図である。It is a figure for demonstrating the example of the internal structure of a radiation detection apparatus. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 放射線検出装置の構成例及びその内部構造の例を説明するための図である。It is a figure for demonstrating the example of a structure of a radiation detection apparatus, and the example of its internal structure. 検査装置の構成例を説明するための図である。It is a figure for demonstrating the structural example of an inspection apparatus.

以下、添付図面を参照しながら本発明の好適な実施形態について説明する。なお、各図は、構造ないし構成を説明する目的で記載された模式図に過ぎず、図示された各部材の寸法は必ずしも現実のものを反映するものではない。また、各図において、同一の部材または同一の要素には同一の参照番号を付しており、以下、重複する内容については説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Each figure is only a schematic diagram described for the purpose of explaining the structure or configuration, and the dimensions of each member shown do not necessarily reflect actual ones. Moreover, in each figure, the same reference number is attached | subjected to the same member or the same element, and description is abbreviate | omitted about the overlapping content hereafter.

[第1実施形態]
図1(A)は、第1実施形態に係る放射線検出装置1の構成を示す斜視図である。本実施形態では、放射線検出装置1は長尺状に延設され、放射線ラインセンサ等と表現されてもよい。
[First Embodiment]
FIG. 1A is a perspective view showing the configuration of the radiation detection apparatus 1 according to the first embodiment. In the present embodiment, the radiation detection apparatus 1 may be elongated and may be expressed as a radiation line sensor or the like.

後述の他の図においても同様であるが、図中には、構造の理解の容易化のため、互いに交差あるいは実質的に直交するX方向、Y方向およびZ方向を示す。X方向は、上記長尺状の放射線検出装置1の短手方向に対応し、Y方向は該装置1の長手方向に対応し、また、Z方向は該装置1の高さ方向に対応する。本明細書では、説明の簡易化のため、放射線検出装置1内の2以上の部材または要素間の相対的な位置関係を示す表現が用いられる。例えば、本明細書では、+X/−X方向にシフトした位置関係を「X方向側方」等と表現する場合があるが、短手方向側方等と表現されてもよい。また、本明細書では、+Y/−Y方向にシフトした位置関係を「Y方向側方」等と表現する場合があるが、長手方向側方等と表現されてもよい。また、本明細書では、+Z方向にシフトした位置関係を「上」、「上方」等と表現し、また、−Z方向にシフトした位置関係を「下」、「下方」等と表現する場合がある。   The same applies to other figures described later, but in the figure, the X direction, the Y direction, and the Z direction that intersect or substantially orthogonal to each other are shown for easy understanding of the structure. The X direction corresponds to the short direction of the long radiation detection apparatus 1, the Y direction corresponds to the longitudinal direction of the apparatus 1, and the Z direction corresponds to the height direction of the apparatus 1. In this specification, for simplification of description, an expression indicating a relative positional relationship between two or more members or elements in the radiation detection apparatus 1 is used. For example, in this specification, the positional relationship shifted in the + X / −X direction may be expressed as “X direction side” or the like, but may be expressed as a lateral direction side or the like. In this specification, the positional relationship shifted in the + Y / −Y direction may be expressed as “Y direction side” or the like, but may be expressed as “longitudinal direction side” or the like. In this specification, the positional relationship shifted in the + Z direction is expressed as “up”, “upward”, and the positional relationship shifted in the −Z direction is expressed as “down”, “downward”, etc. There is.

図1(B)は、切断面をX−Z平面(垂直面)とする放射線検出装置1の断面構造を示す。図1(C)は、図1(B)を+Y方向で見た側面図を示す。図2(A)は、切断面をX−Y平面(水平面)とする放射線検出装置1の断面構造を示す。図2(B)は、図2(A)を−Z方向で見た上面図を示す。放射線検出装置1は、筐体10、センサ基板11、蛍光体(シンチレータ)12、及び、放射線遮蔽部材131〜133を備える。   FIG. 1B shows a cross-sectional structure of the radiation detection apparatus 1 in which the cut surface is an XZ plane (vertical surface). FIG. 1C shows a side view of FIG. 1B viewed in the + Y direction. FIG. 2A shows a cross-sectional structure of the radiation detection apparatus 1 having a cut surface as an XY plane (horizontal plane). FIG. 2B shows a top view of FIG. 2A viewed in the −Z direction. The radiation detection apparatus 1 includes a housing 10, a sensor substrate 11, a phosphor (scintillator) 12, and radiation shielding members 131 to 133.

筐体10は、1以上の部材で構成されて放射線検出装置1を構成する部材ないし要素を直接的/間接的に支持し、支持体等とも表現される。筐体10は、その形状によっては、支持フレーム、或いは単にフレーム等と表現されてもよい。本実施形態では、筐体10は、センサ基板11を支持する第1の支持部材101、及び、蛍光体12を支持する第2の支持部材102を含む。筐体10、ここでは支持部材101及び102には、樹脂等の絶縁性の材料が用いられてもよいが、より好適には、放射線耐性の比較的高い材料が用いられるとよい。例えば、タングステン(W)、鉛(Pb)等、放射線を遮蔽(ないし吸収)可能な粒子を含有する材料、例えばタングステン含有樹脂、が好適に用いられうる。   The housing 10 is composed of one or more members and directly / indirectly supports members or elements constituting the radiation detection apparatus 1 and is also expressed as a support or the like. The housing 10 may be expressed as a support frame, or simply a frame, depending on its shape. In the present embodiment, the housing 10 includes a first support member 101 that supports the sensor substrate 11 and a second support member 102 that supports the phosphor 12. An insulating material such as a resin may be used for the housing 10, here, the support members 101 and 102, but a material having a relatively high radiation resistance is more preferably used. For example, a material containing particles capable of shielding (or absorbing) radiation, such as tungsten (W) and lead (Pb), for example, a tungsten-containing resin can be suitably used.

尚、本実施形態では、支持部材101及び102は、締結部材、接着剤等により相互に固定されるものとするが、他の実施形態として、支持部材101及び102は一体成形されてもよい。   In this embodiment, the support members 101 and 102 are fixed to each other by a fastening member, an adhesive, or the like. However, as another embodiment, the support members 101 and 102 may be integrally formed.

詳細については後述とするが、支持部材101は、Y方向で向かい合う一対の端部101Ea及び101Ebを含み、図2(A)及び図2(B)に示されるように、それら一対の端部101Ea及び101Ebの間においてセンサ基板11を支持する。端部101Ebについても同様とするが、本実施形態では、図2(B)に示されるように、端部101Eaの厚さ(Y方向での厚さ)T1は、端部101Eaからセンサ基板11までの距離L1よりも大きいものとする。尚、支持部材101は、一対の端部101Ea及び101Ebを接続する側壁部(Y−Z平面を形成する板部)および底面部(X−Y平面を形成する板部)を更に含み、支持部材101の各部分と放射線遮蔽部材132とで形成される空間にセンサ基板11を収容可能となっている。   Although details will be described later, the support member 101 includes a pair of end portions 101Ea and 101Eb that face each other in the Y direction, and as shown in FIGS. 2A and 2B, the pair of end portions 101Ea. And 101Eb, the sensor substrate 11 is supported. Although the same applies to the end portion 101Eb, in this embodiment, as shown in FIG. 2B, the thickness (thickness in the Y direction) T1 of the end portion 101Ea is changed from the end portion 101Ea to the sensor substrate 11. It is assumed that the distance is larger than the distance L1. The support member 101 further includes a side wall portion (a plate portion forming a YZ plane) and a bottom surface portion (a plate portion forming an XY plane) connecting the pair of end portions 101Ea and 101Eb. The sensor substrate 11 can be accommodated in a space formed by each part 101 and the radiation shielding member 132.

支持部材102は、支持部材101のX方向側方に配置されて蛍光体12を支持する。本実施形態では、支持部材102の上面は支持部材101を向くように傾斜しており、よって、蛍光体12は傾斜姿勢で固定される。尚、傾斜とは水平でない且つ垂直でない状態をいい、支持部材102の上面の傾斜角(水平面との成す角)は、例えば10〜80度の範囲内、好適には20〜70度の範囲内、とすればよい。   The support member 102 is disposed on the side of the support member 101 in the X direction and supports the phosphor 12. In the present embodiment, the upper surface of the support member 102 is inclined so as to face the support member 101, and thus the phosphor 12 is fixed in an inclined posture. The inclination means a state that is not horizontal and not vertical, and the inclination angle (angle formed with the horizontal plane) of the upper surface of the support member 102 is, for example, in the range of 10 to 80 degrees, and preferably in the range of 20 to 70 degrees. ,And it is sufficient.

センサ基板11は、本実施形態では垂直姿勢(面方向がY−Z平面と平行となる姿勢)で固定されるものとする。センサ基板11は、例えばエポキシガラスで構成されたプリント基板であり、センサ基板11上にはラインセンサ111が形成されている。ラインセンサ111は、Y方向に延設されており、複数のセンサ部が1以上の列を形成するようにY方向に配列されて成る。   In the present embodiment, the sensor substrate 11 is fixed in a vertical posture (a posture in which the surface direction is parallel to the YZ plane). The sensor board 11 is a printed board made of, for example, epoxy glass, and a line sensor 111 is formed on the sensor board 11. The line sensor 111 extends in the Y direction, and a plurality of sensor units are arranged in the Y direction so as to form one or more rows.

ラインセンサ111の例としてはCCD/CMOSイメージセンサ等が挙げられ、上記複数のセンサ部は、例えばフォトダイオード等の光電変換素子、及び、該光電変換素子を駆動する回路部を含む。尚、この回路部の概念には、光電変換素子と共に画素を形成して該光電変換素子から信号を読み出す1以上のトランジスタの他、それ/それらを制御するための画素外の回路部、例えばシフトレジスタ、ラッチ回路、デコーダ等、も含まれる。   Examples of the line sensor 111 include a CCD / CMOS image sensor, and the plurality of sensor units include, for example, a photoelectric conversion element such as a photodiode, and a circuit unit for driving the photoelectric conversion element. The concept of this circuit part includes one or more transistors that form a pixel together with a photoelectric conversion element and read signals from the photoelectric conversion element, as well as a circuit part outside the pixel for controlling them, such as a shift Registers, latch circuits, decoders, and the like are also included.

蛍光体12は、放射線を光に変換可能に構成される。蛍光体12の材料としては、例えば、酸硫化ガドリニウム(GdS:Tb(GOS))粒子を樹脂等のバインダに含有させたものを用いることができる。蛍光体12の材料としては、GOS粒子の他、酸硫化ルテチウム(LuS:Tb(LOS))粒子等、公知の他の蛍光体粒子を含有する材料が用いられてもよい。このような構成により、蛍光体12は、放射線検出装置1に放射線が入射したことに応じて、その線量に応じた強度(光量)の光を発生する。この光は、シンチレーション光とも称される。 The phosphor 12 is configured to convert radiation into light. As a material of the phosphor 12, for example, a material in which gadolinium oxysulfide (Gd 2 O 2 S: Tb (GOS)) particles are contained in a binder such as a resin can be used. As a material of the phosphor 12, a material containing other known phosphor particles such as lutetium oxysulfide (Lu 2 O 2 S: Tb (LOS)) particles in addition to GOS particles may be used. With such a configuration, the phosphor 12 generates light having an intensity (light quantity) corresponding to the dose in response to radiation incident on the radiation detection apparatus 1. This light is also called scintillation light.

放射線遮蔽部材131〜133には、筐体10、ここでは支持部材101及び102、よりも放射線透過率の低い材料で構成される。例えば、放射線遮蔽部材101〜103は、タングステン、鉛等、放射線を遮蔽可能な材料で構成される。或いは、放射線遮蔽部材101〜103は、放射線を遮蔽可能な粒子(例えばタングステン、鉛等の粒子)を含有する材料(例えばタングステン含有樹脂)で構成されてもよく、その場合、該粒子の含有量が筐体10より大きくなるように構成されればよい。   The radiation shielding members 131 to 133 are made of a material having a lower radiation transmittance than the housing 10, here, the support members 101 and 102. For example, the radiation shielding members 101 to 103 are made of a material capable of shielding radiation, such as tungsten or lead. Alternatively, the radiation shielding members 101 to 103 may be made of a material (for example, a tungsten-containing resin) containing particles (for example, particles of tungsten, lead, etc.) that can shield radiation, and in that case, the content of the particles May be configured to be larger than the housing 10.

第1の放射線遮蔽部材131は、一対の端部101Ea及び101Ebのそれぞれとセンサ基板11との間に配置される。本実施形態では、放射線遮蔽部材131は、X−Z方向と平行姿勢で設置された板状部材である。よって、センサ基板11のY方向両側方において2つの放射線遮蔽部材131が互いに向かい合って設置されることとなる。本実施形態では、放射線遮蔽部材131は、端部101Ea(又は101Eb)に対して接着剤により固定される。詳細については後述とするが、放射線遮蔽部材131は、X方向で見たときに(X方向での視点において)蛍光体12と重なるように配置される。   The first radiation shielding member 131 is disposed between each of the pair of end portions 101Ea and 101Eb and the sensor substrate 11. In the present embodiment, the radiation shielding member 131 is a plate-like member installed in a posture parallel to the XZ direction. Therefore, the two radiation shielding members 131 are installed facing each other on both sides in the Y direction of the sensor substrate 11. In the present embodiment, the radiation shielding member 131 is fixed to the end portion 101Ea (or 101Eb) with an adhesive. Although the details will be described later, the radiation shielding member 131 is disposed so as to overlap the phosphor 12 when viewed in the X direction (from the viewpoint in the X direction).

第2の放射線遮蔽部材132は、X方向におけるセンサ基板11および蛍光体12の間かつY方向における一対の端部101Ea及び101Ebの間に配置される。本実施形態では、放射線遮蔽部材132は、支持部材101の端部101Ea及び101Eb並びに底面部に対して接着剤により固定される。放射線遮蔽部材132は、蛍光体12からのシンチレーション光を通過可能に構成され、本実施形態では、Y方向に延び且つ光が通過可能な開口(スリット孔)132OPを有する。   The second radiation shielding member 132 is disposed between the sensor substrate 11 and the phosphor 12 in the X direction and between the pair of end portions 101Ea and 101Eb in the Y direction. In the present embodiment, the radiation shielding member 132 is fixed to the end portions 101Ea and 101Eb and the bottom surface portion of the support member 101 with an adhesive. The radiation shielding member 132 is configured to be able to pass scintillation light from the phosphor 12, and in the present embodiment, has an opening (slit hole) 132OP extending in the Y direction and allowing light to pass therethrough.

また、詳細については後述とするが、放射線遮蔽部材132は、X方向で見たときに放射線遮蔽部材131と重なるように位置している。また、放射線遮蔽部材131と放射線遮蔽部材132とは直接的に接触していてもよいし、間接的に(接着剤等を介して)接触していてもよい。   Although details will be described later, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Further, the radiation shielding member 131 and the radiation shielding member 132 may be in direct contact with each other or indirectly (via an adhesive or the like).

第3の放射線遮蔽部材133は、図1(A)等に示されるように、支持部材101上に天板として配置され、支持部材101および放射線遮蔽部材132と共に、それらにより形成される空間内にセンサ基板11及びラインセンサ111を収容する。放射線遮蔽部材133は、Z方向で見たときに(Z方向での視点において)放射線遮蔽部材131及び132の双方と重なるように配置される。   As shown in FIG. 1A and the like, the third radiation shielding member 133 is arranged as a top plate on the support member 101, and together with the support member 101 and the radiation shielding member 132, in a space formed by them. The sensor substrate 11 and the line sensor 111 are accommodated. The radiation shielding member 133 is disposed so as to overlap both the radiation shielding members 131 and 132 when viewed in the Z direction (from the viewpoint in the Z direction).

上述の構造により、放射線検出装置1は放射線(典型的にはエックス線が用いられるが、アルファ線、ベータ線等、他の電磁波が用いられてもよい。)を検出可能である。本実施形態では、放射線は、−Z方向に入射するものとし、蛍光体12により光(シンチレーション光)に変換される。シンチレーション光は、蛍光体12から+X方向に出射され、開口132OPを通過してセンサ基板11に向かい、ラインセンサ111により検出されることとなる。放射線検出装置1は、ラインセンサ111による検出結果に基づいて放射線画像データを生成し、これを外部装置(例えばディスプレイ、汎用コンピュータ等)に出力する。   With the above-described structure, the radiation detection apparatus 1 can detect radiation (typically X-rays are used, but other electromagnetic waves such as alpha rays and beta rays may be used). In this embodiment, radiation is assumed to be incident in the −Z direction, and is converted into light (scintillation light) by the phosphor 12. The scintillation light is emitted from the phosphor 12 in the + X direction, passes through the opening 132OP, travels toward the sensor substrate 11, and is detected by the line sensor 111. The radiation detection apparatus 1 generates radiation image data based on the detection result by the line sensor 111, and outputs this to an external apparatus (for example, a display, a general-purpose computer).

前述のとおり蛍光体12は傾斜姿勢で固定され、これにより、放射線の入射方向である−Z方向とは異なる方向である+X方向に、即ちセンサ基板11に向けて、シンチレーション光を出射可能となっている。これを適切に実現するため、支持部材102の上面の傾斜角は、蛍光体12と開口132OPとの相対位置、蛍光体12のシンチレーション光の指向性、開口132OPのサイズ(Z方向のサイズ)等に基づいて、好適な値が選択されればよい。付随的に、より適切にシンチレーション光をセンサ基板11に導くため、開口132OPにはロッドレンズアレイ等の導光部が配置されてもよい。   As described above, the phosphor 12 is fixed in an inclined posture, so that scintillation light can be emitted in the + X direction, which is a direction different from the −Z direction, which is the incident direction of radiation, that is, toward the sensor substrate 11. ing. In order to achieve this appropriately, the inclination angle of the upper surface of the support member 102 is such that the relative position between the phosphor 12 and the opening 132OP, the directivity of the scintillation light of the phosphor 12, the size of the opening 132OP (size in the Z direction), etc. A suitable value may be selected based on the above. In addition, in order to more appropriately guide the scintillation light to the sensor substrate 11, a light guide unit such as a rod lens array may be disposed in the opening 132OP.

ところで、放射線検査装置1に照射された放射線は、放射線検査装置1の各部材において多様な方向に散乱する。このような放射線は散乱線、散乱放射線等とも称される。図2(B)には、支持部材101の一端部101Eb及びその周辺領域の拡大模式図が更に示される。この拡大模式図において一点鎖線の矢印で示されるように、−Z方向に入射した放射線の一部は、蛍光体12及び支持部材102において散乱し、例えば端部101Ebに向かって散乱されうる(一次散乱)。また、この拡大模式図において二点鎖線の矢印で図示されるように、蛍光体12及び支持部材102からの散乱線の一部は、端部101Ebで更に散乱されうる(二次散乱)。尚、ここでは詳細な説明を省略とするが、実際には放射線検査装置1外からの散乱線(例えば、放射線検査装置1の周辺に配置される不図示の他の装置からの散乱線)も存在しうるため、これに起因する二次散乱も生じうる。上述の一次散乱および二次散乱は端部101Eaにおいても同様に生じうる。   By the way, the radiation irradiated to the radiation inspection apparatus 1 is scattered in various directions in each member of the radiation inspection apparatus 1. Such radiation is also called scattered radiation, scattered radiation, and the like. FIG. 2B further shows an enlarged schematic view of the one end portion 101Eb of the support member 101 and its peripheral region. As indicated by the one-dot chain line arrow in this enlarged schematic diagram, a part of the radiation incident in the −Z direction is scattered by the phosphor 12 and the support member 102 and can be scattered, for example, toward the end portion 101Eb (primary order). scattering). Further, as shown by the two-dot chain line arrow in this enlarged schematic diagram, part of the scattered radiation from the phosphor 12 and the support member 102 can be further scattered by the end portion 101Eb (secondary scattering). Although detailed description is omitted here, actually, scattered rays from outside the radiation inspection apparatus 1 (for example, scattered rays from other devices (not shown) arranged around the radiation inspection apparatus 1) are also included. Because it can exist, secondary scattering due to this can also occur. The above-described primary scattering and secondary scattering can occur in the end portion 101Ea as well.

放射線は、蛍光体12に向けて照射されるので、上記一次散乱は蛍光体12及びその周辺部で生じやすい。一次散乱に起因する散乱線の一部はラインセンサ111側に向かって進むため、このことはラインセンサ111に特性変動を生じさせる可能性がある。この特性変動は、例えば、トランジスタ特性(閾値電圧)やセンサ感度(光電変換効率)等の変動、それに起因する出力値(信号値)の変動等が挙げられる。これに対し、本実施形態では、X方向で見たときに放射線遮蔽部材132は放射線遮蔽部材131と重なるように位置しているため、上記一次散乱に起因する散乱線が放射線遮蔽部材131及び132の間からラインセンサ111に漏れ込むこともない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   Since the radiation is irradiated toward the phosphor 12, the primary scattering is likely to occur in the phosphor 12 and its peripheral portion. Since part of the scattered radiation due to the primary scattering travels toward the line sensor 111 side, this may cause a characteristic variation in the line sensor 111. This characteristic variation includes, for example, variation in transistor characteristics (threshold voltage), sensor sensitivity (photoelectric conversion efficiency), and the like, variation in output value (signal value) resulting therefrom, and the like. On the other hand, in the present embodiment, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Therefore, the scattered radiation caused by the primary scattering is caused by the radiation shielding members 131 and 132. It does not leak into the line sensor 111 from between. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

また、上記二次散乱に起因する散乱線は、センサ基板11に入射してラインセンサ111の特性を変動させる可能性がある。放射線遮蔽部材131を配置しない場合には、ラインセンサ111の端部領域において上記散乱線の線量が大きくなり、ラインセンサ111の特性均一性が失われる可能性がある。これに対し、本実施形態によれば、端部101Ea及び101Ebのそれぞれと、センサ基板11との間に放射線遮蔽部材131が配置されているため、上記二次散乱に起因する散乱線がセンサ基板11に入射することもない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   Further, the scattered radiation caused by the secondary scattering may enter the sensor substrate 11 and change the characteristics of the line sensor 111. When the radiation shielding member 131 is not disposed, the dose of the scattered radiation increases in the end region of the line sensor 111, and the characteristic uniformity of the line sensor 111 may be lost. On the other hand, according to the present embodiment, since the radiation shielding member 131 is disposed between each of the end portions 101Ea and 101Eb and the sensor substrate 11, the scattered radiation caused by the secondary scattering is not detected by the sensor substrate. 11 does not enter. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

放射線検査装置1の周辺における他の装置の配置態様によっては、端部(一端部)101Eaとセンサ基板11との間、及び、端部(他端部)101Ebとセンサ基板11との間、の一方についての放射線遮蔽部材131は省略可能である。即ち、放射線遮蔽部材131は、端部101Eaとセンサ基板11との間および端部101Ebとセンサ基板11との間の少なくとも一方に配置されればよい。   Depending on the arrangement of other devices in the vicinity of the radiation inspection apparatus 1, between the end (one end) 101Ea and the sensor substrate 11 and between the end (other end) 101Eb and the sensor substrate 11 The radiation shielding member 131 on one side can be omitted. That is, the radiation shielding member 131 may be disposed between at least one of the end portion 101Ea and the sensor substrate 11 and between the end portion 101Eb and the sensor substrate 11.

また、蛍光体12は、シンチレーション光の光量均一性の向上のため、開口132OPより長く延設されることから、蛍光体12からの散乱線は比較的大きくなりうる。よって、放射線遮蔽部材131は、X方向で見たときに蛍光体12と重なるように配置されるとよい。   Further, since the phosphor 12 is extended longer than the opening 132OP in order to improve the uniformity of the amount of scintillation light, the scattered radiation from the phosphor 12 can be relatively large. Therefore, the radiation shielding member 131 is preferably arranged so as to overlap the phosphor 12 when viewed in the X direction.

また、放射線の散乱が生じる部材が肉厚であるほど、及び/又は、その部材からの距離が小さいほど、散乱線の線量は大きくなりうる。本実施形態では、端部101Ea及び101Ebのそれぞれは、厚さT1がセンサ基板11までの距離L1より大きい。そのため、本実施形態によれば、上記散乱線がラインセンサ111に与え得た影響は、放射線遮蔽部材131により適切に抑制ないし低減されることとなる。   In addition, the dose of scattered radiation can increase as the member that causes radiation scattering is thicker and / or the distance from the member is smaller. In the present embodiment, each of the end portions 101Ea and 101Eb has a thickness T1 larger than the distance L1 to the sensor substrate 11. Therefore, according to the present embodiment, the influence that the scattered radiation may have on the line sensor 111 is appropriately suppressed or reduced by the radiation shielding member 131.

また、本実施形態では、X方向で見たときに、放射線遮蔽部材132は放射線遮蔽部材131と重なるように位置している。そのため、上記一次散乱に起因する散乱線が放射線遮蔽部材131及び132間からセンサ基板11に漏れ込むこともない。よって、本実施形態によれば、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置の品質の向上を比較的簡素な構成で実現可能となる。   In the present embodiment, the radiation shielding member 132 is positioned so as to overlap the radiation shielding member 131 when viewed in the X direction. Therefore, the scattered radiation resulting from the primary scattering does not leak into the sensor substrate 11 from between the radiation shielding members 131 and 132. Therefore, according to the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained, and the quality of the radiation detection apparatus can be improved with a relatively simple configuration.

[第2実施形態]
第1実施形態で示された放射線遮蔽部材132は、蛍光体12からの散乱線を遮蔽可能かつシンチレーション光を通過可能に構成されるとよく、例えば、開口132OPには放射線遮蔽用ガラスが設けられてもよい。
[Second Embodiment]
The radiation shielding member 132 shown in the first embodiment may be configured to shield scattered radiation from the phosphor 12 and to allow scintillation light to pass therethrough. For example, the opening 132OP is provided with radiation shielding glass. May be.

図3(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図3(B)は、切断面をX−Z平面とする該装置1の断面構造を+Y方向で見た側面図を示す。図3(C)は、切断面をX−Y平面とする該装置1の断面構造を−Z方向で見た上面図を示す。   FIG. 3A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 3B shows a side view of the cross-sectional structure of the device 1 with the cut surface taken as an XZ plane as viewed in the + Y direction. FIG. 3C shows a top view of the cross-sectional structure of the device 1 with the cut surface taken as an XY plane, as viewed in the −Z direction.

放射線検出装置1は、放射線遮蔽部材132の開口132OPを覆うように配置された透光性の板材14を更に備える。この板材14は、シンチレーション光を通過可能かつ放射線を遮蔽可能に構成され、この板材14として、例えば鉛ガラス等の放射線遮蔽用ガラスが用いられる。   The radiation detection apparatus 1 further includes a translucent plate 14 arranged to cover the opening 132OP of the radiation shielding member 132. The plate member 14 is configured to be able to pass scintillation light and shield radiation, and as the plate member 14, for example, radiation shielding glass such as lead glass is used.

本実施形態によれば、シンチレーション光を通過可能かつ放射線を遮蔽可能に構成された板材14を開口132OPに配置することで、蛍光体12からセンサ基板11への散乱線を適切に遮蔽可能となる。よって、本実施形態によれば、第1実施形態同様の効果の加え、蛍光体12からセンサ基板11への散乱線を更に適切に遮蔽可能となり、放射線検出装置の品質の向上に更に有利となる。   According to the present embodiment, by arranging the plate member 14 configured to be able to pass scintillation light and shield radiation, the scattered rays from the phosphor 12 to the sensor substrate 11 can be appropriately shielded. . Therefore, according to the present embodiment, in addition to the same effects as those of the first embodiment, the scattered radiation from the phosphor 12 to the sensor substrate 11 can be more appropriately shielded, which is further advantageous in improving the quality of the radiation detection apparatus. .

尚、板材14は、開口132OP内に配置されてもよいが、開口132OPから+X方向または−X方向にシフトして配置されてもよい。開口132OPにロッドレンズアレイ等の導光部が配置される場合には、板材14は、開口132OPから−X方向にシフトして配置されるとよい。   The plate member 14 may be arranged in the opening 132OP, but may be arranged by shifting from the opening 132OP in the + X direction or the −X direction. When a light guide unit such as a rod lens array is disposed in the opening 132OP, the plate member 14 may be disposed so as to be shifted in the −X direction from the opening 132OP.

[第3実施形態]
第1実施形態で図2(B)を参照しながら述べたとおり、蛍光体12からの散乱線は、端部101Ea及び101Ebで更に散乱し、二次散乱を生じる可能性がある。そのため、第1実施形態で示された放射線遮蔽部材131及び132は、互いに係合あるいは嵌合するように設置されるとよい。即ち、放射線遮蔽部材131及び132の一方が他方に対して単に当接するのではなく、一方が他方に対して係合あるいは嵌合し、Y方向で見たときもそれらが互いに重なるとよい。
[Third Embodiment]
As described with reference to FIG. 2B in the first embodiment, the scattered radiation from the phosphor 12 may be further scattered at the end portions 101Ea and 101Eb, resulting in secondary scattering. Therefore, the radiation shielding members 131 and 132 shown in the first embodiment may be installed so as to engage or fit with each other. That is, it is preferable that one of the radiation shielding members 131 and 132 is not simply brought into contact with the other, but one of the radiation shielding members 131 and 132 is engaged or fitted with the other, and they overlap each other when viewed in the Y direction.

図4(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図4(B)は、切断面をX−Y平面とする該装置1の断面構造を示す。図4(C)は、図4(B)を−Z方向で見た上面図を示す。   FIG. 4A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 4B shows a cross-sectional structure of the apparatus 1 in which the cut surface is an XY plane. FIG. 4C illustrates a top view of FIG. 4B viewed in the −Z direction.

本実施形態では、図4(B)及び図4(C)に示されるように、放射線遮蔽部材132の放射線遮蔽部材131と近接する部分には切欠き132Cが設けられ、放射線遮蔽部材131の端部は、この切欠き132Cに係合する。本実施形態によれば、放射線遮蔽部材132は、X方向で見たときだけでなく、Y方向で見たときも、放射線遮蔽部材131と重なるように配置される。よって、放射線遮蔽部材131及び132は、2つの面で近接し、即ち、X方向およびY方向の双方で向かい合うこととなる。   In the present embodiment, as shown in FIGS. 4B and 4C, a notch 132 </ b> C is provided in a portion of the radiation shielding member 132 adjacent to the radiation shielding member 131, and the end of the radiation shielding member 131 is provided. The portion engages with this notch 132C. According to the present embodiment, the radiation shielding member 132 is disposed so as to overlap the radiation shielding member 131 not only when viewed in the X direction but also when viewed in the Y direction. Therefore, the radiation shielding members 131 and 132 are close to each other on the two surfaces, that is, face each other in both the X direction and the Y direction.

本実施形態によれば、二次散乱に伴う端部101Ea及び101Ebからの散乱線が放射線遮蔽部材131及び132の間からセンサ基板11に漏れ込むことを適切に防ぐことができる。よって、本実施形態によれば、放射線検出装置1の品質向上に更に有利である。   According to the present embodiment, it is possible to appropriately prevent the scattered radiation from the end portions 101Ea and 101Eb accompanying secondary scattering from leaking into the sensor substrate 11 from between the radiation shielding members 131 and 132. Therefore, according to this embodiment, it is further advantageous for quality improvement of the radiation detection apparatus 1.

本実施形態では、切欠き132Cは略矩形状であるが、他の実施形態として、切欠き132Cは、丸みを帯びた形状であってもよい。更に他の実施形態として、切欠き132Cに代替して、U字状、V字状、W字状等の1以上の凹部が放射線遮蔽部材132に設けられてもよい。その場合、放射線遮蔽部材131及び132は2以上の面で互いに近接して嵌合することとなり、散乱線のセンサ基板11への漏れ込みをより適切に防ぐことが可能となる。更に他の実施形態として、切欠き132C(或いは上記凹部)に代替して、放射線遮蔽部材131に切欠き又は凹部が設けられてもよい。   In the present embodiment, the cutout 132C has a substantially rectangular shape, but as another embodiment, the cutout 132C may have a rounded shape. As yet another embodiment, one or more concave portions such as a U shape, a V shape, and a W shape may be provided in the radiation shielding member 132 in place of the notch 132C. In that case, the radiation shielding members 131 and 132 are fitted in close proximity to each other on two or more surfaces, and it becomes possible to more appropriately prevent the scattered rays from leaking into the sensor substrate 11. As still another embodiment, the radiation shielding member 131 may be provided with a notch or a recess in place of the notch 132C (or the recess).

[第4実施形態]
第1実施形態で示された放射線遮蔽部材131〜133の重量は比較的大きいため、放射線検出装置1の軽量化等を目的として、放射線遮蔽部材131〜133の一部は、放射線耐性の比較的高い材料、例えば筐体10同様の材料、に置き換えられてもよい。
[Fourth Embodiment]
Since the weights of the radiation shielding members 131 to 133 shown in the first embodiment are relatively large, a part of the radiation shielding members 131 to 133 is relatively resistant to radiation for the purpose of reducing the weight of the radiation detection apparatus 1 and the like. It may be replaced with a high material, for example, a material similar to the housing 10.

図5(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図5(B)は、切断面をX−Z平面とする該装置1の断面構造を示す。図5(C)は、切断面をX−Y平面とする該装置1の断面構造を示す。図5(D)は、図5(B)を+Y方向で見た側面図を示す。   FIG. 5A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 5B shows a cross-sectional structure of the apparatus 1 in which the cut surface is an XZ plane. FIG. 5C shows a cross-sectional structure of the device 1 in which the cut surface is an XY plane. FIG. 5D shows a side view of FIG. 5B viewed in the + Y direction.

本実施形態では、放射線遮蔽部材132を、筐体10同様の材料で構成され且つ板材14を支持可能な第3の支持部材103に置き換えて筐体10の一部とし、また、放射線遮蔽部材133を、筐体10同様の材料に置き換えて支持部材101の上面部とした。即ち、支持部材101は、−X方向側が開放された箱状の容器であり、+X方向側の側壁においてセンサ基板11を垂直姿勢で支持する。また、支持部材103は、支持部材101及び102の間において垂直姿勢で配置されており、その中央部において板材14を支持する。   In the present embodiment, the radiation shielding member 132 is replaced with a third support member 103 made of the same material as that of the housing 10 and capable of supporting the plate member 14 to be a part of the housing 10, and the radiation shielding member 133. Was replaced with a material similar to that of the housing 10 to form an upper surface portion of the support member 101. That is, the support member 101 is a box-shaped container that is open on the −X direction side, and supports the sensor substrate 11 in a vertical posture on the side wall on the + X direction side. Further, the support member 103 is arranged in a vertical posture between the support members 101 and 102 and supports the plate member 14 at the center thereof.

このような態様によっても、二次散乱に伴う端部101Ea及び101Ebからセンサ基板11への散乱線は放射線遮蔽部材131により適切に遮蔽され、第1実施形態同様、ラインセンサ111の特性均一性を維持可能となる。よって、本実施形態によれば、第1実施形態同様の効果が得られることに加え、放射線検出装置1の軽量化等にも有利となる。   Even in such an embodiment, scattered radiation from the end portions 101Ea and 101Eb to the sensor substrate 11 due to the secondary scattering is appropriately shielded by the radiation shielding member 131, and the characteristic uniformity of the line sensor 111 is improved as in the first embodiment. Can be maintained. Therefore, according to this embodiment, in addition to obtaining the same effect as the first embodiment, it is advantageous for reducing the weight of the radiation detection apparatus 1 and the like.

尚、支持部材101と支持部材103との間には他の放射線遮蔽部材が更に配置されてもよい。該他の放射線遮蔽部材は、X方向で見たとき、放射線遮蔽部材131と重なることが好ましいが、他の部材との干渉の防止等の理由によって、重なっていなくてもよい。   Note that another radiation shielding member may be further disposed between the support member 101 and the support member 103. The other radiation shielding member preferably overlaps with the radiation shielding member 131 when viewed in the X direction, but may not overlap for reasons such as prevention of interference with other members.

また、本実施形態においては、センサ基板11は、その面方向が、放射線の入射方向(ここではZ方向)と直交しない姿勢で固定され、実質的に、該入射方向と平行姿勢で固定される。よって、−Z方向に入射した放射線が支持部材101の上面部を通過して筐体10内に浸入したとしても、センサ基板11が該放射線を受ける面積が小さくなるため、放射線検出装置1の品質向上に有利である。尚、このことは前述の各実施形態についても同様である。   In the present embodiment, the sensor substrate 11 is fixed in a posture in which the surface direction is not orthogonal to the radiation incident direction (here, the Z direction), and substantially fixed in a posture parallel to the incident direction. . Therefore, even if the radiation incident in the −Z direction passes through the upper surface portion of the support member 101 and enters the housing 10, the area of the sensor substrate 11 that receives the radiation is reduced, so the quality of the radiation detection apparatus 1. It is advantageous for improvement. This also applies to the above-described embodiments.

[第5実施形態]
第1〜第4実施形態では、放射線を蛍光体12により光に変換してから該光をラインセンサ111により検出する方式、いわゆる間接変換方式、の態様を例示したが、本発明は、これに限られるものではない。即ち、各実施形態の内容は、放射線を直接的に電気信号に変換する方式、いわゆる直接変換方式、にも適用可能である。
[Fifth Embodiment]
In the first to fourth embodiments, the mode of detecting the light by the line sensor 111 after converting the radiation into light by the phosphor 12, that is, the so-called indirect conversion mode, is exemplified. It is not limited. That is, the contents of each embodiment can also be applied to a method of directly converting radiation into an electric signal, a so-called direct conversion method.

図6(A)は、本実施形態に係る放射線検出装置1の構成を示す斜視図である。図6(B)は、切断面をY−Z平面とする該装置1の断面構造を示す。図6(C)は、図6(B)を+X方向で見た正面図を示す。   FIG. 6A is a perspective view showing a configuration of the radiation detection apparatus 1 according to the present embodiment. FIG. 6B shows a cross-sectional structure of the device 1 in which the cut surface is a YZ plane. FIG. 6C shows a front view of FIG. 6B viewed in the + X direction.

本実施形態では、放射線検出装置1は、第1実施形態の支持部材101及び102に代替して、支持部材104および天板105を筐体10として備える。支持部材104は、−Z方向側に位置する矩形状の底板部と、該底板部の各辺から+Z方向に延設された側壁部とを含む箱状の容器であり、該底板部上にセンサ基板11を支持可能となっている。Y方向で向かい合う支持部材104の一対の側壁部を、それぞれ、側壁部104Ea及び104Ebとする。尚、側壁部104Ea及び104Ebと、他の部材(例えば、放射線遮蔽部材131、センサ基板11等)との相対的な位置関係は、前述の支持部材101の端部101Ea及び101Ebについての他の部材との相対的な位置関係と同様であるものとする。   In the present embodiment, the radiation detection apparatus 1 includes a support member 104 and a top plate 105 as a casing 10 instead of the support members 101 and 102 of the first embodiment. The support member 104 is a box-shaped container including a rectangular bottom plate portion positioned on the −Z direction side and side wall portions extending from each side of the bottom plate portion in the + Z direction, on the bottom plate portion. The sensor substrate 11 can be supported. The pair of side wall portions of the support member 104 facing each other in the Y direction are referred to as side wall portions 104Ea and 104Eb, respectively. Note that the relative positional relationship between the side wall portions 104Ea and 104Eb and other members (for example, the radiation shielding member 131, the sensor substrate 11 and the like) is the same as that for the end portions 101Ea and 101Eb of the support member 101 described above. It is the same as the relative positional relationship with.

天板105は、支持部材104の側壁部上に配置されて支持部材104と共にセンサ基板11を収容する。天板105は、放射線を通過可能に構成され、本実施形態では、Y方向に延びた開口(スリット孔)105OPを有する。   The top plate 105 is disposed on the side wall portion of the support member 104 and accommodates the sensor substrate 11 together with the support member 104. The top plate 105 is configured to be able to pass radiation, and has an opening (slit hole) 105OP extending in the Y direction in the present embodiment.

支持部材104および天板105は、放射線耐性の比較的高い材料で構成され、例えば、放射線を遮蔽可能な粒子(例えばタングステン、鉛等の粒子)を含有する材料(例えばタングステン含有樹脂)で構成されるとよい。   The support member 104 and the top plate 105 are made of a material having a relatively high radiation resistance. For example, the support member 104 and the top plate 105 are made of a material (for example, tungsten-containing resin) containing particles (for example, particles of tungsten, lead, etc.) capable of shielding radiation. Good.

本実施形態では、ラインセンサ111は、放射線を直接的に電気信号に変換可能に構成され、ラインセンサ111を形成する複数のセンサ部には、例えばアモルファスセレン、ガリウム砒素、ヨウ化水銀、ヨウ化鉛、カドミウムテルル等が用いられる。−Z方向に入射した放射線は、上記ラインセンサ111により直接的に検出され、このようにして得られた検出結果に基づいて放射線画像データが生成される。   In the present embodiment, the line sensor 111 is configured to be capable of directly converting radiation into an electrical signal. For example, amorphous selenium, gallium arsenide, mercury iodide, and iodide are included in the plurality of sensor units forming the line sensor 111. Lead, cadmium telluride, etc. are used. The radiation incident in the −Z direction is directly detected by the line sensor 111, and radiation image data is generated based on the detection result thus obtained.

本実施形態においては、図6(B)及び図6(C)に示されるように、放射線遮蔽部材131は、支持部材104の一対の側壁部104Ea及び104Ebのそれぞれの内側に配置される。そのため、本実施形態においては、側壁部104Ea及び104Ebからセンサ基板11への散乱線は放射線遮蔽部材131により適切に遮蔽される。よって、本実施形態においても、第1実施形態同様、ラインセンサ111の特性均一性を維持可能となり、放射線検出装置1の品質向上に有利である。   In the present embodiment, as shown in FIGS. 6B and 6C, the radiation shielding member 131 is disposed inside each of the pair of side wall portions 104Ea and 104Eb of the support member 104. Therefore, in this embodiment, scattered radiation from the side wall portions 104Ea and 104Eb to the sensor substrate 11 is appropriately shielded by the radiation shielding member 131. Therefore, also in the present embodiment, the characteristic uniformity of the line sensor 111 can be maintained as in the first embodiment, which is advantageous for improving the quality of the radiation detection apparatus 1.

第1〜第4実施形態では、センサ基板11と蛍光体12とが離間して配置された態様が例示され、第5実施形態では、蛍光体12を有しない直接変換方式の態様が例示されたが、これらの態様は組み合わせられてもよい。例えば、蛍光体12はセンサ基板11上にラインセンサ111を覆うように配置されて間接変換方式の構成が実現されてもよい。この場合、蛍光体12は、センサ基板11上に塗布法あるいは蒸着法により形成されればよい。   In the first to fourth embodiments, a mode in which the sensor substrate 11 and the phosphor 12 are arranged apart from each other is illustrated, and in the fifth embodiment, a direct conversion mode without the phosphor 12 is illustrated. However, these aspects may be combined. For example, the phosphor 12 may be disposed on the sensor substrate 11 so as to cover the line sensor 111 to realize an indirect conversion configuration. In this case, the phosphor 12 may be formed on the sensor substrate 11 by a coating method or a vapor deposition method.

尚、本実施形態によれば、天板105に対して直接的に放射線が入射することとなるため、付随的に、天板105のY方向端部と放射線遮蔽部材131との間には他の放射線遮蔽部材が更に配置されてもよい。このとき、該他の放射線遮蔽部材は、Z方向で見たときに放射線遮蔽部材131と重なるように位置するとよい。   In addition, according to this embodiment, since radiation is directly incident on the top plate 105, there is an additional connection between the end of the top plate 105 in the Y direction and the radiation shielding member 131. The radiation shielding member may be further arranged. At this time, the other radiation shielding member may be positioned so as to overlap the radiation shielding member 131 when viewed in the Z direction.

[適用例]
上述の各実施形態の放射線検出装置1は、所定の検査を行うための検査装置(検査システム)に適用される。この検査装置の例としては、工場等の製造ラインにおける製品検査装置、空港等の搭乗手続の際に用いられる荷物検査装置、医療用の放射線撮像装置等、多様な放射線検査装置が挙げられる。
[Application example]
The radiation detection apparatus 1 of each embodiment described above is applied to an inspection apparatus (inspection system) for performing a predetermined inspection. Examples of this inspection apparatus include various radiation inspection apparatuses such as a product inspection apparatus in a production line such as a factory, a baggage inspection apparatus used in boarding procedures at an airport, and a medical radiation imaging apparatus.

図7は、放射線検出装置1が適用された検査装置SYのシステム構成の一例を示す。検査装置SYは、放射線検出装置1と、放射線を発生する放射線源2と、それらと通信可能なシステムコントローラ3とを具備する。放射線源2は、システムコントローラ3からの制御信号に基づいて放射線を発生する。放射線検出装置1は、放射線源2から照射されて検査対象OBを通過した放射線を検出する。システムコントローラ3は、放射線検出装置1から放射線画像データを受け取って、該放射線画像データに基づく放射線画像を所定のディスプレイに表示させる。放射線画像データは、放射線検出装置1外で生成されてもよく、他の実施形態として、例えば、放射線検出装置1から受け取った信号群に基づいてシステムコントローラ3により生成されてもよい。このような構成により、検査対象OBについての検査を実現可能となる。   FIG. 7 shows an example of a system configuration of an inspection apparatus SY to which the radiation detection apparatus 1 is applied. The inspection apparatus SY includes a radiation detection apparatus 1, a radiation source 2 that generates radiation, and a system controller 3 that can communicate with them. The radiation source 2 generates radiation based on a control signal from the system controller 3. The radiation detection apparatus 1 detects radiation that has been irradiated from the radiation source 2 and passed through the inspection object OB. The system controller 3 receives radiation image data from the radiation detection apparatus 1 and displays a radiation image based on the radiation image data on a predetermined display. The radiation image data may be generated outside the radiation detection apparatus 1, and as another embodiment, for example, may be generated by the system controller 3 based on a signal group received from the radiation detection apparatus 1. With such a configuration, it is possible to realize inspection for the inspection object OB.

以上の各実施形態では幾つかの好適な態様を例示したが、本発明はこれらの例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、実施形態の一部が変更され或いは組み合わされてもよい。また、本明細書に記載された個々の用語は、本発明を説明する目的で用いられたものに過ぎず、本発明は、その用語の厳密な意味に限定されるものでないことは言うまでもなく、その均等物をも含みうる。   In the above-described embodiments, some preferred aspects have been illustrated, but the present invention is not limited to these examples, and some of the embodiments may be modified or combined without departing from the spirit of the present invention. May be. In addition, it is needless to say that each term described in this specification is merely used for the purpose of describing the present invention, and the present invention is not limited to the strict meaning of the term. The equivalent can also be included.

10:筐体、101:(第1の)支持部材、102:(第2の)支持部材、11:センサ基板、12:蛍光体、131:(第1の)放射線遮蔽部材)、132:(第2の)放射線遮蔽部材。   10: housing, 101: (first) support member, 102: (second) support member, 11: sensor substrate, 12: phosphor, 131: (first) radiation shielding member), 132: ( Second) radiation shielding member.

Claims (13)

放射線を検出するための複数のセンサ部が所定方向に配列されたセンサ基板と、
前記センサ基板を支持する支持部材と、
前記複数のセンサ部の配列方向における前記支持部材の端部と、該端部と前記センサ基板との間に配置された放射線遮蔽部材と、を備える
ことを特徴とする放射線検出装置。
A sensor substrate on which a plurality of sensor units for detecting radiation are arranged in a predetermined direction;
A support member for supporting the sensor substrate;
A radiation detection apparatus comprising: an end portion of the support member in an arrangement direction of the plurality of sensor portions; and a radiation shielding member disposed between the end portion and the sensor substrate.
前記支持部材は、前記複数のセンサ部の配列方向で向かい合うように前記端部を一対含むと共に、該一対の端部の間において前記センサ基板を支持しており、
前記放射線遮蔽部材は、前記一対の端部のそれぞれと前記センサ基板との間に配置されている
ことを特徴とする請求項1記載の放射線検出装置。
The support member includes a pair of the end portions so as to face each other in the arrangement direction of the plurality of sensor portions, and supports the sensor substrate between the pair of end portions,
The radiation detection apparatus according to claim 1, wherein the radiation shielding member is disposed between each of the pair of end portions and the sensor substrate.
前記放射線遮蔽部材は、前記支持部材よりも放射線透過率の低い材料で構成されている
ことを特徴とする請求項1または請求項2記載の放射線検出装置。
The radiation detection apparatus according to claim 1, wherein the radiation shielding member is made of a material having a radiation transmittance lower than that of the support member.
前記放射線遮蔽部材は、前記複数のセンサ部の配列方向と交差する姿勢で設置された板状部材である
ことを特徴とする請求項1から請求項3の何れか1項記載の放射線検出装置。
The radiation detection apparatus according to any one of claims 1 to 3, wherein the radiation shielding member is a plate-like member installed in a posture that intersects with an arrangement direction of the plurality of sensor units.
前記放射線を光に変換可能に構成された蛍光体を更に備え、
前記蛍光体は、前記センサ基板上に前記複数のセンサ部を覆うように配置されている
ことを特徴とする請求項1から請求項4の何れか1項記載の放射線検出装置。
Further comprising a phosphor configured to convert the radiation into light,
The radiation detection apparatus according to any one of claims 1 to 4, wherein the phosphor is arranged on the sensor substrate so as to cover the plurality of sensor units.
前記放射線を光に変換可能に構成された蛍光体を更に備え、
前記センサ基板は、その面方向が前記放射線の入射方向と直交しない姿勢で固定されており、
前記蛍光体は、前記センサ基板から離間した位置において、前記変換された光を前記センサ基板に向けて出射する姿勢で固定されている
ことを特徴とする請求項1から請求項4の何れか1項記載の放射線検出装置。
Further comprising a phosphor configured to convert the radiation into light,
The sensor substrate is fixed in a posture in which the surface direction is not orthogonal to the incident direction of the radiation,
5. The phosphor according to claim 1, wherein the phosphor is fixed in a position to emit the converted light toward the sensor substrate at a position apart from the sensor substrate. The radiation detection apparatus according to item.
前記センサ基板は、その面方向が前記放射線の入射方向と平行姿勢となるように固定されている
ことを特徴とする請求項6記載の放射線検出装置。
The radiation detection apparatus according to claim 6, wherein the sensor substrate is fixed so that a surface direction thereof is parallel to an incident direction of the radiation.
前記蛍光体は、前記センサ基板から前記複数のセンサ部の配列方向および前記放射線の入射方向の双方と交差する方向に離間した位置に配置されている
ことを特徴とする請求項6または請求項7記載の放射線検出装置。
The said fluorescent substance is arrange | positioned in the position spaced apart from the said sensor board | substrate in the direction which cross | intersects both the arrangement | sequence direction of these sensor parts, and the incident direction of the said radiation. The radiation detection apparatus described.
前記センサ基板と前記蛍光体との間に配されると共に前記蛍光体の光を前記複数のセンサ部に通過可能に構成された第2の放射線遮蔽部材を更に備える
ことを特徴とする請求項5から請求項8の何れか1項記載の放射線検出装置。
The second radiation shielding member arranged between the sensor substrate and the phosphor and configured to allow the light of the phosphor to pass through the plurality of sensor units. The radiation detection apparatus according to claim 8.
前記第2の放射線遮蔽部材は、前記蛍光体の光を前記複数のセンサ部に通過させるための開口を有しており、
前記放射線検出装置は、前記第2の放射線遮蔽部材の前記開口を覆うように配置され且つ前記放射線を遮蔽可能に構成された透光性の板材を更に備える
ことを特徴とする請求項9記載の放射線検出装置。
The second radiation shielding member has an opening for allowing the light of the phosphor to pass through the plurality of sensor units,
The said radiation detection apparatus is further equipped with the translucent board | plate material arrange | positioned so that the said opening of a said 2nd radiation shielding member may be covered, and the said radiation can be shielded. Radiation detection device.
前記蛍光体は、前記センサ基板から前記複数のセンサ部の配列方向および前記放射線の入射方向の双方と交差する方向に離間した位置に配置されており、
前記放射線遮蔽部材は、前記交差する方向で見たときに前記蛍光体と重なるように配置されている
ことを特徴とする請求項10記載の放射線検出装置。
The phosphor is disposed at a position separated from the sensor substrate in a direction intersecting both the arrangement direction of the plurality of sensor units and the incident direction of the radiation,
The radiation detection apparatus according to claim 10, wherein the radiation shielding member is disposed so as to overlap the phosphor when viewed in the intersecting direction.
前記複数のセンサ部の配列方向での前記端部の厚さは、前記端部から前記センサ基板までの距離より大きい
ことを特徴とする請求項1から請求項11の何れか1項記載の放射線検出装置。
The radiation according to any one of claims 1 to 11, wherein a thickness of the end portion in the arrangement direction of the plurality of sensor portions is larger than a distance from the end portion to the sensor substrate. Detection device.
請求項1から請求項12の何れか1項記載の放射線検出装置と、
前記放射線を発生する放射線源と、を具備する
ことを特徴とする検査装置。
The radiation detection apparatus according to any one of claims 1 to 12,
An inspection apparatus comprising: a radiation source that generates the radiation.
JP2018087484A 2018-04-27 2018-04-27 Radiation detection device and inspection device Active JP7016287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087484A JP7016287B2 (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087484A JP7016287B2 (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Publications (2)

Publication Number Publication Date
JP2019191115A true JP2019191115A (en) 2019-10-31
JP7016287B2 JP7016287B2 (en) 2022-02-04

Family

ID=68390016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087484A Active JP7016287B2 (en) 2018-04-27 2018-04-27 Radiation detection device and inspection device

Country Status (1)

Country Link
JP (1) JP7016287B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280944A (en) * 1994-04-06 1995-10-27 Morita Mfg Co Ltd X-ray image sensor, holder thereof and positioning apparatus therefor
JP2018040582A (en) * 2016-09-05 2018-03-15 キヤノン・コンポーネンツ株式会社 Radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280944A (en) * 1994-04-06 1995-10-27 Morita Mfg Co Ltd X-ray image sensor, holder thereof and positioning apparatus therefor
JP2018040582A (en) * 2016-09-05 2018-03-15 キヤノン・コンポーネンツ株式会社 Radiation detector

Also Published As

Publication number Publication date
JP7016287B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
NL2020012B1 (en) Active pixel radiation detector array and use thereof
JP2007155662A (en) Radiation detector and radiation imaging system using the same
JP2013072808A (en) Cassette
US9917133B2 (en) Optoelectronic device with flexible substrate
JP2005526961A (en) X-ray image sensor
US7875855B2 (en) Apparatus and method for detecting an image
US9620256B2 (en) X-ray imaging device including anti-scatter grid
US20190079201A1 (en) Monolithic digital x-ray detector stack with energy resolution
JP2015161560A (en) Radiation detection device
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
KR20160022549A (en) X-ray detecting apparatus
JP2018141781A (en) Radiation detector and radiation detection device
JP2007163216A (en) Radiation detection device and radiation imaging system
CN101939667B (en) Device and method for checking an image
JP7016287B2 (en) Radiation detection device and inspection device
JP4464998B2 (en) Semiconductor detector module, and radiation detection apparatus or nuclear medicine diagnostic apparatus using the semiconductor detector module
JP2016033516A (en) Cassette
KR20180079681A (en) Hybrid scintillator for radiation imaging device
JP2019191116A (en) Radiation detection device and inspection device
JP7016286B2 (en) Radiation detector and inspection equipment
WO2022001440A1 (en) Flat panel detector and fabrication method therefor
US20180067047A1 (en) Radiation detector
JP2016151446A (en) Radiation imaging device and radiation imaging system
JP7023605B2 (en) Radiation detector and radiation detector
US10061036B2 (en) Radiation detector, method of manufacturing radiation detector, and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125