JP2019190079A - Earthquake-proof reinforcement construction method - Google Patents
Earthquake-proof reinforcement construction method Download PDFInfo
- Publication number
- JP2019190079A JP2019190079A JP2018082035A JP2018082035A JP2019190079A JP 2019190079 A JP2019190079 A JP 2019190079A JP 2018082035 A JP2018082035 A JP 2018082035A JP 2018082035 A JP2018082035 A JP 2018082035A JP 2019190079 A JP2019190079 A JP 2019190079A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- frame
- earthquake
- seismic reinforcement
- formwork
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002787 reinforcement Effects 0.000 title claims abstract description 106
- 238000010276 construction Methods 0.000 title abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 70
- 239000011440 grout Substances 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000004568 cement Substances 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000004088 foaming agent Substances 0.000 claims abstract description 13
- 239000002270 dispersing agent Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 64
- 239000004570 mortar (masonry) Substances 0.000 claims description 39
- 230000003014 reinforcing effect Effects 0.000 claims description 33
- 238000009415 formwork Methods 0.000 claims description 15
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 14
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 14
- 238000011900 installation process Methods 0.000 claims description 9
- 239000002562 thickening agent Substances 0.000 claims description 9
- 239000004567 concrete Substances 0.000 description 31
- 238000007796 conventional method Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 230000036571 hydration Effects 0.000 description 9
- 238000006703 hydration reaction Methods 0.000 description 9
- 239000011150 reinforced concrete Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Load-Bearing And Curtain Walls (AREA)
Abstract
Description
本発明は、耐震補強工法に関するものである。 The present invention relates to a seismic reinforcement method.
従来、既存の鉄筋コンクリート造の建築物に対し、種々の方法で耐震補強が行われている。例えば、下記の特許文献1には、既存の建築物の柱や梁で囲まれた架構内に新たな鉄筋コンクリート造の耐震補強壁を構築することによって既存の建築物の耐震強度を向上させる耐震補強工法が開示されている。
Conventionally, seismic reinforcement has been performed on existing reinforced concrete structures by various methods. For example, in
しかしながら、新たな鉄筋コンクリート造の耐震補強壁を構築する従来工法では、コンクリートが沈下するため、コンクリートの打設後、既存梁と新設されたコンクリート壁の頂部との間に形成される間隙に無収縮モルタルを打設する必要があった。このように従来工法では、打設工程を2度行う必要があり、工期が長いという問題があった。 However, in the conventional method of constructing a new reinforced concrete seismic reinforcement wall, the concrete sinks, so after the concrete is placed, there is no contraction in the gap formed between the existing beam and the top of the newly installed concrete wall. It was necessary to place mortar. As described above, the conventional construction method has a problem that it is necessary to perform the placing process twice and the construction period is long.
また、既存梁の梁幅が狭い場合には、既存壁の補強側(既存壁に直交する水平方向において耐震補強壁が構築される側)の端面と既存梁の補強側の端面との距離が短いため、従来工法の壁厚の厚い耐震補強壁では、耐震補強壁が上下の既存梁から補強側にはみ出してしまう。そのため、このような場合には、耐震補強壁が上下の梁からはみ出さないように、梁の増打ちを行う必要がある。この場合、上方の梁に対しては、既存梁の側方に無収縮モルタル梁が形成されるように無収縮モルタル壁体を上方に延長すればよいが、下方の梁(階下の天井裏の梁)に対しては、梁の側方に、耐震補強壁とは別に、型枠を設置し、無収縮モルタルを充填することによって無収縮モルタル梁体を増打ちしなければならない。また、天井裏には、種々の配線、配管、ダクト等が配設されているため、下方の梁の側方に無収縮モルタル梁体を増打ちする前に、これらの配線、配管、ダクト等の移設が必要になる場合がある。このように、従来工法では、耐震補強壁が分厚くなるために、梁の増打ちが必要になる場合が多く、耐震補強壁の構築以外に種々の作業を行う必要があるために工期が長くなる虞があった。 If the beam width of the existing beam is narrow, the distance between the end face on the reinforcement side of the existing wall (the side where the seismic reinforcement wall is built in the horizontal direction perpendicular to the existing wall) and the end face on the reinforcement side of the existing beam is Because it is short, the seismic reinforcement wall with the thick wall of the conventional construction method protrudes from the upper and lower existing beams to the reinforcement side. Therefore, in such a case, it is necessary to increase the number of beams so that the seismic reinforcement walls do not protrude from the upper and lower beams. In this case, for the upper beam, the non-shrink mortar wall may be extended upward so that the non-shrink mortar beam is formed on the side of the existing beam. For the beam), the side of the beam must be separated from the seismic reinforcement wall, and a formwork must be installed, and the non-shrink mortar beam must be increased by filling it with non-shrink mortar. In addition, since various wiring, piping, ducts, etc. are arranged on the back of the ceiling, before adding non-shrink mortar beams to the side of the lower beam, these wiring, piping, ducts, etc. May need to be relocated. As described above, in the conventional construction method, since the seismic reinforcement wall becomes thick, it is often necessary to increase the number of beams, and it is necessary to perform various operations in addition to the construction of the earthquake resistance reinforcement wall, resulting in a longer construction period. There was a fear.
本発明は、かかる点に鑑みてなされたものであり、その目的は、従来よりも短い工期で構築可能な耐震補強壁を構築する耐震補強工法を提供することにある。 This invention is made | formed in view of this point, The objective is to provide the earthquake-resistant reinforcement construction method of constructing | assembling the earthquake-resistant reinforcement wall which can be constructed | assembled in a construction period shorter than before.
本発明は、建築物の左右一対の柱と上下一対の梁とで囲まれた架構内に耐震補強壁を構築することによって上記建築物の保有耐力を増加させる耐震補強工法であって、上記架構に複数のアンカー部材を該架構内に突出するように取り付けるアンカー取付工程と、上記架構内に縦横に複数の鉄筋を配設する配筋工程と、上記架構内に、上記耐震補強壁を構成するための型枠を設置する型枠設置工程と、上記型枠内に、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とで構成される高強度グラウト材を、上記耐震補強壁の厚さが130mm以下になるように、上記梁の梁幅方向において梁幅を超えない範囲に充填する打設工程と、上記打設工程において上記型枠内に充填された上記高強度グラウト材を硬化させて上記複数の鉄筋を内包する壁体を構成する養生工程と、上記養生工程の後、上記型枠を解体する型枠解体工程とを備え、上記型枠設置工程と上記打設工程と上記養生工程は、それぞれ1度のみ行われることを特徴とするものである。 The present invention provides a seismic reinforcement method for increasing the holding strength of the building by constructing a seismic reinforcing wall in a frame surrounded by a pair of left and right columns and a pair of upper and lower beams of the building. An anchor attaching step for attaching a plurality of anchor members so as to protrude into the frame, a bar arrangement step for arranging a plurality of reinforcing bars vertically and horizontally in the frame, and the earthquake-proof reinforcing wall in the frame. A mold installation step for installing a mold for the above, a grout composition containing cement, an expanding material, an aggregate containing bean gravel, a cement dispersant, a thickener, and a foaming agent, and water in the mold A placing step of filling a high-strength grout material composed of the above-mentioned anti-seismic reinforcing wall into a range not exceeding the beam width in the beam width direction so that the thickness of the seismic reinforcement wall is 130 mm or less; The high strength filled in the mold at A curing step for curing the grout material to form the wall body including the plurality of reinforcing bars; and a mold disassembly step for disassembling the mold after the curing step. Each of the setting process and the curing process is performed only once.
本発明によれば、耐震補強壁の壁体を、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートで構成するのではなく、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成することとした。上記高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。このような耐震補強工法によれば、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートを打設後に無収縮モルタルを打設する必要がなく、高強度グラウト材の硬化物のみで耐震補強壁の壁体を構成することができるため、耐震補強壁を構築する工期を短縮することができる。 According to the present invention, the wall of the seismic reinforcement wall is not made of concrete like the conventional reinforced concrete seismic reinforcement wall, but is made of cement, an expanded material, an aggregate containing bean gravel, a cement dispersant, an increase It was decided to comprise the hardened | cured material of the high intensity | strength grout material comprised with the grout composition containing water and a foaming agent, and water. Since the high-strength grout material contains an expansion material and a foaming agent, the high-strength grout material hardly sinks when cured, and has the same non-shrinkage property as a non-shrink mortar. On the other hand, since the high-strength grout material contains bean gravel, the temperature rise due to drying shrinkage and heat of hydration of the cured product is significantly smaller than that of a general non-shrink mortar. According to such a seismic reinforcement method, unlike the conventional reinforced concrete seismic reinforcement wall, it is not necessary to place non-shrink mortar after placing concrete. Since the wall body can be configured, it is possible to shorten the construction period for constructing the earthquake-proof reinforcement wall.
また、上記高強度グラウト材は、使用する砂利が豆砂利であるため、骨材の粒子が丸みを帯びており、骨材の最大寸法が7mm以下と小さい場合でも、スランプフロー500mm以上となるような高い流動性を確保することが可能となる。このことから、上記耐震補強壁の厚さを130mm以下と薄くすることができる。そのため、既存梁の梁幅が狭く、既存壁の補強側の端面と既存梁の補強側の端面との距離が短い場合でも、耐震補強壁を既存の梁から梁幅方向にはみ出さないように構築することができ、無収縮モルタルによる梁の増打ちを省略することができる。よって、天井裏にある種々の配線、配管、ダクト等の移設が不要となり、このような点からも耐震補強壁10を構築するための工期を大幅に短縮することができる。
In addition, since the gravel material used is bean gravel, the aggregate particles are rounded, and even when the maximum size of the aggregate is as small as 7 mm or less, the slump flow is 500 mm or more. High fluidity can be secured. From this, the thickness of the seismic reinforcement wall can be reduced to 130 mm or less. Therefore, even if the beam width of the existing beam is narrow and the distance between the end face on the reinforcement side of the existing wall and the end face on the reinforcement side of the existing beam is short, the seismic reinforcement wall does not protrude from the existing beam in the beam width direction. It can be constructed, and the extra striking of the beam with non-shrink mortar can be omitted. Therefore, it is not necessary to move various wirings, pipes, ducts and the like on the back of the ceiling, and the construction period for constructing the earthquake-resistant reinforcing
以上のように、本発明によれば、従来よりも短い工期で耐震補強壁を構築可能な耐震補強工法を提供することができる。 As described above, according to the present invention, it is possible to provide an earthquake resistant reinforcement method capable of constructing an earthquake resistant reinforcement wall in a shorter construction period than before.
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の実施形態は、本質的に好ましい例示に過ぎず、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are merely preferred examples in nature, and are not intended to limit the scope of the present invention, its application, or its use.
《実施形態1》
図1及び図2に示すように、耐震補強壁10は、鉄筋コンクリート造の既存の建築物の左右一対の柱1及び上下一対の梁2とで構成される架構3内に構築されている。なお、本実施形態1では、架構3内には、鉄筋コンクリート造の既存壁4が構築されており、耐震補強壁10は、この既存壁4に沿って増打ちされて既存壁4を補強するものである。
As shown in FIG.1 and FIG.2, the earthquake-
耐震補強壁10は、複数のアンカー部材11と、複数の鉄筋12と、割裂補強筋13と、壁体14とを備えている。
The
アンカー部材11は、耐震補強対象の既存壁4と、新設される耐震補強壁10の壁体14とを一体化させるためのものである。アンカー部材11は、架構3に取り付けられて架構3内に突出するように設けられている。具体的には、一対の柱1及び一対の梁2に対し、それぞれ複数のアンカー部材11が、アンカー筋の先端側の一部が柱1又は梁2に埋め込まれ、残りの部分が架構3内に突出するように取り付けられている。各アンカー部材11の柱1又は梁2に埋め込まれていない残りの部分は、壁体14に内包されている。各柱1及び梁2に対し、複数のアンカー部材11は、所定間隔で設けられている。
The
複数の鉄筋12は、鉛直方向に延びる複数の縦筋12aと水平方向に延びる複数の横筋12bとで構成されている。複数の縦筋12aと複数の横筋12bとは、架構3内において格子状に配設され、壁体14に内包されている。複数の縦筋12aは、架構3内において左端から右端に向かって水平方向に所定間隔で配置されている。複数の横筋12bは、架構3内において上端から下端に向かって鉛直方向に所定間隔で配置されている。
The plurality of
割裂補強筋13は、スパイラル筋によって構成されている。割裂補強筋13は、架構3との接合部分、即ち、耐震補強壁10の外縁部に設置されている。割裂補強筋13は、一対の柱1及び一対の梁2のそれぞれに対向するように設けられ、壁体14に内包されている。
The split
壁体14は、高強度グラウト材の硬化物によって構成され、架構3内においてアンカー部材11の架構3内の部分と鉄筋12と割裂補強筋13とを内包するように形成されている。壁体14は、厚さが130mm以下になるように形成されている。具体的には、本実施形態では、壁体14は、厚さが125mmに形成されている。壁体14を構成する高強度グラウト材は、セメント、膨張材、骨材、セメント分散剤、増粘剤及び発泡剤がプレミックスされたプレミックスグラウト組成物に水を加えて混練することによって施工現場において製造される。なお、本実施形態では、プレミックスグラウト組成物100質量部に対し8質量部以上20質量部以下の水と混練することによって製造した高強度グラウト材を用いることとする。
The
プレミックスグラウト組成物に含まれるセメントは、水硬性セメントであればいかなるものであってもよい。プレミックスグラウト組成物におけるセメントの含有率は、20質量%以上35質量%以下とすることが好ましい。20質量%未満では、強度発現性が劣り(圧縮強度が小さく)、35質量%を超えると、乾燥収縮が大きくなる又は水和熱による温度上昇が大きくなるためである。 The cement contained in the premix grout composition may be any hydraulic cement. The cement content in the premix grout composition is preferably 20% by mass or more and 35% by mass or less. If it is less than 20% by mass, strength development is inferior (compressive strength is small), and if it exceeds 35% by mass, drying shrinkage increases or temperature rise due to heat of hydration increases.
プレミックスグラウト組成物に含まれる膨張材は、水和によって例えば水酸化カルシウムやエトリンガイト等の水和物の結晶が成長し、嵩体積が大きくなる物質を主要成分とするものであればいかなるものでもよいが、JISA6202「コンクリート用膨張材」に適合するものが、混和量に対する膨張率が安定しているので特に好ましい。プレミックスグラウト組成物における膨張材の含有率は、1質量%以上7質量%以下とすることが好ましい。1質量%未満では、膨張材の効果が得られ難く収縮が大きくなり、7質量%を超えると、拘束されていない部分に強度低下が起こる虞があるためである。 The expansion material contained in the premix grout composition may be any material as long as the main component is a substance that grows hydrate crystals such as calcium hydroxide and ettringite by hydration and increases the bulk volume. However, a material suitable for JISA6202 “expanding material for concrete” is particularly preferable because the expansion rate relative to the amount of mixing is stable. The content of the expansion material in the premix grout composition is preferably 1% by mass or more and 7% by mass or less. If the amount is less than 1% by mass, it is difficult to obtain the effect of the expanding material, and the shrinkage increases. If the amount exceeds 7% by mass, the unconstrained portion may be reduced in strength.
プレミックスグラウト組成物に含まれる増粘剤は、特に限定されず、水溶性セルロース、多糖類、ポリビニル化合物、アルキルスターチ、スターチエーテル等の少なくとも1種を用いることができる。また、増粘剤は、プレミックスし易いことから、粉末のもの(粉末増粘剤)が好ましい。プレミックスグラウト組成物における増粘剤の含有率は0.0002質量%以上0.02質量%以下とすることが好ましい。0.0002質量%未満では、増粘剤を含有する効果が得られ難く材料分離抵抗性が低くなり、0.02質量%を超えると、流動性が悪くなり、低温環境下で大きく遅延する虞があるためである。 The thickener contained in the premix grout composition is not particularly limited, and at least one of water-soluble cellulose, polysaccharide, polyvinyl compound, alkyl starch, starch ether and the like can be used. Moreover, since a thickener is easy to premix, the thing of a powder (powder thickener) is preferable. The content of the thickener in the premix grout composition is preferably 0.0002% by mass or more and 0.02% by mass or less. If it is less than 0.0002% by mass, it is difficult to obtain the effect of containing a thickener, and the material separation resistance becomes low. Because there is.
プレミックスグラウト組成物に含まれるセメント分散剤は、特に限定されず、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤等を用いることができ、プレミックスし易いことから、粉末のもの(粉末セメント分散剤)が好ましい。粉末状高性能減水剤又は粉末状高性能AE減水剤をセメント分散剤として用いると、グラウトモルタルの材齢28日における圧縮強度を45N/mm2以上とし易いことからより好ましい。プレミックスグラウト組成物におけるセメント分散剤の含有率は、0.03質量%以上3質量%以下とすることが、高い流動性が得られ且つ材料分離し難いことから好ましい。 The cement dispersant contained in the premix grout composition is not particularly limited, and a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, a fluidizing agent, or the like can be used, and premixing is easy. In view of this, powder (powder cement dispersant) is preferable. When a powdery high-performance water reducing agent or a powdery high-performance AE water reducing agent is used as a cement dispersant, it is more preferable because the compressive strength of the grout mortar at the age of 28 days is easily 45 N / mm 2 or more. The cement dispersant content in the premix grout composition is preferably 0.03% by mass or more and 3% by mass or less because high fluidity is obtained and material separation is difficult.
プレミックスグラウト組成物に含まれる発泡剤は、粉末発泡剤であれば特に限定されず、水との混練した後に気体を発生する粉末であればいかなるものであってもよい。この発泡作用によりグラウトモルタルの沈下現象を防止し、既設壁4や既設の柱1や梁2等の部材とより一体化することができる。即ち、無収縮性が得られる。プレミックスグラウト組成物における発泡剤の含有率は、0.0002質量%以上0.03質量%以下とすることが好ましい。0.0002質量%未満では発泡剤の効果が得られ難く、0.03質量%を超えると、特に高温環境下において膨張過多となり、圧縮強度の低下が懸念されるためである。
The foaming agent contained in the premix grout composition is not particularly limited as long as it is a powder foaming agent, and may be any powder that generates gas after being kneaded with water. By this foaming action, the settlement phenomenon of the grout mortar can be prevented and integrated with members such as the existing
プレミックスグラウト組成物に含まれる骨材には、粒径が4mmを超え7mm以下の豆砂利が含まれている。また、上記骨材には、豆砂利の他、豆砂利よりも粒径の小さい骨材が含まれている。粒径の小さい骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、人工骨材、スラグ骨材などを用いることができる。上記骨材として、吸水率の大きい軽量骨材は、乾燥収縮が大きくなることからあまり好ましくない。 Aggregates contained in the premix grout composition contain beans gravel having a particle size of more than 4 mm and not more than 7 mm. Moreover, the said aggregate contains the aggregate whose particle size is smaller than bean gravel other than bean gravel. Examples of the aggregate having a small particle size include river sand, land sand, sea sand, crushed sand, silica sand, artificial aggregate, and slag aggregate. As the above-mentioned aggregate, a lightweight aggregate having a large water absorption rate is not so preferable because drying shrinkage becomes large.
上記骨材は、豆砂利の含有率が15質量%以上45質量%以下であることが好ましい。豆砂利の含有率が15質量%未満であると、乾燥収縮及び水和熱による温度上昇が大きくなり、45質量%を超えると、材料分離抵抗性に劣り、ブリーディングが発生し易くなるため好ましくない。なお、上記骨材は、豆砂利の含有率が16質量%以上40質量%であるとより好ましい。 The aggregate preferably has a bean gravel content of 15% by mass or more and 45% by mass or less. If the bean gravel content is less than 15% by mass, the temperature increase due to drying shrinkage and heat of hydration increases, and if it exceeds 45% by mass, the material separation resistance is poor and bleeding is likely to occur. . In addition, as for the said aggregate, it is more preferable in the content rate of beans gravel being 16 mass% or more and 40 mass%.
また、上記骨材は、高い流動性が得られ易く、材料分離抵抗性に優れることから、粒径が0.3mmを超え4mm以下の粒子の含有率が40質量%以上65質量%以下、粒径が0.3mmを超え2.5mm以下の粒子の含有率が30質量%以上55質量%以下、粒径が0.3mm以下の粒子の含有率が1質量%以上45質量%以下、粒径が0.15mm以下の粒子の含有率が10質量%以下であることが好ましい。 In addition, since the above-mentioned aggregate is easy to obtain high fluidity and excellent in material separation resistance, the content ratio of particles having a particle diameter of more than 0.3 mm and 4 mm or less is 40% by mass or more and 65% by mass or less. The content of particles having a diameter of more than 0.3 mm and not more than 2.5 mm is 30% by mass to 55% by mass, the content of particles having a particle size of 0.3 mm or less is 1% by mass to 45% by mass, Is preferably 10% by mass or less.
プレミックスグラウト組成物に含まれる結合材の質量(B)に対する骨材質量(a)の含有比率(a/B)が質量比で1.8以上3.0以下であることが、乾燥収縮が小さく、材料分離し難く且つ水和熱による温度上昇が小さいことから好ましい。1.8未満では、単位セメント量が増加するため、乾燥収縮低減効果及び水和発熱抑制の低減効果が乏しくなり、3.0を超えると材料分離抵抗性に劣り、ブリーディングが発生する虞が高まるためである。乾燥収縮が小さく、材料分離し難く且つ水和熱による温度上昇が小さいことから、a/Bを2.2以上2.6以下とすることがより好ましい。ここで、結合材(B)には、セメント、石膏、シリカフュームやメタカオリン等のポゾラン、高炉スラグ粉末等の潜在水硬性物質及び膨張材が含まれる。 Drying shrinkage is such that the content ratio (a / B) of the aggregate mass (a) to the mass (B) of the binder contained in the premix grout composition is 1.8 to 3.0 in terms of mass ratio. It is preferable because it is small and difficult to separate, and the temperature rise due to heat of hydration is small. If it is less than 1.8, the amount of unit cement increases, so the drying shrinkage reducing effect and the effect of reducing hydration heat generation are poor, and if it exceeds 3.0, the material separation resistance is inferior and bleeding is likely to occur. Because. It is more preferable that a / B is 2.2 or more and 2.6 or less because drying shrinkage is small, material separation is difficult, and temperature rise due to heat of hydration is small. Here, the binder (B) includes cement, gypsum, pozzolanes such as silica fume and metakaolin, and latent hydraulic substances such as blast furnace slag powder and an expanding material.
以上のように、本実施形態1の耐震補強壁10は、従来工法ではコンクリートで構成していた壁体14が、上記プレミックスグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成されている。上述のように、高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。そのため、従来工法では、コンクリートが沈下するために、図3に示すように、コンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設し、コンクリート壁体20と無収縮モルタル壁体30とで耐震補強壁の壁体を構成していたが、本実施形態1では、上記高強度グラウト材の硬化物のみで耐震補強壁10の壁体14を構成することができる。
As described above, the
なお、上述のような組成の高強度グラウト材の硬化物は、材齢28日の圧縮強度試験により、50N/mm2以上の高い圧縮強度を有することが確認されている。この圧縮強度は、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm2)の2倍以上の強度である。そのため、上記耐震補強壁10の壁体14を、このような圧縮強度が極めて高い高強度グラウト材の硬化物で構成することにより、コンクリート壁体20と無収縮モルタル壁体30とで壁体が構成された従来工法による耐震補強壁に比べて薄い壁厚t1(図2参照)で同等の耐力を有する耐震補強壁10を構築することができる。
In addition, it has been confirmed that the hardened | cured material of the high intensity | strength grout material of the above compositions has a high compressive strength of 50 N / mm < 2 > or more by the compressive strength test of the material age 28 days. This compressive strength is at least twice the compressive strength (about 24 N / mm 2 ) of “Ready mixed concrete” defined in JISA5308. Therefore, the
具体的には、図3に示すように、従来工法の耐震補強壁の壁厚t2が250mmであるのに対し、本実施形態の耐震補強壁10によれば、従来工法の耐震補強壁の壁厚t2の半分の壁厚t1(=125mm)で同等の耐力を有する耐震補強壁10を構築することができる。
Specifically, as shown in FIG. 3, the wall thickness t2 of the seismic reinforcing wall of the conventional method is 250 mm, whereas the seismic reinforcing
−耐震補強工法−
以下では、図4の工程表に基づいて架構3内に耐震補強壁10を構築することによって既存の建築物の保有耐力を増加させる耐震補強工法について説明する。なお、図4の工程表では、上段に工期(日)が示され、中段に従来工法の工程が時系列順に示され、下段に本発明に係る耐震補強工法(本工法)の工程が時系列順に示されている。
-Seismic reinforcement method-
Below, the earthquake-proof reinforcement construction method which increases the possession strength of the existing building by building the earthquake-
図4に示すように、耐震補強工法は、アンカー取付工程と、配筋工程と、型枠設置工程と、シール工程と、打設工程と、養生工程と、型枠解体工程とを備えている。アンカー取付工程と、配筋工程と、型枠設置工程と、シール工程と、打設工程と、養生工程と、型枠解体工程とは、この順に行われる。 As shown in FIG. 4, the seismic reinforcement method includes an anchor attachment process, a bar arrangement process, a formwork installation process, a sealing process, a placing process, a curing process, and a formwork dismantling process. . The anchor attachment process, the bar arrangement process, the mold installation process, the sealing process, the placing process, the curing process, and the mold disassembly process are performed in this order.
アンカー取付工程では、架構3を構成する一対の柱1及び一対の梁2に対し、複数のアンカー部材11を架構3内に突出するように取り付ける。具体的には、一対の柱1及び一対の梁2に対し、それぞれ複数のアンカー部材11を、アンカー筋の先端側の一部が柱1又は梁2に埋め込まれ、残りの部分が架構3内に突出するように取り付ける。
In the anchor attachment process, a plurality of
配筋工程では、架構3内に縦横に複数の鉄筋12が配設される。具体的には、複数の縦筋12aを、架構3内において左端から右端に向かって水平方向に所定間隔で配設すると共に、水平方向に延びる複数の横筋12bを、架構3内において上端から下端に向かって鉛直方向に所定間隔で配設する。また、本実施形態1では、配筋工程において、割裂補強筋13が、耐震補強壁10の架構3との接合部分(耐震補強壁10の外縁部)に配設される。
In the reinforcing bar arrangement process, a plurality of reinforcing
型枠設置工程では、上記配筋工程で配設された複数の鉄筋12を内包する壁体14を構成するための型枠を設置する。型枠は、耐震補強壁10の厚さが130mm以下になるように、また、後の打設工程において、高強度グラウト材が一対の梁2の梁幅方向において梁幅wを超えない範囲に充填されるように設置される。なお、型枠には、壁体14を構成する高強度グラウト材を注入するための注入孔と複数の空気抜き孔とを設けておく。
In the mold installation process, a mold for configuring the
シール工程では、型枠を構成する板状部材の連結部分の隙間をシール部材で埋め、打設工程において高強度グラウト材が隙間から漏れないようにする。 In the sealing step, the gap between the connecting portions of the plate-like members constituting the mold is filled with the sealing member so that the high-strength grout material does not leak from the gap in the placing step.
打設工程では、グラウトポンプを用いて型枠設置工程において設置された型枠に形成された注入孔から型枠内に高強度グラウト材を充填する。このとき、上記高強度グラウト材は、上記型枠により、耐震補強壁10の厚さが130mm以下になるように、一対の梁2の梁幅方向において梁幅wを超えない範囲に充填される。なお、高強度グラウト材は、上述のように、施工現場において、プレミックスグラウト組成物と水とをミキサーによって混練することによって製造される。なお、本実施形態では、プレミックスグラウト組成物100質量部に対し8質量部以上20質量部以下の水と混練することによって製造した高強度グラウト材が注入される。
In the casting process, a high-strength grout material is filled into the mold from the injection hole formed in the mold installed in the mold installation process using a grout pump. At this time, the high-strength grout material is filled in a range not exceeding the beam width w in the beam width direction of the pair of
養生工程では、打設工程において打設された高強度グラウト材に振動を与えないようにして硬化させる。 In the curing process, the high-strength grout material cast in the casting process is cured without giving vibration.
型枠解体工程では、高強度グラウト材が硬化したところで養生工程を終了して型枠を解体する。 In the mold disassembly process, the curing process is terminated when the high-strength grout material is cured, and the mold is disassembled.
以上の工程により、架構3内において既存壁4に沿う耐震補強壁10が構築される。このように本願発明に係る耐震補強工法では、打設工程が1度で済む。そのため、コンクリートと無収縮モルタルとを打設することで2度の打設工程を行う必要があった従来工法に比べて工期を短縮することができる。
The earthquake-
具体的には、図4に示すように、従来工法は、アンカー取付工程と、配筋工程と、第1型枠設置工程と、第1打設工程と、第1養生工程と、第2型枠設置工程と、シール工程と、第2打設工程と、第2養生工程と、型枠解体工程とを備えていた。 Specifically, as shown in FIG. 4, the conventional construction method includes an anchor attachment process, a bar arrangement process, a first formwork installation process, a first placement process, a first curing process, and a second mold. A frame installation step, a sealing step, a second placing step, a second curing step, and a mold form disassembling step were provided.
第1型枠設置工程は、コンクリート打設用の型枠を設置する工程であり、第1打設工程は、コンクリートを打設する工程であり、第1養生工程は、コンクリートを硬化させる工程である。一方、第2型枠設置工程は、無収縮モルタル打設用の型枠を設置する工程であり、第2打設工程は、無収縮モルタルを打設する工程であり、第2養生工程は、無収縮モルタルを硬化させる工程である。 The first formwork installation process is a process of installing a formwork for placing concrete, the first placement process is a process of placing concrete, and the first curing process is a process of hardening the concrete. is there. On the other hand, the second mold installation step is a step of installing a formwork for non-shrink mortar placement, the second placement step is a step of placing non-shrink mortar, and the second curing step is This is a step of curing the non-shrink mortar.
図3に示すように、従来工法では、第1打設工程において、既存の梁2の200mm下方の高さまでのコンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設することとなる。
As shown in FIG. 3, in the conventional method, in the first placing step, after placing the
このように従来工法では、コンクリートと無収縮モルタルとを打設するため、型枠設置工程と、打設工程と、養生工程とをそれぞれ2度行う必要があった。これに対し、本願発明に係る耐震補強工法(本工法)では、型枠設置工程と打設工程と養生工程とをそれぞれ1度のみ行えばよいため、工期を大幅に短縮することができる。なお、図4では、本工法によれば、従来工法に比べて3日の工期短縮が可能になる。 Thus, in the conventional construction method, in order to place concrete and non-shrink mortar, it was necessary to perform the mold installation step, the placement step, and the curing step twice. On the other hand, in the seismic strengthening method (main method) according to the present invention, the work period can be greatly shortened because it is only necessary to perform the mold installation process, the placing process, and the curing process only once. In FIG. 4, according to the present construction method, the construction period can be shortened by 3 days compared to the conventional construction method.
また、図3に示すように、既存梁2の梁幅wが狭い場合には、既存壁4の補強側(既存壁4に直交する水平方向において耐震補強壁10が構築される側)の端面と既存梁2の補強側の端面との距離w1が短いため、従来工法の壁厚t2の厚い耐震補強壁では、耐震補強壁が上下の既存梁2から補強側にはみ出してしまう。そのため、このような場合には、耐震補強壁が上下の梁2からはみ出さないように、幅Δw分だけ梁2の増打ちを行う必要がある。この場合、上方の梁2に対しては、既存梁2の側方に幅Δwの無収縮モルタル梁が形成されるように無収縮モルタル壁体30を上方に延長すればよいが、下方の梁2(階下の天井5裏の梁2)に対しては、梁2の側方に、耐震補強壁とは別に、型枠を設置し、無収縮モルタルを充填することによって無収縮モルタル梁体40を増打ちしなければならない。また、天井5裏には、種々の配線、配管、ダクト等が配設されているため、下方の梁2の側方に無収縮モルタル梁体40を増打ちする前に、これらの配線、配管、ダクト等の移設が必要になる場合がある。このように、従来工法では、耐震補強壁が分厚くなるために、梁の増打ちが必要になる場合が多く、耐震補強壁の構築以外に種々の作業を行う必要があるために工期が長くなる虞があった。
In addition, as shown in FIG. 3, when the beam width w of the existing
これに対し、本願発明に係る耐震補強工法(本工法)では、上述のように、従来工法による耐震補強壁に比べて薄い壁厚で同等の耐力を有する耐震補強壁10を構築することができる。具体的には、耐震補強壁10の厚さt1を130mm以下と薄くすることができる。そのため、本工法では、打設工程において、無収縮モルタルによる梁2の増打ちを省略することができ、梁の増打ちに伴う種々の作業を行う必要がなくなるため、このような点からも工期の短縮が可能になる。
On the other hand, in the seismic reinforcement construction method (main construction method) according to the present invention, as described above, the
−実施形態1の効果−
以上のように、本実施形態1によれば、耐震補強壁10の壁体14を、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートで構成するのではなく、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するプレミックスグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成することとした。上記高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。そのため、従来工法では、コンクリートが沈下するために、図3に示すように、コンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設し、コンクリート壁体20と無収縮モルタル壁体30とで耐震補強壁の壁体を構成していたが、本実施形態1では、上記高強度グラウト材の硬化物のみで耐震補強壁10の壁体14を構成することができる。よって、このような耐震補強壁10を構築する耐震補強工法(本工法)によれば、従来工法のようにコンクリート壁体20の打設後に無収縮モルタルからなる無収縮モルタル壁体30を打設する必要がなく、耐震補強壁10を構築する工期を大幅に短縮することができる。従って、実施形態1によれば、従来よりも短い工期で耐震補強壁10を構築可能な耐震補強工法を提供することができる。
-Effect of Embodiment 1-
As described above, according to the first embodiment, the
また、本実施形態1によれば、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm2)の2倍以上の圧縮強度を有する高強度グラウト材の硬化物で耐震補強壁10の壁体14を構成することとしたため、従来工法による耐震補強壁に比べて薄い壁厚t1で同等の耐力を有する耐震補強壁10を構築することができる。また、上記高強度グラウト材は、使用する砂利が豆砂利であるため、骨材の粒子が丸みを帯びており、骨材の最大寸法が7mm以下と小さい場合でも、スランプフロー500mm以上となるような高い流動性を確保することが可能となる。このことから、上記耐震補強壁10の厚さを130mm以下と薄くすることができる。そのため、既存梁2の梁幅wが狭く、既存壁4の補強側の端面と既存梁の補強側の端面との距離w1が短い場合でも、耐震補強壁10を既存梁2から梁幅方向にはみ出さないように構築することができ、無収縮モルタルによる梁の増打ちを省略することができる。よって、天井裏にある種々の配線、配管、ダクト等の移設が不要となり、このような点からも耐震補強壁10を構築するための工期を大幅に短縮することができる。
Further, according to the first embodiment, the seismic reinforcing wall is made of a hardened material of a high strength grout material having a compressive strength more than twice the compressive strength (about 24 N / mm 2 ) of “Ready mixed concrete” defined in JIS A5308. Therefore, the seismic reinforcing
さらに、本実施形態1によれば、上述のように、従来工法による耐震補強壁に比べて薄い壁厚t1で同等の耐力を有する耐震補強壁10を構築することができるため、複数階層の建築物の耐震補強を行う場合に、耐震補強による建築物の重量増加を低減することができる。このような重量増加の低減により、建築物全体の補強量を低減することができるため、耐震補強にかかる費用を低減することができる。
Furthermore, according to the first embodiment, as described above, it is possible to construct the earthquake-resistant reinforcing
また、本実施形態1によれば、上述のように、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm2)の2倍以上の圧縮強度を有する高強度グラウト材の硬化物で耐震補強壁10の壁体14を構成することとしたため、複数階層の建築物の耐震補強を行う場合に、従来工法による耐震補強壁と同等の壁厚で耐震補強壁10を構築することによって、補強箇所を低減することができるため、耐震補強にかかる費用を低減することができる。
Further, according to the first embodiment, as described above, the high-strength grout material having a compressive strength more than twice the compressive strength (about 24 N / mm 2 ) of “ready mixed concrete” defined in JIS A5308. Since the
また、従来工法では大量のコンクリートを用いるため、コンクリートポンプ車等の大型車両を出動させる必要があったが、本実施形態1によれば、プレミックスグラウト組成物に水を加えて混練することによって施工現場において製造される高強度グラウト材を用いるため、大型車両を出動させる必要がない。また、増築する耐震補強壁10の近くで高強度グラウト材を製造することができるため、高強度グラウト材を運搬する必要もない。そのため、本実施形態1の耐震補強壁10及び耐震補強工法によれば、敷地が狭い建築物、周辺道路の交通量が多くコンクリート打設計画が難しい建築物、高層の建築物に対しても容易に施工することができる。
In addition, since a large amount of concrete is used in the conventional construction method, it is necessary to move a large vehicle such as a concrete pump car. According to the first embodiment, water is added to the premix grout composition and kneaded. Since a high-strength grout material manufactured at the construction site is used, it is not necessary to dispatch a large vehicle. Moreover, since a high-strength grout material can be manufactured near the earthquake-
《その他の実施形態》
上記実施形態1では、架構3内の既存壁4に沿って耐震補強壁10を構築する耐震補強工法について説明したが、本願発明に係る耐震補強壁及びそれを構築する耐震補強工法は、上述のものに限定されず、架構内3に新たに耐震補強壁10を増設する場合にも適用できる。
<< Other Embodiments >>
In the said
以上説明したように、本発明は、耐震補強工法について有用である。 As described above, the present invention is useful for the seismic reinforcement method.
1 柱
2 梁
3 架構
4 既設壁
10 耐震補強壁
11 アンカー部材
12 鉄筋
14 壁体
1 pillar
2 beams
3 frames
4 Existing walls
10 Seismic reinforcement wall
11 Anchor member
12 Reinforcing bars
14 Wall
Claims (2)
上記架構に複数のアンカー部材を該架構内に突出するように取り付けるアンカー取付工程と、
上記架構内に縦横に複数の鉄筋を配設する配筋工程と、
上記架構内に、上記耐震補強壁を構成するための型枠を設置する型枠設置工程と、
上記型枠内に、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とで構成される高強度グラウト材を、上記耐震補強壁の厚さが130mm以下になるように、上記梁の梁幅方向において梁幅を超えない範囲に充填する打設工程と、
上記打設工程において上記型枠内に充填された上記高強度グラウト材を硬化させて上記複数の鉄筋を内包する壁体を構成する養生工程と、
上記養生工程の後、上記型枠を解体する型枠解体工程とを備え、
上記型枠設置工程と上記打設工程と上記養生工程とは、それぞれ1度のみ行われる
ことを特徴とする耐震補強工法。 A seismic reinforcement method for increasing the holding strength of the building by constructing a seismic reinforcement wall in a frame surrounded by a pair of left and right pillars and a pair of upper and lower beams of the building,
An anchor attachment step of attaching a plurality of anchor members to the frame so as to protrude into the frame;
A bar arrangement process for arranging a plurality of reinforcing bars vertically and horizontally in the frame,
A formwork installation process for installing a formwork for constituting the seismic reinforcement wall in the frame,
A high-strength grout material composed of a grout composition containing cement, an expanding material, an aggregate containing bean gravel, a cement dispersant, a thickener, and a foaming agent and water is added to the above-mentioned formwork. A placing step of filling a range not exceeding the beam width in the beam width direction of the beam so that the wall thickness is 130 mm or less;
Curing step for curing the high-strength grout material filled in the mold in the placing step to constitute a wall body containing the plurality of reinforcing bars,
After the curing step, comprising a formwork dismantling process for dismantling the formwork,
The above-mentioned form installation process, the above-mentioned placing process, and the above-mentioned curing process are each performed only once, respectively.
上記打設工程では、無収縮モルタルによる上記梁の増打ちを行うことなく、上記高強度グラウト材の上記型枠内への充填が行われる
ことを特徴とする耐震補強工法。 In claim 1,
In the placing step, the high-strength grout material is filled into the formwork without increasing the number of beams by non-shrinking mortar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018082035A JP6757947B2 (en) | 2018-04-23 | 2018-04-23 | Seismic reinforcement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018082035A JP6757947B2 (en) | 2018-04-23 | 2018-04-23 | Seismic reinforcement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019190079A true JP2019190079A (en) | 2019-10-31 |
JP6757947B2 JP6757947B2 (en) | 2020-09-23 |
Family
ID=68389422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018082035A Active JP6757947B2 (en) | 2018-04-23 | 2018-04-23 | Seismic reinforcement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6757947B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114150887A (en) * | 2021-06-17 | 2022-03-08 | 黑龙江省建工集团有限责任公司 | Construction process for reinforcing and reforming old house |
JP7157854B1 (en) * | 2021-07-01 | 2022-10-20 | 国立大学法人 東京大学 | Joint structure between columns/beams and seismic walls |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330758A (en) * | 2004-05-21 | 2005-12-02 | Yasutoshi Yamamoto | Additional reinforced wall method and additional reinforced wall structure of existing concrete wall |
JP2009184891A (en) * | 2008-02-08 | 2009-08-20 | Denki Kagaku Kogyo Kk | Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar |
-
2018
- 2018-04-23 JP JP2018082035A patent/JP6757947B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330758A (en) * | 2004-05-21 | 2005-12-02 | Yasutoshi Yamamoto | Additional reinforced wall method and additional reinforced wall structure of existing concrete wall |
JP2009184891A (en) * | 2008-02-08 | 2009-08-20 | Denki Kagaku Kogyo Kk | Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114150887A (en) * | 2021-06-17 | 2022-03-08 | 黑龙江省建工集团有限责任公司 | Construction process for reinforcing and reforming old house |
JP7157854B1 (en) * | 2021-07-01 | 2022-10-20 | 国立大学法人 東京大学 | Joint structure between columns/beams and seismic walls |
US11702836B2 (en) | 2021-07-01 | 2023-07-18 | The University Of Tokyo | Structure for joining column and beam frame and shear wall |
Also Published As
Publication number | Publication date |
---|---|
JP6757947B2 (en) | 2020-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jalal et al. | Foam concrete | |
JP4969152B2 (en) | Reinforcement structure and reinforcement method for concrete building | |
JP4731287B2 (en) | Reinforcement method for concrete buildings | |
JP6757947B2 (en) | Seismic reinforcement method | |
CN104499498A (en) | Construction method of mass concrete construction | |
JP5615015B2 (en) | Seismic reinforcement structure and seismic reinforcement method | |
JP4348331B2 (en) | Reinforcing structure and reinforcing method of concrete structure | |
US11168449B2 (en) | Method for batch casting high-fluidity high-performance concrete and low-fluidity high-performance concrete | |
JP5809369B2 (en) | Cast-in-place concrete pile method | |
JP2008231676A (en) | Manufacturing method for steel-concrete floor slab joining structure and buried form | |
JP2009030427A (en) | Aseismatic reinforcing method | |
JP2015218497A (en) | Seismic strengthening structure and seismic strengthening method | |
JP2015006977A (en) | Fiber-reinforced flowable high strength concrete | |
JP6469900B2 (en) | Isolation material | |
JP6008227B2 (en) | Column beam connection method in reinforced concrete structures. | |
JP2007032192A (en) | Reinforcing structure of building and concrete building containing the reinforcing structure | |
JP4902459B2 (en) | Construction method of structures using precast concrete blocks | |
JP7381623B2 (en) | Ultra-high strength reinforced concrete segment and its manufacturing method | |
JP7009161B2 (en) | Reinforced building and its manufacturing method | |
KR102513974B1 (en) | Block type retaining wall construction method | |
Sam et al. | Self compacting concrete with recycled coarse aggregates | |
Ahmed et al. | Experimental Investigation of Strength Characteristics of Foam Concrete | |
JP5470195B2 (en) | How to install the structure | |
Jevtić et al. | Properties Of Self-Compacting Concrete Reinforced With Steel and Synthetic Fibers | |
CN105908844A (en) | Method for improving anti-seismic property of RC Z-shaped cross section column frame node |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20180605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180720 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200207 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200207 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200728 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6757947 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |