JP6757947B2 - Seismic reinforcement method - Google Patents

Seismic reinforcement method Download PDF

Info

Publication number
JP6757947B2
JP6757947B2 JP2018082035A JP2018082035A JP6757947B2 JP 6757947 B2 JP6757947 B2 JP 6757947B2 JP 2018082035 A JP2018082035 A JP 2018082035A JP 2018082035 A JP2018082035 A JP 2018082035A JP 6757947 B2 JP6757947 B2 JP 6757947B2
Authority
JP
Japan
Prior art keywords
wall
seismic reinforcement
seismic
formwork
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018082035A
Other languages
Japanese (ja)
Other versions
JP2019190079A (en
Inventor
敏幸 南
敏幸 南
中島 裕
裕 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2018082035A priority Critical patent/JP6757947B2/en
Publication of JP2019190079A publication Critical patent/JP2019190079A/en
Application granted granted Critical
Publication of JP6757947B2 publication Critical patent/JP6757947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

本発明は、耐震補強工法に関するものである。 The present invention relates to a seismic reinforcement method.

従来、既存の鉄筋コンクリート造の建築物に対し、種々の方法で耐震補強が行われている。例えば、下記の特許文献1には、既存の建築物の柱や梁で囲まれた架構内に新たな鉄筋コンクリート造の耐震補強壁を構築することによって既存の建築物の耐震強度を向上させる耐震補強工法が開示されている。 Conventionally, earthquake-resistant reinforcement has been performed by various methods on existing reinforced concrete buildings. For example, in Patent Document 1 below, seismic reinforcement that improves the seismic strength of existing buildings by constructing a new seismic reinforcement wall made of reinforced concrete in a frame surrounded by columns and beams of an existing building. The construction method is disclosed.

特開2016−142022号公報Japanese Unexamined Patent Publication No. 2016-14202

しかしながら、新たな鉄筋コンクリート造の耐震補強壁を構築する従来工法では、コンクリートが沈下するため、コンクリートの打設後、既存梁と新設されたコンクリート壁の頂部との間に形成される間隙に無収縮モルタルを打設する必要があった。このように従来工法では、打設工程を2度行う必要があり、工期が長いという問題があった。 However, in the conventional method of constructing a new reinforced concrete seismic reinforcement wall, the concrete sinks, so after the concrete is cast, there is no shrinkage in the gap formed between the existing beam and the top of the newly constructed concrete wall. It was necessary to place the mortar. As described above, the conventional construction method has a problem that the casting process needs to be performed twice and the construction period is long.

また、既存梁の梁幅が狭い場合には、既存壁の補強側(既存壁に直交する水平方向において耐震補強壁が構築される側)の端面と既存梁の補強側の端面との距離が短いため、従来工法の壁厚の厚い耐震補強壁では、耐震補強壁が上下の既存梁から補強側にはみ出してしまう。そのため、このような場合には、耐震補強壁が上下の梁からはみ出さないように、梁の増打ちを行う必要がある。この場合、上方の梁に対しては、既存梁の側方に無収縮モルタル梁が形成されるように無収縮モルタル壁体を上方に延長すればよいが、下方の梁(階下の天井裏の梁)に対しては、梁の側方に、耐震補強壁とは別に、型枠を設置し、無収縮モルタルを充填することによって無収縮モルタル梁体を増打ちしなければならない。また、天井裏には、種々の配線、配管、ダクト等が配設されているため、下方の梁の側方に無収縮モルタル梁体を増打ちする前に、これらの配線、配管、ダクト等の移設が必要になる場合がある。このように、従来工法では、耐震補強壁が分厚くなるために、梁の増打ちが必要になる場合が多く、耐震補強壁の構築以外に種々の作業を行う必要があるために工期が長くなる虞があった。 When the beam width of the existing beam is narrow, the distance between the end face of the reinforcement side of the existing wall (the side where the seismic reinforcement wall is constructed in the horizontal direction orthogonal to the existing wall) and the end face of the reinforcement side of the existing beam is Due to its short length, the seismic reinforcement wall with a thick wall thickness of the conventional method will protrude from the existing beams above and below to the reinforcement side. Therefore, in such a case, it is necessary to increase the number of beams so that the seismic reinforcement wall does not protrude from the upper and lower beams. In this case, for the upper beam, the non-shrink mortar wall may be extended upward so that the non-shrink mortar beam is formed on the side of the existing beam, but the lower beam (under the ceiling below the floor). For the beam), a mold must be installed on the side of the beam separately from the seismic reinforcement wall, and the non-shrink mortar beam body must be increased by filling with non-shrink mortar. In addition, since various wirings, pipes, ducts, etc. are arranged behind the ceiling, these wirings, pipes, ducts, etc. are arranged before the non-shrink mortar beam body is added to the side of the lower beam. May need to be relocated. In this way, in the conventional construction method, since the seismic reinforcement wall becomes thick, it is often necessary to increase the number of beams, and it is necessary to perform various operations other than the construction of the seismic reinforcement wall, so that the construction period becomes long. There was a risk.

本発明は、かかる点に鑑みてなされたものであり、その目的は、従来よりも短い工期で構築可能な耐震補強壁を構築する耐震補強工法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a seismic reinforcement method for constructing a seismic reinforcement wall that can be constructed in a shorter construction period than before.

本発明は、建築物の左右一対の柱と上下一対の梁とで囲まれた架構内に耐震補強壁を構築することによって上記建築物の保有耐力を増加させる耐震補強工法であって、上記架構に複数のアンカー部材を該架構内に突出するように取り付けるアンカー取付工程と、上記架構内に縦横に複数の鉄筋を配設する配筋工程と、上記架構内に、上記耐震補強壁を構成するための型枠を設置する型枠設置工程と、上記型枠内に、セメント、膨張材、粒径が4mmを超え7mm以下の豆砂利と該豆砂利よりも粒径の小さい骨材とからなる骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とでスランプフロー500mm以上となるように構成され高強度グラウト材を、上記耐震補強壁の厚さが130mm以下になるように、上記梁の梁幅方向において梁幅を超えない範囲に充填する打設工程と、上記打設工程において上記型枠内に充填された上記高強度グラウト材を硬化させて上記複数の鉄筋を内包する壁体を構成する養生工程と、上記養生工程の後、上記型枠を解体する型枠解体工程とを備え、上記型枠設置工程と上記打設工程と上記養生工程は、それぞれ1度のみ行われることを特徴とするものである。 The present invention is a seismic reinforcement method for increasing the holding capacity of the building by constructing a seismic reinforcement wall in a formwork surrounded by a pair of left and right pillars and a pair of upper and lower beams of the building. An anchor mounting step of attaching a plurality of anchor members so as to project into the formwork, a bar arrangement step of arranging a plurality of reinforcing bars vertically and horizontally in the formwork, and a seismic reinforcement wall in the formwork. It consists of a formwork installation process for installing a formwork for the purpose, a cement, an expansion material, bean gravel having a particle size of more than 4 mm and 7 mm or less, and an aggregate having a particle size smaller than that of the bean gravel. A high-strength grout material having a slump flow of 500 mm or more composed of a glaut composition containing an aggregate, a cement dispersant, a thickener and a foaming agent and water has a thickness of 130 mm or less of the earthquake-resistant reinforcing wall. In the casting step of filling the beam in a range not exceeding the beam width in the beam width direction of the beam, and the plurality of high-strength grout materials filled in the formwork in the casting step are cured. A formwork disassembling step of disassembling the formwork after the curing step is provided, and the formwork setting step, the casting step, and the curing step are performed. It is characterized in that each is performed only once.

本発明によれば、耐震補強壁の壁体を、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートで構成するのではなく、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成することとした。上記高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。このような耐震補強工法によれば、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートを打設後に無収縮モルタルを打設する必要がなく、高強度グラウト材の硬化物のみで耐震補強壁の壁体を構成することができるため、耐震補強壁を構築する工期を短縮することができる。 According to the present invention, the wall body of the seismic reinforcement wall is not composed of concrete as in the conventional reinforced concrete seismic reinforcement wall, but cement, expansion material, aggregate containing gravel, cement dispersant, and addition. It was decided to use a cured product of a high-strength grout material composed of a grout composition containing a viscous agent and a foaming agent and water. Since the high-strength grout material contains an expansion material and a foaming agent, it hardly sinks when cured, and has the same non-shrinkage property as non-shrinkage mortar. On the other hand, since the high-strength grout material contains bean gravel, the temperature rise due to drying shrinkage and heat of hydration of the cured product is significantly smaller than that of general non-shrinkage mortar. According to such a seismic reinforcement method, unlike the conventional reinforced concrete seismic reinforcement wall, it is not necessary to place non-shrink mortar after placing concrete, and the seismic reinforcement wall is made of only a hardened high-strength grout material. Since the wall body can be constructed, the construction period for constructing the seismic reinforcement wall can be shortened.

また、上記高強度グラウト材は、使用する砂利が豆砂利であるため、骨材の粒子が丸みを帯びており、骨材の最大寸法が7mm以下と小さい場合でも、スランプフロー500mm以上となるような高い流動性を確保することが可能となる。このことから、上記耐震補強壁の厚さを130mm以下と薄くすることができる。そのため、既存梁の梁幅が狭く、既存壁の補強側の端面と既存梁の補強側の端面との距離が短い場合でも、耐震補強壁を既存の梁から梁幅方向にはみ出さないように構築することができ、無収縮モルタルによる梁の増打ちを省略することができる。よって、天井裏にある種々の配線、配管、ダクト等の移設が不要となり、このような点からも耐震補強壁10を構築するための工期を大幅に短縮することができる。 Further, since the gravel used in the high-strength grout material is bean gravel, the particles of the aggregate are rounded, and even if the maximum size of the aggregate is as small as 7 mm or less, the slump flow is 500 mm or more. It is possible to secure a high level of liquidity. From this, the thickness of the seismic reinforcing wall can be reduced to 130 mm or less. Therefore, even if the beam width of the existing beam is narrow and the distance between the end face on the reinforcement side of the existing wall and the end face on the reinforcement side of the existing beam is short, the seismic reinforcement wall should not protrude from the existing beam in the beam width direction. It can be constructed and it is possible to omit the additional striking of the beam by the non-shrink mortar. Therefore, it is not necessary to relocate various wirings, pipes, ducts, etc. behind the ceiling, and from such a point, the construction period for constructing the seismic reinforcing wall 10 can be significantly shortened.

以上のように、本発明によれば、従来よりも短い工期で耐震補強壁を構築可能な耐震補強工法を提供することができる。 As described above, according to the present invention, it is possible to provide a seismic reinforcement method capable of constructing a seismic reinforcement wall in a shorter construction period than before.

図1は、本発明の実施形態1に係る耐震補強壁が構築された建築物の架構部分を示す断面図である。FIG. 1 is a cross-sectional view showing a frame portion of a building in which a seismic reinforcing wall according to the first embodiment of the present invention is constructed. 図2は、本発明の実施形態1に係る耐震補強壁が構築された建築物の架構部分を示す断面図である。FIG. 2 is a cross-sectional view showing a frame portion of a building in which a seismic reinforcing wall according to the first embodiment of the present invention is constructed. 図3は、従来工法によって耐震補強壁が構築された建築物の架構部分を示す断面図である。FIG. 3 is a cross-sectional view showing a frame portion of a building in which a seismic reinforcing wall is constructed by a conventional construction method. 図4は、従来工法と本発明に係る耐震補強工法(本工法)の工程及び工期を比較するために各工法の工程を時系列順に示す工程表である。FIG. 4 is a process chart showing the processes of each method in chronological order in order to compare the processes and construction periods of the conventional method and the seismic reinforcement method (this method) according to the present invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の実施形態は、本質的に好ましい例示に過ぎず、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are merely preferred embodiments and are not intended to limit the scope of the invention, its applications, or its uses.

《実施形態1》
図1及び図2に示すように、耐震補強壁10は、鉄筋コンクリート造の既存の建築物の左右一対の柱1及び上下一対の梁2とで構成される架構3内に構築されている。なお、本実施形態1では、架構3内には、鉄筋コンクリート造の既存壁4が構築されており、耐震補強壁10は、この既存壁4に沿って増打ちされて既存壁4を補強するものである。
<< Embodiment 1 >>
As shown in FIGS. 1 and 2, the seismic reinforcement wall 10 is constructed in a frame 3 composed of a pair of left and right columns 1 and a pair of upper and lower beams 2 of an existing reinforced concrete building. In the first embodiment, an existing reinforced concrete wall 4 is constructed in the frame 3, and the seismic reinforcement wall 10 is additionally struck along the existing wall 4 to reinforce the existing wall 4. Is.

耐震補強壁10は、複数のアンカー部材11と、複数の鉄筋12と、割裂補強筋13と、壁体14とを備えている。 The earthquake-resistant reinforcing wall 10 includes a plurality of anchor members 11, a plurality of reinforcing bars 12, a split reinforcing bar 13, and a wall body 14.

アンカー部材11は、耐震補強対象の既存壁4と、新設される耐震補強壁10の壁体14とを一体化させるためのものである。アンカー部材11は、架構3に取り付けられて架構3内に突出するように設けられている。具体的には、一対の柱1及び一対の梁2に対し、それぞれ複数のアンカー部材11が、アンカー筋の先端側の一部が柱1又は梁2に埋め込まれ、残りの部分が架構3内に突出するように取り付けられている。各アンカー部材11の柱1又は梁2に埋め込まれていない残りの部分は、壁体14に内包されている。各柱1及び梁2に対し、複数のアンカー部材11は、所定間隔で設けられている。 The anchor member 11 is for integrating the existing wall 4 to be seismically reinforced with the wall body 14 of the newly installed seismic reinforcement wall 10. The anchor member 11 is attached to the frame 3 and is provided so as to project into the frame 3. Specifically, for each of the pair of columns 1 and the pair of beams 2, a plurality of anchor members 11 are embedded in the column 1 or the beam 2 on the tip side of the anchor reinforcement, and the remaining portion is inside the frame 3. It is attached so that it protrudes into the. The remaining portion of each anchor member 11 that is not embedded in the column 1 or the beam 2 is included in the wall body 14. A plurality of anchor members 11 are provided at predetermined intervals for each of the pillar 1 and the beam 2.

複数の鉄筋12は、鉛直方向に延びる複数の縦筋12aと水平方向に延びる複数の横筋12bとで構成されている。複数の縦筋12aと複数の横筋12bとは、架構3内において格子状に配設され、壁体14に内包されている。複数の縦筋12aは、架構3内において左端から右端に向かって水平方向に所定間隔で配置されている。複数の横筋12bは、架構3内において上端から下端に向かって鉛直方向に所定間隔で配置されている。 The plurality of reinforcing bars 12 are composed of a plurality of vertical bars 12a extending in the vertical direction and a plurality of horizontal bars 12b extending in the horizontal direction. The plurality of vertical bars 12a and the plurality of horizontal bars 12b are arranged in a grid pattern in the frame 3 and are included in the wall body 14. The plurality of vertical bars 12a are arranged at predetermined intervals in the horizontal direction from the left end to the right end in the frame 3. The plurality of horizontal bars 12b are arranged at predetermined intervals in the vertical direction from the upper end to the lower end in the frame 3.

割裂補強筋13は、スパイラル筋によって構成されている。割裂補強筋13は、架構3との接合部分、即ち、耐震補強壁10の外縁部に設置されている。割裂補強筋13は、一対の柱1及び一対の梁2のそれぞれに対向するように設けられ、壁体14に内包されている。 The split reinforcing muscle 13 is composed of a spiral muscle. The split reinforcing bar 13 is installed at a joint portion with the frame 3, that is, at the outer edge portion of the seismic reinforcing wall 10. The split reinforcing bar 13 is provided so as to face each of the pair of columns 1 and the pair of beams 2, and is included in the wall body 14.

壁体14は、高強度グラウト材の硬化物によって構成され、架構3内においてアンカー部材11の架構3内の部分と鉄筋12と割裂補強筋13とを内包するように形成されている。壁体14は、厚さが130mm以下になるように形成されている。具体的には、本実施形態では、壁体14は、厚さが125mmに形成されている。壁体14を構成する高強度グラウト材は、セメント、膨張材、骨材、セメント分散剤、増粘剤及び発泡剤がプレミックスされたプレミックスグラウト組成物に水を加えて混練することによって施工現場において製造される。なお、本実施形態では、プレミックスグラウト組成物100質量部に対し8質量部以上20質量部以下の水と混練することによって製造した高強度グラウト材を用いることとする。 The wall body 14 is made of a hardened product of a high-strength grout material, and is formed so as to include a portion of the anchor member 11 in the frame 3 and a reinforcing bar 12 and a split reinforcing bar 13 in the frame 3. The wall body 14 is formed so that the thickness is 130 mm or less. Specifically, in the present embodiment, the wall body 14 is formed to have a thickness of 125 mm. The high-strength grout material constituting the wall body 14 is constructed by adding water to a premix grout composition in which cement, an expansion material, an aggregate, a cement dispersant, a thickener and a foaming agent are premixed and kneading them. Manufactured on site. In this embodiment, a high-strength grout material produced by kneading 100 parts by mass of the premix grout composition with water of 8 parts by mass or more and 20 parts by mass or less is used.

プレミックスグラウト組成物に含まれるセメントは、水硬性セメントであればいかなるものであってもよい。プレミックスグラウト組成物におけるセメントの含有率は、20質量%以上35質量%以下とすることが好ましい。20質量%未満では、強度発現性が劣り(圧縮強度が小さく)、35質量%を超えると、乾燥収縮が大きくなる又は水和熱による温度上昇が大きくなるためである。 The cement contained in the premix grout composition may be any hydraulic cement. The content of cement in the premix grout composition is preferably 20% by mass or more and 35% by mass or less. This is because if it is less than 20% by mass, the strength development is inferior (compressive strength is small), and if it exceeds 35% by mass, the drying shrinkage becomes large or the temperature rise due to heat of hydration becomes large.

プレミックスグラウト組成物に含まれる膨張材は、水和によって例えば水酸化カルシウムやエトリンガイト等の水和物の結晶が成長し、嵩体積が大きくなる物質を主要成分とするものであればいかなるものでもよいが、JISA6202「コンクリート用膨張材」に適合するものが、混和量に対する膨張率が安定しているので特に好ましい。プレミックスグラウト組成物における膨張材の含有率は、1質量%以上7質量%以下とすることが好ましい。1質量%未満では、膨張材の効果が得られ難く収縮が大きくなり、7質量%を超えると、拘束されていない部分に強度低下が起こる虞があるためである。 The expansion material contained in the premix grout composition can be any expansion material as long as it contains a substance having a large bulk volume due to the growth of hydrate crystals such as calcium hydroxide and ettringite by hydration. However, those conforming to JIS A6202 "Expansion material for concrete" are particularly preferable because the expansion rate with respect to the mixing amount is stable. The content of the expanding material in the premix grout composition is preferably 1% by mass or more and 7% by mass or less. This is because if it is less than 1% by mass, the effect of the expanding material is difficult to obtain and the shrinkage becomes large, and if it exceeds 7% by mass, the strength may decrease in the unrestrained portion.

プレミックスグラウト組成物に含まれる増粘剤は、特に限定されず、水溶性セルロース、多糖類、ポリビニル化合物、アルキルスターチ、スターチエーテル等の少なくとも1種を用いることができる。また、増粘剤は、プレミックスし易いことから、粉末のもの(粉末増粘剤)が好ましい。プレミックスグラウト組成物における増粘剤の含有率は0.0002質量%以上0.02質量%以下とすることが好ましい。0.0002質量%未満では、増粘剤を含有する効果が得られ難く材料分離抵抗性が低くなり、0.02質量%を超えると、流動性が悪くなり、低温環境下で大きく遅延する虞があるためである。 The thickener contained in the premix grout composition is not particularly limited, and at least one such as water-soluble cellulose, polysaccharide, polyvinyl compound, alkyl starch, and starch ether can be used. Further, the thickener is preferably a powder (powder thickener) because it is easy to premix. The content of the thickener in the premix grout composition is preferably 0.0002% by mass or more and 0.02% by mass or less. If it is less than 0.0002% by mass, the effect of containing the thickener is difficult to obtain and the material separation resistance becomes low, and if it exceeds 0.02% by mass, the fluidity deteriorates and there is a risk of a large delay in a low temperature environment. Because there is.

プレミックスグラウト組成物に含まれるセメント分散剤は、特に限定されず、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤等を用いることができ、プレミックスし易いことから、粉末のもの(粉末セメント分散剤)が好ましい。粉末状高性能減水剤又は粉末状高性能AE減水剤をセメント分散剤として用いると、グラウトモルタルの材齢28日における圧縮強度を45N/mm以上とし易いことからより好ましい。プレミックスグラウト組成物におけるセメント分散剤の含有率は、0.03質量%以上3質量%以下とすることが、高い流動性が得られ且つ材料分離し難いことから好ましい。 The cement dispersant contained in the premix grout composition is not particularly limited, and a water reducing agent, a high-performance water reducing agent, an AE water reducing agent, a high-performance AE water reducing agent, a fluidizing agent and the like can be used, and premixing is easy. Therefore, a powdered one (powdered cement dispersant) is preferable. It is more preferable to use a powdered high-performance water reducing agent or a powdered high-performance AE water reducing agent as a cement dispersant because the compressive strength of grout mortar at 28 days is easily set to 45 N / mm 2 or more. The content of the cement dispersant in the premix grout composition is preferably 0.03% by mass or more and 3% by mass or less because high fluidity can be obtained and it is difficult to separate the materials.

プレミックスグラウト組成物に含まれる発泡剤は、粉末発泡剤であれば特に限定されず、水との混練した後に気体を発生する粉末であればいかなるものであってもよい。この発泡作用によりグラウトモルタルの沈下現象を防止し、既設壁4や既設の柱1や梁2等の部材とより一体化することができる。即ち、無収縮性が得られる。プレミックスグラウト組成物における発泡剤の含有率は、0.0002質量%以上0.03質量%以下とすることが好ましい。0.0002質量%未満では発泡剤の効果が得られ難く、0.03質量%を超えると、特に高温環境下において膨張過多となり、圧縮強度の低下が懸念されるためである。 The foaming agent contained in the premix grout composition is not particularly limited as long as it is a powder foaming agent, and may be any powder that generates a gas after kneading with water. By this foaming action, the sinking phenomenon of the grout mortar can be prevented, and the grout mortar can be more integrated with the existing members such as the existing wall 4, the existing pillar 1 and the beam 2. That is, non-shrinkage is obtained. The content of the foaming agent in the premix grout composition is preferably 0.0002% by mass or more and 0.03% by mass or less. This is because if it is less than 0.0002% by mass, it is difficult to obtain the effect of the foaming agent, and if it exceeds 0.03% by mass, the expansion becomes excessive, especially in a high temperature environment, and there is a concern that the compressive strength may decrease.

プレミックスグラウト組成物に含まれる骨材には、粒径が4mmを超え7mm以下の豆砂利が含まれている。また、上記骨材には、豆砂利の他、豆砂利よりも粒径の小さい骨材が含まれている。粒径の小さい骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、人工骨材、スラグ骨材などを用いることができる。上記骨材として、吸水率の大きい軽量骨材は、乾燥収縮が大きくなることからあまり好ましくない。 The aggregate contained in the premix grout composition contains bean gravel having a particle size of more than 4 mm and 7 mm or less. In addition to bean gravel, the aggregate contains aggregate having a particle size smaller than that of bean gravel. As the aggregate having a small particle size, for example, river sand, land sand, sea sand, crushed sand, silica sand, artificial aggregate, slag aggregate and the like can be used. As the aggregate, a lightweight aggregate having a large water absorption rate is not very preferable because the drying shrinkage becomes large.

上記骨材は、豆砂利の含有率が15質量%以上45質量%以下であることが好ましい。豆砂利の含有率が15質量%未満であると、乾燥収縮及び水和熱による温度上昇が大きくなり、45質量%を超えると、材料分離抵抗性に劣り、ブリーディングが発生し易くなるため好ましくない。なお、上記骨材は、豆砂利の含有率が16質量%以上40質量%であるとより好ましい。 The aggregate preferably has a bean gravel content of 15% by mass or more and 45% by mass or less. If the content of bean gravel is less than 15% by mass, the temperature rise due to drying shrinkage and heat of hydration becomes large, and if it exceeds 45% by mass, the material separation resistance is inferior and bleeding is likely to occur, which is not preferable. .. It is more preferable that the aggregate has a bean gravel content of 16% by mass or more and 40% by mass.

また、上記骨材は、高い流動性が得られ易く、材料分離抵抗性に優れることから、粒径が0.3mmを超え4mm以下の粒子の含有率が40質量%以上65質量%以下、粒径が0.3mmを超え2.5mm以下の粒子の含有率が30質量%以上55質量%以下、粒径が0.3mm以下の粒子の含有率が1質量%以上45質量%以下、粒径が0.15mm以下の粒子の含有率が10質量%以下であることが好ましい。 Further, since the aggregate is easy to obtain high fluidity and is excellent in material separation resistance, the content of particles having a particle size of more than 0.3 mm and 4 mm or less is 40% by mass or more and 65% by mass or less, and particles. The content of particles with a diameter of more than 0.3 mm and 2.5 mm or less is 30% by mass or more and 55% by mass or less, and the content of particles with a particle size of 0.3 mm or less is 1% by mass or more and 45% by mass or less. The content of particles having a particle size of 0.15 mm or less is preferably 10% by mass or less.

プレミックスグラウト組成物に含まれる結合材の質量(B)に対する骨材質量(a)の含有比率(a/B)が質量比で1.8以上3.0以下であることが、乾燥収縮が小さく、材料分離し難く且つ水和熱による温度上昇が小さいことから好ましい。1.8未満では、単位セメント量が増加するため、乾燥収縮低減効果及び水和発熱抑制の低減効果が乏しくなり、3.0を超えると材料分離抵抗性に劣り、ブリーディングが発生する虞が高まるためである。乾燥収縮が小さく、材料分離し難く且つ水和熱による温度上昇が小さいことから、a/Bを2.2以上2.6以下とすることがより好ましい。ここで、結合材(B)には、セメント、石膏、シリカフュームやメタカオリン等のポゾラン、高炉スラグ粉末等の潜在水硬性物質及び膨張材が含まれる。 Dry shrinkage occurs when the content ratio (a / B) of the bone material amount (a) to the mass (B) of the binder contained in the premix grout composition is 1.8 or more and 3.0 or less in terms of mass ratio. It is preferable because it is small, it is difficult to separate the material, and the temperature rise due to heat of hydration is small. If it is less than 1.8, the unit cement amount increases, so that the effect of reducing drying shrinkage and the effect of suppressing hydration heat generation become poor, and if it exceeds 3.0, the material separation resistance is inferior and the possibility of bleeding increases. Because. It is more preferable that the a / B is 2.2 or more and 2.6 or less because the drying shrinkage is small, the material is difficult to separate, and the temperature rise due to heat of hydration is small. Here, the binder (B) includes cement, gypsum, pozzolan such as silica fume and metakaolin, latent hydraulic substances such as blast furnace slag powder, and expansion material.

以上のように、本実施形態1の耐震補強壁10は、従来工法ではコンクリートで構成していた壁体14が、上記プレミックスグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成されている。上述のように、高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。そのため、従来工法では、コンクリートが沈下するために、図3に示すように、コンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設し、コンクリート壁体20と無収縮モルタル壁体30とで耐震補強壁の壁体を構成していたが、本実施形態1では、上記高強度グラウト材の硬化物のみで耐震補強壁10の壁体14を構成することができる。 As described above, the seismic reinforcing wall 10 of the first embodiment is a hardened product of a high-strength grout material in which the wall body 14 made of concrete in the conventional construction method is made of the premix grout composition and water. It is composed of. As described above, since the high-strength grout material contains an expansion material and a foaming agent, it hardly sinks when it is cured, and has the same non-shrinkage property as that of non-shrink mortar. On the other hand, since the high-strength grout material contains bean gravel, the temperature rise due to drying shrinkage and heat of hydration of the cured product is significantly smaller than that of general non-shrinkage mortar. Therefore, in the conventional method, since the concrete sinks, as shown in FIG. 3, after the concrete wall body 20 is placed, non-shrink mortar is injected between the concrete wall body 20 and the existing beam 2. The non-shrink mortar wall 30 was cast, and the concrete wall 20 and the non-shrink mortar wall 30 formed the wall body of the seismic reinforced wall. However, in the first embodiment, the hardening of the high-strength grout material is performed. The wall body 14 of the seismic reinforcing wall 10 can be formed only by objects.

なお、上述のような組成の高強度グラウト材の硬化物は、材齢28日の圧縮強度試験により、50N/mm以上の高い圧縮強度を有することが確認されている。この圧縮強度は、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm)の2倍以上の強度である。そのため、上記耐震補強壁10の壁体14を、このような圧縮強度が極めて高い高強度グラウト材の硬化物で構成することにより、コンクリート壁体20と無収縮モルタル壁体30とで壁体が構成された従来工法による耐震補強壁に比べて薄い壁厚t1(図2参照)で同等の耐力を有する耐震補強壁10を構築することができる。 It has been confirmed by a compressive strength test of 28 days of age that the cured product of the high-strength grout material having the above-mentioned composition has a high compressive strength of 50 N / mm 2 or more. This compressive strength is more than twice the compressive strength (about 24 N / mm 2 ) of "ready-mixed concrete" specified in JIS A5308. Therefore, by forming the wall body 14 of the earthquake-resistant reinforcing wall 10 with a cured product of such a high-strength grout material having extremely high compressive strength, the wall body can be formed by the concrete wall body 20 and the non-shrink mortar wall body 30. It is possible to construct a seismic reinforced wall 10 having a wall thickness t1 (see FIG. 2) thinner than the constructed seismic reinforced wall by the conventional construction method and having the same proof stress.

具体的には、図3に示すように、従来工法の耐震補強壁の壁厚t2が250mmであるのに対し、本実施形態の耐震補強壁10によれば、従来工法の耐震補強壁の壁厚t2の半分の壁厚t1(=125mm)で同等の耐力を有する耐震補強壁10を構築することができる。 Specifically, as shown in FIG. 3, the wall thickness t2 of the seismic reinforcement wall of the conventional method is 250 mm, whereas according to the seismic reinforcement wall 10 of the present embodiment, the wall of the seismic reinforcement wall of the conventional method is used. It is possible to construct a seismic reinforcing wall 10 having the same proof stress with a wall thickness t1 (= 125 mm) that is half the thickness t2.

−耐震補強工法−
以下では、図4の工程表に基づいて架構3内に耐震補強壁10を構築することによって既存の建築物の保有耐力を増加させる耐震補強工法について説明する。なお、図4の工程表では、上段に工期(日)が示され、中段に従来工法の工程が時系列順に示され、下段に本発明に係る耐震補強工法(本工法)の工程が時系列順に示されている。
-Seismic reinforcement method-
In the following, a seismic reinforcement method for increasing the yield strength of an existing building by constructing the seismic reinforcement wall 10 in the frame 3 based on the process chart of FIG. 4 will be described. In the process chart of FIG. 4, the construction period (day) is shown in the upper row, the processes of the conventional construction method are shown in chronological order in the middle row, and the processes of the seismic reinforcement construction method (this construction method) according to the present invention are shown in chronological order in the lower row. It is shown in order.

図4に示すように、耐震補強工法は、アンカー取付工程と、配筋工程と、型枠設置工程と、シール工程と、打設工程と、養生工程と、型枠解体工程とを備えている。アンカー取付工程と、配筋工程と、型枠設置工程と、シール工程と、打設工程と、養生工程と、型枠解体工程とは、この順に行われる。 As shown in FIG. 4, the seismic reinforcement method includes an anchor mounting process, a bar arrangement process, a formwork installation process, a sealing process, a placing process, a curing process, and a formwork dismantling process. .. The anchor attachment process, the bar arrangement process, the formwork installation process, the sealing process, the placing process, the curing process, and the formwork dismantling process are performed in this order.

アンカー取付工程では、架構3を構成する一対の柱1及び一対の梁2に対し、複数のアンカー部材11を架構3内に突出するように取り付ける。具体的には、一対の柱1及び一対の梁2に対し、それぞれ複数のアンカー部材11を、アンカー筋の先端側の一部が柱1又は梁2に埋め込まれ、残りの部分が架構3内に突出するように取り付ける。 In the anchor attachment step, a plurality of anchor members 11 are attached to the pair of columns 1 and the pair of beams 2 constituting the frame 3 so as to project into the frame 3. Specifically, for each of the pair of columns 1 and the pair of beams 2, a plurality of anchor members 11 are embedded in the column 1 or the beam 2 on the tip side of the anchor reinforcement, and the remaining portion is inside the frame 3. Attach it so that it protrudes into the.

配筋工程では、架構3内に縦横に複数の鉄筋12が配設される。具体的には、複数の縦筋12aを、架構3内において左端から右端に向かって水平方向に所定間隔で配設すると共に、水平方向に延びる複数の横筋12bを、架構3内において上端から下端に向かって鉛直方向に所定間隔で配設する。また、本実施形態1では、配筋工程において、割裂補強筋13が、耐震補強壁10の架構3との接合部分(耐震補強壁10の外縁部)に配設される。 In the bar arrangement step, a plurality of reinforcing bars 12 are arranged vertically and horizontally in the frame 3. Specifically, a plurality of vertical bars 12a are arranged in the frame 3 from the left end to the right end at predetermined intervals in the horizontal direction, and a plurality of horizontal bars 12b extending in the horizontal direction are arranged from the upper end to the lower end in the frame 3. Arrange at predetermined intervals in the vertical direction toward. Further, in the first embodiment, in the reinforcing bar arrangement step, the split reinforcing bar 13 is arranged at the joint portion (outer edge portion of the seismic reinforcing wall 10) with the frame 3 of the seismic reinforcing wall 10.

型枠設置工程では、上記配筋工程で配設された複数の鉄筋12を内包する壁体14を構成するための型枠を設置する。型枠は、耐震補強壁10の厚さが130mm以下になるように、また、後の打設工程において、高強度グラウト材が一対の梁2の梁幅方向において梁幅wを超えない範囲に充填されるように設置される。なお、型枠には、壁体14を構成する高強度グラウト材を注入するための注入孔と複数の空気抜き孔とを設けておく。 In the formwork installation step, a formwork for forming the wall body 14 including the plurality of reinforcing bars 12 arranged in the above-mentioned bar arrangement step is installed. The formwork should be such that the thickness of the seismic reinforcement wall 10 is 130 mm or less, and the high-strength grout material does not exceed the beam width w in the beam width direction of the pair of beams 2 in the subsequent casting process. Installed to be filled. The formwork is provided with an injection hole for injecting the high-strength grout material constituting the wall body 14 and a plurality of air vent holes.

シール工程では、型枠を構成する板状部材の連結部分の隙間をシール部材で埋め、打設工程において高強度グラウト材が隙間から漏れないようにする。 In the sealing process, the gap between the connecting portions of the plate-shaped members constituting the formwork is filled with the sealing member to prevent the high-strength grout material from leaking from the gap in the casting process.

打設工程では、グラウトポンプを用いて型枠設置工程において設置された型枠に形成された注入孔から型枠内に高強度グラウト材を充填する。このとき、上記高強度グラウト材は、上記型枠により、耐震補強壁10の厚さが130mm以下になるように、一対の梁2の梁幅方向において梁幅wを超えない範囲に充填される。なお、高強度グラウト材は、上述のように、施工現場において、プレミックスグラウト組成物と水とをミキサーによって混練することによって製造される。なお、本実施形態では、プレミックスグラウト組成物100質量部に対し8質量部以上20質量部以下の水と混練することによって製造した高強度グラウト材が注入される。 In the casting process, a high-strength grout material is filled into the mold through the injection holes formed in the mold installed in the mold installation process using a grout pump. At this time, the high-strength grout material is filled by the formwork in a range not exceeding the beam width w in the beam width direction of the pair of beams 2 so that the thickness of the seismic reinforcing wall 10 is 130 mm or less. .. As described above, the high-strength grout material is produced by kneading the premix grout composition and water with a mixer at the construction site. In the present embodiment, a high-strength grout material produced by kneading 100 parts by mass of the premix grout composition with water of 8 parts by mass or more and 20 parts by mass or less is injected.

養生工程では、打設工程において打設された高強度グラウト材に振動を与えないようにして硬化させる。 In the curing step, the high-strength grout material cast in the casting step is cured without giving vibration.

型枠解体工程では、高強度グラウト材が硬化したところで養生工程を終了して型枠を解体する。 In the formwork dismantling step, when the high-strength grout material is hardened, the curing step is completed and the formwork is dismantled.

以上の工程により、架構3内において既存壁4に沿う耐震補強壁10が構築される。このように本願発明に係る耐震補強工法では、打設工程が1度で済む。そのため、コンクリートと無収縮モルタルとを打設することで2度の打設工程を行う必要があった従来工法に比べて工期を短縮することができる。 Through the above steps, the seismic reinforcing wall 10 along the existing wall 4 is constructed in the frame 3. As described above, in the seismic reinforcement method according to the present invention, the casting process can be performed only once. Therefore, by placing concrete and non-shrink mortar, the construction period can be shortened as compared with the conventional construction method in which it is necessary to perform the casting process twice.

具体的には、図4に示すように、従来工法は、アンカー取付工程と、配筋工程と、第1型枠設置工程と、第1打設工程と、第1養生工程と、第2型枠設置工程と、シール工程と、第2打設工程と、第2養生工程と、型枠解体工程とを備えていた。 Specifically, as shown in FIG. 4, the conventional construction method includes an anchor mounting process, a bar arrangement process, a first mold installation process, a first casting process, a first curing process, and a second mold. It includes a frame installation process, a sealing process, a second placing process, a second curing process, and a mold dismantling process.

第1型枠設置工程は、コンクリート打設用の型枠を設置する工程であり、第1打設工程は、コンクリートを打設する工程であり、第1養生工程は、コンクリートを硬化させる工程である。一方、第2型枠設置工程は、無収縮モルタル打設用の型枠を設置する工程であり、第2打設工程は、無収縮モルタルを打設する工程であり、第2養生工程は、無収縮モルタルを硬化させる工程である。 The first formwork installation process is a process of installing a formwork for placing concrete, the first placing process is a process of placing concrete, and the first curing process is a process of hardening concrete. is there. On the other hand, the second mold setting step is a step of installing a mold for placing a non-shrink mortar, the second casting step is a step of placing a non-shrink mortar, and the second curing step is a step of placing a non-shrink mortar. This is a process of curing non-shrink mortar.

図3に示すように、従来工法では、第1打設工程において、既存の梁2の200mm下方の高さまでのコンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設することとなる。 As shown in FIG. 3, in the conventional construction method, in the first placing step, the concrete wall body 20 up to a height of 200 mm below the existing beam 2 is placed, and then the concrete wall body 20 and the existing beam 2 are combined. A non-shrink mortar is injected between them to drive the non-shrink mortar wall 30.

このように従来工法では、コンクリートと無収縮モルタルとを打設するため、型枠設置工程と、打設工程と、養生工程とをそれぞれ2度行う必要があった。これに対し、本願発明に係る耐震補強工法(本工法)では、型枠設置工程と打設工程と養生工程とをそれぞれ1度のみ行えばよいため、工期を大幅に短縮することができる。なお、図4では、本工法によれば、従来工法に比べて3日の工期短縮が可能になる。 As described above, in the conventional method, in order to place concrete and non-shrink mortar, it is necessary to perform the formwork setting process, the placing process, and the curing process twice. On the other hand, in the seismic reinforcement method (this method) according to the present invention, the formwork installation process, the placing process, and the curing process need to be performed only once, so that the construction period can be significantly shortened. In FIG. 4, according to this construction method, the construction period can be shortened by 3 days as compared with the conventional construction method.

また、図3に示すように、既存梁2の梁幅wが狭い場合には、既存壁4の補強側(既存壁4に直交する水平方向において耐震補強壁10が構築される側)の端面と既存梁2の補強側の端面との距離w1が短いため、従来工法の壁厚t2の厚い耐震補強壁では、耐震補強壁が上下の既存梁2から補強側にはみ出してしまう。そのため、このような場合には、耐震補強壁が上下の梁2からはみ出さないように、幅Δw分だけ梁2の増打ちを行う必要がある。この場合、上方の梁2に対しては、既存梁2の側方に幅Δwの無収縮モルタル梁が形成されるように無収縮モルタル壁体30を上方に延長すればよいが、下方の梁2(階下の天井5裏の梁2)に対しては、梁2の側方に、耐震補強壁とは別に、型枠を設置し、無収縮モルタルを充填することによって無収縮モルタル梁体40を増打ちしなければならない。また、天井5裏には、種々の配線、配管、ダクト等が配設されているため、下方の梁2の側方に無収縮モルタル梁体40を増打ちする前に、これらの配線、配管、ダクト等の移設が必要になる場合がある。このように、従来工法では、耐震補強壁が分厚くなるために、梁の増打ちが必要になる場合が多く、耐震補強壁の構築以外に種々の作業を行う必要があるために工期が長くなる虞があった。 Further, as shown in FIG. 3, when the beam width w of the existing beam 2 is narrow, the end face of the existing wall 4 on the reinforcing side (the side on which the seismic reinforcing wall 10 is constructed in the horizontal direction orthogonal to the existing wall 4). Since the distance w1 between the beam and the end face of the existing beam 2 on the reinforcing side is short, the seismic reinforcing wall with a thick wall thickness t2 of the conventional method protrudes from the upper and lower existing beams 2 to the reinforcing side. Therefore, in such a case, it is necessary to increase the number of beams 2 by the width Δw so that the seismic reinforcing wall does not protrude from the upper and lower beams 2. In this case, with respect to the upper beam 2, the non-shrink mortar wall 30 may be extended upward so that a non-shrink mortar beam having a width Δw is formed on the side of the existing beam 2, but the lower beam For 2 (beam 2 behind the ceiling 5 downstairs), a mold is installed on the side of the beam 2 separately from the seismic reinforcement wall, and a non-shrink mortar is filled to form a non-shrink mortar beam 40. Must be increased. Further, since various wirings, pipes, ducts, etc. are arranged on the back of the ceiling 5, these wirings, pipes, and the like are arranged before the non-shrink mortar beam body 40 is added to the side of the lower beam 2. , Ducts, etc. may need to be relocated. In this way, in the conventional construction method, since the seismic reinforcement wall becomes thick, it is often necessary to increase the number of beams, and it is necessary to perform various operations other than the construction of the seismic reinforcement wall, so that the construction period becomes long. There was a risk.

これに対し、本願発明に係る耐震補強工法(本工法)では、上述のように、従来工法による耐震補強壁に比べて薄い壁厚で同等の耐力を有する耐震補強壁10を構築することができる。具体的には、耐震補強壁10の厚さt1を130mm以下と薄くすることができる。そのため、本工法では、打設工程において、無収縮モルタルによる梁2の増打ちを省略することができ、梁の増打ちに伴う種々の作業を行う必要がなくなるため、このような点からも工期の短縮が可能になる。 On the other hand, in the seismic reinforcement method (this method) according to the present invention, as described above, it is possible to construct the seismic reinforcement wall 10 having a thinner wall thickness and the same proof stress as the seismic reinforcement wall by the conventional method. .. Specifically, the thickness t1 of the seismic reinforcing wall 10 can be reduced to 130 mm or less. Therefore, in this construction method, it is possible to omit the additional striking of the beam 2 by the non-shrink mortar in the casting process, and it is not necessary to perform various operations associated with the additional striking of the beam. Can be shortened.

−実施形態1の効果−
以上のように、本実施形態1によれば、耐震補強壁10の壁体14を、従来の鉄筋コンクリート造の耐震補強壁のようにコンクリートで構成するのではなく、セメント、膨張材、豆砂利を含む骨材、セメント分散剤、増粘剤及び発泡剤を含有するプレミックスグラウト組成物と水とで構成される高強度グラウト材の硬化物で構成することとした。上記高強度グラウト材は、膨張材及び発泡剤を含有しているため、硬化する際にほとんど沈下せず、無収縮モルタルと同様の無収縮性を有する。一方、上記高強度グラウト材は、豆砂利を含むため、硬化物の乾燥収縮や水和熱による温度上昇が一般の無収縮モルタルに比べて著しく小さくなる。そのため、従来工法では、コンクリートが沈下するために、図3に示すように、コンクリート壁体20を打設した後、コンクリート壁体20と既存の梁2との間に無収縮モルタルを注入して無収縮モルタル壁体30を打設し、コンクリート壁体20と無収縮モルタル壁体30とで耐震補強壁の壁体を構成していたが、本実施形態1では、上記高強度グラウト材の硬化物のみで耐震補強壁10の壁体14を構成することができる。よって、このような耐震補強壁10を構築する耐震補強工法(本工法)によれば、従来工法のようにコンクリート壁体20の打設後に無収縮モルタルからなる無収縮モルタル壁体30を打設する必要がなく、耐震補強壁10を構築する工期を大幅に短縮することができる。従って、実施形態1によれば、従来よりも短い工期で耐震補強壁10を構築可能な耐震補強工法を提供することができる。
-Effect of Embodiment 1-
As described above, according to the first embodiment, the wall body 14 of the seismic reinforcement wall 10 is not made of concrete like the conventional reinforced concrete seismic reinforcement wall, but is made of cement, expansion material, and gravel. It was decided to construct a cured product of a high-strength grout material composed of a premix grout composition containing an aggregate containing an aggregate, a cement dispersant, a thickener and a foaming agent, and water. Since the high-strength grout material contains an expansion material and a foaming agent, it hardly sinks when cured, and has the same non-shrinkage property as non-shrinkage mortar. On the other hand, since the high-strength grout material contains bean gravel, the temperature rise due to drying shrinkage and heat of hydration of the cured product is significantly smaller than that of general non-shrinkage mortar. Therefore, in the conventional method, since the concrete sinks, as shown in FIG. 3, after the concrete wall body 20 is placed, non-shrink mortar is injected between the concrete wall body 20 and the existing beam 2. The non-shrink mortar wall 30 was cast, and the concrete wall 20 and the non-shrink mortar wall 30 formed the wall body of the seismic reinforced wall. However, in the first embodiment, the hardening of the high-strength grout material is performed. The wall body 14 of the seismic reinforcement wall 10 can be formed only by objects. Therefore, according to the seismic reinforcement method (this method) for constructing such a seismic reinforcement wall 10, the non-shrink mortar wall 30 made of non-shrink mortar is placed after the concrete wall 20 is placed as in the conventional method. It is not necessary to do so, and the construction period for constructing the seismic reinforcing wall 10 can be significantly shortened. Therefore, according to the first embodiment, it is possible to provide a seismic reinforcement construction method capable of constructing the seismic reinforcement wall 10 in a shorter construction period than the conventional one.

また、本実施形態1によれば、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm)の2倍以上の圧縮強度を有する高強度グラウト材の硬化物で耐震補強壁10の壁体14を構成することとしたため、従来工法による耐震補強壁に比べて薄い壁厚t1で同等の耐力を有する耐震補強壁10を構築することができる。また、上記高強度グラウト材は、使用する砂利が豆砂利であるため、骨材の粒子が丸みを帯びており、骨材の最大寸法が7mm以下と小さい場合でも、スランプフロー500mm以上となるような高い流動性を確保することが可能となる。このことから、上記耐震補強壁10の厚さを130mm以下と薄くすることができる。そのため、既存梁2の梁幅wが狭く、既存壁4の補強側の端面と既存梁の補強側の端面との距離w1が短い場合でも、耐震補強壁10を既存梁2から梁幅方向にはみ出さないように構築することができ、無収縮モルタルによる梁の増打ちを省略することができる。よって、天井裏にある種々の配線、配管、ダクト等の移設が不要となり、このような点からも耐震補強壁10を構築するための工期を大幅に短縮することができる。 Further, according to the first embodiment, a hardened product of a high-strength grout material having a compressive strength more than twice the compressive strength (about 24 N / mm 2 ) of the "ready-mixed concrete" specified in JIS A5308 is used as a seismic reinforcing wall. Since the wall body 14 of 10 is configured, it is possible to construct the seismic reinforcing wall 10 having a wall thickness t1 thinner than that of the seismic reinforcing wall by the conventional construction method and having the same strength. Further, since the gravel used in the high-strength grout material is bean gravel, the particles of the aggregate are rounded, and even if the maximum size of the aggregate is as small as 7 mm or less, the slump flow is 500 mm or more. It is possible to secure a high level of liquidity. From this, the thickness of the seismic reinforcing wall 10 can be reduced to 130 mm or less. Therefore, even if the beam width w of the existing beam 2 is narrow and the distance w1 between the end face on the reinforcing side of the existing wall 4 and the end face on the reinforcing side of the existing beam is short, the seismic reinforcing wall 10 is moved from the existing beam 2 in the beam width direction. It can be constructed so that it does not protrude, and it is possible to omit the additional striking of the beam by the non-shrink mortar. Therefore, it is not necessary to relocate various wirings, pipes, ducts, etc. behind the ceiling, and from such a point, the construction period for constructing the seismic reinforcing wall 10 can be significantly shortened.

さらに、本実施形態1によれば、上述のように、従来工法による耐震補強壁に比べて薄い壁厚t1で同等の耐力を有する耐震補強壁10を構築することができるため、複数階層の建築物の耐震補強を行う場合に、耐震補強による建築物の重量増加を低減することができる。このような重量増加の低減により、建築物全体の補強量を低減することができるため、耐震補強にかかる費用を低減することができる。 Further, according to the first embodiment, as described above, since it is possible to construct the seismic reinforcement wall 10 having a wall thickness t1 thinner than that of the seismic reinforcement wall by the conventional construction method and having the same proof stress, it is possible to construct a multi-story building. When seismic reinforcement of an object is performed, the weight increase of the building due to the seismic reinforcement can be reduced. By reducing such an increase in weight, the amount of reinforcement of the entire building can be reduced, so that the cost for seismic reinforcement can be reduced.

また、本実施形態1によれば、上述のように、JISA5308に規定された「レディーミクストコンクリート」の圧縮強度(約24N/mm)の2倍以上の圧縮強度を有する高強度グラウト材の硬化物で耐震補強壁10の壁体14を構成することとしたため、複数階層の建築物の耐震補強を行う場合に、従来工法による耐震補強壁と同等の壁厚で耐震補強壁10を構築することによって、補強箇所を低減することができるため、耐震補強にかかる費用を低減することができる。 Further, according to the first embodiment, as described above, hardening of a high-strength grout material having a compressive strength more than twice the compressive strength (about 24 N / mm 2 ) of the “ready-mixed concrete” defined in JIS A5308. Since it was decided to construct the wall body 14 of the seismic reinforcement wall 10 with an object, when performing seismic reinforcement of a multi-story building, the seismic reinforcement wall 10 should be constructed with the same wall thickness as the seismic reinforcement wall by the conventional construction method. As a result, the number of reinforcement points can be reduced, so that the cost for seismic reinforcement can be reduced.

また、従来工法では大量のコンクリートを用いるため、コンクリートポンプ車等の大型車両を出動させる必要があったが、本実施形態1によれば、プレミックスグラウト組成物に水を加えて混練することによって施工現場において製造される高強度グラウト材を用いるため、大型車両を出動させる必要がない。また、増築する耐震補強壁10の近くで高強度グラウト材を製造することができるため、高強度グラウト材を運搬する必要もない。そのため、本実施形態1の耐震補強壁10及び耐震補強工法によれば、敷地が狭い建築物、周辺道路の交通量が多くコンクリート打設計画が難しい建築物、高層の建築物に対しても容易に施工することができる。 Further, since a large amount of concrete is used in the conventional construction method, it is necessary to dispatch a large vehicle such as a concrete pump truck. However, according to the first embodiment, water is added to the premix grout composition and kneaded. Since high-strength grout material manufactured at the construction site is used, it is not necessary to dispatch a large vehicle. Further, since the high-strength grout material can be manufactured near the seismic reinforcing wall 10 to be added, it is not necessary to transport the high-strength grout material. Therefore, according to the seismic reinforcement wall 10 and the seismic reinforcement method of the first embodiment, it is easy for buildings with a narrow site, buildings with heavy traffic on surrounding roads, and buildings for which concrete casting design is difficult, and high-rise buildings. Can be constructed in.

《その他の実施形態》
上記実施形態1では、架構3内の既存壁4に沿って耐震補強壁10を構築する耐震補強工法について説明したが、本願発明に係る耐震補強壁及びそれを構築する耐震補強工法は、上述のものに限定されず、架構内3に新たに耐震補強壁10を増設する場合にも適用できる。
<< Other Embodiments >>
In the first embodiment, the seismic reinforcement method for constructing the seismic reinforcement wall 10 along the existing wall 4 in the frame 3 has been described, but the seismic reinforcement wall according to the present invention and the seismic reinforcement method for constructing the same are described above. It is not limited to the one, and can be applied to the case where a new seismic reinforcing wall 10 is added to the frame 3.

以上説明したように、本発明は、耐震補強工法について有用である。 As described above, the present invention is useful for the seismic reinforcement method.

1 柱
2 梁
3 架構
4 既設壁
10 耐震補強壁
11 アンカー部材
12 鉄筋
14 壁体
1 pillar
2 beams
3 Framing
4 Existing wall
10 Seismic reinforcement wall
11 Anchor member
12 rebar
14 wall body

Claims (2)

建築物の左右一対の柱と上下一対の梁とで囲まれた架構内に耐震補強壁を構築することによって上記建築物の保有耐力を増加させる耐震補強工法であって、
上記架構に複数のアンカー部材を該架構内に突出するように取り付けるアンカー取付工程と、
上記架構内に縦横に複数の鉄筋を配設する配筋工程と、
上記架構内に、上記耐震補強壁を構成するための型枠を設置する型枠設置工程と、
上記型枠内に、セメント、膨張材、粒径が4mmを超え7mm以下の豆砂利と該豆砂利よりも粒径の小さい骨材とからなる骨材、セメント分散剤、増粘剤及び発泡剤を含有するグラウト組成物と水とでスランプフロー500mm以上となるように構成され高強度グラウト材を、上記耐震補強壁の厚さが130mm以下になるように、上記梁の梁幅方向において梁幅を超えない範囲に充填する打設工程と、
上記打設工程において上記型枠内に充填された上記高強度グラウト材を硬化させて上記複数の鉄筋を内包する壁体を構成する養生工程と、
上記養生工程の後、上記型枠を解体する型枠解体工程とを備え、
上記型枠設置工程と上記打設工程と上記養生工程とは、それぞれ1度のみ行われる
ことを特徴とする耐震補強工法。
This is a seismic reinforcement method that increases the holding capacity of the building by constructing a seismic reinforcement wall in the frame surrounded by a pair of left and right columns and a pair of upper and lower beams of the building.
Anchor mounting process of mounting a plurality of anchor members on the frame so as to project into the frame,
Reinforcing bar arrangement process in which a plurality of reinforcing bars are arranged vertically and horizontally in the above frame, and
The formwork installation process of installing the formwork for constructing the earthquake-resistant reinforcing wall in the frame, and
In the above mold, cement, expansion material, aggregate consisting of bean gravel having a particle size of more than 4 mm and 7 mm or less and aggregate having a particle size smaller than the bean gravel, cement dispersant, thickener and foaming agent A high-strength grout material composed of a grout composition containing the above-mentioned material and water so as to have a slump flow of 500 mm or more is provided in the beam width direction of the beam so that the thickness of the seismic reinforcing wall is 130 mm or less. The casting process to fill the area not to exceed the width,
In the casting step, the high-strength grout material filled in the formwork is cured to form a wall body containing the plurality of reinforcing bars, and a curing step.
After the curing step, a mold dismantling step of disassembling the mold is provided.
A seismic reinforcement method characterized in that the formwork installation process, the casting process, and the curing process are performed only once.
請求項1において、
上記打設工程では、無収縮モルタルによる上記梁の増打ちを行うことなく、上記高強度グラウト材の上記型枠内への充填が行われる
ことを特徴とする耐震補強工法。
In claim 1,
The seismic reinforcement method is characterized in that, in the casting process, the high-strength grout material is filled into the formwork without additional striking of the beam with non-shrink mortar.
JP2018082035A 2018-04-23 2018-04-23 Seismic reinforcement method Active JP6757947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018082035A JP6757947B2 (en) 2018-04-23 2018-04-23 Seismic reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082035A JP6757947B2 (en) 2018-04-23 2018-04-23 Seismic reinforcement method

Publications (2)

Publication Number Publication Date
JP2019190079A JP2019190079A (en) 2019-10-31
JP6757947B2 true JP6757947B2 (en) 2020-09-23

Family

ID=68389422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082035A Active JP6757947B2 (en) 2018-04-23 2018-04-23 Seismic reinforcement method

Country Status (1)

Country Link
JP (1) JP6757947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150887A (en) * 2021-06-17 2022-03-08 黑龙江省建工集团有限责任公司 Construction process for reinforcing and reforming old house
JP7157854B1 (en) 2021-07-01 2022-10-20 国立大学法人 東京大学 Joint structure between columns/beams and seismic walls

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227557B2 (en) * 2004-05-21 2009-02-18 泰稔 山本 Reinforced wall construction method and existing wall structure of existing concrete wall
JP5121484B2 (en) * 2008-02-08 2013-01-16 電気化学工業株式会社 Underwater inseparable cement composition, premix type underwater inseparable mortar composition, and underwater inseparable grout mortar

Also Published As

Publication number Publication date
JP2019190079A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP4969152B2 (en) Reinforcement structure and reinforcement method for concrete building
Jalal et al. Foam concrete
WO2017010016A1 (en) Method for burying precast pile
JP4731287B2 (en) Reinforcement method for concrete buildings
CN101858114A (en) Construction method for cast-in-place integral light-weight partition wall
JP6757947B2 (en) Seismic reinforcement method
KR102513969B1 (en) Panel type retaining wall construction method
JP5615015B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP4348331B2 (en) Reinforcing structure and reinforcing method of concrete structure
US11168449B2 (en) Method for batch casting high-fluidity high-performance concrete and low-fluidity high-performance concrete
US10316239B2 (en) Compressible grout mix for use in absorbing compressive or deformation stresses of subterranean formations
US20190048249A1 (en) Compressible grout mix for use in absorbing compressive or deformation stresses
Laefer et al. Selection, production, and testing of scaled reinforced concrete models and their components
JPH0660046B2 (en) Heavy grout mortar and filling method using it
JP5809369B2 (en) Cast-in-place concrete pile method
JP2008231676A (en) Manufacturing method for steel-concrete floor slab joining structure and buried form
JP2015006977A (en) Fiber-reinforced flowable high strength concrete
JP2015218497A (en) Seismic strengthening structure and seismic strengthening method
JP6469900B2 (en) Isolation material
JP2007032192A (en) Reinforcing structure of building and concrete building containing the reinforcing structure
JP6259687B2 (en) Seismic strengthening method for concrete girder for bridge
KR102513964B1 (en) Slope reinforcement method
JP7381623B2 (en) Ultra-high strength reinforced concrete segment and its manufacturing method
JP5470195B2 (en) How to install the structure
CN105839642A (en) Method for preparing riprap grouted concrete

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6757947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250