JP2019186655A - Elastic wave device, multiplexer, and composite substrate - Google Patents

Elastic wave device, multiplexer, and composite substrate Download PDF

Info

Publication number
JP2019186655A
JP2019186655A JP2018072706A JP2018072706A JP2019186655A JP 2019186655 A JP2019186655 A JP 2019186655A JP 2018072706 A JP2018072706 A JP 2018072706A JP 2018072706 A JP2018072706 A JP 2018072706A JP 2019186655 A JP2019186655 A JP 2019186655A
Authority
JP
Japan
Prior art keywords
acoustic wave
thickness
piezoelectric substrate
region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072706A
Other languages
Japanese (ja)
Other versions
JP7169083B2 (en
Inventor
均 月舘
Hitoshi Tsukidate
均 月舘
畑山 和重
Kazue Hatayama
和重 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018072706A priority Critical patent/JP7169083B2/en
Publication of JP2019186655A publication Critical patent/JP2019186655A/en
Application granted granted Critical
Publication of JP7169083B2 publication Critical patent/JP7169083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

To provide an elastic wave resonator having a different resonance frequency.SOLUTION: A elastic wave device includes a support substrate, a piezoelectric substrate bonded onto the support substrate and having a first region having a first thickness and a second region having a second thickness greater than the first thickness, a first acoustic wave resonator including a pair of first comb electrodes provided on the first region of the piezoelectric substrate, each having a plurality of first electrode fingers and in which an average pitch of one first electrode finger of the pair of first comb electrodes is larger than the first thickness, and a second acoustic wave resonator provided on the second region of the piezoelectric substrate and including a pair of second comb electrodes each having a plurality of second electrode fingers.SELECTED DRAWING: Figure 5

Description

本発明は、弾性波デバイス、マルチプレクサおよび複合基板に関し、例えば支持基板上に接合された圧電基板を有する弾性波デバイス、マルチプレクサおよび複合基板に関する。   The present invention relates to an acoustic wave device, a multiplexer, and a composite substrate. For example, the present invention relates to an acoustic wave device, a multiplexer, and a composite substrate having a piezoelectric substrate bonded on a support substrate.

圧電基板の弾性表面波を用いた弾性波デバイスの周波数温度特性を向上させるため支持基板上に圧電基板を接合することが知られている。圧電基板の厚さを弾性表面波の波長以下とすることでスプリアスを抑制できることが知られている(例えば特許文献1)。支持基板と圧電基板との間に圧電基板よりバルク音速が遅い低音速膜を設けることが知られている(例えば特許文献2)。圧電基板の厚さを異ならせることが知られている(例えば特許文献3から5)   It is known to join a piezoelectric substrate on a support substrate in order to improve frequency temperature characteristics of an acoustic wave device using surface acoustic waves of the piezoelectric substrate. It is known that spurious can be suppressed by setting the thickness of the piezoelectric substrate to be equal to or less than the wavelength of the surface acoustic wave (for example, Patent Document 1). It is known to provide a low sound velocity film whose bulk sound velocity is lower than that of a piezoelectric substrate between a support substrate and a piezoelectric substrate (for example, Patent Document 2). It is known to vary the thickness of the piezoelectric substrate (for example, Patent Documents 3 to 5).

特開2017−34363号公報JP 2017-34363 A 国際公開2012/086639号International Publication No. 2012/086639 特開2013−157839号公報JP 2013-1557839 A 特開2005−223610号公報JP 2005-223610 A 特開平5−304436号公報JP-A-5-304436 特表2018−506930号公報Special table 2018-506930 gazette

共振周波数の異なる弾性表面波共振器を同一基板に設けるためには、電極指のピッチを異ならせる、電極指の膜厚を異ならせる、および/または電極指を覆う絶縁膜の膜厚を異ならせる、等の方法がある。しかしながら、共振周波数を大きく異ならせようとすると、いずれの方法も製造方法が複雑になる、および/または製造方法が制約される。   In order to provide surface acoustic wave resonators with different resonance frequencies on the same substrate, the pitch of the electrode fingers is varied, the thickness of the electrode fingers is varied, and / or the thickness of the insulating film covering the electrode fingers is varied. , Etc. However, if the resonance frequencies are greatly varied, the manufacturing method is complicated and / or the manufacturing method is restricted.

本発明は、上記課題に鑑みなされたものであり、共振周波数の異なる弾性波共振器を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an acoustic wave resonator having different resonance frequencies.

本発明は、支持基板と、前記支持基板上に接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、前記圧電基板の前記第1領域上に設けられ、複数の第1電極指を各々有する一対の第1櫛型電極を備え、前記一対の第1櫛型電極の一方の第1電極指の平均ピッチは前記第1の厚さより大きい第1弾性波共振器と、前記圧電基板の前記第2領域上に設けられ、複数の第2電極指を各々有する一対の第2櫛型電極を備える第2弾性波共振器と、を備える弾性波デバイスである。   The present invention relates to a piezoelectric substrate having a support substrate, a first region having a first thickness bonded to the support substrate, and a second region having a second thickness greater than the first thickness. A pair of first comb electrodes provided on the first region of the piezoelectric substrate, each having a plurality of first electrode fingers, and an average of one first electrode finger of the pair of first comb electrodes A second acoustic wave resonator having a pitch greater than the first thickness, and a second comb-shaped electrode provided on the second region of the piezoelectric substrate and having a plurality of second electrode fingers, respectively. An elastic wave device comprising: an elastic wave resonator.

上記構成において、前記一対の第2櫛型電極の一方の第2電極指の平均ピッチは前記第2の厚さより大きい構成とすることができる。   The said structure WHEREIN: The average pitch of one 2nd electrode finger of a pair of said 2nd comb-shaped electrode can be set as a structure larger than a said 2nd thickness.

上記構成において、前記一対の第2櫛型電極の一方の第2電極指の平均ピッチは前記第2の厚さより小さい構成とすることができる。   In the above configuration, an average pitch of one second electrode finger of the pair of second comb electrodes may be smaller than the second thickness.

上記構成において、前記圧電基板は前記支持基板にアモルファス層を介し直接接合されている構成とすることができる。   In the above configuration, the piezoelectric substrate may be directly bonded to the support substrate through an amorphous layer.

上記構成において、前記圧電基板と前記支持基板とに挟まれた中間層を備える構成とすることができる。   The said structure WHEREIN: It can be set as the structure provided with the intermediate | middle layer pinched | interposed into the said piezoelectric substrate and the said support substrate.

上記構成において、前記圧電基板の前記第1領域と前記支持基板との間の前記中間層の第3の厚さは前記圧電基板の前記第2領域と前記支持基板との間の前記中間層の第4の厚さより大きい構成とすることができる。   In the above configuration, the third thickness of the intermediate layer between the first region of the piezoelectric substrate and the support substrate is the same as that of the intermediate layer between the second region of the piezoelectric substrate and the support substrate. A configuration greater than the fourth thickness may be employed.

上記構成において、前記圧電基板の前記第1領域と前記第2領域との前記中間層の反対側の面は略平坦である構成とすることができる。   The said structure WHEREIN: The surface on the opposite side of the said intermediate | middle layer of the said 1st area | region and the said 2nd area | region of the said piezoelectric substrate can be set as a substantially flat structure.

上記構成において、前記一対の第1櫛型電極および前記一対の第2櫛型電極はSH波を励振する構成とすることができる。   In the above configuration, the pair of first comb electrodes and the pair of second comb electrodes may be configured to excite SH waves.

上記構成において、前記圧電基板は、20°以上かつ48°以下のカット角を有するYカットX伝搬タンタル酸リチウム基板である構成とすることができる。   The said structure WHEREIN: The said piezoelectric substrate can be set as the structure which is a Y cut X propagation lithium tantalate board | substrate which has a cut angle of 20 degrees or more and 48 degrees or less.

本発明は、上記弾性波デバイスを含み、1または複数の前記第1弾性波共振器を含む第1フィルタと、前記第1フィルタの通過帯域と重ならない通過帯域を有し、1または複数の前記第2弾性波共振器を含む第2フィルタと、を備えるマルチプレクサである。   The present invention includes the above acoustic wave device, a first filter including one or more first acoustic wave resonators, and a pass band that does not overlap with a pass band of the first filter. And a second filter including a second acoustic wave resonator.

本発明は、支持基板と、前記支持基板上にアモルファス層を介し接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、前記支持基板と前記圧電基板とに挟まれ、前記圧電基板の前記第1領域と前記支持基板との間の第3の厚さは前記圧電基板の前記第2領域と前記支持基板との間の第4の厚さより大きい中間層と、を備える複合基板である。   The present invention includes a support substrate, a first region having a first thickness bonded to the support substrate through an amorphous layer, and a second region having a second thickness greater than the first thickness. And a third thickness between the first region of the piezoelectric substrate and the support substrate is between the second region of the piezoelectric substrate and the support. An intermediate layer having a thickness greater than a fourth thickness between the substrate and the substrate.

本発明によれば、共振周波数の異なる弾性波共振器を提供することができる。   According to the present invention, it is possible to provide elastic wave resonators having different resonance frequencies.

図1(a)は、弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。FIG. 1A is a plan view of an acoustic wave resonator, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 図2(a)および図2(b)は、比較例1に係る弾性波共振器の断面図である。2A and 2B are cross-sectional views of the acoustic wave resonator according to the first comparative example. 図3は、比較例2に係る弾性波デバイスの断面図である。FIG. 3 is a cross-sectional view of an acoustic wave device according to Comparative Example 2. 図4(a)および図4(b)は、圧電基板の厚さT/ピッチLに対する共振周波数frを示す図である。FIG. 4A and FIG. 4B are diagrams showing the resonance frequency fr with respect to the thickness T / pitch L of the piezoelectric substrate. 図5(a)および図5(b)は、実施例1に係る弾性波デバイスの断面図である。FIG. 5A and FIG. 5B are cross-sectional views of the acoustic wave device according to the first embodiment. 図6は、実施例1を用いたデュプレクサの回路図である。FIG. 6 is a circuit diagram of a duplexer using the first embodiment. 図7は、実施例1における基板10の平面図である。FIG. 7 is a plan view of the substrate 10 according to the first embodiment. 図8(a)から図8(e)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。8A to 8E are cross-sectional views (part 1) illustrating the method for manufacturing the acoustic wave device according to the first embodiment. 図9(a)から図9(d)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。FIG. 9A to FIG. 9D are cross-sectional views (part 2) illustrating the method for manufacturing the acoustic wave device according to the first embodiment. 図10(a)および図10(b)は、実施例2に係る弾性波デバイスの断面図である。FIG. 10A and FIG. 10B are cross-sectional views of the acoustic wave device according to the second embodiment. 図11(a)および図11(b)は、実施例2の変形例1に係る弾性波デバイスの断面図である。FIG. 11A and FIG. 11B are cross-sectional views of the acoustic wave device according to the first modification of the second embodiment. 図12(a)から図12(d)は、実施例2の変形例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。12A to 12D are cross-sectional views (part 1) illustrating the method for manufacturing the acoustic wave device according to the first modification of the second embodiment. 図13(a)から図13(c)は、実施例2の変形例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。13A to 13C are cross-sectional views (part 2) illustrating the method for manufacturing the acoustic wave device according to the first modification of the second embodiment. 図14(a)および図14(b)は、実施例2の変形例1に係る弾性波デバイスの製造方法を示す断面図(その3)である。14A and 14B are cross-sectional views (part 3) illustrating the method for manufacturing the acoustic wave device according to the first modification of the second embodiment.

[弾性波共振器の説明]
図1(a)は、弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。電極指14の配列方向をX方向、電極指14の延伸する方向をY方向、圧電基板10aの上面の法線方向をZ方向とする。X方向、Y方向およびZ方向は、圧電基板10aの結晶方位のX軸方向、Y軸方向およびZ軸方向とは必ずしも対応しない。
[Description of elastic wave resonator]
FIG. 1A is a plan view of an acoustic wave resonator, and FIG. 1B is a cross-sectional view taken along line AA of FIG. The arrangement direction of the electrode fingers 14 is the X direction, the extending direction of the electrode fingers 14 is the Y direction, and the normal direction of the upper surface of the piezoelectric substrate 10a is the Z direction. The X direction, the Y direction, and the Z direction do not necessarily correspond to the X axis direction, the Y axis direction, and the Z axis direction of the crystal orientation of the piezoelectric substrate 10a.

図1(a)および図1(b)に示すように、弾性波共振器20では、基板10は、支持基板10bと支持基板10bに接合された圧電基板10aとを有する。圧電基板10a上にIDT18および反射器19が形成されている。IDT18および反射器19は、基板10上に形成された金属膜12により形成される。IDT18は、対向する一対の櫛型電極16を備える。一対の櫛型電極16は、それぞれ複数の電極指14と、複数の電極指14が接続されたバスバー15と、を備える。一対の櫛型電極16の電極指14が重なる領域が交差領域56である。交差領域56の少なくとも一部において、一対の櫛型電極16のうち一方の櫛型電極の電極指と他方の櫛型電極の電極指とがほぼ互い違いとなるように、対向して設けられている。   As shown in FIGS. 1A and 1B, in the acoustic wave resonator 20, the substrate 10 includes a support substrate 10b and a piezoelectric substrate 10a bonded to the support substrate 10b. An IDT 18 and a reflector 19 are formed on the piezoelectric substrate 10a. The IDT 18 and the reflector 19 are formed by the metal film 12 formed on the substrate 10. The IDT 18 includes a pair of opposing comb electrodes 16. Each of the pair of comb-shaped electrodes 16 includes a plurality of electrode fingers 14 and a bus bar 15 to which the plurality of electrode fingers 14 are connected. A region where the electrode fingers 14 of the pair of comb electrodes 16 overlap is an intersecting region 56. In at least a part of the intersecting region 56, the electrode fingers of one comb electrode and the electrode fingers of the other comb electrode of the pair of comb electrodes 16 are provided to face each other in an almost alternate manner. .

交差領域56において電極指14が励振する弾性波は、主にX方向に伝搬する。一方の櫛型電極16の電極指14のピッチLがほぼ弾性波の波長λとなる。圧電基板10aは、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板であり、例えば回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板ある。支持基板10bは、例えばサファイア基板、スピネル基板、アルミナ基板、ガラス基板、水晶基板またはシリコン基板である。支持基板10bの線熱膨張係数は圧電基板10aの線熱膨張係数より小さい。これにより、弾性波共振器の周波数温度係数(TCF:Temperature Coefficient of Frequency)を抑制できる。金属膜12は、例えばアルミニウム膜または銅膜である。基板10上に、電極指14を覆うように保護膜または温度補償膜として機能する絶縁膜が設けられていてもよい。   The elastic wave excited by the electrode finger 14 in the intersecting region 56 propagates mainly in the X direction. The pitch L of the electrode fingers 14 of the one comb-shaped electrode 16 is substantially the wavelength λ of the elastic wave. The piezoelectric substrate 10a is, for example, a lithium tantalate substrate or a lithium niobate substrate, such as a rotating Y-cut X-propagating lithium tantalate substrate or a rotating Y-cut X-propagating lithium niobate substrate. The support substrate 10b is, for example, a sapphire substrate, a spinel substrate, an alumina substrate, a glass substrate, a crystal substrate, or a silicon substrate. The linear thermal expansion coefficient of the support substrate 10b is smaller than the linear thermal expansion coefficient of the piezoelectric substrate 10a. Thereby, the frequency temperature coefficient (TCF: Temperature Coefficient of Frequency) of an elastic wave resonator can be suppressed. The metal film 12 is, for example, an aluminum film or a copper film. An insulating film functioning as a protective film or a temperature compensation film may be provided on the substrate 10 so as to cover the electrode fingers 14.

[比較例1]
図2(a)および図2(b)は、比較例1に係る弾性波共振器の断面図である。図2(a)に示すように、圧電基板10a上に弾性波共振器20aおよび配線22aが設けられている。図2(b)に示すように、圧電基板10a上に弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20aおよび20bは、例えばデュプレクサのそれぞれ受信フィルタおよび送信フィルタに用いられる。送信フィルタと受信フィルタとでは通過帯域が重ならない。このため、弾性波共振器20aと20bとの共振周波数は大きく異なる。弾性波共振器20bは20aより共振周波数が低い。
[Comparative Example 1]
2A and 2B are cross-sectional views of the acoustic wave resonator according to the first comparative example. As shown in FIG. 2A, the acoustic wave resonator 20a and the wiring 22a are provided on the piezoelectric substrate 10a. As shown in FIG. 2B, the acoustic wave resonator 20b and the wiring 22b are provided on the piezoelectric substrate 10a. The acoustic wave resonators 20a and 20b are used for a reception filter and a transmission filter of a duplexer, for example. The pass bands do not overlap between the transmission filter and the reception filter. For this reason, the resonant frequencies of the acoustic wave resonators 20a and 20b are greatly different. The acoustic wave resonator 20b has a resonance frequency lower than that of 20a.

弾性波共振器20bの共振周波数を弾性波共振器20aの共振周波数より低くするため、弾性波共振器20bの電極指14のピッチL2は、弾性波共振器20aの電極指14のピッチL1より大きい。また、弾性波共振器20bの電極指14の膜厚H2は、弾性波共振器20aの電極指14の膜厚H1より大きい。弾性波共振器20aを形成したチップと弾性波共振器20bを形成したチップをパッケージに実装することで、例えばデュプレクサが形成できる。しかしながら複数のチップをパッケージに実装するとデュプレクサ等の弾性波デバイスが大型化する。   In order to make the resonance frequency of the elastic wave resonator 20b lower than the resonance frequency of the elastic wave resonator 20a, the pitch L2 of the electrode fingers 14 of the elastic wave resonator 20b is larger than the pitch L1 of the electrode fingers 14 of the elastic wave resonator 20a. . The film thickness H2 of the electrode finger 14 of the acoustic wave resonator 20b is larger than the film thickness H1 of the electrode finger 14 of the acoustic wave resonator 20a. For example, a duplexer can be formed by mounting the chip on which the acoustic wave resonator 20a is formed and the chip on which the acoustic wave resonator 20b is formed on a package. However, when a plurality of chips are mounted on a package, an elastic wave device such as a duplexer becomes large.

[比較例2]
図3は、比較例2に係る弾性波デバイスの断面図である。図3に示すように、弾性波共振器20aおよび20bは単一の基板10上に設けられている。電極指14を覆うように絶縁膜24が設けられている。絶縁膜24は、例えば酸化シリコン膜または窒化シリコン膜であり、保護膜または温度補償膜として機能する。弾性波共振器20aと20bとの共振周波数を異ならせるため、絶縁膜24の電極指14上の膜厚H1´およびH2´を異ならせてもよい。
[Comparative Example 2]
FIG. 3 is a cross-sectional view of an acoustic wave device according to Comparative Example 2. As shown in FIG. 3, the acoustic wave resonators 20 a and 20 b are provided on a single substrate 10. An insulating film 24 is provided so as to cover the electrode fingers 14. The insulating film 24 is, for example, a silicon oxide film or a silicon nitride film, and functions as a protective film or a temperature compensation film. In order to make the resonance frequencies of the acoustic wave resonators 20a and 20b different, the film thicknesses H1 ′ and H2 ′ of the insulating film 24 on the electrode fingers 14 may be made different.

比較例2のように、弾性波共振器20aと20bを単一基板10上に形成すると弾性波デバイスを小型化できる。弾性波共振器20aと20bとの共振周波数を大きく異ならせるためには、電極指のピッチを異ならせる、電極指14の膜厚を異ならせる、および/または電極指14を覆う絶縁膜24の膜厚を異ならせる、等の方法がある。しかしながら、ピッチL1およびL2を大きく異ならせようとすると、加工精度が低下してしまう。また、膜厚H1とH2、および/または膜厚H1´とH2´を大きく異ならせようとすると、製造工程が複雑になる。そこで、上記以外の方法で共振周波数を大きく異ならせる方法を検討した。   When the acoustic wave resonators 20a and 20b are formed on the single substrate 10 as in Comparative Example 2, the acoustic wave device can be reduced in size. In order to make the resonance frequencies of the acoustic wave resonators 20a and 20b greatly different, the pitch of the electrode fingers, the film thickness of the electrode fingers 14 and / or the film of the insulating film 24 covering the electrode fingers 14 are different. There are methods such as varying the thickness. However, if the pitches L1 and L2 are made to differ greatly, the machining accuracy is lowered. Further, if the film thicknesses H1 and H2 and / or the film thicknesses H1 ′ and H2 ′ are made to differ greatly, the manufacturing process becomes complicated. Therefore, a method of making the resonance frequency greatly different by a method other than the above was examined.

[シミュレーション]
圧電基板10aの厚さTに対する弾性波共振器20の共振周波数を3次元有限要素法を用いシミュレーションした。シミュレーション条件は以下である。
支持基板10b:厚さが500μmのサファイア基板
圧電基板10a:厚さTの42°回転YカットX伝搬タンタル酸リチウム基板
金属膜12:膜厚が400nmのアルミニウム膜
電極指14のピッチL:20μm
電極指14の対数:100対
開口長(交差領域56の長さ):25λ
[simulation]
The resonance frequency of the acoustic wave resonator 20 with respect to the thickness T of the piezoelectric substrate 10a was simulated using a three-dimensional finite element method. The simulation conditions are as follows.
Support substrate 10b: Sapphire substrate having a thickness of 500 μm Piezoelectric substrate 10a: 42 ° rotated Y-cut X-propagating lithium tantalate substrate having a thickness T Metal film 12: Aluminum film having a thickness of 400 nm
Number of pairs of electrode fingers 14: 100 pairs Opening length (length of crossing region 56): 25λ

図4(a)および図4(b)は、圧電基板の厚さT/ピッチLに対する共振周波数frを示す図である。図4(b)は、図4(a)の範囲Aの拡大図である。ドットはシミュレーション結果を示し、ドットをつなぐ曲線は近似曲線である。圧電基板10aの厚さTはピッチLで規格化している。図4(a)および図4(b)に示すように、圧電基板10aの厚さTがピッチL以上では共振周波数frはほぼ一定である。このとき電極指14が励振する弾性表面波の波長はほぼピッチLである。圧電基板10aの厚さTがピッチL以下となると、共振周波数frが高くなる。   FIG. 4A and FIG. 4B are diagrams showing the resonance frequency fr with respect to the thickness T / pitch L of the piezoelectric substrate. FIG. 4B is an enlarged view of a range A in FIG. The dots indicate simulation results, and the curve connecting the dots is an approximate curve. The thickness T of the piezoelectric substrate 10a is normalized by the pitch L. As shown in FIGS. 4A and 4B, when the thickness T of the piezoelectric substrate 10a is equal to or greater than the pitch L, the resonance frequency fr is substantially constant. At this time, the wavelength of the surface acoustic wave excited by the electrode finger 14 is substantially the pitch L. When the thickness T of the piezoelectric substrate 10a is equal to or less than the pitch L, the resonance frequency fr increases.

厚さTがピッチL以上のとき、電極指14は弾性表面波(例えばSH(Shear Horizontal)波)を励振するときにバルク波を励振する。このバルク波が圧電基板10aと支持基板10bとの界面で反射されると、スプリアスとなる。また、バルク波が励振されるため弾性波共振器の損失が大きくなる。これに対し、厚さTがピッチL以下ではバルク波に起因したスプリアスおよび損失が抑制される。図4(a)および図4(b)のように、厚さTがピッチL以下のときに共振周波数frが厚さTに大きく依存する理由は明確ではないが、バルク波の抑制が起因していると考えられる。   When the thickness T is equal to or greater than the pitch L, the electrode finger 14 excites a bulk wave when exciting a surface acoustic wave (for example, SH (Shear Horizontal) wave). When this bulk wave is reflected at the interface between the piezoelectric substrate 10a and the support substrate 10b, it becomes spurious. Further, since the bulk wave is excited, the loss of the acoustic wave resonator increases. On the other hand, when the thickness T is equal to or less than the pitch L, spurious and loss due to the bulk wave are suppressed. As shown in FIGS. 4A and 4B, the reason why the resonance frequency fr greatly depends on the thickness T when the thickness T is equal to or less than the pitch L is not clear, but is due to suppression of bulk waves. It is thought that.

シミュレーション結果に基づき実施例について説明する。図5(a)および図5(b)は、実施例1に係る弾性波デバイスの断面図である。図5(a)および図5(b)に示すように、圧電基板10aは厚さがT1の領域30と厚さがT2の領域32を有している。領域30上には弾性波共振器20aおよび配線22aが設けられ、領域32上には弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20aおよび20bの電極指14のピッチL1およびL2は同程度である。弾性波共振器20aおよび20bの電極指14を覆うように絶縁膜24が設けられている。弾性波共振器20aと20bでは、電極指14の膜厚は製造誤差程度に略同じであり、絶縁膜24の膜厚は製造誤差程度に略同じである。厚さT1およびT2のうち少なくとも厚さT1はピッチL1より小さい。これにより、電極指14および絶縁膜24の膜厚がほぼ同じでも弾性波共振器20aと20bとの共振周波数を大きく異ならせることができる。なお、絶縁膜24は電極指14より薄くてもよいし、厚くてもよい。また、絶縁膜24は設けられていなくてもよい。   Examples will be described based on simulation results. FIG. 5A and FIG. 5B are cross-sectional views of the acoustic wave device according to the first embodiment. As shown in FIGS. 5A and 5B, the piezoelectric substrate 10a has a region 30 having a thickness T1 and a region 32 having a thickness T2. An elastic wave resonator 20 a and a wiring 22 a are provided on the region 30, and an elastic wave resonator 20 b and a wiring 22 b are provided on the region 32. The pitches L1 and L2 of the electrode fingers 14 of the acoustic wave resonators 20a and 20b are approximately the same. An insulating film 24 is provided so as to cover the electrode fingers 14 of the acoustic wave resonators 20a and 20b. In the acoustic wave resonators 20a and 20b, the film thickness of the electrode finger 14 is approximately the same as the manufacturing error, and the film thickness of the insulating film 24 is approximately the same as the manufacturing error. Of the thicknesses T1 and T2, at least the thickness T1 is smaller than the pitch L1. Thereby, even if the film thickness of the electrode finger 14 and the insulating film 24 is substantially the same, the resonant frequencies of the acoustic wave resonators 20a and 20b can be greatly different. The insulating film 24 may be thinner or thicker than the electrode finger 14. Further, the insulating film 24 may not be provided.

図6は、実施例1を用いたデュプレクサの回路図である。図6に示すように、共通端子Antと送信端子Txの間に送信フィルタ50が接続され、共通端子Antと受信端子Rxとの間に受信フィルタ52が接続されている。送信フィルタ50では、共通端子Antと送信端子Txとの間に1または複数の直列共振器S1からS4が直列に接続され、1または並列共振器P1からP3が並列に接続されている。   FIG. 6 is a circuit diagram of a duplexer using the first embodiment. As shown in FIG. 6, a transmission filter 50 is connected between the common terminal Ant and the transmission terminal Tx, and a reception filter 52 is connected between the common terminal Ant and the reception terminal Rx. In the transmission filter 50, one or more series resonators S1 to S4 are connected in series between the common terminal Ant and the transmission terminal Tx, and one or parallel resonators P1 to P3 are connected in parallel.

受信フィルタ52では、共通端子Antと受信端子Rxとの間に直列共振器S5、DMS1およびDMS2が直列に接続されている。DMS1およびDMS2は2重モード弾性表面波(Double Mode Surface Acoustic)フィルタ等の多重モード型フィルタである。DMS1およびDMS2は各々3つのIDT18aから18cを有している。IDT18aから18cは弾性波の伝搬方向に配列されている。DMS1のIDT18bの一端は直列共振器S5に電気的に接続され、他端は接地されている。DMS1のIDT18aおよび18cの一端はそれぞれDMS2のIDT18aおよび18cの一端に電気的に接続されている。DMS1およびDMS2のIDT18aおよび18cの他端は接地されている。DMS2のIDT18bの一端は受信端子Rxに電気的接続され、他端は接地されている。   In the reception filter 52, series resonators S5, DMS1, and DMS2 are connected in series between the common terminal Ant and the reception terminal Rx. DMS1 and DMS2 are multimode filters such as a double mode surface acoustic wave filter. DMS1 and DMS2 each have three IDTs 18a to 18c. IDTs 18a to 18c are arranged in the propagation direction of the elastic wave. One end of the IDT 18b of the DMS1 is electrically connected to the series resonator S5, and the other end is grounded. One ends of IDTs 18a and 18c of DMS1 are electrically connected to one ends of IDTs 18a and 18c of DMS2, respectively. The other ends of IDTs 18a and 18c of DMS1 and DMS2 are grounded. One end of the IDT 18b of the DMS 2 is electrically connected to the receiving terminal Rx, and the other end is grounded.

送信フィルタ50は送信端子Txに入力する高周波信号のうち送信帯域の信号を共通端子Antに通過させ、他の周波数帯域の信号を抑圧する。受信フィルタ52は共通端子Antに入力する高周波信号のうち受信帯域の信号を受信端子Rxに通過させ、他の周波数帯域の信号を抑圧する。送信フィルタ50がラダー型フィルタを含み、受信フィルタ52が多重モード型フィルタを含む例を説明したが、送信フィルタ50が多重モード型フィルタを含み、受信フィルタ52を含んでもよい。送信フィルタ50および受信フィルタ52はいずれもラダー型フィルタを含んでもよい。また、送信フィルタ50および受信フィルタ52内の共振器の個数は適宜設定できる。   The transmission filter 50 passes signals in the transmission band among the high-frequency signals input to the transmission terminal Tx to the common terminal Ant, and suppresses signals in other frequency bands. The reception filter 52 passes signals in the reception band among the high-frequency signals input to the common terminal Ant to the reception terminal Rx, and suppresses signals in other frequency bands. Although the transmission filter 50 includes a ladder type filter and the reception filter 52 includes a multimode filter, the transmission filter 50 includes a multimode filter and may include the reception filter 52. Both the transmission filter 50 and the reception filter 52 may include ladder type filters. The number of resonators in the transmission filter 50 and the reception filter 52 can be set as appropriate.

図7は、実施例1における基板10の平面図である。図7に示すように、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aが設けられている。弾性波共振器20aは直列共振器S5、DMS1およびDMS2を含む。配線22aは弾性波共振器20aと接続されている。配線22cは配線22aと立体交差している。配線22aは共通パッドPant、受信パッドPrxおよびグランドパッドPgndを含む。パッド上にはバンプ26が設けられている。   FIG. 7 is a plan view of the substrate 10 according to the first embodiment. As shown in FIG. 7, the acoustic wave resonator 20a and the wiring 22a are provided on the region 30 of the piezoelectric substrate 10a. The acoustic wave resonator 20a includes a series resonator S5, DMS1, and DMS2. The wiring 22a is connected to the acoustic wave resonator 20a. The wiring 22c crosses the wiring 22a. The wiring 22a includes a common pad Pant, a reception pad Prx, and a ground pad Pgnd. Bumps 26 are provided on the pads.

圧電基板10aの領域32上に弾性波共振器20bおよび配線22bが設けられている。弾性波共振器20bは直列共振器S1からS4、並列共振器P1からP3を含む。配線22bは弾性波共振器20bと接続されている。配線22bは共通パッドPant、送信パッドPtxおよびグランドパッドPgndを含む。パッド上にはバンプ26が設けられている。共通パッドPant、送信パッドPtx、受信パッドPrxおよびグランドパッドPgndは、バンプ26を介し共通端子Ant、送信端子Tx、受信端子Rxおよびグランド端子に電気的に接続されている。   The acoustic wave resonator 20b and the wiring 22b are provided on the region 32 of the piezoelectric substrate 10a. The acoustic wave resonator 20b includes series resonators S1 to S4 and parallel resonators P1 to P3. The wiring 22b is connected to the acoustic wave resonator 20b. The wiring 22b includes a common pad Pant, a transmission pad Ptx, and a ground pad Pgnd. Bumps 26 are provided on the pads. The common pad Pant, the transmission pad Ptx, the reception pad Prx, and the ground pad Pgnd are electrically connected to the common terminal Ant, the transmission terminal Tx, the reception terminal Rx, and the ground terminal via the bump 26.

送信フィルタ50と受信フィルタ52との通過帯域は重ならず、送信フィルタ50の通過帯域は受信フィルタ52の通過帯域より低い。領域30の圧電基板10aの厚さT1を領域32の圧電基板10aの厚さT2より小さくしている。このため、弾性波共振器20aと20bとで、電極指14の膜厚をほぼ同じにし、絶縁膜24の膜厚をほぼ同じしても、弾性波共振器20aの共振周波数を弾性波共振器20bの共振周波数より大きくできる。送信フィルタ50(および受信フィルタ52)内の弾性波共振器20b(および20a)の間の共振周波数の差は小さいため電極指14のピッチL2(またはL1)を異ならせることで対応できる。よって、簡単な製造工程で単一基板10上に共振周波数の大きく異なる弾性波共振器20aおよび20bを形成することができる。よって、単一基板10上に通過帯域の重ならない送信フィルタ50と受信フィルタ52を形成することができる。   The pass bands of the transmission filter 50 and the reception filter 52 do not overlap, and the pass band of the transmission filter 50 is lower than the pass band of the reception filter 52. The thickness T1 of the piezoelectric substrate 10a in the region 30 is smaller than the thickness T2 of the piezoelectric substrate 10a in the region 32. Therefore, even if the acoustic wave resonators 20a and 20b have substantially the same film thickness of the electrode finger 14 and the insulating film 24, the resonance frequency of the elastic wave resonator 20a is changed to the elastic wave resonator. It can be greater than the resonance frequency of 20b. Since the difference in resonance frequency between the acoustic wave resonators 20b (and 20a) in the transmission filter 50 (and the reception filter 52) is small, it can be dealt with by making the pitch L2 (or L1) of the electrode fingers 14 different. Therefore, it is possible to form the acoustic wave resonators 20a and 20b having greatly different resonance frequencies on the single substrate 10 with a simple manufacturing process. Therefore, the transmission filter 50 and the reception filter 52 that do not overlap in the pass band can be formed on the single substrate 10.

図5(a)のように、送信フィルタ50の通過帯域が受信フィルタ52の通過帯域より低い場合、領域32および30にそれぞれ送信フィルタ50および受信フィルタ52を形成する。図5(b)のように、送信フィルタ50の通過帯域が受信フィルタ52の通過帯域より高い場合、領域30および32にそれぞれ送信フィルタ50および受信フィルタ52を形成する。図5(a)および図5(b)において、支持基板10bの厚さは例えば50μmから500μmであり、厚さT1およびT2の少なくとも一方はピッチL1およびL2以下である。   As shown in FIG. 5A, when the pass band of the transmission filter 50 is lower than the pass band of the reception filter 52, the transmission filter 50 and the reception filter 52 are formed in the regions 32 and 30, respectively. As shown in FIG. 5B, when the pass band of the transmission filter 50 is higher than the pass band of the reception filter 52, the transmission filter 50 and the reception filter 52 are formed in the regions 30 and 32, respectively. 5A and 5B, the thickness of the support substrate 10b is, for example, 50 μm to 500 μm, and at least one of the thicknesses T1 and T2 is equal to or less than the pitches L1 and L2.

[実施例1の製造方法]
図8(a)から図9(d)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図8(a)に示すように、支持基板10bの上面に圧電基板10aの下面を、常温において直接接合する。接合方法は例えば特許文献1と同じである。すなわち、支持基板10bの上面および圧電基板10aの下面を不活性元素のイオンビーム、中性ビームまたはプラズマにより活性化する。その後支持基板10bと圧電基板10aとを常温において接合する。このとき、支持基板10bと圧電基板10aとの間には、例えば1nmから8nmの厚さのアモルファス層10dが形成される。このように、支持基板10bと圧電基板10aとを常温において接合すると、アモルファス層10dが形成される。アモルファス層10dは圧電基板10aに比べ非常に薄いため、支持基板10bと圧電基板10aとは直接接合されている。アモルファス層10dは非常に薄いため図8(a)および図13(b)以外の図では図示を省略する。
[Production Method of Example 1]
FIG. 8A to FIG. 9D are cross-sectional views illustrating the method for manufacturing the acoustic wave device according to the first embodiment. As shown in FIG. 8A, the lower surface of the piezoelectric substrate 10a is directly bonded to the upper surface of the support substrate 10b at room temperature. The joining method is the same as that of Patent Document 1, for example. That is, the upper surface of the support substrate 10b and the lower surface of the piezoelectric substrate 10a are activated by an inert element ion beam, neutral beam, or plasma. Thereafter, the support substrate 10b and the piezoelectric substrate 10a are bonded at room temperature. At this time, an amorphous layer 10d having a thickness of 1 nm to 8 nm, for example, is formed between the support substrate 10b and the piezoelectric substrate 10a. As described above, when the support substrate 10b and the piezoelectric substrate 10a are bonded at room temperature, an amorphous layer 10d is formed. Since the amorphous layer 10d is much thinner than the piezoelectric substrate 10a, the support substrate 10b and the piezoelectric substrate 10a are directly bonded. Since the amorphous layer 10d is very thin, the illustration is omitted in the drawings other than FIGS. 8A and 13B.

図8(b)に示すように、圧電基板10aの上面を、例えばCMP(Chemical Mechanical Polishing)法を用い研磨することで平坦化する。図8(c)に示すように、領域30の圧電基板10aを薄膜化する。例えば圧電基板10aの上面にレーザ光54を照射しアブレーション加工する。これにより、領域30の圧電基板10aが薄膜化する。図8(d)に示すように、圧電基板10aの領域30および32上に、例えば真空蒸着法またはスパッタリング法を用い金属膜12を成膜する。図8(e)に示すように、金属膜12を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aが形成され、領域32上に弾性波共振器20bおよび配線22bが形成される。   As shown in FIG. 8B, the upper surface of the piezoelectric substrate 10a is planarized by polishing, for example, using a CMP (Chemical Mechanical Polishing) method. As shown in FIG. 8C, the piezoelectric substrate 10a in the region 30 is thinned. For example, the upper surface of the piezoelectric substrate 10a is irradiated with a laser beam 54 and ablated. Thereby, the piezoelectric substrate 10a in the region 30 is thinned. As shown in FIG. 8D, the metal film 12 is formed on the regions 30 and 32 of the piezoelectric substrate 10a by using, for example, a vacuum evaporation method or a sputtering method. As shown in FIG. 8E, the metal film 12 is patterned into a desired shape using, for example, a photolithography method and an etching method. As a result, the acoustic wave resonator 20a and the wiring 22a are formed on the region 30 of the piezoelectric substrate 10a, and the acoustic wave resonator 20b and the wiring 22b are formed on the region 32.

図9(a)に示すように、弾性波共振器20a、20bを覆うように絶縁膜24を例えば真空蒸着法、スパッタリング法またはCVD(Chemical Vapor Deposition)法を用い成膜する。図9(b)に示すように、絶縁膜24を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、弾性波共振器20aおよび20bの電極指14上の絶縁膜24は残存し、配線22aおよび22b上の絶縁膜24が除去される。図9(c)に示すように、配線22a、22bおよび絶縁膜24上に、例えば真空蒸着法、スパッタリング法またはめっき法を用い金属膜27を成膜する。金属膜27は例えば金膜である。図9(d)に示すように、金属膜27を、例えばフォトリソグラフィ法およびエッチング法を用い所望の形状にパターンニングする。これにより、配線22aおよび22b上に低抵抗な金属膜28が形成され、弾性波共振器20aおよび20b上の金属膜27が除去される。   As shown in FIG. 9A, the insulating film 24 is formed by using, for example, a vacuum deposition method, a sputtering method, or a CVD (Chemical Vapor Deposition) method so as to cover the acoustic wave resonators 20a and 20b. As shown in FIG. 9B, the insulating film 24 is patterned into a desired shape using, for example, a photolithography method and an etching method. As a result, the insulating film 24 on the electrode fingers 14 of the acoustic wave resonators 20a and 20b remains, and the insulating film 24 on the wirings 22a and 22b is removed. As shown in FIG. 9C, a metal film 27 is formed on the wirings 22a and 22b and the insulating film 24 by using, for example, a vacuum evaporation method, a sputtering method, or a plating method. The metal film 27 is, for example, a gold film. As shown in FIG. 9D, the metal film 27 is patterned into a desired shape using, for example, a photolithography method and an etching method. As a result, a low resistance metal film 28 is formed on the wirings 22a and 22b, and the metal film 27 on the acoustic wave resonators 20a and 20b is removed.

図8(a)から図9(d)のように、図8(c)の領域30の圧電基板10aの薄膜化以外の製造工程は、弾性波共振器20aと20bとで共通にできる。よって、共振周波数の異なる弾性波共振器20aおよび20bを容易に製造することができる。   As shown in FIGS. 8A to 9D, the manufacturing steps other than thinning the piezoelectric substrate 10a in the region 30 in FIG. 8C can be made common to the acoustic wave resonators 20a and 20b. Therefore, the acoustic wave resonators 20a and 20b having different resonance frequencies can be easily manufactured.

図10(a)および図10(b)は、実施例2に係る弾性波デバイスの断面図である。図10(a)および図10(b)に示すように、中間層10cが支持基板10bと圧電基板10aとの間に挟まれている。中間層10cの弾性率の温度係数は圧電基板10aの弾性率の温度係数と逆符号である。これにより、弾性波共振器20aおよび20bの周波数温度係数(TCF)をより抑制できる。中間層10cとしては例えば酸化シリコン膜、シリコン膜、窒化アルミニウム膜または窒化シリコン膜を用いることができる。中間層10cの厚さは例えばピッチL1およびL2以下である。その他の構成は実施例1と同じであり説明を省略する。   FIG. 10A and FIG. 10B are cross-sectional views of the acoustic wave device according to the second embodiment. As shown in FIGS. 10A and 10B, the intermediate layer 10c is sandwiched between the support substrate 10b and the piezoelectric substrate 10a. The temperature coefficient of the elastic modulus of the intermediate layer 10c is opposite to the temperature coefficient of the elastic modulus of the piezoelectric substrate 10a. Thereby, the frequency temperature coefficient (TCF) of the acoustic wave resonators 20a and 20b can be further suppressed. As the intermediate layer 10c, for example, a silicon oxide film, a silicon film, an aluminum nitride film, or a silicon nitride film can be used. The thickness of the intermediate layer 10c is, for example, the pitches L1 and L2 or less. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

[実施例2の変形例1]
図11(a)および図11(b)は、実施例2の変形例1に係る弾性波デバイスの断面図である。図11(a)および図11(b)に示すように、領域30における中間層10cの厚さT3は領域32における中間層10cの厚さT4より大きい。厚さT1+T3は厚さT2+T4にほぼ等しい。これにより、圧電基板10aの領域30と32との境界の上面はほぼ平坦である。
[Modification 1 of Embodiment 2]
FIG. 11A and FIG. 11B are cross-sectional views of the acoustic wave device according to the first modification of the second embodiment. As shown in FIGS. 11A and 11B, the thickness T3 of the intermediate layer 10c in the region 30 is larger than the thickness T4 of the intermediate layer 10c in the region 32. Thickness T1 + T3 is approximately equal to thickness T2 + T4. Thereby, the upper surface of the boundary between the regions 30 and 32 of the piezoelectric substrate 10a is substantially flat.

[実施例2の変形例1の製造方法]
図12(a)から図14(b)は、実施例2の変形例1に係る弾性波デバイスの製造方法を示す断面図である。図12(a)に示すように圧電基板10aを準備する。図12(b)に示すように、領域30の圧電基板10aを薄膜化する。例えば領域30の圧電基板10aの表面にレーザ光54を照射しアブレーション加工する。これにより、圧電基板10aに領域30および32が形成される。図12(c)に示すように、段差を有する圧電基板10a表面上に中間層10cを例えば真空蒸着法、スパッタリング法またはCVD法を用い成膜する。図12(d)に示すように、中間層10cの表面を例えばCMP法を用い平坦化する。
[Production Method of Modification 1 of Embodiment 2]
FIG. 12A to FIG. 14B are cross-sectional views illustrating a method for manufacturing an acoustic wave device according to the first modification of the second embodiment. A piezoelectric substrate 10a is prepared as shown in FIG. As shown in FIG. 12B, the piezoelectric substrate 10a in the region 30 is thinned. For example, the surface of the piezoelectric substrate 10a in the region 30 is irradiated with laser light 54 and ablated. Thereby, the regions 30 and 32 are formed in the piezoelectric substrate 10a. As shown in FIG. 12C, the intermediate layer 10c is formed on the surface of the piezoelectric substrate 10a having a step by using, for example, a vacuum deposition method, a sputtering method, or a CVD method. As shown in FIG. 12D, the surface of the intermediate layer 10c is planarized using, for example, a CMP method.

図13(a)に示すように、以下上下を逆に示す。図13(b)に示すように、支持基板10bの上面と平坦化した中間層10cの表面とを常温において直接接合する。このとき、図8(a)と同様に、支持基板10bと中間層10cとの間にアモルファス層10dが形成される。中間層10cが酸化シリコン膜の場合、酸化シリコン膜と支持基板10bとの常温接合が難しいことがある。支持基板10bと中間層10cとを常温接合する場合、中間層10cはシリコン膜、窒化アルミニウム膜または窒化シリコン膜等の酸化シリコン膜以外の絶縁膜であることが好ましい。図13(c)に示すように、圧電基板10aの上面を例えばCMP法を用い平坦化する。これにより、支持基板10bと圧電基板10aとの間に中間層10cを有する複合基板である基板10が形成される。   As shown in FIG. 13A, the upper and lower sides are shown upside down. As shown in FIG. 13B, the upper surface of the support substrate 10b and the surface of the flattened intermediate layer 10c are directly bonded at room temperature. At this time, similarly to FIG. 8A, an amorphous layer 10d is formed between the support substrate 10b and the intermediate layer 10c. When the intermediate layer 10c is a silicon oxide film, room temperature bonding between the silicon oxide film and the support substrate 10b may be difficult. When the support substrate 10b and the intermediate layer 10c are bonded at room temperature, the intermediate layer 10c is preferably an insulating film other than a silicon oxide film such as a silicon film, an aluminum nitride film, or a silicon nitride film. As shown in FIG. 13C, the upper surface of the piezoelectric substrate 10a is planarized using, for example, a CMP method. Thereby, the substrate 10 which is a composite substrate having the intermediate layer 10c between the support substrate 10b and the piezoelectric substrate 10a is formed.

図14(a)に示すように、図8(d)および図8(e)と同様に、圧電基板10aの領域30上に弾性波共振器20aおよび配線22aを形成し、領域32上に弾性波共振器20bおよび配線22bを形成する。図14(b)に示すように、図9(a)から図9(d)と同様に絶縁膜24および金属膜28を形成する。   As shown in FIG. 14A, as in FIGS. 8D and 8E, the acoustic wave resonator 20a and the wiring 22a are formed on the region 30 of the piezoelectric substrate 10a and elastic on the region 32. A wave resonator 20b and a wiring 22b are formed. As shown in FIG. 14B, the insulating film 24 and the metal film 28 are formed in the same manner as in FIGS. 9A to 9D.

実施例2の変形例1では、圧電基板10aの領域30と32との上面が平坦である。このため、圧電基板10a上への弾性波共振器20aおよび20b、配線22aおよび22b等の形成が容易となる。また、圧電基板10aをバンプを用い実装するときにバンプの高さが均一となりバンプの接続性が安定する。   In the first modification of the second embodiment, the upper surfaces of the regions 30 and 32 of the piezoelectric substrate 10a are flat. This facilitates formation of the acoustic wave resonators 20a and 20b, the wirings 22a and 22b, etc. on the piezoelectric substrate 10a. Further, when the piezoelectric substrate 10a is mounted using bumps, the bump height is uniform and the bump connectivity is stabilized.

実施例1,2およびその変形例によれば、圧電基板10aは、厚さT1(第1の厚さ)を有する領域30(第1領域)と厚さT2(第1の厚さより大きい第2の厚さ)を有する領域32(第2領域)とを有する。領域30上に設けられた弾性波共振器20a(第1弾性波共振器)は、複数の電極指14(第1電極指)を各々有する一対の櫛型電極16(第1櫛型電極)を備え、櫛型電極16の一方の電極指14の平均ピッチL1は厚さT1より大きい。領域32上に設けられた弾性波共振器20b(第2弾性波共振器)、複数の電極指14(第2電極指)を各々有する一対の櫛型電極16(第2櫛型電極)を備える。   According to the first and second embodiments and the modifications thereof, the piezoelectric substrate 10a includes a region 30 (first region) having a thickness T1 (first thickness) and a thickness T2 (second larger than the first thickness). ) Having a region 32 (second region). The acoustic wave resonator 20a (first acoustic wave resonator) provided on the region 30 includes a pair of comb electrodes 16 (first comb electrodes) each having a plurality of electrode fingers 14 (first electrode fingers). The average pitch L1 of one electrode finger 14 of the comb-shaped electrode 16 is larger than the thickness T1. An elastic wave resonator 20b (second elastic wave resonator) provided on the region 32 and a pair of comb electrodes 16 (second comb electrodes) each having a plurality of electrode fingers 14 (second electrode fingers) are provided. .

これにより、図4(a)および図4(b)のように、弾性波共振器20aの共振周波数を弾性波共振器20bの共振周波数より高くできる。よって、共振周波数の異なる弾性波共振器20aおよび20bを容易に形成することができる。また、弾性波共振器20aにおけるスプリアスおよび損失を抑制できる。   Thereby, as shown in FIGS. 4A and 4B, the resonance frequency of the elastic wave resonator 20a can be made higher than the resonance frequency of the elastic wave resonator 20b. Therefore, the acoustic wave resonators 20a and 20b having different resonance frequencies can be easily formed. Further, spurious and loss in the acoustic wave resonator 20a can be suppressed.

弾性波共振器20bの櫛型電極16の一方の電極指14の平均ピッチL2を厚さT2より大きくすることで、弾性波共振器20bにおけるスプリアスおよび損失を抑制できる。平均ピッチL2を厚さT2より小さくすることで、弾性波共振器20aと20bとの共振周波数の差を大きくできる。   By making the average pitch L2 of one electrode finger 14 of the comb electrode 16 of the acoustic wave resonator 20b larger than the thickness T2, spurious and loss in the acoustic wave resonator 20b can be suppressed. By making the average pitch L2 smaller than the thickness T2, the difference in resonance frequency between the acoustic wave resonators 20a and 20b can be increased.

実施例1およびその変形例のように、圧電基板10aは支持基板10bにアモルファス層10dを介し接合されていてもよい。実施例2およびその変形例のように、圧電基板10aと支持基板10bとに挟まれた中間層10cを備えていてもよい。中間層10cの弾性率の温度係数を圧電基板10aの弾性率の温度係数と逆符号とする。これにより、弾性波共振器20aおよび20bの周波数温度係数を抑制できる。   As in Example 1 and its modifications, the piezoelectric substrate 10a may be bonded to the support substrate 10b via the amorphous layer 10d. As in Example 2 and its modifications, an intermediate layer 10c sandwiched between the piezoelectric substrate 10a and the support substrate 10b may be provided. The temperature coefficient of the elastic modulus of the intermediate layer 10c is opposite to the temperature coefficient of the elastic modulus of the piezoelectric substrate 10a. Thereby, the frequency temperature coefficient of the acoustic wave resonators 20a and 20b can be suppressed.

実施例2の変形例1のように、圧電基板10aの領域30と支持基板10bとの間の中間層10cの厚さT3(第3の厚さ)は圧電基板10aの領域32と支持基板10bとの間の中間層10cの厚さT4(第4の厚さ)より大きくする。これにより、領域30と32との圧電基板10aの上面(中間層10cの反対側の面)の段差を厚さT1とT2との差より小さくする。これにより、圧電基板10a上の弾性波共振器20aおよび20b等の形成が容易となる。領域30と32との圧電基板10aの上面は製造誤差程度に略平坦であることが好ましい。   As in the first modification of the second embodiment, the thickness T3 (third thickness) of the intermediate layer 10c between the region 30 of the piezoelectric substrate 10a and the support substrate 10b is equal to the region 32 of the piezoelectric substrate 10a and the support substrate 10b. The thickness of the intermediate layer 10c between the two is larger than the thickness T4 (fourth thickness). Thus, the step between the regions 30 and 32 on the upper surface of the piezoelectric substrate 10a (the surface opposite to the intermediate layer 10c) is made smaller than the difference between the thicknesses T1 and T2. Thereby, formation of the acoustic wave resonators 20a and 20b on the piezoelectric substrate 10a is facilitated. The upper surfaces of the piezoelectric substrates 10a in the regions 30 and 32 are preferably substantially flat to the extent of manufacturing error.

弾性波共振器20aおよび20bの櫛型電極16が励振する弾性波はSH波であることが好ましい。電極指14がSH波を励振する場合、バルク波が励振されやすい。よって、圧電基板10aの厚さT1をピッチL1より小さくすると、弾性波共振器20aの共振周波数がより高くなる。   The elastic wave excited by the comb electrodes 16 of the elastic wave resonators 20a and 20b is preferably an SH wave. When the electrode finger 14 excites SH waves, bulk waves are likely to be excited. Therefore, when the thickness T1 of the piezoelectric substrate 10a is made smaller than the pitch L1, the resonance frequency of the acoustic wave resonator 20a becomes higher.

櫛型電極16がSH波を励振するため、圧電基板10aは、20°以上かつ48°以下のカット角を有するYカットX伝搬タンタル酸リチウム基板であることが好ましい。カット角は、30°以上が好ましく、38°以上がより好ましい。カット角は、46°以下が好ましく、44°以下がより好ましい。   Since the comb-shaped electrode 16 excites SH waves, the piezoelectric substrate 10a is preferably a Y-cut X-propagating lithium tantalate substrate having a cut angle of 20 ° to 48 °. The cut angle is preferably 30 ° or more, and more preferably 38 ° or more. The cut angle is preferably 46 ° or less, and more preferably 44 ° or less.

図6および図7のように、マルチプレクサでは、受信フィルタ52(第1フィルタ)は、1または複数の弾性波共振器20aを含み、送信フィルタ50(第2フィルタ)は、1または複数の弾性波共振器20bを含む。送信フィルタ50の通過帯域と受信フィルタ52の通過帯域とが重ならない場合、弾性波共振器20aと20bとの共振周波数を大きく異ならせる。このため、圧電基板10aの厚さT1およびT2を異ならせることで共振周波数を異ならせる。これにより、同一圧電基板10aに通過帯域の重ならない送信フィルタ50および受信フィルタ52を容易に形成することができる。   6 and 7, in the multiplexer, the reception filter 52 (first filter) includes one or more elastic wave resonators 20a, and the transmission filter 50 (second filter) includes one or more elastic waves. A resonator 20b is included. When the pass band of the transmission filter 50 and the pass band of the reception filter 52 do not overlap, the resonance frequencies of the acoustic wave resonators 20a and 20b are greatly different. For this reason, the resonance frequency is varied by varying the thicknesses T1 and T2 of the piezoelectric substrate 10a. Thereby, it is possible to easily form the transmission filter 50 and the reception filter 52 whose pass bands do not overlap with each other on the same piezoelectric substrate 10a.

マルチプレクサとして、デュプレクサの例を説明したが、トリプレクサまたはクワッドプレクサでもよい。圧電基板10aに厚さが異なる領域を3か所以上設けることで、圧電基板10a上に3個以上の通過帯域の異なるフィルタを形成することもできる。   Although an example of a duplexer has been described as a multiplexer, a triplexer or a quadplexer may be used. By providing three or more regions having different thicknesses on the piezoelectric substrate 10a, three or more filters having different pass bands can be formed on the piezoelectric substrate 10a.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 基板
10a 圧電基板
10b 支持基板
10c 中間層
12 金属膜
14 電極指
16 櫛型電極
20、20a、20b 弾性波共振器
30、32 領域
50 送信フィルタ
52 受信フィルタ
DESCRIPTION OF SYMBOLS 10 Substrate 10a Piezoelectric substrate 10b Support substrate 10c Intermediate layer 12 Metal film 14 Electrode finger 16 Comb-shaped electrode 20, 20a, 20b Elastic wave resonator 30, 32 Region 50 Transmission filter 52 Reception filter

Claims (11)

支持基板と、
前記支持基板上に接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、
前記圧電基板の前記第1領域上に設けられ、複数の第1電極指を各々有する一対の第1櫛型電極を備え、前記一対の第1櫛型電極の一方の第1電極指の平均ピッチは前記第1の厚さより大きい第1弾性波共振器と、
前記圧電基板の前記第2領域上に設けられ、複数の第2電極指を各々有する一対の第2櫛型電極を備える第2弾性波共振器と、
を備える弾性波デバイス。
A support substrate;
A piezoelectric substrate bonded onto the support substrate and having a first region having a first thickness and a second region having a second thickness greater than the first thickness;
An average pitch of one first electrode finger of the pair of first comb electrodes is provided on the first region of the piezoelectric substrate, and includes a pair of first comb electrodes each having a plurality of first electrode fingers. Is a first acoustic wave resonator larger than the first thickness;
A second acoustic wave resonator provided on the second region of the piezoelectric substrate and including a pair of second comb electrodes each having a plurality of second electrode fingers;
An elastic wave device comprising:
前記一対の第2櫛型電極の一方の第2電極指の平均ピッチは前記第2の厚さより大きい請求項1に記載の弾性波デバイス。   2. The acoustic wave device according to claim 1, wherein an average pitch of one second electrode finger of the pair of second comb electrodes is larger than the second thickness. 前記一対の第2櫛型電極の一方の第2電極指の平均ピッチは前記第2の厚さより小さい請求項1に記載の弾性波デバイス。   2. The acoustic wave device according to claim 1, wherein an average pitch of one second electrode finger of the pair of second comb electrodes is smaller than the second thickness. 前記圧電基板は前記支持基板にアモルファス層を介し接合されている請求項1から3のいずれか一項に記載の弾性波デバイス。   The acoustic wave device according to any one of claims 1 to 3, wherein the piezoelectric substrate is bonded to the support substrate via an amorphous layer. 前記圧電基板と前記支持基板とに挟まれた中間層を備える請求項1から4のいずれか一項に記載の弾性波デバイス。   The acoustic wave device according to claim 1, further comprising an intermediate layer sandwiched between the piezoelectric substrate and the support substrate. 前記圧電基板の前記第1領域と前記支持基板との間の前記中間層の第3の厚さは前記圧電基板の前記第2領域と前記支持基板との間の前記中間層の第4の厚さより大きい請求項5に記載の弾性波デバイス。   The third thickness of the intermediate layer between the first region of the piezoelectric substrate and the support substrate is the fourth thickness of the intermediate layer between the second region of the piezoelectric substrate and the support substrate. The acoustic wave device according to claim 5, wherein the acoustic wave device is larger than the thickness. 前記圧電基板の前記第1領域と前記第2領域との前記中間層の反対側の面は略平坦である請求項6に記載の弾性波デバイス。   The acoustic wave device according to claim 6, wherein surfaces of the piezoelectric substrate opposite to the intermediate layer in the first region and the second region are substantially flat. 前記一対の第1櫛型電極および前記一対の第2櫛型電極はSH波を励振する請求項1から7のいずれか一項に記載の弾性波デバイス。   The acoustic wave device according to any one of claims 1 to 7, wherein the pair of first comb electrodes and the pair of second comb electrodes excite SH waves. 前記圧電基板は、20°以上かつ48°以下のカット角を有するYカットX伝搬タンタル酸リチウム基板である請求項1から8のいずれか一項に記載の弾性波デバイス。   The acoustic wave device according to any one of claims 1 to 8, wherein the piezoelectric substrate is a Y-cut X-propagating lithium tantalate substrate having a cut angle of 20 ° or more and 48 ° or less. 請求項1から9のいずれか一項に記載の弾性波デバイスを含み、
1または複数の前記第1弾性波共振器を含む第1フィルタと、
前記第1フィルタの通過帯域と重ならない通過帯域を有し、1または複数の前記第2弾性波共振器を含む第2フィルタと、
を備えるマルチプレクサ。
Including the acoustic wave device according to any one of claims 1 to 9,
A first filter including one or more first acoustic wave resonators;
A second filter having a passband that does not overlap with a passband of the first filter and including one or more second acoustic wave resonators;
A multiplexer comprising:
支持基板と、
前記支持基板上にアモルファス層を介し接合し、第1の厚さを有する第1領域と前記第1の厚さより大きい第2の厚さを有する第2領域とを有する圧電基板と、
前記支持基板と前記圧電基板とに挟まれ、前記圧電基板の前記第1領域と前記支持基板との間の第3の厚さは前記圧電基板の前記第2領域と前記支持基板との間の第4の厚さより大きい中間層と、
を備える複合基板。
A support substrate;
A piezoelectric substrate bonded to the support substrate via an amorphous layer and having a first region having a first thickness and a second region having a second thickness greater than the first thickness;
A third thickness between the first region of the piezoelectric substrate and the support substrate is sandwiched between the support substrate and the piezoelectric substrate, and a third thickness between the second region of the piezoelectric substrate and the support substrate is An intermediate layer greater than a fourth thickness;
A composite substrate comprising:
JP2018072706A 2018-04-04 2018-04-04 Acoustic wave devices and multiplexers Active JP7169083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072706A JP7169083B2 (en) 2018-04-04 2018-04-04 Acoustic wave devices and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072706A JP7169083B2 (en) 2018-04-04 2018-04-04 Acoustic wave devices and multiplexers

Publications (2)

Publication Number Publication Date
JP2019186655A true JP2019186655A (en) 2019-10-24
JP7169083B2 JP7169083B2 (en) 2022-11-10

Family

ID=68341559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072706A Active JP7169083B2 (en) 2018-04-04 2018-04-04 Acoustic wave devices and multiplexers

Country Status (1)

Country Link
JP (1) JP7169083B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262548A (en) * 2019-12-31 2020-06-09 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator group, filter, electronic device, and electromechanical coupling coefficient adjustment method
CN112929004A (en) * 2019-12-06 2021-06-08 太阳诱电株式会社 Acoustic wave resonator, filter, multiplexer and wafer
CN113037244A (en) * 2019-12-09 2021-06-25 三安日本科技株式会社 Surface acoustic wave filter, duplexer, and module
US20210313963A1 (en) * 2018-06-15 2021-10-07 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
WO2022014494A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device
JP2022028565A (en) * 2020-08-03 2022-02-16 三安ジャパンテクノロジー株式会社 Surface acoustic wave device
WO2022085624A1 (en) * 2020-10-19 2022-04-28 株式会社村田製作所 Elastic wave device
WO2022103405A1 (en) * 2020-11-16 2022-05-19 Qorvo Us, Inc. Piezoelectric layer arrangements in acoustic wave devices and related methods
WO2023278100A1 (en) * 2021-07-02 2023-01-05 Applied Materials, Inc. Mems resonator sensor substrate for plasma, temperature, stress, or deposition sensing
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11901876B2 (en) 2020-10-05 2024-02-13 Murata Manufacturing Co., Ltd. Acoustic matrix filters and radios using acoustic matrix filters
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US12015393B2 (en) 2022-03-31 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304436A (en) * 1992-02-25 1993-11-16 Mitsubishi Electric Corp Surface acoustic wave device
WO2010004741A1 (en) * 2008-07-11 2010-01-14 パナソニック株式会社 Plate wave element and electronic equipment using same
WO2013047433A1 (en) * 2011-09-30 2013-04-04 株式会社村田製作所 Elastic wave device
JP2016072808A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Duplexer and method of manufacturing the same
JP2016519897A (en) * 2013-04-08 2016-07-07 ソイテック Improved heat-compensated surface acoustic wave device and manufacturing method
JP2017034363A (en) * 2015-07-29 2017-02-09 太陽誘電株式会社 Elastic wave device and module
JP2017224890A (en) * 2016-06-13 2017-12-21 株式会社村田製作所 Acoustic wave device
JP2018007239A (en) * 2016-06-24 2018-01-11 株式会社村田製作所 Acoustic wave device
JP2018506930A (en) * 2014-12-17 2018-03-08 コルボ ユーエス インコーポレイテッド Plate wave device having wave confinement structure and fabrication method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304436A (en) * 1992-02-25 1993-11-16 Mitsubishi Electric Corp Surface acoustic wave device
WO2010004741A1 (en) * 2008-07-11 2010-01-14 パナソニック株式会社 Plate wave element and electronic equipment using same
WO2013047433A1 (en) * 2011-09-30 2013-04-04 株式会社村田製作所 Elastic wave device
JP2016519897A (en) * 2013-04-08 2016-07-07 ソイテック Improved heat-compensated surface acoustic wave device and manufacturing method
JP2016072808A (en) * 2014-09-30 2016-05-09 株式会社村田製作所 Duplexer and method of manufacturing the same
JP2018506930A (en) * 2014-12-17 2018-03-08 コルボ ユーエス インコーポレイテッド Plate wave device having wave confinement structure and fabrication method
JP2017034363A (en) * 2015-07-29 2017-02-09 太陽誘電株式会社 Elastic wave device and module
JP2017224890A (en) * 2016-06-13 2017-12-21 株式会社村田製作所 Acoustic wave device
JP2018007239A (en) * 2016-06-24 2018-01-11 株式会社村田製作所 Acoustic wave device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929735B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US11923821B2 (en) 2018-06-15 2024-03-05 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US20210313963A1 (en) * 2018-06-15 2021-10-07 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11942922B2 (en) 2018-06-15 2024-03-26 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11929727B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11876498B2 (en) * 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US12009804B2 (en) 2019-08-28 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
CN112929004A (en) * 2019-12-06 2021-06-08 太阳诱电株式会社 Acoustic wave resonator, filter, multiplexer and wafer
CN113037244A (en) * 2019-12-09 2021-06-25 三安日本科技株式会社 Surface acoustic wave filter, duplexer, and module
CN111262548A (en) * 2019-12-31 2020-06-09 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator group, filter, electronic device, and electromechanical coupling coefficient adjustment method
CN111262548B (en) * 2019-12-31 2021-06-22 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator group, filter, electronic device, and electromechanical coupling coefficient adjustment method
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11996826B2 (en) 2020-02-18 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with thermally conductive etch-stop layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
WO2022014494A1 (en) * 2020-07-15 2022-01-20 株式会社村田製作所 Elastic wave device
JP2022028565A (en) * 2020-08-03 2022-02-16 三安ジャパンテクノロジー株式会社 Surface acoustic wave device
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11901876B2 (en) 2020-10-05 2024-02-13 Murata Manufacturing Co., Ltd. Acoustic matrix filters and radios using acoustic matrix filters
WO2022085624A1 (en) * 2020-10-19 2022-04-28 株式会社村田製作所 Elastic wave device
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
WO2022103405A1 (en) * 2020-11-16 2022-05-19 Qorvo Us, Inc. Piezoelectric layer arrangements in acoustic wave devices and related methods
US12021496B2 (en) 2020-12-25 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
WO2023278100A1 (en) * 2021-07-02 2023-01-05 Applied Materials, Inc. Mems resonator sensor substrate for plasma, temperature, stress, or deposition sensing
US11874189B2 (en) 2021-07-02 2024-01-16 Applied Materials, Inc. MEMS resonator sensor substrate for plasma, temperature, stress, or deposition sensing
US12021502B2 (en) 2021-12-28 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark electrodes and optimized electrode thickness
US12021503B2 (en) 2021-12-30 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized piezoelectric plate thickness and having multiple pitches and marks
US12021504B2 (en) 2022-01-26 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a front-side dielectric layer and optimized pitch and mark
US12015393B2 (en) 2022-03-31 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals

Also Published As

Publication number Publication date
JP7169083B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP7169083B2 (en) Acoustic wave devices and multiplexers
CN110022134B (en) Acoustic wave device, filter, and multiplexer
JP6566033B2 (en) Multiplexer, high-frequency front-end circuit, and communication device
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
US10250219B2 (en) Acoustic wave device
US20170279433A1 (en) Acoustic wave resonator, filter, multiplexer, and method of fabricating acoustic wave resonator
JP5093403B2 (en) Elastic wave device and electronic device using the same
US10250231B2 (en) Acoustic wave device
KR102140089B1 (en) Acoustic wave resonator, filter, and multiplexer
US20190326878A1 (en) Acoustic wave resonator, filter, and multiplexer
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
JP6430977B2 (en) Elastic wave device
CN110710106B (en) Elastic wave device, demultiplexer, and communication device
JP2019021997A (en) Acoustic wave element, splitter, and communication device
JP2019201345A (en) Acoustic wave resonator, filter and multiplexer
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
JP7403239B2 (en) Acoustic wave devices, filters, and multiplexers
JP7406305B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP7231360B2 (en) elastic wave device
JP2010252254A (en) Surface acoustic wave filter and duplexer
JP2019180064A (en) Acoustic wave filter, branching filter, and communication device
JP7441010B2 (en) Acoustic wave devices, filters and multiplexers
JP7403960B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP2022176790A (en) Elastic wave device, wafer, filter and multiplexer
JP7061005B2 (en) Elastic wave resonators, filters and multiplexers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7169083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150