JP2019186301A - 表示装置及びその製造方法 - Google Patents

表示装置及びその製造方法 Download PDF

Info

Publication number
JP2019186301A
JP2019186301A JP2018072325A JP2018072325A JP2019186301A JP 2019186301 A JP2019186301 A JP 2019186301A JP 2018072325 A JP2018072325 A JP 2018072325A JP 2018072325 A JP2018072325 A JP 2018072325A JP 2019186301 A JP2019186301 A JP 2019186301A
Authority
JP
Japan
Prior art keywords
tft
hole
display device
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018072325A
Other languages
English (en)
Inventor
美由紀 石川
Miyuki Ishikawa
美由紀 石川
将志 津吹
Masashi Tsubuki
将志 津吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2018072325A priority Critical patent/JP2019186301A/ja
Priority to US16/368,841 priority patent/US10930720B2/en
Publication of JP2019186301A publication Critical patent/JP2019186301A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Abstract

【課題】表示装置の画素に酸化物半導体で構成されるTFTを安定化させ、高品質の画像を有する表示装置を実現する。【解決手段】第1のTFTと第2のTFTを有する画素が複数形成された表示領域を有する表示領域であって、前記第1のTFTと前記第2のTFTは酸化物半導体105で構成され、前記第1のTFTと前記第2のTFTは層間絶縁膜108、109によって覆われており、前記層間絶縁膜108、109には、前記第1のTFTのドレイン1051を接続するための第1のスルーホール121が形成され、前記第1のスルーホール121の中心と前記第1のTFTのチャネルの端部との距離d1は、前記第1のスルーホール121の中心と前記第2のTFTのチャネルの端部との距離d2よりも短く、前記第1のスルーホール121のチャネル長は前記第2のTFTのチャネル長よりも短いことを特徴とする表示装置。【選択図】図18

Description

本発明は表示装置に係り、酸化物半導体を用いたTFTを有する表示装置に関する。
有機EL表示装置は各画素内にTFT(Thin Film Transistor)で形成された駆動トランジスタ、スイッチングトランジスタを有し、また、液晶表示装置は画素内に、TFTで形成されたスイッチングトランジスタを有している。有機EL表示装置では、画素内に2個以上のTFTを有しているので、TFT間の特性の変化も問題になる。
酸化物半導体はOFF抵抗が高く、これをTFTに用いるとOFF電流を小さくすることが出来る。したがって、画素電極電位の変動を小さくすることが出来る。また、酸化物半導体を用いたTFTは、ポリシリコン等を用いたTFTよりも低温で形成することが出来るので、樹脂基板を用いた表示装置を実現することが出来る。
酸化物半導体を用いたTFTでは、酸化物半導体層のチャネル領域以外を水素によって還元することで、ドレイン領域およびソース領域を構成することができる。この場合、水素がチャネル領域に拡散すると、TFTがディプリートしてしまう。特許文献1には、水素の拡散を制御して、チャネルの特性を維持しつつ、ドレインまたはソースに供給された水素を拡散させ、ポリシリコンTFTにおけるLDD(Lightly Doped Drain)領域と同じ作用をする領域、すなわち、チャネルとドレインの間にチャネル領域よりも抵抗が小さく、ドレインあるいはソースよりも抵抗が大きい領域を形成する構成が記載されている。
特開2017−85079号公報
TFTを用いた表示装置では、多くの絶縁膜が使用される。絶縁膜には、有機絶縁膜と無機絶縁膜が存在する。シリコン酸化膜(以後、SiOで代表させる)およびシリコン窒化膜(以後SiNで代表させる)は無機絶縁の代表的なものである。SiO膜もSiN膜もCVD(Chemical Vapor Deposition)で形成される。
CVDで形成されたSiN膜は、ベーキングした際に、水素を放出する。水素が酸化物半導体で形成されたTFTのチャネルに侵入すると、酸化物半導体を還元し、特性に変動をきたす。
特に、TFTのチャネル長(ソースとドレインを結ぶ方向の長さ)が短くなると、深刻な問題になり、場合によっては、TFTがディプリートしてしまう場合もある。しかし、SiNは、水分等に対して優れたブロック性を有しているので、SiN膜は必須である。
本発明の課題は、SiN等から放出された水素が酸化物半導体の特性に対して影響が出にくい構成を実現することである。
本発明は上記課題を克服するものであり、具体的な手段は次のとおりである。
(1)第1のTFTと第2のTFTを有する画素が複数形成された表示領域を有する表示領域であって、前記第1のTFTと前記第2のTFTは酸化物半導体で構成され、前記第1のTFTと前記第2のTFTは層間絶縁膜によって覆われており、前記層間絶縁膜には、前記第1のTFTのドレインを接続するための第1のスルーホールが形成され、前記第1のスルーホールの中心と前記第1のTFTのチャネルの端部との距離d1は、前記第1のスルーホールの中心と前記第2のTFTのチャネルの端部との距離よりも短く、前記第1のスルーホールのチャネル長は前記第2のTFTのチャネル長よりも短いことを特徴とする表示装置。
(2)第1のTFTと第2のTFTを有する画素が複数形成された表示領域を有する表示領域であって、前記第1のTFTと前記第2のTFTは酸化物半導体で構成され、前記第1のTFTと前記第2のTFTは層間絶縁膜によって覆われており、前記層間絶縁膜には、前記第1のTFTのドレインあるいはソースを接続するための第1のスルーホールが形成され、前記第1のスルーホールの中心と前記第1のTFTのチャネルの端部との距離はd1であり、前記第1のTFTのチャネル長はcl1であり、前記層間絶縁膜には、前記第2のTFTのドレインあるいはソースを接続するための第2のスルーホールが形成され、前記第2のスルーホールの中心と前記第2のTFTのチャネルの端部との距離はd2であり、前記第2のTFTのチャネル長はcl2である場合、d1<d2の場合は、cl1<cl2であることを特徴とする表示装置。
(3)酸化物半導体による第1のTFTを有する画素が複数形成された表示装置の製造方法であって、基板上に第1の窒化シリコン膜と第1の酸化シリコン膜を有する下地膜を形成し、前記下地膜の上に前記第1のTFTを形成し、前記第1のTFTを覆って層間絶縁膜を形成し、前記層間絶縁膜に前記第1のTFTのドレインまたはソースに対応する第1のスルーホールを形成し、前記第1のスルーホールの中心から前記第1のTFTのチャネルの端部までの距離が20μmより小さい場合は、前記第1のTFTのチャネル長は4μmよりも小さくし、前記第1のスルーホールの中心から前記第1のTFTのチャネルの端部までの距離が20μm以上の場合は、前記第1のTFTのチャネル長は4μm以上とすることを特徴とする表示装置の製造方法。
有機EL表示装置の平面図である。 有機EL表示装置の画素の等価回路である。 有機EL表示装置の断面図である。 本発明の作用を説明する断面図である。 本発明の作用を説明する他の断面図である。 特性を測定したTFTの平面図である。 特性を測定したTFTの断面図である。 水素の影響が無い場合のTFTのVg−Id特性である。 水素の影響が小さい場合のTFTのVg−Id特性である。 水素の影響によって、TETがディプリートした場合のVg−Id特性である。 水素の影響下における、TFTのチャネル長とスレッショルド電圧の変化の関係を示すグラフである。 酸化物半導体によるTFTの1例を示す断面図である。 スルーホールの中心とチャネル端部の距離dの定義の例を示す平面図である。 スルーホールの中心とチャネル端部の距離dの定義の例を示す他の平面図である。 スルーホールの中心とチャネル端部の距離dの定義の例を示すさらに他の平面図である。 スルーホールの中心とチャネル端部の距離dの定義の例を示すさらに他の平面図である。 スルーホールの中心とチャネル端部の距離dの定義の例を示すさらに他の平面図である。 実施例2の例を示す断面図である。 実施例3である、トップゲートTFTの場合の有機EL表示装置の断面図である。 トップゲートTFTの場合の本発明の作用を説明する断面図である。 トップゲートTFTの場合の本発明の作用を説明する他の断面図である。 トップゲートTFTの場合の拡大断面図である。 トップゲートTFTの場合の他の例を示す拡大断面図である。 トップゲートTFTの場合のさらに他の例を示す拡大断面図である。 実施例4であるデュアルゲートTFTの場合の、スルーホールとチャネル端部の距離dの定義の例である。 デュアルゲートTFTの場合の、スルーホールとチャネル端部の距離dの定義の他の例である。 実施例5におけるTFT部分の断面図である。 液晶表示装置の平面図である。 液晶表示装置の画素部の平面図である。 液晶表示装置の画素部の断面図である。 液晶表示装置の画素部の他の形態の平面図である。 液晶表示装置の画素部のさらに他の形態の平面図である。
以下、実施例によって本発明の内容を詳細に説明する。酸化物半導体としては、IGZO(Indium Gallium Zinc Oxide)、ITZO(Indium Tin Zinc Oxide)、ZnON(Zinc Oxide Nitride)、IGO(Indium Gallium Oxide)等がある。酸化物半導体のうち、光学的に透明でかつ結晶質でないものはTAOS(Transparent Amorphous Oxide Semiconductor)と呼ばれている。本明細書では、酸化物半導体をTAOSと呼ぶこともある。実施例1乃至5で、本発明を有機EL表示装置に適用した場合について説明し、実施例6で本発明を液晶表示装置に適用した場合を説明する。
図1において、表示領域10の両側には走査線駆動回路20が形成されている。表示領域10には、横方向(x方向)に走査線11が延在し、縦方向(y方向)に配列している。映像信号線12及び電源線13が縦方向に延在し、横方向に配列している。走査線11と、映像信号線12及び電源線13で囲まれた領域が画素14となっており、画素14内には、TFTで形成された駆動トランジスタ、スイッチングトランジスタ、光を発光する有機EL層等が形成されている。
TFT基板100の1辺には端子領域30が形成されている。端子領域30には、映像信号線を駆動するためにドライバIC31が搭載され、有機EL表示装置に電源や信号を供給するためにフレキシブル配線基板32が接続されている。
TFT基板100を例えば0.2mm以下のガラスで形成すればディスプレイを湾曲して使用することが出来る。また、TFT基板100をポリイミド等の樹脂で形成すれば、フレキシブルな表示装置を形成することが出来る。ポリイミドは機械的な強度、耐熱性等から表示装置の基板として優れた特性を有している。酸化物半導体を用いたTFTは、poly−Siを用いたTFTよりもプロセス温度が低いので、樹脂で形成したTFT基板を用いることが出来る。
図2は有機EL表示装置の画素部の等価回路の例である。図3において、走査線11が横方向に延在している。また、カソード線15が横方向に延在しているが、これは、等価回路上での表現であり、カソード線15は後で説明するように、表示領域10を覆って全面に形成されている。映像信号線12が縦方向に延在し、また、電源線13が縦方向に延在している。走査線11と映像信号線12あるいは電源線13によって囲まれた領域が画素になっている。
図2において、スイッチングトランジスタT1のドレインが映像信号線12と接続し、ゲートが走査線11と接続している。駆動トランジスタT2のドレインが電源線13と接続し、ソースが有機EL層ELと接続している。駆動トランジスタT2のゲートはスイッチングトランジスタT1のソースと接続している。また、駆動トランジスタT2のゲートとソースの間に蓄積容量Csが接続されている。
図2において、スイッチングトランジスタT1が走査信号を受けると、スイッチングトランジスタを通して映像信号が蓄積容量Csに蓄積され、駆動トランジスタT2は、蓄積容量Csに蓄積された電荷による電位にしたがって、有機EL層ELに電流を供給する。駆動トランジスタT2の一方の電極は蓄積容量Csの一方の電極となっている。図3で説明するトランジスタは駆動トランジスタT2である。
図3は有機EL表示装置の表示領域10の断面図である。TFT基板100の上には、下地膜101が形成されている。下地膜101は、上層に形成される酸化物半導体105、あるいは、有機EL層115がガラスあるいは樹脂からの不純物によって汚染されることを防止することと、樹脂基板あるいはガラス基板との接着力を向上することである。
下地膜101は例えば、シリコン酸化膜(以後SiOで代表させる)とシリコン窒化膜(以後SiNで代表させる)積層構造となっている。あるいは、SiN膜をSiO膜で挟んだ3層構成となっている。この場合、下層のSiOは、不純物の侵入を防止するとともに、TFT基板100である、ガラスあるいはポリイミドとの接着性を確保する。SiNは、ガラス基板あるいはポリイミド基板からの、特に水分等に対する優れたバリア性を有する。上層のSiO膜は、不純物に対するバリアの役割を有するともに、SiO膜の上に形成される層との接着力の向上をはかる。
図3において、下地膜101の上に形成されるTFTは図2における駆動TFTであるT2に相当する。そして、電源線側がドレイン電極側になる。図3において、下地膜101の上には、ボトムゲート電極102が形成されている。ボトムゲート電極102は、抵抗を小さくしたい場合、例えば、Ti(100nm)‐Al(300nm)‐Ti(100nm)の積層構造で構成される。ボトムゲート電極102は酸化物半導体105に対する遮光膜としての役割も有する。なお、ボトムゲート102は、図2におけるスイッチングTFTであるT1のソースと接続する。
ボトムゲート電極102と酸化物半導体105の間に第1ゲート絶縁膜103と第2ゲート絶縁膜104の2層構造からなるゲート絶縁膜が形成されている。第1ゲート絶縁膜103は、例えば、200nmのSiN膜で形成され、第2ゲート絶縁膜104は300nmのSiO膜で形成されている。SiN膜は誘電率が高いので、ゲート電圧による絶縁破壊を防止する効果がある。また、SiN膜は水分等に対する優れたブロック効果を有する。第2ゲート絶縁膜104は、上に形成される酸化物半導体105と接触するので、酸化物半導体105に酸素を供給し、酸化物半導体105の特性を安定化する役割を有する。
図3において、第2ゲート絶縁膜104の上に酸化物半導体105が形成されている。酸化物半導体105は例えばIGZOで形成され、スパッタリングによって形成される。酸化物半導体105をパターニング後、酸化物半導体105の両側を第1ドレイン電極106、第1ソース電極107で覆う。第1ドレイン電極106あるいは、第1ソース電極107は、Mo、Tiあるいは、Mo合金等で形成される。金属は酸化物半導体105から酸素を奪って酸化物半導体105を還元し、酸化物半導体に105導電性を付与する。つまり、図13において、金属と重なっている酸化物半導体105の部分は導電性となり、ドレイン1051あるいはソース1052となっている。
第1ドレイン電極106、第1ソース電極107をパターニングした後、SiOで形成される第1層間絶縁膜108を形成し、その上にSiNによる第2層間絶縁膜109を形成する。そして、第1層間絶縁膜108と第2層間絶縁膜109を貫通して、第2ドレイン電極110のためのスルーホール121と第2ソース電極111のためのスルーホール122を形成する。
スルーホール121、122を形成した後、ベーキングを行う。このベーキングによって、SiOで形成された第1層間絶縁膜108及びSiOで形成された第2ゲート電極104から酸素を酸化物半導体105に送り込み、酸化物半導体105の特性を安定化させる。しかし、このベーキングにおいて、SiNで形成された第1ゲート絶縁膜103から水素が放出される。この水素が酸化物半導体105のチャネルに達するとTFTの特性を変化させる。
特に、チャネル長が短くなると、この水素の影響が大きくなる。極端な場合は、チャネルが導通してしまう(ディプリートする)場合がある。本発明者は、水素の放出にスルーホール121及び122が重要な役割を有することを発見し、スルーホールの121,122位置とチャネル長の関係を規定することによって、SiN膜から放出される水素によるTFT特性への影響を軽減するものである。
図3において、スルーホール121に第2ドレイン電極110を形成し、スルーホール122に第2ソース電極111を形成する。層間絶縁膜109、ドレイン電極110、ソース電極111等を覆って有機パッシベーション膜112をアクリル等の樹脂で形成する。有機パッシベーション膜112は平坦化膜としての役割を有しているので、1.5μm乃至4μm程度と、厚く形成される。
有機パッシベーション膜112にスルーホールを形成し、下部電極113とソース電極111の接続を行う。下部電極113は下層が銀の薄膜等で形成された反射電極であり、上層が有機EL層115に対するアノードとして動作する。アノードは例えば透明導電膜であるITO(Indium Tin Oxide)によって形成する。
下部電極113、有機パッシベーション膜112等を覆ってバンク114を形成する。バンク114はアクリル等の樹脂で形成される。バンク114の役割は、下部電極113の上に形成される有機EL層115が下部電極113の端部において段切れを生じないようにすることと、画素間を区画することである。バンク114は当初は全面に形成され、その後、有機EL層115が形成される部分、すなわち、発光部分にホールを形成する構成となっている。
図3において、バンク114のホール内において、下部電極113の上に有機EL層115が形成される。有機EL層115は、例えば、下から順に、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の5層から形成されている。
有機EL層115の上には、透明電極によってカソードとなる上部電極116が形成されている。上部電極116は透明である必要がある。上部電極116は例えば、ITO、IZO(Indium Zinc Oxide)、AZO(Antimony Zinc Oxide)等の透明導電膜あるいは、銀等の金属の薄膜で形成されている。金属も薄膜化すると、透明に近くなる。上部電極116は、各画素共通に表示領域10全面に形成される。
有機EL層115は水分に弱く、また、薄いので機械的に弱い。そこで、SiN膜、SiO膜等の無機膜、及び、アクリル等で形成された有機膜等の積層膜で形成される保護膜117が上部電極116を覆って形成される。SiN膜は水分に対するバリア層となり、有機膜は機械的なバッファーを構成し、SiO膜は、バリア層としての役割の他、他の膜との接着力を向上させる。
有機EL表示装置は反射電極を有しているので、外光を反射する。外光の反射は視認性を劣化させる。そこで、図3に示す有機EL表示装置は、表示面に、粘着材118を介して円偏光板119を配置して外光の反射を防止している。
図4及び図5は、本発明の原理を示すTFT付近の断面図である。図4は、スルーホール121、122がチャネル105の近傍にある場合である。図4の構成は、図3で説明したとおりである。すなわち、ボトムゲート電極102を覆った、SiNによる第1ゲート絶縁膜103、SiOによる第2ゲート絶縁膜104を形成し、その上に酸化物半導体105を形成する。酸化物半導体105の上に第1ドレイン電極106及び第1ソース電極107を形成し、その上にSiOによる第1層間絶縁膜108、SiNによる第2層間絶縁膜109を形成する。
第1層間絶縁膜108、第2層間絶縁膜109を貫通してスルーホール121及びスルーホール122を形成した後、ベーキングを行う。この時、SiNで形成された第1ゲート絶縁膜103から水素が放出される。水素がチャネルに達すると、酸化物半導体105を還元し、TFTの特性に重大な影響を与える。特に、チャネル長が小さいほど、その影響が大きい。TFT基板100に樹脂を用いた場合、樹脂からも水素が放出されるので、水素の影響はより深刻になる。
図4では、チャネルの近傍に、スルーホール121及びスルーホール122が形成されているので、水素は、スルーホールに向かって拡散し、チャネルへの影響を抑えることが出来る。図4における矢印は、水素の拡散方向を示している。図4に示すような構成であれば、チャネル長を短くすることが出来る。
図4において、スルーホールの位置とチャネル位置の具体的な距離は、スルーホールの中心からチャネル105の端部までの距離dと定義する。例えば、dが20μmより小さければ、チャネル長clは4μmより小さくすることが出来る。ところで、図4において、スルーホール121、122の下に金属で形成された第1ドレイン電極106、第1ソース電極107が存在する。しかし、水素は金属を透過するので、第1ドレイン電極106、第1ソース電極107が水素に対するブロックにはならない。
図5は、スルーホール121、122がチャネル105から離れて存在している場合である。このような場合、TFTのチャネル付近において、第1層間絶縁膜106及び第2層間絶縁膜107を形成した後のベーキングによって、SiNで形成された第1ゲート絶縁膜103から放出された水素は逃げ場がないので、チャネル105に向かい、チャネル105の特性を変動させる。図5の矢印は、水素の拡散方向である。
図5の場合、具体的には、スルーホール121の中心とチャネル端部の距離dが20μm以上になると、水素のチャネルへの影響が大きくなる。図5のような場合は、チャネル長clは、4μm以上とする必要がある。チャネル長が長ければ、水素の特性への影響を抑制することができる。
図8乃至図11は、水素の影響、すなわち、TFTのチャネル長clと、スルーホールとチャネルとの距離dを評価したデータである。図6は測定したTFTの平面図である。図6において、ドレイン電極106側とソース電極107側とは非対称となっている。ソース電極107側のスルーホール122のチャネル105からの距離ddは非常に大きく、スルーホールの影響が出ない領域である。一方、ドレイン電極106側のスルーホール121とチャネル間の距離dは非常に小さく、このdを変化させることによって種々のデータを取得している。図6において、チャネル長clは3μm、チャネル幅cwは4μmである。
図7は図6に対応する断面図である。図7の層構成は図3、図4、図5で説明したのと同じである。図7において、ソース電極107側のスルーホール122はチャネル105から遠く離れており、スルーホール122のチャネル105への影響は無い。図7においてドレイン電極106側のスルーホール121とチャネル105との距離dは近く、このdの値を変化させてデータを取得している。ゲート電極102には電圧Vgが印加され、ドレイン電極106とソース電極107の間にはドレイン電圧Vdが印加され、ドレイン電極106とソース電極107の間のドレイン電流Idを取得する。
図8は、水素の影響が無い場合のVdをパラメータにした場合の、VgとIdの関係を示すグラフである。図18において、横軸はゲート電圧Vg(V)、縦軸はドレイン電流Id(A)である。縦軸はlogスケールである。Vdは0.1Vの場合と10Vの場合のデータである。図18に示すように、水素の影響が無ければ、ドレイン電流Idは、ゲート電圧がゼロ付近のときから立ち上がり、スレッショルド電圧の変化も観測されない。
図9は、SiNで形成された第1ゲート絶縁膜からの水素の影響はあるが、スルーホール121とチャネル端部との距離が20μmよりも小さい場合である。具体的には、スルーホール121とチャネル端部との距離dが15μmの場合である。この時のチャネル幅とチャネル長は図6に示したとおりである。図9の横軸と縦軸は図8で説明したとおりである。図9において、Vdが0.1Vの時は、ドレイン電流Idは、ゲート電極がゼロの場合から立ち上がり、スレッショルド電圧の変化も観測されない。すなわち、水素の影響が無い場合を示す図8と同じである。
図9において、ドレイン電圧Vdが10Vの場合、スレッショルド電圧が変化しているが、1V以下である。このようなスレッショルド電圧の変化はDIBL(Drain Induced Barrier Lowering)と呼ばれている。ところで、実際の製品でのTFTのドレイン電圧は最大で5Vであり、Vdが10Vの場合にDIBLが1V以下であれば許容範囲である。
図10は、SiNで形成された第1ゲート絶縁膜からの水素の影響が存在し、かつ、スルーホール121とチャネルとの距離が20μm以上の場合である。具体的には、スルーホール121とチャネル端部との距離dが25μmの場合である。図5で説明したように、スルーホールとチャネル間の距離dが大きいと、SiNで形成された第1ゲート絶縁膜から放出された水素の逃げ場がないために、水素の影響が顕著になる。図10の測定時のチャネル幅とチャネル長は図6に示したとおりである。
図10における横軸と縦軸は図8で説明したのと同じである。図10において、ドレインが0.1Vの場合も10Vの場合も、チャネルはゲート電極に関わらず、導通している。つまり、ディプリート状態になっている。水素によって、チャネル部の酸化物半導体が還元され、酸化物半導体に導電性が付与された結果である。つまり、図10の状態では、表示装置は動作しない。
図11は、SiNで形成された第1ゲート絶縁膜から放出される水素の影響が存在する場合において、チャネル長とスレッショルド電圧ΔVthの変化の関係を測定したものである。すなわち、図6において、スルーホール121とチャネル105の距離dを25μmとし、チャネル長clを変化させた場合にスレッショルドがどのように変化するかを評価したものである。チャネル幅cwは一定で、5μmである。図6において、ddは25μmよりも大きいのでチャネルへのスルーホールの影響は無い。また、図6におけるdの値は、25μmであり、スルーホールの影響は無い状態としている。
チャネル長が長くなると、水素の影響は小さくなる。例えば、チャネル長が20μmであれば、水素の影響は無視できる。図11は、スルーホールによる水素の放出の効果を期待できない状態において、チャネル長をどの程度まで小さくすると水素の影響が現れるかを示すデータである。
図11において、チャネル長が4μmよりも小さくなると、スレッショルド電圧が低下する。例えば、チャネル長が3.5μmになると、スレッショルド電圧は1.4V程度変化する。一方、チャネル長が4μm以上であれば、スルーホールによる水素の拡散が期待できなくとも、水素の影響は無視することが出来る。
図11は、図6及び図7におけるdが25μmの場合である。したがって、dが仮に20μmよりも小さければ、水素の影響が軽減されるので、チャネル長が4μmより小さい範囲でもスレッショルド電圧の変化は小さく抑えることが出来る。
ところで、実際の製品においは、第2ドレイン電極110用スルーホール121と第2ソース電極用スルーホール122は、チャネル105を挟んで常に対称の位置にあるとは限らない。図12はその例である。図12は、ドレイン電極106側のスルーホール121がソース電極107側スルーホール122よりもチャネル105に近い。すなわち、図12において、d<d1である。このような場合、チャネル105とスルーホールの距離は、図12におけるdを用いる。チャネル105により近いスルーホールの影響が大きいからである。
距離dは、スルーホール121の中心からチャネル105の端部までの距離であるが、平面で視ると色々なケースがあり得る。図13はスルーホール121及びスルーホール122の平面が円の場合である。図14はスルーホール121及びスルーホール122の平面が正方形の場合である。図15は、スルーホール121、122の平面が正方形であるが、スルーホール122とチャネル105間の距離d1よりもスルーホール121とチャネル105間の距離dよりも大きい。この場合は、図15におけるdがスルーホールとチャネルの距離になる。
図16は、スルーホール121の平面が長方形の場合である。この場合も長方形の中心とチャネル105端部の距離がdとなる。図17は、第1ドレイン電極106が屈曲し、屈曲した後の部分に、平面が長方形のスルーホール121が形成されている。この場合、長方形121の中心と、これに最も近いチャネル105の部分との距離がdになる。
TFTの形状はレイアウトの都合によって、種々変化する。このような場合、ドレイン電極あるいはソース電極のスルーホールの中心からの距離とチャネルとの距離を基準にして、TFTのチャネル長を決めることによって、効率の良い、信頼性の高い表示装置を実現することが出来る。
実施例1では、単独のTFTについて、ドレイン電極121用スルーホールあるいはソース電極用スルーホール122の位置によって、チャネル長を変化させる例を説明した。実際の製品では、全てのTFTがドレイン電極用スルーホール121及びソース電極用スルーホール122を持つとは限らない。例えば、図18は左側の第1のTFTと右側の第2のTFTが直列に接続した例である。図18は、発明を説明するために、構成を単純化した例である。
図18において、スルーホールは、第1のTFTのドレイン電極用スルーホール121のみである。第1のTFTのソース電極107は第2のTFTのドレイン電極106と接続しており、第2のTFT付近にはスルーホールは存在しない。この場合のスルーホール121と第1のTFTのチャネルとの距離dは20μmよりも小さい。したがって、第1のTFTのチャネル長tl1は4μよりも小さくすることが出来る。
一方、第2のTFTのチャネル105とスルーホール121の距離d2は20μm以上である。したがって、第2のTFTのチャネル長tl2は4μm以上とする必要がある。逆に、TFTをこのように、設定することによって、信頼性の高い表示装置とすることが出来る。
図18において、スルーホール121に近い第1のTFTは、チャネル長cl1を短くすることが出来るので、電流を多く流すことが出来る。そこで、例えば、第1のTFTを駆動TFTとすることによって、効率のよい、また、高性能な表示装置を実現することが出来る。
実施例1及び2では、TFTがボトムゲートの場合について説明した。本発明はトップゲートの場合についても適用することが出来る。図19は、トップゲートの場合の有機EL表示装置の断面図である。図3とは、TFTの構成が異なっている。
図19において、TFT基板100の上に下地膜101が形成されているが、図19における下地膜101は、下層がSiN膜1011で、上層がSiO膜1012である。いずれの膜もCVDによって形成される。SiN膜は基板100側からの水分をブロックするために必須の構成であるが、後で、第2層間絶縁膜108,109をベーキングした際に水素を放出する。この水素が酸化物半導体105で形成されたチャネル105に対して影響を与える。なお、下地膜101は、この他に、SiN膜をSiO膜でサンドイッチしたような3層構成等で形成する場合もあるが、いずれにせよ、SiN膜は存在するので、水素の放出の問題は同じである。
下地膜101の上に酸化物半導体105がスパッタリングによって形成され、パターニングされる。酸化物半導体105を覆って第3ゲート絶縁膜140が形成される。なお、第3ゲート絶縁膜という名称は、単に、実施例1における第1ゲート絶縁膜及び第2ゲート絶縁膜と区別するためである。第3ゲート絶縁膜140はSiOで形成され、酸化物半導体105のチャネルに酸素を供給してTFTの特性を安定化させる役割も有している。
第3ゲート絶縁膜140の上にトップゲート電極141が形成される。トップゲート電極141はMo、MoW等で形成する場合もあるし、抵抗を小さくする場合は、AlをTiでサンドイッチした構成等が採用される。ゲート電極141を形成後、ゲート電極141をマスクにしてイオンインプランテーションによって、アルゴン(Ar)、リン(P)、または、ボロン(B)等を打ち込み、酸化物半導体105に導電性を付与し、ドレイン1051およびソース1052を形成する。
SiOによる第1層間絶縁膜108、SiNによる第2層間絶縁膜109をCVDによって形成する。これは、ボトムゲートタイプの場合と同様である。その後、ドレイン電極110のための第1スルーホール121及びソース電極111のための第2スルーホール122を第2層間絶縁膜109、第1層間絶縁膜108、第3ゲート絶縁膜140を貫通して形成する。その後の工程は実施例1で説明したのと同様である。
第2層間絶縁膜109、第1層間絶縁膜108、第3ゲート絶縁膜140等に第1スルーホール121、第2スルーホール122を形成後、酸化物半導体105を活性化するために、ベーキングを行うことは実施例1と同様である。また、本実施例においても、酸化物半導体105の下地膜101にCVDで形成されたSiN膜が存在するので、ベーキング時にSiN膜から水素が放出される。また、TFT基板100が樹脂で形成されていれば、樹脂から酸化物半導体105に向かって水素が放出されることも同様である。つまり、水素の影響はボトムゲートと同様である。
図20は、スルーホール121及びスルーホール122がチャネル105付近に存在する場合である。具体的には、チャネル105の端部からスルーホール121,122の中心までの距離dが、20μmより小さい場合である。この場合は、チャネル105の下方において、SiN膜から放出された水素はスルーホール121及び122に拡散するので、チャネル105に対する水素の影響は抑制される。したがって、チャネル長clは、4μmより短くすることが出来る。
図21は、スルーホール121,122の位置がチャネル105から遠く離れて存在している場合である。具体的には、チャネル端部からスルーホールの中心までの距離dが20μm以上の場合である。この場合は、チャネルの下方において、SiN膜から放出された水素は逃げ場がないので、チャネル105に向かい、TFT特性に影響を与える。チャネル長clが長くなると水素の影響を受けにくくなるので、このような場合、チャネル長clを4μm以上とする必要がある。
図22は、チャネル105とドレイン電極110用スルーホール121との距離と、チャネル105とソース電極111用スルーホール122との距離が異なる場合の断面図である。この場合、チャネル105とスルーホールの中心との距離dは短い方、つまり、図22では、チャネル105の端部とスルーホール121の中心との距離と定義する。
ところで、酸化物半導体105は10nm乃至100nm程度で形成されるが、多くの場合は、20nm乃至50nm程度と、薄く形成される。スルーホール121及びスルーホール122は3層の絶縁膜を貫通してドライエッチングによって形成される。ドライエッチングガスによるエッチング選択比が大きくない場合は、スルーホール形成時に、酸化物半導体105も消失してしまう。
図23は、これを防止する構成である。図23において、スルーホール121,122と酸化物半導体1051,1052の間に金属によるエッチングストッパー145が形成されている。水素は金属を透過するので、エッチングストッパー145が存在しても、スルーホール121への水素の拡散は妨げられない。
ところで、図22および図23の構成において、酸化物半導体105のドレイン1051およびソース1052はイオンインプランテーションによって導電性が付与された場合である。このような構成のドレインおよびソースは長期間の動作において、抵抗が増大する場合がある。金属は、酸素を奪う性質があるので、図24に示すように、金属で形成されたエッチングストッパー145によって酸化物半導体105のドレイン1051及びソース1052を覆うことによって、ドレイン及びソースの抵抗増大を抑えることが出来る。この場合も、チャネル105端部とスルーホールの中心の距離dとチャネル長clの関係は図22、図23の場合と同様である。
酸化物半導体105を用いたTFTは、いわゆるデュアルゲートとする場合もある。つまり、酸化物半導体105の上と下にゲート電極が存在する場合である。図25はこの場合の断面図である。図25において、第2ゲート絶縁膜104までの構成は実施例1の図3と同じである。図25において、第2ゲート絶縁膜104の上に酸化物半導体105が形成され、その上に第3ゲート絶縁膜140が形成され、その上にトップゲート電極141が形成されている。
図25において、ボトムゲート電極102の方がトップゲート電極141よりも幅広く形成されている。この場合、ボトムゲート電極102がTFTに対する遮光膜としての役割を有している。図25において、トップゲート141をマスクにしてイオンインプランテーションにより、ドレイン1051及びソース1052が形成されている。この構成は実施例3の図19と同じである。つまり、チャネル長clはトップゲート電極141によって決まる。したがって、チャネル長clと、チャネル105端部とスルーホールの中心の距離dは実施例3と同じ定義になる。
図26は、チャネル長clがトップゲート141をマスクとしたイオンインプランテーションではなく、酸化物半導体105のドレイン1051を覆う第1ドレイン電極106とソース1052を覆う第1ソース電極107によって決められている場合である。この場合のチャネル長clと、チャネル端部とスルーホールの中心の距離dは実施例1の場合と同じ定義になる。
図27は実施例5を示す断面図である。有機EL表示装置の場合、1画素に第1のTFTと第2のTFTが存在し、第1のTFTと第2のTFTは第1の層間絶縁膜108と第2の層間絶縁膜109によって覆われている(以後、本実施例では、第1の層間絶縁膜108と第2の層間絶縁膜109を合わせて単に層間絶縁膜という)。第1のTFTには、層間絶縁膜に第1のスルーホール121が形成されている。第2のTFTには、層間絶縁膜に第2のスルーホール122が形成されている。
第1のTFTにおいて、スルーホール121の中心とチャネルの端部の距離はd1である。そして、チャネル長はcl1である。第2のTFTにおいて、スルーホール122の中心とチャネルの端部の距離はd2である。そして、チャネル長はcl2である。ここで、d1<d2である。この場合、チャネル長は、第1のTFTのチャネル長cl1の方が、第2のTFTのチャネル長よりも短くてよい。理由は、実施例1で説明したとおり、水素の影響を第1のTFTでは小さくできるからである。
有機EL表示装置においては、駆動TFTとスイッチングTFTがあるが、駆動TFTのほうが電流を多く流す必要がある。チャネル長が短い方が駆動電流を多く流すことができる。したがって、図27における第1のTFTを駆動TFTとして用いることが合理的である。逆に、2個のTFTにおいて、一方のTFTのチャネル長を他方のTFTよりも長くせざるを得ないようなレイアウトとなる場合は、チャネル長を短くできるようなTFTを駆動TFTとして用いるようなレイアウトとすることが合理的である。
本発明は液晶表示装置についても用いることが出来る。液晶表示装置では、通常は、画素には1個のTFTが形成される。液晶表示装置においても酸化物半導体を用いたTFTが用いられる。図28は液晶表示装置の平面図である。図28において、TFT基板100と対向基板200がシール材50を介して接着し、内部に液晶が封止されている。
TFT基板100と対向基板200が重なった部分に表示領域10が形成されている。表示領域10には走査線11が横方向に延在し、縦方向に配列し、映像信号線12が縦方向に延在して横方向に配列している。走査線と映像信号線で囲まれた領域に画素14が形成されている。端子領域30にはドライバIC31が搭載され、フレキシブル配線基板32が接続している。
図29は、表示領域の画素の平面図である。図29において、走査線11が横方向に延在し、映像信号線12が縦方向に延在している。走査線11と映像信号線12に囲まれた領域に画素電極152が形成されている。画素電極152の下には、絶縁膜を挟んでコモン電極150が形成されている。画素電極152は3個のスリット1521を有している。
画素のコーナー部に酸化物半導体105によるTFTが形成されている。酸化物半導体105のドレインには第1ドレイン電極106が配置し、スルーホール121を介して映像信号線12と接続している。酸化物半導体105のソースには、第1ソース電極107が配置し、第1ソース電極107はスルーホール122を介して第2ソース電極111と接続している。
第2ソース電極111は画素電極152側に延在し、スルーホール130において、画素電極152と接続している。図28において、映像信号線12が第2ドレイン電極を兼用し、走査線11が分岐してボトムゲート電極102を構成している。
図30は、図29に対応する液晶表示装置の表示領域の断面図である。図30に示すように、有機パッシベーション膜112を形成するまでは、有機EL表示装置の場合の図3と同じである。したがって、実施例1で説明した本発明の内容はそのまま液晶表示装置についても適用することが出来る。
図30において、有機パッシベーション膜112の上にコモン電極150が平面状に形成されている。コモン電極150を覆ってSiNによって容量絶縁膜151が形成され、その上に画素電極152が形成されている。画素電極152の平面形状は図29に例示されたとおりである。画素電極152は有機パッシベーション膜112に形成されたスルーホール130及び、スルーホール130内に形成された、容量絶縁膜151のスルーホールを介して第2ソース電極111と接続している。画素電極152を覆って配向膜153が形成されている。
図30において、液晶層300を挟んで対向基板200が配置され、対向基板200の内側にはカラーフィルタ201とブラックマトリクス202が形成され、これらを覆ってオーバーコート膜203が形成されている。オーバーコート膜203の上に配向膜204が形成されている。図30において、画素電極152とコモン電極150の間に電圧が印加されると、矢印で示すような電気力線が発生し、液晶分子301を回転させ、液晶層300の透過率を制御する。画素毎に液晶層300の透過率を制御することによって画像を形成する。
図29及び図30において、TFTのチャネル長はclであり、ドレイン側のスルーホール121とチャネルの端部の距離はdである。そしてdとchの関係は実施例1で説明したのと同様である。
図29では、TFTは画素のコーナーに形成されているが、レイアウトの都合によっては、図31に示すように、TFTを画素のx方向中央付近に配置する場合もある。このような場合、例えば、第1ドレイン電極106が長くなり、スルーホール121とチャネル105端部の距離が大きくなる。このような場合は、第1ソース電極107側のスルーホール122とチャネル105の端部の距離dを小さくすることによって、チャネル長を小さく維持することが出来る。
図32は、TFTを画素のx方向中央付近に配置する場合の他の例である。図32では、第2ドレイン電極となる映像信号線12の分岐を長くし、第1ドレイン電極106と接続するためのスルーホール121とチャネル105との距離を小さくした例である。これによって、TFTのチャネル長を4μmよりも小さくすることが出来る。一方、図31あるいは図32のような構成が取れず、チャネル端部とスルーホール中心との距離dが20μm以上となる場合は、TFTのチャネル長を、4μm以上とすることになる。
10…表示領域、 11…走査線、 12…映像信号線、 13…電源線、 14…画素、 20…走査線駆動回路、 21…電流供給領域、 30…端子領域、 31…ドライバIC、 32…フレキシブル配線基板、 50…シール材、 100…TFT基板、 101…下地膜、 102…ボトムゲート電極、 103…第1ゲート絶縁膜、 104…第2ゲート絶縁膜、 105…酸化物半導体、 106…第1ドレイン電極、 107…第1ソース電極、 108…第1層間絶縁膜、 109…第2層間絶縁膜、 110…第2ドレイン電極、 111…第2ソース電極、 112…有機パッシベーション膜、 113…下部電極、 114…バンク、 115…有機EL層、 116…上部電極、 117…保護層、 118…粘着材、 119…円偏光板、 121…第1スルーホール、 122…第2スルーホール、 130…スルーホール、 140…第3ゲート絶縁膜、 141…トップゲート電極、 145…エッチングストッパー、 150…コモン電極、 151…容量絶縁膜、 152…画素電極、 153…配向膜、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 300…液晶層、 301…液晶分子、 1011…SiN層、 1012…SiO層、 1051…ドレイン、 1052…ソース、 1521…スリット、 T1…第1TFT(スイッチングTFT、 T2…第2TFT(駆動TFT)、 Cs…蓄積容量、 EL…有機EL素子

Claims (20)

  1. 第1のTFTと第2のTFTを有する画素が複数形成された表示領域を有する表示装置であって、
    前記第1のTFTと前記第2のTFTは酸化物半導体で構成され、
    前記第1のTFTと前記第2のTFTは層間絶縁膜によって覆われており、
    前記層間絶縁膜には、前記第1のTFTのドレインを接続するための第1のスルーホールが形成され、
    前記第1のスルーホールの中心と前記第1のTFTのチャネル領域の端部との距離d1は、前記第1のスルーホールの中心と前記第2のTFTのチャネル領域の端部との距離よりも短く、
    前記第1のスルーホールのチャネル長は前記第2のTFTのチャネル長よりも短いことを特徴とする表示装置。
  2. 前記第2のTFTのドレインあるいはソースを接続するために、前記層間絶縁膜に形成された第2のスルーホールの中心と、前記第2のTFTのチャネル領域との距離d2は、前記d1よりも大きいことを特徴とする請求項1に記載の表示装置。
  3. 前記第1のTFTのゲート電極と前記第2のTFTのソースとは接続されていることを特徴とする請求項1に記載の表示装置。
  4. 前記第1のTFTと前記第2のTFTの下層には、窒化シリコン膜が存在していることを特徴とする請求項1に記載の表示装置。
  5. 前記窒化シリコン膜はCVDで形成されていることを特徴とする請求項4に記載の表示装置。
  6. 前記第1のTFTと前記第2のTFTは、樹脂基板に形成されていることを特徴とする請求項1に記載の表示装置。
  7. 前記第1のTFTはボトムゲートタイプであり、前記第1のTFTのボトムゲートと前記第1のTFTの前記酸化物半導体の間には、窒化シリコンで形成されている第1のゲート絶縁膜と酸化シリコンで形成されている第2のゲート絶縁膜が存在していることを特徴とする請求項1に記載の表示装置。
  8. 前記第1のTFTはトップゲートタイプであり、前記第1のTFTの前記酸化物半導体は、酸化シリコン膜の上に形成され、前記酸化シリコン膜の下には窒化シリコン膜が存在していることを特徴とする請求項1に記載の表示装置。
  9. 前記第1のTFTは、ボトムゲートとトップゲートを含むデュアルゲート方式であり、
    前記第1のTFTのボトムゲートと前記第1のTFTの前記酸化物半導体の間には、窒化シリコンで形成されている第1のゲート絶縁膜と酸化シリコンで形成されている第2のゲート絶縁膜が存在し、
    前記第1のTFTの前記酸化物半導体と前記トップゲートとの間には、酸化シリコンで形成されている第3のゲート絶縁膜が存在していることを特徴とする請求項1に記載の表示装置。
  10. 前記第1のTFTのチャネル長は4μmより小さく、前記第2のTFTのチャネル長は4μm以上であることを特徴とする請求項1に記載の表示装置。
  11. 第1のTFTと第2のTFTを有する画素が複数形成された表示領域を有する表示領域であって、
    前記第1のTFTと前記第2のTFTは酸化物半導体で構成され、
    前記第1のTFTと前記第2のTFTは層間絶縁膜によって覆われており、
    前記層間絶縁膜には、前記第1のTFTのドレインあるいはソースを接続するための第1のスルーホールが形成され、
    前記第1のスルーホールの中心と前記第1のTFTのチャネル領域の端部との距離はd1であり、前記第1のTFTのチャネル長はcl1であり、
    前記層間絶縁膜には、前記第2のTFTのドレインあるいはソースを接続するための第2のスルーホールが形成され、
    前記第2のスルーホールの中心と前記第2のTFTのチャネル領域の端部との距離はd2であり、前記第2のTFTのチャネル長はcl2である場合、
    d1<d2の場合は、cl1<cl2であることを特徴とする表示装置。
  12. 前記第1のTFTと前記第2のTFTの下層には、窒化シリコン膜が存在していることを特徴とする請求項11に記載の表示装置。
  13. 前記窒化シリコン膜はCVDで形成されていることを特徴とする請求項11に記載の表示装置。
  14. 前記第1のTFTと前記第2のTFTは、樹脂基板に形成されていることを特徴とする請求項1に記載の表示装置。
  15. 前記第1のTFTは駆動TFTであり、前記第2のTFTはスイッチングTFTであることを特徴とする請求項11記載の表示装置。
  16. 酸化物半導体による第1のTFTを有する画素が複数形成された表示装置の製造方法であって、
    基板上に第1の窒化シリコン膜と第1の酸化シリコン膜を有する下地膜を形成し、
    前記下地膜の上に前記第1のTFTを形成し、
    前記第1のTFTを覆って層間絶縁膜を形成し、
    前記層間絶縁膜に前記第1のTFTのドレインまたはソースに対応する第1のスルーホールを形成し、
    前記第1のスルーホールの中心から前記第1のTFTのチャネル領域の端部までの距離が20μmより小さい場合は、前記第1のTFTのチャネル長は4μmよりも小さくし、
    前記第1のスルーホールの中心から前記第1のTFTのチャネル領域の端部までの距離が20μm以上の場合は、前記第1のTFTのチャネル長は4μm以上とすることを特徴とする表示装置の製造方法。
  17. 前記第1のTFTのドレイン又はソースの他方には、層間絶縁膜にスルーホールを形成しないことを特徴とする請求項16に記載の表示装置の製造方法。
  18. 前記第1のTFTは、ボトムゲートタイプであり、ボトムゲートの上に第2の窒化シリコン膜を形成し、前記第2の窒化シリコンの上に第2の酸化シリコンを形成し、前記第2の酸化シリコンの上に前記酸化物半導体を形成することを特徴とする請求項16に記載の表示装置の製造方法。
  19. 前記第1のTFTは、トップゲートタイプであり、前記下地膜における前記第1の窒化シリコン膜を覆って第1の酸化シリコン膜を形成し、
    前記第1の酸化シリコンの上に前記酸化物半導体を形成することを特徴とする請求項16に記載の表示装置の製造方法。
  20. 前記画素はさらに、第2のTFTを有し、
    前記第2のTFTのドレインあるいはソースに対応して、前記層間絶縁膜に第2のスルーホールを形成し、
    前記第2のスルーホールの中心と前記第2のTFTのチャネル領域の端部までの距離は、前記第1のスルーホールの中心と前記第1のTFTのチャネル領域の端部までの距離とは異ならせることを特徴とする請求項16に記載の表示装置の製造方法。
JP2018072325A 2018-04-04 2018-04-04 表示装置及びその製造方法 Pending JP2019186301A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018072325A JP2019186301A (ja) 2018-04-04 2018-04-04 表示装置及びその製造方法
US16/368,841 US10930720B2 (en) 2018-04-04 2019-03-28 Display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072325A JP2019186301A (ja) 2018-04-04 2018-04-04 表示装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2019186301A true JP2019186301A (ja) 2019-10-24

Family

ID=68099049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072325A Pending JP2019186301A (ja) 2018-04-04 2018-04-04 表示装置及びその製造方法

Country Status (2)

Country Link
US (1) US10930720B2 (ja)
JP (1) JP2019186301A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164701A (zh) * 2020-09-29 2021-01-01 厦门天马微电子有限公司 阵列基板和显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053475A (ja) * 2018-09-25 2020-04-02 株式会社ジャパンディスプレイ 薄膜トランジスタ及び表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115206B2 (en) * 2005-07-22 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
US9859391B2 (en) 2015-10-27 2018-01-02 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
JP6821982B2 (ja) 2015-10-27 2021-01-27 天馬微電子有限公司 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164701A (zh) * 2020-09-29 2021-01-01 厦门天马微电子有限公司 阵列基板和显示面板
CN112164701B (zh) * 2020-09-29 2022-09-13 厦门天马微电子有限公司 阵列基板和显示面板

Also Published As

Publication number Publication date
US10930720B2 (en) 2021-02-23
US20190312062A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US10199507B2 (en) Thin film transistor, display device and method of manufacturing the same
US20170256569A1 (en) Semiconductor device and display device and manufacturing method thereof
JP7085352B2 (ja) 表示装置
US11348948B2 (en) Manufacturing method of a display device
US10211235B2 (en) Display device and manufacturing method thereof
US11843002B2 (en) Transistor structure, display device including transistor structure, and method of manufacturing transistor structure
US20180219029A1 (en) Display device
KR102380647B1 (ko) 박막 트랜지스터 및 그 제조 방법
JP7350903B2 (ja) Tft回路基板
US11791346B2 (en) Method for manufacturing a display device
KR102314488B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US20170358610A1 (en) Semiconductor device and display device
JP2019186301A (ja) 表示装置及びその製造方法
KR102224457B1 (ko) 표시장치와 그 제조 방법
US11411101B2 (en) Manufacturing method of TFT substrate
JP2019040026A (ja) 表示装置
US10629622B2 (en) Display device and manufacturing method thereof
TWI518430B (zh) 顯示面板及應用其之顯示裝置
US20140110715A1 (en) Thin Film Transistor Array Panel and Manufacturing Method Thereof
KR20160053383A (ko) 박막 트랜지스터 어레이 기판 및 이를 구비하는 유기전계발광 표시장치
KR101789236B1 (ko) 박막 트랜지스터 및 평판 표시 장치
KR102412069B1 (ko) 박막 트랜지스터
KR102296734B1 (ko) 표시 장치 및 그 제조 방법
US20200044090A1 (en) Thin film transistor substrate and method for manufacturing same