JP2019183047A - 蛍光ナノ粒子およびその製造方法 - Google Patents

蛍光ナノ粒子およびその製造方法 Download PDF

Info

Publication number
JP2019183047A
JP2019183047A JP2018077412A JP2018077412A JP2019183047A JP 2019183047 A JP2019183047 A JP 2019183047A JP 2018077412 A JP2018077412 A JP 2018077412A JP 2018077412 A JP2018077412 A JP 2018077412A JP 2019183047 A JP2019183047 A JP 2019183047A
Authority
JP
Japan
Prior art keywords
core
fluorescent
shell
particles
fluorescent nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018077412A
Other languages
English (en)
Inventor
昌彦 田村
Masahiko Tamura
昌彦 田村
直樹 藤井
Naoki Fujii
直樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2018077412A priority Critical patent/JP2019183047A/ja
Publication of JP2019183047A publication Critical patent/JP2019183047A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

【課題】蛍光ナノ粒子の凝集や、溶媒や表面欠陥等に起因する蛍光の発光効率の低下を抑制することができる、蛍光ナノ粒子及びその製造方法を提供する。【解決手段】希土類元素を含有する無機蛍光材料からなる単結晶のコア2と、該コア2と同じ結晶方位を有し、コア2を被覆する単結晶のシェル3と、を有する蛍光ナノ粒子1。この蛍光ナノ粒子1は、平均粒径が5nm〜60nmが好ましく、また、コア2の結晶相が立方晶であることが好ましい。【選択図】図1

Description

本発明は、蛍光ナノ粒子およびその製造方法に係り、特に、所定のコア−シェル構造を有する蛍光ナノ粒子およびその製造方法に関する。
近年、生体物質や細胞に対して蛍光イメージングを用いることで医療診断等が可能となってきており、その際、生体物質や細胞の標識には標識剤として蛍光体が用いられることが多い。このような蛍光体としては、蛍光色素、蛍光タンパク質、半導体量子ドット等が挙げられ、従来、その励起光としては紫外光や可視光を用いることが多かった。
しかし、紫外光や可視光を用いて細胞塊や生体組織の蛍光イメージングを試みた場合、光散乱による光損失が大きく、生体深部まで透過できないことや生体へのダメージ(光毒性)等により、生きたままで動物の内部(薬物動態、細胞、臓器の細部など)を可視化する生体イメージングには、改良が必要である。
そこで、励起光として近赤外光を使用できる、有機蛍光色素や希土類元素を含有する無機蛍光材料の利用が検討されている。
しかしながら、有機蛍光色素は、生体透過性が良好な長波長の蛍光を発生させる材料として、測定を十分に行えるほど蛍光強度の強いものがなく実用的ではない。そして、有機材料の場合、自己吸収があったり、使用による退色性の進行があったりするため、長期に渡る蛍光イメージングや定量測定に関して、その使用には依然課題がある。また、知られている有機系色素を用いた場合、生体分子由来の自家蛍光も避けることができず、これも課題として挙げられている。
また、無機蛍光色素としては、希土類元素を含有するセラミックスナノ粒子を用いた蛍光イメージングの研究が盛んに行われるようになってきており、励起光として近赤外光を用いるものも検討されている。この場合、上記のような光散乱、光毒性、自己吸収、自家蛍光等の課題を軽減でき、また蛍光体そのものはセラミックスであるため、長時間励起しても退色することがない。これらの利点から、希土類元素を含有するセラミックスナノ粒子の生体イメージングへの応用が期待されている(例えば、特許文献1〜2、非特許文献1等参照)。
米国特許第9181477号明細書 特許第5721767号公報
Chao Zhang and Jim Young Lee, "Prevalence of Anisotropic Shell Growth in Rare Earth Core - Shell Upconversion Nanocrystals", ACS Nano, 2013, Vol.7, No.5, p4393-4402
しかしながら、特許文献1に記載の希土類元素を含有するセラミックスナノ粒子は、これを生体イメージングに適用しようとすると、その蛍光強度が思ったほど高くない。これは、粒子の表面が周囲に存在する溶媒に直接接触する影響や、表面に存在する表面欠陥等によるものと考えられる。
一方、特許文献2や非特許文献1に記載の希土類元素を含有するセラミックスナノ粒子は、セラミックスナノ粒子の表面にシェル構造を有し、溶媒等の影響による蛍光強度の低下を抑制できる。しかしながら、これらの蛍光粒子であっても、その蛍光粒子の表面に表面欠陥が存在すると、励起光のフォトンエネルギーがその欠陥に起因する準位にトラップされ、熱として放出されたり、求める波長とは異なる波長の蛍光になったりして、蛍光強度が低下するおそれがある。
また、これら特許文献及び非特許文献に記載の蛍光は、アップコンバージョンの利用を想定しており、生体イメージングに用いようとする場合には、近赤外光での励起は良好であるものの、放出される蛍光が励起光よりも短波長側となるため、生体組織により散乱してしまい、蛍光の測定を十分効率的に行えないおそれがある。
そこで、上記状況に鑑み、本発明は、蛍光ナノ粒子の、溶媒や表面欠陥等に起因する蛍光の強度低減を抑制でき、生体イメージングの蛍光標識として好適な、蛍光ナノ粒子及びその製造方法の提供を目的とする。
本発明の蛍光ナノ粒子は、希土類元素を含有する無機蛍光材料からなる単結晶のコアと、前記コアと同じ結晶方位を有し、前記コアを被覆する単結晶のシェルと、を有することを特徴とする。
本発明の蛍光ナノ粒子の製造方法は、コア原料を溶解した溶液中で、希土類元素を含有する無機蛍光材料からなる単結晶の粒子を形成するコア粒子形成工程と、シェル原料を溶解した溶液中で、前記単結晶の粒子をコア粒子とし、その表面にエピタキシャル成長により前記コア粒子と同じ結晶方位を有し、前記コア粒子を被覆するシェルを形成するシェル形成工程と、を有することを特徴とする。
本発明の蛍光ナノ粒子によれば、蛍光ナノ粒子の凝集や、溶媒や表面欠陥等に起因する蛍光の発光効率の低下を抑制でき、生体イメージングの蛍光標識として好適である。本発明の蛍光ナノ粒子の製造方法によれば、本発明の蛍光ナノ粒子を効率的に製造できる。
本実施形態の蛍光ナノ粒子の概略構成を示した断面図である。 例3の蛍光ナノ粒子のX線回折における回折チャートを示した図である。 例3の蛍光ナノ粒子の走査型電子顕微鏡(SEM)による画像を示した図である。 例3の蛍光ナノ粒子の高分解能透過電子顕微鏡(HR−TEM)による画像を示した図である。 安定性試験における保管前後の蛍光強度の測定結果を示した図である。
以下、本発明の蛍光ナノ粒子及びその製造方法について、一実施形態を参照しながら詳細に説明する。
[蛍光ナノ粒子]
本実施形態の蛍光ナノ粒子は、希土類元素を含有する無機蛍光材料からなる単結晶のコアと、そのコアと同じ結晶方位を有し、コアを被覆する単結晶のシェルと、を有し、例えば、図1に示したように、コア2とシェル3とを有する蛍光ナノ粒子1が挙げられる。
(コア)
本実施形態に用いられるコア2は、近赤外光(励起光)の照射により蛍光を発する機能を有する希土類元素を含有する無機蛍光材料から形成される。この無機蛍光材料は、蛍光中心となる希土類元素を含有しており、通常、さらに増感剤となる希土類を含有している。
上記のような蛍光を放出する材料としては、希土類元素を含有するフッ化物セラミックスが好ましい。フッ化物セラミックスとしては、公知の蛍光材料を形成する母材が挙げられ、フッ化物を母材とすることで、格子振動エネルギーを低くして、近赤外励起光の熱的緩和の発生を抑制できる。
ここでコア2を形成する材料としては、例えば、波長950nm〜1050nmの近赤外光により励起され、蛍光を放出するものが好ましい。このとき、放出する蛍光は、励起光よりも短波長でも、長波長でも、いずれでもよいが、長波長を有する蛍光を放出する材料が好ましい。長波長を放出する場合、その波長としては、1500nm以上がより好ましく、1500nm〜1650nmがさらに好ましい。
コア2を形成する材料としては、より具体的には、次の一般式(1)の化合物が好ましい。

Na(M1)(Yb)(Er) …(1)

(式中、M1は、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも一つの元素であり、aは0.4≦a<1、bは0<b≦0.5、cは0<c≦0.1で、a+b+c=1であることが好ましい。)
上記一般式(1)において、M1は必須元素であり、aは0.4以上が好ましく1未満が好ましい。また、M1が2元素以上の元素の場合、それら元素の含有割合が合計でaの数値を満たせばよい。例えば、M1がM11とM12の2元素である場合、M11a1・M12a2と表すことができ、このときa1+a2=aである。
Ybは増感元素として必須であり、bは0超であり、光を吸収する観点から0.05以上が好ましく、0.1以上がより好ましい。一方で、添加量が多いと濃度消失が起こるおそれがあり、0.5以下が好ましく、0.4以下がより好ましく、0.35以下がさらに好ましい。
Erは発光元素として必須であり、cは0超であり、0.01以上が好ましく、0.02以上がより好ましい。一方で、添加量が多いと濃度消失が起こるおそれがあり、0.1以下が好ましく、0.05以下がより好ましく、0.04以下がさらに好ましい。
コア2は、上記のように希土類元素を含有する無機蛍光材料からなるため、励起光の照射により蛍光を放出することができ、その結晶構造は単結晶である。コア2を単結晶とすることで、蛍光粒子の結晶の格子が揃っており、蛍光が効率的に放出される。
コア2は上記のように単結晶からなるが、その結晶相は、特に限定されず、公知の結晶相であればよい。この結晶相としては、例えば、立方晶、六方晶等が挙げられ、なかでも、立方晶が好ましい。これは、励起光よりも長波長側の蛍光を効率的に放出することができ、生体での光散乱性を抑えられ、蛍光観察を容易にできる利点を有するためである。また、立方晶は等方的に結晶成長させて作製するため、キャッピング剤(粒子表面に配位する分子)などを用いて成長方向の制御が不要な場合が多く、合成後にキャッピング剤を除く操作が不要という利点がある。
また、コア2の形状は、粒子状であれば特に限定されず、例えば、球状、板状、薄片状、針状、星形状等が挙げられる。生体イメージングに用いる場合、生体内で流動させることが多く、その流動性が良好で、生体への刺激が抑えられている点から、角部を有さず、なだらかな表面を有する形状が好ましく、球状であることが特に好ましい。
(シェル)
本実施形態に用いられるシェル3は、コア2と同じ結晶方位を有し、コア2を被覆する単結晶からなるものである。シェル3は、コア2の表面を被覆しているため、コア2が直接外界と接触しないようになっているため、溶媒の影響による蛍光強度の低下を抑制している。
また、本実施形態において、シェル3は、コア2と同じ結晶方位を有する単結晶である。したがって、このように形成したシェル3は、コア2との界面が明確に確認されず、コア2とシェル3とが、あたかも1つの単結晶粒子となって構成される。これにより、コア2の表面に不可避的に生じてしまう表面欠陥を、シェル3が埋めることとなり、コア2の表面欠陥による蛍光強度の低下を抑制できる。
すなわち、通常、蛍光材料で形成された粒子が、被覆されておらず外界と直接接触する場合には、その周囲に存在する水や有機溶媒等の溶媒によって、蛍光粒子の表面において励起エネルギーが熱エネルギーとして奪われ、蛍光強度が低下する可能性が高い。これは、O−H、C−H伸縮運動の倍音や関連する分子の結合音が、近赤外光のフォトンエネルギーに近いため、励起されたエネルギーが周囲の溶媒に移動してしまうためと考えられている。
また、同じように、蛍光材料で形成された粒子が、被覆されておらず外界と直接接触する場合には、蛍光粒子の表面欠陥が存在すると、その表面欠陥に励起光のフォトンエネルギーがその欠陥に起因する準位にトラップされ、熱となったり、求める波長とは異なる波長の蛍光なったりして、蛍光強度が低下するおそれがある。
これに対して、本実施形態のシェル3は、蛍光粒子の表面において溶媒と直接接触させないようにし、かつ、蛍光粒子の表面欠陥を埋めることで、それらに起因する蛍光強度の低下を抑制し得るものである。
シェル3を形成する材料としては、コア2と同一の結晶方位を取り得る材料を用いる。同一の結晶方位を取り得る材料としては、コア2で用いた希土類元素を含有する無機蛍光材料に対して、その一部又は全部の希土類元素が含まれず(他の元素に置換されたりした材料も含む)、蛍光を放出しない材料等が挙げられる。このような材料としては、例えば、上記希土類元素を含有する無機蛍光材料の発光中心となる元素を除いた材料、発光中心となる元素、増感作用を有する元素、等の蛍光に関与する元素を除いた材料、等が好ましいものとして挙げられる。
シェル3を形成する材料は、蛍光に関与する希土類元素を含有しないフッ化物セラミックスが好ましい。フッ化物セラミックスとしては、コア2で説明した母材と同一のものが挙げられ、フッ化物とすることで、格子振動エネルギーを低くして、近赤外励起光の熱的緩和の発生を抑制できる。
シェル3を形成する材料としては、より具体的には、次の一般式(2)の化合物が好ましい。

Na(M2)(M3) …(2)

(式中、M2は、Y、La、Ce、Nd、Pm、Eu、Gd、Tb、Ho、Tm、及びLuから選ばれる少なくとも一つの元素、M3は、Yb及びErから選ばれる少なくとも1つの元素であり、dは0.7≦d≦1.0、eは0≦e≦0.3で、d+e=1である。)
シェル3の厚さは、上記のようにコア2から放出される蛍光強度の低減を抑制できればよく、例えば、0.1〜6nmが好ましく、1〜6nmがより好ましく、1〜4nmがさらに好ましい。厚みが0.1nm未満であると、蛍光の強度の低減効果が十分ではなくなるおそれがあり、6nmを超えると相対的にコア2の比率が小さくなり、コアの質量で揃えて比較した場合、蛍光の発生強度がそもそも低くなってしまうおそれがある。
(蛍光ナノ粒子の形状特性)
上記説明のように、コア2とシェル3とを有する蛍光ナノ粒子1は、コア2とシェル3とが同じ結晶方位であり、それぞれが単結晶からなっているため、コア−シェル構造を採りながら、粒子におけるコア2とシェル3との明りょうな界面がなく、1つの均質な結晶構造を有する粒子として認識される。
そして、上記のような構成とすることで、シェル3の説明でも記載したが、蛍光粒子の表面において溶媒と直接接触させないようにし、かつ、蛍光粒子の表面欠陥を埋めることで、それらに起因する蛍光強度の低下を抑制し得るものである。
この蛍光ナノ粒子1の粒径は、1μm未満のナノオーダーの粒子であり、好ましくは、その平均粒径が5〜60nmであり、より好ましくは、5〜40nmである。本明細書において「平均粒径」とは、ランダムに10個以上の粒子の走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)の画像における粒径を測定し、その粒径の最大値と最小値の平均値[(最大値+最小値)/2]とする。なお、粒径は、1つの粒子から測定された短径と長径とを、こちらも平均して得られる値である。
また、蛍光ナノ粒子1の形状は、コア2の表面にシェル3を被覆するため、基本的にはコア2と同等である。断面を見れば、コア2と蛍光ナノ粒子1は概ね相似形状となっている。
そして、生体イメージング用途に使用するにあたっては、その流動性や生体への刺激が抑制される等の観点から、蛍光ナノ粒子1の外表面が、鋭角な角部を有さず、なだらかであることが好ましい。ここで、外表面が、「鋭角な角部を有さず、なだらかである」とは、SEMやTEMで蛍光ナノ粒子1を観察し、画像解析ソフトImageJにより、ランダムに選んだ10個以上の粒子の円形度を求めたとき、9割以上の粒子が円形度が0.85以上になることを指す。
また、蛍光ナノ粒子1は、上記のようにコア2とシェル3とで構成されるが、このコア2の体積は、蛍光ナノ粒子1の全体の体積を100%としたとき、25%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましい。25%以上とすることで、測定における蛍光強度を確保できる。
[蛍光ナノ粒子の製造方法]
次に、本実施形態の蛍光ナノ粒子の製造方法について説明する。
(コア粒子形成工程)
まず、希土類元素を含有する無機蛍光材料を含む数ナノ〜数十ナノオーダーのコア2となるコア粒子(蛍光粒子)を形成する。このコア粒子の形成にあたっては、公知の微粒子の製造方法を適用すればよく、ソルボサーマル法、水熱合成法、熱分解法、水熱分解法、オストワルド熟成法等が挙げられる。このとき、数ナノ〜数十ナノオーダーのコア粒子を均一、且つ簡便に形成できる点で、ソルボサーマル法、水熱合成法が好ましい。
また、コア粒子を形成するにあっては、ミクロンオーダー等の比較的大きいコア粒子を形成した後、粉砕してナノオーダーのコア粒子とすることもできる。
(シェル形成工程)
次に、得られたコア粒子をコア2とし、その表面に、コア粒子と同じ結晶方位を有し、コア粒子を被覆する単結晶のシェル3を形成する。このシェルの形成にあたっては、コア粒子上に同じ結晶方位を有し、単結晶でシェルを形成できればよく、公知のシェルの製造方法を適用できる。このような特徴的なシェルを形成するためには、コア粒子を混合溶媒中で均一に分散させた状態を維持し、且つ水酸基の様なコア粒子表面と強く相互作用する分子を結合させることなく、コア粒子を核として、エピタキシャル成長によってシェルを形成することが好ましい。
本実施形態のコア粒子及び蛍光ナノ粒子は、上記のように得られるが、得られたコア粒子及び蛍光ナノ粒子を、凝集や非特異反応を抑制し、水系溶媒中や試料液中等で安定に分散させる観点から、樹脂や低分子化合物で被覆することが好ましい。凝集を防止するには、例えば、エチレンオキサイド基(−(CHCHO)−(nは5〜10000の整数を表す))、カルボン酸基(−COOH)、スルホン酸基(−SOH)、アミド基(−CONH−)、アミノ基(−NH)、シラノール基(−SiOH)、リン酸エステル基(−PO(OR)(OH)3−n(nは1〜3の整数、Rは炭素数2以上の炭化水素含有基を表す))を有する材料やベタイン等が挙げられる。これらの材料で被覆することで、コア粒子や蛍光ナノ粒子表面に安定な水和層を形成し、凝集や非特異反応を有効に抑制できる。なお、コア粒子を被覆した場合、シェル形成にあたっては、一旦被覆層を除去する操作が必要である。
また、被覆した蛍光ナノ粒子に、さらに特異的に結合可能な特性を付与することが好ましい。このような特性としては、シェル部の表面に、物理的結合性又は化学的結合性を付与させるものであればよく、例えば、縮合反応、付加反応、置換反応等の反応性基等や、イオン乖離能、イオン配位能、金属結合能、水素結合能、特的相互作用能等の特性が挙げられる。さらに具体的には、このような特性を付与する置換基として、カルボキシル基、アミノ基、水酸基、アルデヒド基、ビニル基、アクリロイル基、メタクリロイル基、エポキシ基、アセタール基、イミド基等の置換基や、ビオチン等が挙げられる。このような結合性部位を導入することで、DNAやRNA等の核酸、タンパク質等に結合させ、標識として使用できる。
以下、コア粒子を形成する材料として、次の一般式(1)

Na(M1)(Yb)(Er) …(1)

(式中、M1は、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも一つの元素であり、aは0.4≦a<1、bは0<b≦0.5、cは0<c≦0.1で、a+b+c=1である。)で表される蛍光材料を用いる場合を例に、コア粒子を形成する方法を例示する。
まず、原料として、コア粒子の原料となる、ナトリウム前駆体、フッ素前駆体、イッテルビウム前駆体、エルビウム前駆体、M1前駆体(ここで、M1、a〜cは、それぞれ上記式(1)中のM1、a〜cと同一である)等の希土類前駆体を所定の配合となるように溶媒中で混合して十分に溶解させる。次いで、得られた混合溶液を加熱し、これにより原料を反応させ、所望の希土類元素を含有する無機蛍光材料からなるコア粒子を形成する。
ここで、各前駆体を溶媒中に溶解する際、溶けにくい場合は加熱してもよく、加熱温度は、10〜200℃が好ましく、20〜180℃がより好ましい。また、ナトリウム前駆体およびフッ素前駆体などを分けて混合してもよい。全てを混合した後の加熱は、これら原料の反応により蛍光材料を得るためのものであり、120〜330℃が好ましく、150〜250℃がより好ましい。
このときの原料の仕込み比や製造条件によって、得られるコア2の大きさや結晶系等が変化する。そのため、例えば、数ナノ〜数十ナノオーダーで立方晶のコア2を得るためには、ナトリウム前駆体の仕込み量を多くし、200℃に近い温度で合成するのがよい。また、工業面を考えた際に、安全性の確保と粒子径および結晶系を均一にするために、ソルボサーマル法により、使用する有機溶媒の発火点よりも低く、最高温度の容器内の圧力が2気圧以下で製造するのが好ましい。
なお、シェルを形成するための合成の際に、上記した粒子を安定して分散させるための樹脂や低分子化合物を分散剤として含有させてもよいが、特に、立方晶とする場合には等方的に結晶を成長させる必要があるため、分散剤の様な被覆剤をできる限り使用せずに、成長させることが好ましい。このように、分散剤で被覆せずに、合成溶媒中で安定に分散しているコア粒子は、続くシェル形成工程や、任意の分散剤の被覆工程において、表面を覆っている不必要な分散剤を洗浄除去する必要がなく、工程が簡便となる。
なお、本明細書において「分散剤」とは、プロトンが脱離あるいは、付加することで、電荷を持ち、ナノ粒子と強く相互作用する有機系の分子のことをいう。
このとき使用される原料としては、以下の化合物が挙げられる。
イッテルビウム前駆体としては、イッテルビウムの硝酸塩、硫酸塩、塩化物及び酢酸塩からなる群から選ばれる少なくとも1つの化合物を含むものが例示できる。
エルビウム前駆体としては、エルビウムの硝酸塩、硫酸塩、塩化物及び酢酸塩からなる群から選ばれる少なくとも1つの化合物を含むものが例示できる。
M1前駆体としては、M1の硝酸塩、硫酸塩、塩化物及び酢酸塩からなる群から選ばれる少なくとも1つの化合物を含むものが例示できる。
ナトリウム前駆体としては、塩化ナトリウム、酢酸ナトリウム、トリフルオロ酢酸ナトリウム、水酸化ナトリウム等が例示できる。
フッ素前駆体としては、フッ化アンモニウム、トリフルオロ酢酸、フッ化ナトリウム等が例示できる。
また、ここで用いる蛍光成分含有溶液の溶媒としては、水、有機溶剤等が挙げられ、水、エチレングリコールが好ましい。この溶媒としては、用いる蛍光元素を含む化合物が可溶性であるものを用いる。
得られた蛍光粒子は、この蛍光粒子を含有する混合溶液を濾過や遠心分離等により、蛍光粒子と液体成分とを分離して、次のシェル形成工程に使用すればよい。
この分離操作では、蛍光粒子と液体成分とを分離できればよく、通常公知の濾過操作や遠心分離操作を行えばよい。例えば、コア粒子を、その表面に捕捉できるフィルターを備えたろ過装置を用いて、公知の方法により濾過して達成できる。この濾過により、フィルター上にはコア粒子が捕捉されて残り、液体成分はフィルターを通過し、固形成分であるコア粒子と液体成分とを簡便な操作で、確実に分離できる。また、遠心分離の場合には、公知の遠心分離器により、例えば、5,000〜300,000g、5〜60分間遠心分離して、コア粒子と液体成分とを分離できる。
以下、シェルを形成する材料として、次の一般式(2)

Na(M2)(M3) …(2)

(式中、M2は、Y、La、Ce、Nd、Pm、Eu、Gd、Tb、Ho、Tm、及びLuから選ばれる少なくとも一つの元素、M3は、Yb及びErから選ばれる少なくとも1つの元素であり、cは0.7≦c≦1.0、dは0≦d≦0.3で、d+e=1である。)で表される化合物を用いる場合を例に、シェルを形成する方法を例示する。
まず、原料として、シェルの原料となる、ナトリウム前駆体、フッ素前駆体、イットリウム前駆体、M2前駆体、M3前駆体(ここで、M2、M3は、それぞれ上記式(2)中のM2、M3と同一の元素である)等の前駆体を所定の配合となるように溶媒中で混合して混合溶液とし、十分に溶解させる。その後、この混合溶液に、上記のコア形成工程で得られたコア粒子を混合し、十分に溶解させる。次いで、得られた混合溶液を加熱し、これにより原料を反応させ、コア粒子表面に、所望の結晶系であるシェルを形成する。
ここで、各前駆体を溶媒中に溶解する際、溶けにくい場合は加熱してもよく、加熱温度は、10〜200℃が好ましく、20〜180℃がより好ましい。また、ナトリウム前駆体およびフッ素前駆体などを分けて混合してもよいし、コア反応溶液に直接全ての前駆体を入れて溶かしてもよい。全てを混合した後の加熱は、これら原料の反応により蛍光材料を得るためのものであり、120〜330℃が好ましく、150〜250℃がより好ましい。
ここで、シェルをコア粒子の表面からエピタキシャル成長させて形成することで、コア粒子と同じ結晶方位を有するシェルが得られる。エピタキシャル成長は、核となるコア粒子の結晶の表面に結晶成長させてシェルを形成するため、その結晶面がコア粒子とシェルとでそろえて配列できる。
なお、公知のコア−シェル構造を有する粒子において、シェルの形成にあたって分散剤を含有させることが一般的であるが、本実施形態においては、分散剤を含有させずにシェルを形成するのが好ましい。分散剤を用いないことで、粒子形状が球状に近くなりやすく、また、コア粒子製造後に、分散剤の除去等の操作が必要なく、そのままシェル形成に使用できる。
このとき使用される原料としては、以下の化合物が挙げられる。
M2前駆体としては、M2の硝酸塩、硫酸塩、塩化物及び酢酸塩からなる群から選ばれる少なくとも1種の化合物を含むものが例示できる。
M3前駆体としては、M3の硝酸塩、硫酸塩、塩化物及び酢酸塩からなる群から選ばれる少なくとも1つの化合物を含むものが例示できる。
ナトリウム前駆体としては、塩化ナトリウム、酢酸ナトリウム、トリフルオロ酢酸ナトリウム、水酸化ナトリウム等が例示できる。
フッ素前駆体としては、フッ化アンモニウム、トリフルオロ酢酸、フッ化ナトリウム等が例示できる。
また、ここで用いる溶媒としては、上記したコア粒子を形成する際に用いる溶媒と同じものが挙げられる。
このようにして蛍光ナノ粒子が得られるが、さらに、蛍光ナノ粒子に対して、上記のように凝集の防止のため、樹脂や低分子有機化合物等により被覆することが好ましい。この被覆は、シェル形成工程後に行ってもよいし、シェル形成時の混合溶液に混ぜて、シェル形成反応と同時に被覆してもよい。さらに、生体分子との特異的な相互作用や、細胞への取り込まれの機能の付与等を行う場合には、被覆した蛍光ナノ粒子に対して、特性基や特異結合部位を付与する操作を公知の方法により行えばよい。
以下、実施例及び比較例に基づいて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定して解釈されるものではない。なお、例2〜6、8〜9、11が実施例、例1、7、10、12〜16が比較例である。
(例1)
塩化イットリウム・六水和物(2.4mmol)、塩化イッテルビウム・六水和物(0.54mmol)、塩化エルビウム・六水和物(0.06mmol)、塩化ナトリウム(6.0mmol)を、45mLのエチレングリコールに溶解して溶液Aを調整し、これとは別に、フッ化アンモニウム(12mmol)を30mLのエチレングリコールに溶解して溶液Bを調整した。溶液Aと溶液Bを混合して、10分間撹拌して均一濃度の混合溶液とし、希土類元素を含有する蛍光材料を含むコア粒子形成用の混合溶液1を調製した。
得られた混合溶液を、100mLオートクレーブに入れ、熱風循環式オーブンにて200℃で2時間反応させ、合成液1を100mL得た。得られた合成液1を25000rpm(Beckman Coulter社製の Avanti JXN−30, ローターJA−30.50Ti)で20分間遠心分離を行い、上澄み液を捨てた後、水を100mL加えて超音波発生装置(Ultrasonic Generator Model US−50、株式会社日本精機製作所製)にて超音波分散を2分間行い分散させた。続いて、この操作を二回繰り返し、表1に記載の組成を有するコア粒子1の水分散液を得た。
(例2)
例1と同じ操作を行い合成液1を得た後、25000rpmで20分間遠心分離を行い、上澄み液を捨てた。ここにエチレングリコールを100mL加え、超音波分散を行い、コア粒子1を含むエチレングリコール液を得た。この得られた液に、塩化イットリウム・六水和物(3.0mmol)、塩化ナトリウム(6.0mmol)、フッ化アンモニウム(12mmol)をそれぞれ所定の濃度となるようによく溶解して、シェル形成用の混合溶液2を調製した。
このシェル形成用の混合溶液2を上述の超音波発生装置を用いて分散させた後、オートクレーブ内に入れ、熱風循環式オーブンにて200℃で2時間反応させて、コア粒子1の表面にシェルを形成し、得られた反応液を例1と同じ操作により遠心分離及び分散処理し、蛍光ナノ粒子2の水分散液を得た。
(例3〜6)
シェル形成の操作を繰り返し行い、シェルの厚さを表1に示したものとした以外は、例2と同様の操作により、蛍光ナノ粒子3〜6を得た。
(例7)
塩化イットリウム・六水和物(2.4mmol)、塩化イッテルビウム・六水和物(0.54mmol)、塩化エルビウム・六水和物(0.06mmol)、塩化ナトリウム(6.0mmol)を45mLのエチレングリコールに溶解して溶液Aを調整し、これとは別に、フッ化アンモニウム(24mmol)を30mLのエチレングリコールに溶解して溶液Cを調整した。溶液Aと溶液Cを混合した。以降は例1と同一の操作により、平均粒径が50nmのコア粒子7の水分散液を得た。
(例8)
コア粒子1の代わりに例7で得たコア粒子7を用い、シェル厚みが6.5nmとなるように、塩化イットリウム・六水和物(3.0mmol)、塩化ナトリウム(6.0mmol)、フッ化アンモニウム(24mmol)と調合した以外は、例2と同様の操作により蛍光ナノ粒子8の水分散液を得た。
(例9)
例2と同じく、コア粒子1を用い、シェル形成用の混合溶液として塩化イットリウム・六水和物(2.4mmol)、塩化イッテルビウム・六水和物(0.6mmol)、塩化ナトリウム(6.0mmol)、フッ化アンモニウム(12mmol)と調合した以外は、例2と同様の操作により蛍光ナノ粒子9の水分散液を得た。
(例10)
塩化イットリウム・六水和物(1.5mmol)、塩化イッテルビウム・六水和物(0.54mmol)、塩化エルビウム・六水和物(0.06mmol)、塩化ガドリ二ウム・六水和物(0.9mmol)、塩化ナトリウム(6.0mmol)を、45mLのエチレングリコールに溶解して溶液Dを調整し、これとは別に、フッ化アンモニウム(12mmol)を30mLのエチレングリコールに溶解して溶液Eを調整した。溶液Dと溶液Eを混合して、10分間撹拌して均一濃度の混合溶液とし、希土類元素を含有する蛍光材料を含むコア粒子形成用の混合溶液を調製した。以降は例1と同一の操作により、表1に記載の組成を有するコア粒子10の水分散液を得た。
(例11)
コア粒子1の代わりに、例10で得られたコア粒子10を用いた以外は、例2と同一の操作により、蛍光ナノ粒子11の水分散液を得た。
(例12)
塩化イットリウム・六水和物(1.5mmol)、塩化イッテルビウム・六水和物(0.54mmol)、塩化エルビウム・六水和物(0.06mmol)、塩化セリウム・七水和物(0.9mmol)、塩化ナトリウム(6.0mmol)を45mLのエチレングリコールに溶解して溶液Fを調整し、これとは別に、フッ化アンモニウム(12mmol)を30mLのエチレングリコールに溶解して溶液Gを調整した。溶液Fと溶液Gを混合して、10分間撹拌して均一濃度の混合溶液とし、希土類元素を含有する蛍光材料を含むコア粒子形成用の混合溶液を調製した。以降は例1と同一の操作により、表1に記載の組成を有するコア粒子12の水分散液を得た。
(例13)
塩化イットリウム・六水和物(2.94mmol)、塩化エルビウム・六水和物(0.06mmol)、塩化ナトリウム(6.0mmol)を、45mLのエチレングリコールに溶解して溶液Hを調整し、これとは別に、フッ化アンモニウム(12mmol)を30mLのエチレングリコールに溶解して溶液Iを調整した。溶液Hと溶液Iを混合して、10分間撹拌して均一濃度の混合溶液とし、希土類元素を含有する蛍光材料を含むコア粒子形成用の混合溶液を調製した。以降は例1と同一の操作により、表1に記載の組成を有するコア粒子13の水分散液を得た。
(例14)
コア粒子が表1の組成となるように、塩化イットリウム・六水和物(2.7mmol)、塩化エルビウム・六水和物(0.3mmol)とした以外は、例13と同様の操作によりコア粒子14の水分散液を得た。
(例15〜16)
コア粒子が表1の組成となるように、例15では塩化イットリウム・六水和物(1.8mmol)、塩化イッテルビウム・六水和物(1.14mmol)と、例16では塩化イットリウム・六水和物(2.31mmol)、塩化エルビウム・六水和物(0.15mmol)とした以外は、例1と同様の操作によりコア粒子15〜16の水分散液を得た。
なお、上記例1〜16において、コア組成は、各元素の仕込み組成(モル比)から算出した値を示している。また、例1,3,4,10,12においては、この仕込み組成からの計算値とICP発光分析による元素分析値とがモル比で0.001未満の精度で同等の値となることを確認した。ICPによる元素分析は、水洗浄により未反応物を取り除き得られたコア粒子または蛍光ナノ粒子を塩酸で加熱溶解処理し、定容した後、ICP発光分析法により各成分の含有量を測定し、各元素の割合を算出して行った。
Figure 2019183047
また、各例で得られたコア粒子又は蛍光ナノ粒子の平均粒径、シェル厚み、コアの体積割合、111シェラー径、蛍光強度を表1に併せて示した。
[平均粒径]
平均粒径は、ランダムに10個以上のコア粒子又は蛍光ナノ粒子のSEM又はTEMの画像における粒径を測定し、その粒径の最大値と最小値の平均値[(最大値+最小値)/2]とした。なお、粒径は、1つの粒子から測定された短径と長径とを、こちらも平均して得られる値である。
[シェル厚み、コアの体積割合]
シェル厚みは、コア粒子に対するシェルの仕込み量から算出した値である。なお、例8において、この算出値とSTEM−EDX(Thermo Fisher scientific社製 Talos透過型電子顕微鏡)を用いて測定されたシェル厚みとが同等であることを確認した。
また、コアの体積割合は、上記平均粒径とシェル厚みとから、粒子形状が真球と仮定して算出したものである。
[111シェラー径]
表1における「111シェラー径」は、コア粒子又は蛍光ナノ粒子のX線回折パターンにおいて、空間群F(0)の結晶構造モデルでの(111)面のシェラー径を示す。X線回折測定は、X線回折装置(リガク社製、装置名:SmartLab)を用いて行った。得られたX線回折パターンから、X線解析ソフトウェア(リガク社製、統合粉末X線解析ソフトウェアPDXL2)を用いてシェラー径を算出した。111シェラー径が、平均粒径と同等であり、シェルを形成することにより、そのシェラー径が大きくなることが確認できる。
なお、例1〜16のコア粒子及び蛍光ナノ粒子について、X線回折により、単一の結晶種から構成されることを確認し、かつ、立方晶であることを確認した。図2には、代表的に、例3の蛍光ナノ粒子3のデータを示した。
さらに、図3には、例3の蛍光ナノ粒子3の高分解能透過電子顕微鏡(HR−TEM、日本電子製 JEM-2010F)の画像を示した。この画像からも、内部のコアと外部のシェルにおいて確認される縞模様が同一方向かつ同一間隔で、コアとシェルでは結晶方位が同じであることが確認できた。
[蛍光強度]
測定に用いた水分散ナノ粒子はコア部の質量パーセントを約1.0質量%になるように調製した。モジュール型近赤外高速蛍光分光光度計NanoLog(堀場製作所製)を用い測定を行った。励起光として波長980nmの光を照射し、放出される波長1570nmの蛍光値を[濃度(質量%)×コアの体積割合]で除して得られる値を、コア粒子又は蛍光ナノ粒子の蛍光強度とした。
[粒子形状]
また、得られたコア粒子及び蛍光ナノ粒子について、SEM画像を取得し、粒子形状を確認した。いずれの粒子も鋭角な角部がなく、その表面はなだらかなものであった。一例として、例3のSEM画像を図4に示した。
(安定性試験)
例1で得られたコア粒子1と例3で得られた蛍光ナノ粒子3について、25℃の水中で3か月間保管した。この保管前後の各粒子について、上記と同様に蛍光強度を測定し、その結果を図5に示した。
図5から、例3の蛍光ナノ粒子3では、保管前後において蛍光強度の変動はほぼ見られなかったのに対し、例1のコア粒子1では、保管後の蛍光強度が低下することが確認でき、シェル被覆された蛍光ナノ粒子は、安定性に優れていることが確認できた。なお、この蛍光強度の低下は、コア粒子に対して水分子に起因する表面コロージョンにより輝度が低下したものと考えられ、シェルの有無が大きく影響していると推定される。
以上より、本実施形態の蛍光体粒子及びその製造方法によれば、小粒子径で高輝度なナノ粒子が得られ、深部まで蛍光法により生体イメージングが可能となる。これは、必要に応じてナノ粒子の表面を樹脂や生体分子で修飾することで、より高度なイメージングが可能となる。
本実施形態の蛍光ナノ粒子及びその製造方法は、溶媒や表面欠陥等に起因する蛍光の強度低減を抑制することができ、生体イメージングの蛍光標識として好適である。
また、本実施形態の蛍光ナノ粒子は、生体イメージングに限定されず、蛍光物質を標識剤とする蛍光イメージング全般に使用でき、さらに、化粧品の顔料や樹脂組成物の充填材、例えば、偽造防止塗料やバーコード用塗料など、可視域に吸収を持たず、且つ、可視域以外で励起発光する特徴を利用したステルス塗料、として蛍光物質を含有させる製品にも応用でき、蛍光材料として幅広く使用できる。
1…蛍光ナノ粒子、2…コア、3…シェル

Claims (11)

  1. 希土類元素を含有する無機蛍光材料からなる単結晶のコアと、
    前記コアと同じ結晶方位を有し、前記コアを被覆する単結晶のシェルと、
    を有することを特徴とする蛍光ナノ粒子。
  2. 平均粒径が5nm〜60nmである請求項1に記載の蛍光ナノ粒子。
  3. 前記コアの結晶相が立方晶である請求項1又は2に記載の蛍光ナノ粒子。
  4. 外表面が、鋭角な角部を有さず、なだらかである請求項1〜3のいずれか1項に記載の蛍光ナノ粒子。
  5. 前記コアの体積割合が、前記蛍光ナノ粒子の全体体積の25%以上であり、かつ、前記シェルの厚みが6nm以下である請求項1〜4のいずれか1項に記載の蛍光ナノ粒子。
  6. 前記無機蛍光材料が、波長950〜1050nmの近赤外光で励起可能で、波長1500nm以上の蛍光を発する、ことを特徴とする請求項1〜5のいずれか1項に記載の蛍光ナノ粒子。
  7. 前記コアおよび前記シェルが、フッ化物セラミックスからなることを特徴とする請求項1〜6のいずれか1項に記載の蛍光ナノ粒子。
  8. 前記コアの形成材料が、次の一般式(1)

    Na(M1)(Yb)(Er) …(1)

    (式中、M1は、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる少なくとも一つの元素であり、aは0.4≦a<1、bは0<b≦0.5、cは0<c≦0.1で、a+b+c=1である。)の化合物を有する請求項7に記載の蛍光ナノ粒子。
  9. 前記シェルの形成材料が、次の一般式(2)

    Na(M2)(M3) …(2)

    (式中、M2は、Y、La、Ce、Nd、Pm、Eu、Gd、Tb、Ho、Tm、及びLuから選ばれる少なくとも一つの元素、M3は、Yb及びErから選ばれる少なくとも1つの元素であり、dは0.7≦d≦1.0、eは0≦e≦0.3で、d+e=1である。)の化合物を有する請求項7又は8に記載の蛍光ナノ粒子。
  10. コア原料を溶解した溶液中で、希土類元素を含有する無機蛍光材料からなる単結晶の粒子を形成するコア粒子形成工程と、
    シェル原料を溶解した溶液中で、前記単結晶の粒子をコア粒子とし、その表面にエピタキシャル成長により前記コア粒子と同じ結晶方位を有し、前記コア粒子を被覆するシェルを形成するシェル形成工程と、
    を有することを特徴とする蛍光ナノ粒子の製造方法。
  11. 前記シェル形成工程において、前記シェル原料を溶解した溶液中に、分散剤を含有させない請求項10に記載の蛍光ナノ粒子の製造方法。
JP2018077412A 2018-04-13 2018-04-13 蛍光ナノ粒子およびその製造方法 Pending JP2019183047A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018077412A JP2019183047A (ja) 2018-04-13 2018-04-13 蛍光ナノ粒子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018077412A JP2019183047A (ja) 2018-04-13 2018-04-13 蛍光ナノ粒子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2019183047A true JP2019183047A (ja) 2019-10-24

Family

ID=68339812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018077412A Pending JP2019183047A (ja) 2018-04-13 2018-04-13 蛍光ナノ粒子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2019183047A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437726A (zh) * 2021-12-24 2022-05-06 歌尔股份有限公司 一种防伪功能助剂及其制备方法、镭雕材料
CN116254104A (zh) * 2023-02-15 2023-06-13 中国科学院新疆理化技术研究所 一种基于稀土上转换荧光皮肤标记材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437726A (zh) * 2021-12-24 2022-05-06 歌尔股份有限公司 一种防伪功能助剂及其制备方法、镭雕材料
CN114437726B (zh) * 2021-12-24 2023-09-05 歌尔股份有限公司 一种防伪功能助剂及其制备方法、镭雕材料
CN116254104A (zh) * 2023-02-15 2023-06-13 中国科学院新疆理化技术研究所 一种基于稀土上转换荧光皮肤标记材料的制备方法
CN116254104B (zh) * 2023-02-15 2024-05-14 中国科学院新疆理化技术研究所 一种基于稀土上转换荧光皮肤标记材料的制备方法

Similar Documents

Publication Publication Date Title
US10273407B2 (en) Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
US8435472B2 (en) Method of preparing nano-structured material(s) and uses thereof
Xu et al. Monodisperse core–shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers
Wang et al. One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF 3: Yb 3+/Er 3+ nanocrystals
Zhan-Jun et al. A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging
Deng et al. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size
Lu et al. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides
Liang et al. Synthesis of hollow and mesoporous structured NaYF4: Yb, Er upconversion luminescent nanoparticles for targeted drug delivery
WO2008048190A1 (en) Upconversion fluorescent nano-structured material and uses thereof
Zhai et al. Rattle-type hollow CaWO 4: Tb 3+@ SiO 2 nanocapsules as carriers for drug delivery
Panov et al. Microwave-assisted solvothermal synthesis of upconverting and downshifting rare-earth-doped LiYF4 microparticles
US8722095B2 (en) Fluorescent nanocrystals encapsulated in an inorganic shell
CN116083081A (zh) 发光纳米颗粒、使用其的细胞的检测方法、动物的治疗方法、医疗装置、细胞的可视化方法、以及减轻细胞损伤的方法
CN110408377B (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用
CN112080278A (zh) 一种上/下转换双模式发光纳米晶及其制备方法和应用
JP5512958B2 (ja) ナノ蛍光体粒子の製造方法
JP2019183047A (ja) 蛍光ナノ粒子およびその製造方法
JP2014133685A (ja) 炭素量子ドットの製造方法及び炭素量子ドット
US20090121189A1 (en) Synthesis of bio-functionalized rare earth doped upconverting nanophosphors
CN105602566B (zh) 一种稀土掺杂NaGdF4上转换纳米晶及其制备方法
Secu et al. Structural and optical properties of fluorescent BaFBr-Eu2+@ SiO2 core/shell phosphor heterostructure
EP3480275B1 (en) Luminescentupconversion
Jia et al. Synthesis and characterization of highly uniform Lu 2 O 3: Ln3+ (Ln= Eu, Er, Yb) luminescent hollow microspheres
KR20090056816A (ko) 나노 형광체 제조 방법 및 이에 의하여 제조된 나노형광체
JP2009138081A (ja) 微粒子分散溶液、当該微粒子分散溶液の製造方法、及びLnOX−LnX3複合体粒子の製造方法