JP2019181930A5 - - Google Patents

Download PDF

Info

Publication number
JP2019181930A5
JP2019181930A5 JP2019039653A JP2019039653A JP2019181930A5 JP 2019181930 A5 JP2019181930 A5 JP 2019181930A5 JP 2019039653 A JP2019039653 A JP 2019039653A JP 2019039653 A JP2019039653 A JP 2019039653A JP 2019181930 A5 JP2019181930 A5 JP 2019181930A5
Authority
JP
Japan
Prior art keywords
ceramic powder
particle group
powder according
ceramic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019039653A
Other languages
Japanese (ja)
Other versions
JP2019181930A (en
Filing date
Publication date
Application filed filed Critical
Priority to US16/366,421 priority Critical patent/US20190300441A1/en
Publication of JP2019181930A publication Critical patent/JP2019181930A/en
Publication of JP2019181930A5 publication Critical patent/JP2019181930A5/ja
Priority to JP2023169993A priority patent/JP2023168446A/en
Pending legal-status Critical Current

Links

Description

本発明の第1の局面によれば、レーザー光を照射して造形を行う付加造形法の原料として用いられるセラミックス粉体であって、均粒子径が10μm以上100μm以下である第一の粒子群と、平均粒子径が前記第一の粒子群より小さく、前記レーザー光の波長に吸収帯を有する吸収体からな第二の粒子群とを含み、前記第二の粒子群に含まれる粒子は、前記第一の粒子群に含まれる粒子の表面に配置されていることを特徴とする、セラミックス粉体が提供される。 According to the first aspect of the present invention, it is a ceramic powder used as a raw material of an additional modeling method in which a laser beam is irradiated to perform modeling, and the average particle size is 10 μm or more and 100 μm or less. It includes a particle group and a second particle group composed of an absorber having an average particle diameter smaller than that of the first particle group and having an absorption band at the wavelength of the laser light, and is included in the second particle group. Provided is a ceramic powder, characterized in that the particles are arranged on the surface of the particles included in the first particle group.

本発明の第2の局面によれば、付加製造法を用いたセラミックス構造物の製造方法であって、上に述べたセラミックス粉体を所定の厚さに敷き均す工程(i)と、所定の領域に選択的にレーザー光を照射することにより、前記セラミックス粉体を熔融させた後に凝固させる工程(ii)と、を有し、工程(i)および(ii)を繰り返して造形を行うことを特徴とする、セラミックス構造物の製造方法が提供される。 According to the second aspect of the present invention, which is a method for manufacturing a ceramic structure using an addition manufacturing method, the step (i) of spreading the ceramic powder described above to a predetermined thickness and a predetermined step (i). The ceramic powder is melted and then solidified by selectively irradiating the region of (ii) with a laser beam, and the steps (i) and (ii) are repeated to perform modeling. A method for manufacturing a ceramic structure is provided.

本発明の第3の局面によれば、付加製造法を用いたセラミックス構造物の製造方法であって、上に述べたセラミックス粉体を所定の箇所に噴出させ、レーザー光を該所定の箇所に照射して造形を行うことを特徴とする、セラミックス構造物の製造方法が提供される。

According to the third aspect of the present invention, which is a method for manufacturing a ceramic structure using an addition manufacturing method, the ceramic powder described above is ejected to a predetermined place, and a laser beam is emitted to the predetermined place. A method for manufacturing a ceramic structure is provided , which comprises irradiating a ceramic structure with a light beam to form a ceramic structure.

Claims (15)

レーザー光を照射して造形を行う付加造形法の原料として用いられるセラミックス粉体であって、
均粒子径が10μm以上100μm以下である第一の粒子群と、
平均粒子径が前記第一の粒子群より小さく、前記レーザー光の波長に吸収帯を有する吸収体からな第二の粒子群とを含み、
前記第二の粒子群に含まれる粒子は、前記第一の粒子群に含まれる粒子の表面に配置されていることを特徴とする、セラミックス粉体。
It is a ceramic powder used as a raw material for an additional modeling method that irradiates laser light to perform modeling.
The first particle group having an average particle diameter of 10 μm or more and 100 μm or less,
A second particle group consisting of an absorber having an average particle diameter smaller than that of the first particle group and having an absorption band at the wavelength of the laser light is included.
The ceramic powder, wherein the particles contained in the second particle group are arranged on the surface of the particles included in the first particle group.
前記第二の粒子群の平均粒子径が0.05μm以上2μm以下であることを特徴とする、請求項1に記載のセラミックス粉体。 The ceramic powder according to claim 1, wherein the average particle diameter of the second particle group is 0.05 μm or more and 2 μm or less. 前記第二の粒子群の平均粒子径が0.05μm以上1μm未満であることを特徴とする、請求項1または2に記載のセラミックス粉体。 The ceramic powder according to claim 1 or 2 , wherein the average particle diameter of the second particle group is 0.05 μm or more and less than 1 μm. 前記第一の粒子群を70質量%以上含み、前記第一の粒子群と前記第二の粒子群を合計で80質量%以上含むことを特徴とする、請求項1乃至3のいずれか一項に記載のセラミックス粉体。One of claims 1 to 3, wherein the first particle group is contained in an amount of 70% by mass or more, and the first particle group and the second particle group are contained in a total of 80% by mass or more. The ceramic powder described in. 前記第一の粒子群に対する前記第二の粒子群の質量比が2%以上20%以下であることを特徴とする、請求項1乃至4のいずれか一項に記載のセラミックス粉体。The ceramic powder according to any one of claims 1 to 4, wherein the mass ratio of the second particle group to the first particle group is 2% or more and 20% or less. 前記吸収体は、前記レーザー光の照射によって組成物変化を生じて前記レーザー光の吸収率が低下することを特徴とする、請求項1乃至のいずれか一項に記載のセラミックス粉体。 The ceramic powder according to any one of claims 1 to 5 , wherein the absorber causes a composition change due to irradiation with the laser light, and the absorption rate of the laser light is lowered. body. 前記吸収体は、金属酸化物であり、前記レーザー光の照射によって金属元素の価数が変化することを特徴とする、請求項に記載のセラミックス粉体。 The ceramic powder according to claim 6 , wherein the absorber is a metal oxide , and the valence of the metal element changes by irradiation with the laser beam . 前記吸収体は、4価のテルビウムを含む酸化テルビウム、または、4価のプラセオジムを含む酸化プラセオジムを主成分とすることを特徴とする、請求項に記載のセラミックス粉体。 The ceramic powder according to claim 7 , wherein the absorber contains terbium oxide containing tetravalent terbium or praseodymium oxide containing tetravalent praseodymium as a main component. 前記第一の粒子群として金属酸化物の粒子を含むことを特徴とする、請求項1乃至8のいずれか一項に記載のセラミックス粉体。The ceramic powder according to any one of claims 1 to 8, wherein the first particle group contains particles of a metal oxide. 前記金属酸化物の粒子が、酸化アルミニウム、二酸化ケイ素、酸化ジルコニウムからなる群より選択される1種を主成分として含むことを特徴とする、請求項に記載のセラミックス粉体。 The ceramic powder according to claim 9 , wherein the metal oxide particles contain one selected from the group consisting of aluminum oxide , silicon dioxide, and zirconium oxide as a main component. 前記第一の粒子群が、複数の金属酸化物を含んでいることを特徴とする、請求項9または10に記載のセラミックス粉体。The ceramic powder according to claim 9 or 10, wherein the first particle group contains a plurality of metal oxides. 前記複数の金属酸化物は、前記レーザー光の照射によって溶融した後に凝固して共晶組成を生成することを特徴とする、請求項11に記載のセラミックス粉体。The ceramic powder according to claim 11, wherein the plurality of metal oxides are melted by irradiation with a laser beam and then solidified to form a eutectic composition. 前記第一の粒子群が、酸化アルミニウムと、酸化ジルコニウムまたは希土類金属酸化物と、を含有することを特徴とする、請求項12に記載のセラミックス粉体。(段落0023)The ceramic powder according to claim 12, wherein the first particle group contains aluminum oxide and zirconium oxide or a rare earth metal oxide. (Paragraph 0023) 加製造法を用いたセラミックス構造物の製造方法であって、
(i)請求項1乃至13のいずれか一項に記載のセラミックス粉体を所定の厚さに敷き均す工程と、
(ii)所定の領域に選択的にレーザー光を照射することにより、前記セラミックス粉体を熔融させた後に凝固させる工程と、
を有し、前記工程(i)および(ii)を繰り返して造形を行うことを特徴とする、セラミックス構造物の製造方法。
It is a manufacturing method of a ceramic structure using an additive manufacturing method.
(I) A step of spreading the ceramic powder according to any one of claims 1 to 13 to a predetermined thickness and leveling the ceramic powder.
(Ii) A step of melting and then solidifying the ceramic powder by selectively irradiating a predetermined area with a laser beam .
A method for manufacturing a ceramic structure, which comprises repeating the steps (i) and (ii) to form a ceramic structure.
付加製造法を用いたセラミックス構造物の製造方法であって、
請求項1乃至13のいずれか一項に記載のセラミックス粉体を所定の箇所に噴出させ、レーザー光を前記所定の箇所に照射して造形を行うことを特徴とする、セラミックス構造物の製造方法。
It is a manufacturing method of a ceramic structure using an additive manufacturing method.
A ceramic structure characterized by ejecting the ceramic powder according to any one of claims 1 to 13 to a predetermined place and irradiating the predetermined place with a laser beam to perform modeling . Manufacturing method.
JP2019039653A 2018-04-03 2019-03-05 Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder Pending JP2019181930A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/366,421 US20190300441A1 (en) 2018-04-03 2019-03-27 Ceramic powder, method of manufacturing ceramic powder, and method of manufacturing ceramic object using the ceramic powder
JP2023169993A JP2023168446A (en) 2018-04-03 2023-09-29 Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071442 2018-04-03
JP2018071442 2018-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023169993A Division JP2023168446A (en) 2018-04-03 2023-09-29 Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder

Publications (2)

Publication Number Publication Date
JP2019181930A JP2019181930A (en) 2019-10-24
JP2019181930A5 true JP2019181930A5 (en) 2022-03-09

Family

ID=68338952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039653A Pending JP2019181930A (en) 2018-04-03 2019-03-05 Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder

Country Status (1)

Country Link
JP (1) JP2019181930A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406900B2 (en) * 2019-11-28 2023-12-28 キヤノン株式会社 Article manufacturing method and powder
CN112863972B (en) * 2021-01-11 2024-02-06 中国科学院空天信息创新研究院 Quick heating cathode thermal subassembly and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730362B2 (en) * 1987-03-20 1995-04-05 株式会社日立製作所 Electronic component and manufacturing method thereof
JP3743462B2 (en) * 1996-07-01 2006-02-08 宇部興産株式会社 Ceramic composite material
US7758784B2 (en) * 2006-09-14 2010-07-20 Iap Research, Inc. Method of producing uniform blends of nano and micron powders
DE102010046468B4 (en) * 2010-09-24 2016-04-07 MTU Aero Engines AG Generative manufacturing process and powder for this purpose
CN111251604B (en) * 2014-06-20 2023-05-23 福吉米株式会社 Powder material for use in powder lamination and powder lamination method using the same
WO2017094345A1 (en) * 2015-11-30 2017-06-08 コニカミノルタ株式会社 Powder material, method for manufacturing three-dimensional modeled object, and three-dimensional-modeling device
WO2017104234A1 (en) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 Powdery material, method for producing three-dimensionally shaped product, and three-dimensionally shaping device
JP6656911B2 (en) * 2015-12-22 2020-03-04 株式会社フジミインコーポレーテッド Modeling materials for use in powder additive manufacturing
JP6857819B2 (en) * 2017-02-13 2021-04-14 株式会社ノリタケカンパニーリミテド Laminated molding powder
JP6955354B2 (en) * 2017-03-31 2021-10-27 株式会社フジミインコーポレーテッド Modeling material for use in additive manufacturing
JP7011548B2 (en) * 2017-07-14 2022-01-26 キヤノン株式会社 Powder for ceramic molding, ceramic molding, and its manufacturing method
JP7039997B2 (en) * 2017-12-26 2022-03-23 大同特殊鋼株式会社 Manufacturing method of metal powder material

Similar Documents

Publication Publication Date Title
JP2019181930A5 (en)
JP7011548B2 (en) Powder for ceramic molding, ceramic molding, and its manufacturing method
US10646956B2 (en) Method for producing a component, and an optical irradiation device
JP6149332B2 (en) Ceramic particle mixture and method for producing ceramic parts from the mixture
JP5813258B2 (en) Fluoride sintered body for neutron beam moderator and method for producing the same
RU2017144428A (en) METHOD OF MAKING POROUS BODIES WITH IMPROVED PROPERTIES
JP7277103B2 (en) Manufacturing method of ceramic model
JP2022040270A (en) Powder for ceramic shaping, ceramic shaped article, and method for manufacturing the same
WO2015001241A3 (en) Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
JP2009270130A (en) Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy
RU2020115665A (en) METHOD FOR PRODUCING PARTS FROM ALUMINUM ALLOY BY LAYER-LAYER GROWTH FROM A MIXTURE OF POWDERS CONTAINING ZIRCONIUM DIOXIDE STABILIZED WITH Yttrium OXIDE
US11020874B2 (en) Three-dimensional (3D) printing with a sintering aid/fixer fluid and a liquid functional material
US11642202B2 (en) Methods of fabricating a 3D device using ablation
KR101869523B1 (en) Material deposition using powder and foil
CN105798466A (en) A processing method for a ceramic scintillator array
JP2020093973A (en) Ceramic article manufacturing method and ceramic article
JP2023168446A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
WO2020116568A1 (en) Ceramic article production method and ceramic article
JP2019084823A (en) Material powder for additional molding, structure, semiconductor manufacturing device component, and semiconductor manufacturing device
EP3015198A1 (en) Device and method for the generative production of at least one area of a component
CN109071357A (en) The method that additive based on graphene is added to target used in the coating using laser ablation
JP2021066653A5 (en)
JP2019181930A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
DE102016212078A1 (en) LIGHTING DEVICE
JP6049013B2 (en) Particulate neutron absorber-containing slurry and criticality prevention method