JP2019180229A - Method for supporting adjustment of heat engine by rotary electric machine - Google Patents

Method for supporting adjustment of heat engine by rotary electric machine Download PDF

Info

Publication number
JP2019180229A
JP2019180229A JP2019029560A JP2019029560A JP2019180229A JP 2019180229 A JP2019180229 A JP 2019180229A JP 2019029560 A JP2019029560 A JP 2019029560A JP 2019029560 A JP2019029560 A JP 2019029560A JP 2019180229 A JP2019180229 A JP 2019180229A
Authority
JP
Japan
Prior art keywords
torque
resistance
stator
rotor
excitation current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019029560A
Other languages
Japanese (ja)
Other versions
JP7281919B2 (en
Inventor
アーメド、ブシャイエ
Ahmed Bchaier
ウィルフリード、カレーイロ
Wilfried Carreiro
アレクサンドル、デリアン
Alexandre Derrien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of JP2019180229A publication Critical patent/JP2019180229A/en
Application granted granted Critical
Publication of JP7281919B2 publication Critical patent/JP7281919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/042Starter torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

To improve a torque control in a support phase of an adjustment of a heat engine via the torque control in a closed loop while restricting as much as possible the use of a plotting method which requires time to develop because it has a large memory space.SOLUTION: A method for supporting an adjustment of a heat engine 11 by generating a resistance torque mainly by a rotary electric machine 10, includes: a step of receiving a resistance setting torque specifically obtained by an engine computer 15; a step of measuring or estimating a resistance torque Tem added by the rotary electric machine 10; a step of comparing the resistance setting torque with the resistance torque Tem added in order to determine a difference of the torques; a step of correcting the difference of the torques in order to obtain a setting excitation current; and a step of applying an excitation current corresponding to the setting excitation current to a winding type rotator 19 when each phase (U, V, and W) of a polyphase stator 18 is short-circuited so as to generate the resistance torque by the rotary electric machine 10.SELECTED DRAWING: Figure 1

Description

本発明は、回転電気機械によって自動車の熱機関の調整を支援するための方法に関する。   The present invention relates to a method for assisting in the adjustment of an automotive heat engine by means of a rotating electrical machine.

公知の方法では、可逆的な電気機械は、特にアクセサリファサード(accessories facade)を介して熱機関に結合されることがある。   In a known manner, a reversible electric machine may be coupled to a heat engine, in particular via an accessory facade.

一般にオルタネータ−スタータとして知られているこの電気機械は、車両の電池を再充電するために発電モードで、ならびに車両にトルクを供給するためにモータモードで動作することができる。   This electrical machine, commonly known as an alternator-starter, can operate in a power generation mode to recharge the vehicle's battery and in a motor mode to supply torque to the vehicle.

発電モードは、電気機械が制動フェーズ中に電池に電気エネルギーを供給することを可能にする回生制動機能において使用されることがある。   The power generation mode may be used in a regenerative braking function that allows the electric machine to supply electrical energy to the battery during the braking phase.

モータモードは、特に、交通状況に応じた熱機関の停止および自動再始動の機能(停止および始動機能のためのいわゆるSTT)において、熱機関の調整を支援する機能において、電気機械がサーマルモードでの走行フェーズ中に熱機関を断続的に支援することを可能にするいわゆるブースト機能において、ならびに燃料消費量と共に汚染物質排出量を最小限に抑えるようにエンジンの速度を落とすかまたはエンジンを停止するためにドライバーによる明示的な操作なしにトラクションチェーンの開放を自動化することを可能にする惰性走行として知られているフリーホイール機能において使用されることがある。   In the motor mode, in particular, in the function of supporting the adjustment of the heat engine in the function of stopping and automatically restarting the heat engine according to traffic conditions (so-called STT for the stop and start function), the electric machine is in the thermal mode. In the so-called boost function that allows intermittent support of the heat engine during the driving phase of the engine, as well as slow down or shut down the engine to minimize pollutant emissions as well as fuel consumption Therefore, it may be used in a freewheeling function known as coasting that allows the opening of the traction chain to be automated without an explicit operation by the driver.

熱機関の調整を支援する機能の実施中に、設定されたトルクの不十分な制御は、様々な問題を引き起こす可能性がある。したがって、不十分なトルクの収集は、熱機関、したがって車両の振動を引き起こすのに対して、過度のトルクの収集は、熱機関のアクセサリファサード上のユニットを損傷する恐れがある。   During the implementation of the function that assists in the adjustment of the heat engine, inadequate control of the set torque can cause various problems. Thus, insufficient torque collection can cause vibration of the heat engine and thus the vehicle, whereas excessive torque collection can damage units on the accessory facade of the heat engine.

本発明の目的は、開発するのに時間がかかり、メモリスペースの点で大きい作図法の使用を可能な限り制限しながら、閉ループにおいてトルク制御を介した熱機関の調整の支援フェーズ中のトルク制御を改善することである。   The object of the present invention is to provide torque control during the assist phase of adjusting the heat engine via torque control in a closed loop while taking the time to develop and limiting the use of large plotting methods as much as possible in terms of memory space. Is to improve.

より具体的には、本発明の主題は、回転電気機械によって抵抗トルクを生成することによって熱機関の調整を支援するための方法であって、前記回転電気機械が、
− 励磁電流が流れるように設計された巻線型回転子と、
− 複数の相を含む多相固定子と、を備え、
前記方法が、
− 特にエンジンコンピュータから得られる抵抗設定トルクを受け取るステップと、
− 回転電気機械によって熱機関のクランクシャフトに加えられる抵抗トルクを測定または推定するステップと、
− トルクの差を決定するために、抵抗設定トルクを加えられた抵抗トルクと比較するステップと、
− 設定励磁電流を得るために、トルクの差を補正するステップと、
− 回転電気機械が抵抗トルクを生成するように、多相固定子の相が短絡されているときに、設定励磁電流に対応する励磁電流を巻線型回転子に印加するステップと、
を含むことを特徴とする。
More specifically, the subject of the present invention is a method for assisting the regulation of a heat engine by generating a resistance torque by means of a rotating electrical machine, said rotating electrical machine comprising:
-A wound rotor designed to carry excitation current;
-A multiphase stator comprising a plurality of phases;
The method comprises
-Receiving a resistance setting torque, in particular obtained from the engine computer;
-Measuring or estimating the resistance torque applied by the rotating electrical machine to the crankshaft of the heat engine;
-Comparing the resistance setting torque with the applied resistance torque to determine the torque difference;
-Correcting the torque difference to obtain the set excitation current;
Applying an excitation current corresponding to the set excitation current to the wound rotor when the phases of the multiphase stator are short-circuited so that the rotating electrical machine generates a resistance torque;
It is characterized by including.

一実施形態によると、抵抗トルクは、回転子の回転速度から、測定された励磁電流から、および多相固定子の内部抵抗から推定される。   According to one embodiment, the resistance torque is estimated from the rotational speed of the rotor, from the measured excitation current, and from the internal resistance of the multiphase stator.

一実施形態によると、内部抵抗は、測定または推定される固定子の温度から決定される。   According to one embodiment, the internal resistance is determined from the temperature of the stator that is measured or estimated.

一実施形態によると、前記方法は、回転子の励磁電流から、回転子の磁束の2乗、直交固定子インダクタンスの2乗、および直流固定子インダクタンスと直交固定子インダクタンスとの積を決定するステップを含む。   According to one embodiment, the method determines, from the rotor excitation current, the rotor magnetic flux squared, the quadrature stator inductance square, and the product of the DC stator inductance and the orthogonal stator inductance. including.

一実施形態によると、以下のデータ、すなわち、回転子の磁束の2乗、直交固定子インダクタンスの2乗、および直流固定子インダクタンスと直交固定子インダクタンスとの積がそれぞれ、対応する作図法、特に寸法(dimension)によって決定される。   According to one embodiment, each of the following data corresponds to the corresponding plotting method: the rotor magnetic flux squared, the orthogonal stator inductance squared, and the DC stator inductance and orthogonal stator inductance product respectively. It is determined by the dimension.

一実施形態によると、前記方法は、回転子の回転速度から電気速度を決定するステップを含む。   According to one embodiment, the method includes determining an electrical speed from the rotational speed of the rotor.

一実施形態によると、抵抗トルクは、次式から推定され、
− Temは推定される抵抗トルクであり、
− ωは回転電気機械の電気速度であり、
− Rsは多相固定子の内部抵抗であり、
− Φは回転子の磁束であり、
− Lqは直交固定子インダクタンスであり、
− Ldは直流固定子インダクタンスであり、
− nppは極対数であり、
− nφは回転電気機械の相数である。
According to one embodiment, the resistance torque is estimated from the following equation:
-Tem is the estimated resistance torque,
− Ω is the electrical speed of the rotating electrical machine,
-Rs is the internal resistance of the multiphase stator;
0 is the magnetic flux of the rotor,
-Lq is the orthogonal stator inductance;
-Ld is the DC stator inductance,
-Npp is the number of pole pairs;
Nφ is the number of phases of the rotating electrical machine.

一実施形態によると、回転子の回転速度は、ホール効果アナログセンサによって測定される。   According to one embodiment, the rotational speed of the rotor is measured by a Hall effect analog sensor.

本発明は、前述されたような方法を実施するためのソフトウェア命令を記憶するメモリを備える制御モジュールにも関する。   The invention also relates to a control module comprising a memory for storing software instructions for performing the method as described above.

本発明は、回転電気機械のための制御モジュールにも関し、本制御モジュールが、前述されたような回転電気機械によって生成された直流電流を推定するための方法を実施するように構成されたプログラマブル論理回路または集積回路を備えることを特徴とする。   The invention also relates to a control module for a rotating electrical machine, the control module being configured to implement a method for estimating a direct current generated by a rotating electrical machine as described above. A logic circuit or an integrated circuit is provided.

本発明は、以下の説明を読み、それに付随する図を検討することによってよりよく理解されるであろう。これらの図は、純粋に例示として提供されており、本発明を決して限定するものではない。   The invention will be better understood by reading the following description and examining the accompanying figures. These figures are provided purely by way of example and do not limit the invention in any way.

熱機関の調整の支援フェーズ中に加えられるトルクを推定するための本発明に係る方法を実施するオルタネータの機能概略図である。FIG. 2 is a functional schematic diagram of an alternator implementing the method according to the invention for estimating the torque applied during the support phase of the adjustment of the heat engine. 本発明に係る熱機関の調整の支援フェーズ中に回転電気機械によって加えられるトルクの推定装置の概略図である。1 is a schematic diagram of an estimation device for torque applied by a rotating electrical machine during a heat engine adjustment assistance phase according to the present invention; FIG. 本発明に係るトルク推定装置の主要なモジュールの機能概略図である。It is a functional schematic diagram of the main modules of the torque estimation device according to the present invention. 回転電気機械によって加えられるトルクを推定するための式を処理することを可能にするモジュールの機能概略図である。FIG. 3 is a functional schematic diagram of a module that allows processing an equation for estimating the torque applied by a rotating electrical machine. 本発明に係る熱機関の調整の支援フェーズ中の閉ループでの回転電気機械のトルク制御の概略図である。1 is a schematic diagram of torque control of a rotating electric machine in a closed loop during a support phase of adjustment of a heat engine according to the present invention. FIG.

同一、同様、または類似の構成要素は、ある図から別の図にかけて同じ符号を保持する。   Identical, similar, or similar components retain the same reference numerals from one figure to another.

図1は、本発明に係るオルタネータ−スタータ10を概略的に表す。オルタネータ−スタータ10は、電池12に接続された車載電気ネットワークを備える車両に据え付けられるように設計されている。車載ネットワークは、12V、24V、または48Vタイプであってもよい。オルタネータ−スタータ10は、アクセサリファサードに植え込まれたベルト11’またはチェーンを有するシステムよって、それ自体知られている方法で熱機関11に結合されている。   FIG. 1 schematically represents an alternator-starter 10 according to the invention. The alternator-starter 10 is designed to be installed in a vehicle with an in-vehicle electrical network connected to a battery 12. The in-vehicle network may be a 12V, 24V, or 48V type. The alternator-starter 10 is coupled to the heat engine 11 in a manner known per se by a system having a belt 11 'or chain implanted in the accessory facade.

加えて、オルタネータ−スタータ10は、例えば直列システムバスであるLIN(ローカル相互接続ネットワーク)タイプまたはCAN(コントローラエリアネットワーク)タイプの通信プロトコルに従ってエンジンコンピュータ15と通信することができる。   In addition, the alternator-starter 10 can communicate with the engine computer 15 according to a LIN (local interconnect network) type or CAN (controller area network) type communication protocol, for example a serial system bus.

オルタネータ−スタータ10は、発電モードとしても知られているオルタネータモード、またはモータモードで動作することができる。   The alternator-starter 10 can operate in an alternator mode, also known as a power generation mode, or a motor mode.

特に、オルタネータ−スタータ10は、電気技術部分13および制御モジュール14を備える。   In particular, the alternator-starter 10 comprises an electrotechnical part 13 and a control module 14.

より具体的には、電気技術部分13は、電機子要素18およびインダクタ要素19を備える。一例によると、電機子18は、固定子であり、インダクタ19は、励磁コイル20を備える回転子である。固定子18は、いくつかの相数nφを含む。関係する例では、固定子18は、3つの相U、V、およびWを含む。変形例として、相数nφは5相機械については5、6相または二重3相タイプの機械については6、あるいは7相機械については7に等しくてもよい。固定子18の相は、三角形または星形の形態で結合されてもよい。三角形と星形結合の組合せも想定されてもよい。   More specifically, the electrotechnical portion 13 comprises an armature element 18 and an inductor element 19. According to an example, the armature 18 is a stator, and the inductor 19 is a rotor including an exciting coil 20. The stator 18 includes several phase numbers nφ. In a related example, the stator 18 includes three phases U, V, and W. As a variant, the number of phases nφ may be equal to 5, for 5 phase machines, 6 for 6 phase or double 3 phase type machines, or 7 for 7 phase machines. The phases of the stator 18 may be combined in the form of a triangle or a star. Combinations of triangles and star combinations may also be envisaged.

制御モジュール14は、励磁コイル20に注入される励磁電流を生成するために、チョッパを組み込む励磁回路141を備える。励磁電流は、例えばホール効果センサを用いて測定されてもよい。   The control module 14 includes an excitation circuit 141 that incorporates a chopper in order to generate an excitation current injected into the excitation coil 20. The excitation current may be measured using, for example, a Hall effect sensor.

回転子19の角度位置および角速度の測定は、ホール効果アナログセンサH1、H2、H3を用いて、および回転子19と一体に回転する関連付けられた磁気ターゲット25によって行われてもよい。   Measurement of the angular position and angular velocity of the rotor 19 may be performed using Hall effect analog sensors H 1, H 2, H 3 and by an associated magnetic target 25 that rotates together with the rotor 19.

制御モジュール14は、エンジンコンピュータ15から得られる、信号コネクタ24を介して受信される制御信号に従ってインバータ26を制御する制御回路142も備える。   The control module 14 also includes a control circuit 142 that controls the inverter 26 in accordance with a control signal obtained from the engine computer 15 and received via the signal connector 24.

インバータ26は、それぞれが、開状態または閉状態に応じて、固定子18の対応する相U、V、Wをアースに、または電池12の供給電圧B+に選択的に接続することを可能にする2つのスイッチング素子を備えるアームを有する。スイッチング素子は、好ましくはMOSFETタイプのパワートランジスタである。   Inverters 26 each allow selectively connecting corresponding phases U, V, W of stator 18 to ground or to supply voltage B + of battery 12 depending on the open or closed state. It has an arm with two switching elements. The switching element is preferably a MOSFET type power transistor.

以下、熱機関11の調整の支援フェーズ中に回転電気機械10によって熱機関11のクランクシャフトに加えられる抵抗トルクTemを推定するための本発明に係る方法についての図2および図3を参照して説明が提供される。制御モジュール14は、その実施のためにソフトウェア命令を記憶するメモリを含むことができる。変形例として、制御モジュール14は、例えばFPGA(フィールド−プログラマブルゲートアレイを表す)またはCPLD(複合プログラマブルロジックデバイスを表す)の形態のプログラマブル論理回路、あるいは本発明に係る方法を実施するために構成された集積回路、例えばASIC(特定用途向け集積回路を表す)を含む。   In the following, referring to FIGS. 2 and 3 for a method according to the invention for estimating the resistance torque Tem applied by the rotating electrical machine 10 to the crankshaft of the heat engine 11 during the assisting phase of the adjustment of the heat engine 11 An explanation is provided. The control module 14 may include a memory that stores software instructions for its implementation. As a variant, the control module 14 is configured to implement a programmable logic circuit, for example in the form of an FPGA (representing a field-programmable gate array) or a CPLD (representing a composite programmable logic device), or a method according to the invention. Integrated circuits such as ASIC (representing an application specific integrated circuit).

より具体的には、モジュール14は、測定された回転速度Wmel_mesから、測定された励磁電流lexc_mesから、および多相固定子18の内部抵抗から抵抗トルクTemを推定する。回転速度Wmel_mesは、前述のホール効果センサH1、H2、H3によって測定される。励磁電流lexc_mesは、対応するホール効果センサによって測定される。内部抵抗Rsは、測定または推定された固定子18の温度から決定される。   More specifically, the module 14 estimates the resistance torque Tem from the measured rotational speed Wmel_mes, from the measured excitation current lexc_mes, and from the internal resistance of the multiphase stator 18. The rotational speed Wmel_mes is measured by the Hall effect sensors H1, H2, and H3 described above. The excitation current lexc_mes is measured by a corresponding Hall effect sensor. The internal resistance Rs is determined from the measured or estimated temperature of the stator 18.

この目的のために、回転子の磁束の2乗Φ 、直交固定子インダクタンスの2乗Lq、ならびに直流固定子インダクタンスLdと直交固定子インダクタンスLqとの積が回転子の励磁電流lexc_mesから決定される。 For this purpose, the square of the rotor flux Φ 0 2 , the square Lq 2 of the quadrature stator inductance, and the product of the DC stator inductance Ld and the quadrature stator inductance Lq are derived from the rotor excitation current lexc_mes. It is determined.

したがって、励磁電流lexc_mesは、出力で回転子の磁束の2乗Φ を得ることを可能する寸法で作図法C1の入力に加えられる。励磁電流lexc_mesは、出力で直交固定子インダクタンスの2乗Lqを得ることを可能にする寸法で作図法C2の入力に加えられる。励磁電流lexc_mesは、出力で直流固定子インダクタンスと直交固定子インダクタンスとの積Ld*Lqを得ることを可能にする寸法で作図法C3の入力に加えられる。 Thus, the excitation current lexc_mes is applied to the input of the construction method C1 with a dimension that makes it possible to obtain the square of the rotor flux Φ 0 2 at the output. The excitation current lexc_mes is applied to the input of the construction method C2 with dimensions that make it possible to obtain the square Lq 2 of the orthogonal stator inductance at the output. The excitation current lexc_mes is applied to the input of the construction method C3 with dimensions that make it possible to obtain the product Ld * Lq of the DC stator inductance and the orthogonal stator inductance at the output.

モジュールM2は、回転子の回転速度Wmel_mesから電気速度を決定することを可能にする。   Module M2 makes it possible to determine the electrical speed from the rotational speed Wmel_mes of the rotor.

図4に示されるモジュールM3は、前述の入力から抵抗トルクTemを推定することを可能にする。   The module M3 shown in FIG. 4 makes it possible to estimate the resistance torque Tem from the aforementioned inputs.

この目的のために、機能ブロックB1は、次式を得ることを可能にする。
ω・Φ ・Rs
For this purpose, the function block B1 makes it possible to obtain
ω ・ Φ 0 2・ Rs

機能ブロックB2、B3、B4、B5は、次式を得ることを可能にする。
Rs+ω・Lq
The function blocks B2, B3, B4, B5 make it possible to obtain
Rs 2 + ω 2 · Lq 2

機能ブロックB6、B7、およびB8は、次式を得ることを可能にする。
(Rs+ω・LdLq)
The function blocks B6, B7, and B8 make it possible to obtain
(Rs 2 + ω 2 · LdLq) 2

次いで、モジュールB9およびB10は、次式から抵抗トルクTemを導き出すことを可能にする。
− ωは回転電気機械の電気速度であり、
− Rsは多相固定子18の内部抵抗であり、
− Φは回転子19の磁束であり、
− Lqは直交固定子インダクタンスであり、
− Ldは直流固定子インダクタンスであり、
− nppは極対数であり、
− nφは回転電気機械10の相数である。
Modules B9 and B10 then make it possible to derive the resistance torque Tem from the following equation:
− Ω is the electrical speed of the rotating electrical machine,
Rs is the internal resistance of the multiphase stator 18;
0 is the magnetic flux of the rotor 19,
-Lq is the orthogonal stator inductance;
-Ld is the DC stator inductance,
-Npp is the number of pole pairs;
Nφ is the number of phases of the rotating electrical machine 10.

以下、熱機関11の調整の支援フェーズ中に電気機械10によって熱機関のクランクシャフトに加えられる抵抗トルクTemを制御することを可能にする調整ループ30について図5を参照して述べる。   In the following, an adjustment loop 30 is described with reference to FIG. 5 which makes it possible to control the resistance torque Tem applied by the electric machine 10 to the crankshaft of the heat engine during the adjustment phase of the heat engine 11.

この目的のために、コンパレータCompは、トルクの差Eを決定するために、抵抗設定トルクTconsを電気機械によって加えられた抵抗トルクTemと比較する。   For this purpose, the comparator Comp compares the resistance setting torque Tcons with the resistance torque Tem applied by the electric machine in order to determine the torque difference E.

回転電気機械10が受ける抵抗設定トルクTconsは、特にエンジンコンピュータ15から得られる。変形例として、設定トルクTconsは、電気機械10によって生成されてもよい。   The resistance setting torque Tcons received by the rotating electrical machine 10 is obtained in particular from the engine computer 15. As a modification, the set torque Tcons may be generated by the electric machine 10.

図示された例では、回転電気機械10によって熱機関のクランクシャフトに加えられる抵抗トルクTemは、前述のモジュールM1によって推定される。変形例として、抵抗トルクTemは、トルクメータによって測定されてもよく、または別のタイプのアルゴリズムによって推定されてもよい。   In the illustrated example, the resistance torque Tem applied to the crankshaft of the heat engine by the rotating electric machine 10 is estimated by the module M1 described above. As a variant, the resistance torque Tem may be measured by a torque meter or estimated by another type of algorithm.

モジュールM4は、設定励磁電流lexc_consを得るためにトルクの差Eの補正を確保する。補正は、例えば、PIタイプ(比例および積分を表す)またはPIDタイプ(比例、積分および微分を表す)のものとすることができる。   The module M4 ensures the correction of the torque difference E in order to obtain the set excitation current lexc_cons. The correction can be of the PI type (representing proportional and integral) or PID type (representing proportional, integral and derivative), for example.

次いで、設定励磁電流lexc_consに対応する励磁電流は、巻線型回転子19に印加されるのに対して、多相固定子18の相は、電気機械が抵抗トルクTemを生成するように、短絡される。   Next, an excitation current corresponding to the set excitation current lexc_cons is applied to the wound rotor 19, whereas the phases of the multiphase stator 18 are short-circuited so that the electric machine generates a resistance torque Tem. The

この目的のために、設定励磁電流lexc_consは、回転子19に印加される励磁電流lexc_mesの値を設定電流lexc_consと比較して差を決定するために、公知の方法でコンパレータを備える調整モジュールに印加される。この電流差は、補正器から回転子19のコイルの励磁回路141に伝達されるデューティ比を導き出すために、例えばPIタイプ(比例および積分を表す)またはPIDタイプ(比例、積分、および微分を表す)の補正器の入力に印加される。   For this purpose, the set excitation current lexc_cons is applied to an adjustment module comprising a comparator in a known manner in order to determine the difference by comparing the value of the excitation current lexc_mes applied to the rotor 19 with the set current lexc_cons. Is done. This current difference represents, for example, a PI type (representing proportionality and integral) or a PID type (representing proportionality, integral and derivative) in order to derive the duty ratio transmitted from the corrector to the excitation circuit 141 of the coil of the rotor 19. ) Applied to the input of the corrector.

前述の説明は、純粋に例として提供されており、本発明の分野を限定するものではなく、本発明からの逸脱は、異なる要素を他の均等物で置き換えることによっては構成されないことを理解されるであろう。   It is understood that the foregoing description is provided purely by way of example and is not intended to limit the field of the invention, and that departures from the invention may not be constructed by replacing different elements with other equivalents. It will be.

加えて、本発明の異なる特徴、変形例、および/または実施形態は、それらが相容れないものではなく、または互いに排他的ではないという条件で、様々な組合せに従って互いに関連付けられてもよい。   In addition, different features, variations, and / or embodiments of the invention may be associated with each other according to various combinations, provided that they are not incompatible or not mutually exclusive.

Claims (10)

回転電気機械(10)によって抵抗トルクを生成することによって熱機関(11)の調整を支援するための方法であって、前記回転電気機械(10)が、
励磁電流(lexc_mes)が流れるように設計された巻線型回転子(19)と、
複数の相(U、V、W)を含む多相固定子(18)と、を備え、
前記方法が、
特にエンジンコンピュータ(15)から得られる抵抗設定トルク(Tcons)を受け取るステップと、
前記回転電気機械(10)によって前記熱機関(11)のクランクシャフトに加えられる抵抗トルク(Tem)を測定または推定するステップと、
トルクの差(E)を決定するために、前記抵抗設定トルク(Tcons)を、加えられた前記抵抗トルク(Tem)と比較するステップと、
設定励磁電流(lexc_cons)を得るために、前記トルクの差(E)を補正するステップと、
前記回転電気機械(10)が前記抵抗トルクを生成するように、前記多相固定子(18)の前記相(U、V、W)が短絡されているときに、前記設定励磁電流(lexc_cons)に対応する励磁電流を前記巻線型回転子(19)に印加するステップと、
を含むことを特徴とする、方法。
A method for assisting the adjustment of a heat engine (11) by generating a resistance torque by means of a rotating electrical machine (10), said rotating electrical machine (10) comprising:
A wound rotor (19) designed to allow excitation current (lexc_mes) to flow;
A multiphase stator (18) comprising a plurality of phases (U, V, W),
The method comprises
Receiving a resistance setting torque (Tcons) obtained in particular from the engine computer (15);
Measuring or estimating a resistance torque (Tem) applied to the crankshaft of the heat engine (11) by the rotating electrical machine (10);
Comparing the resistance setting torque (Tcons) with the applied resistance torque (Tem) to determine a torque difference (E);
Correcting the torque difference (E) to obtain a set excitation current (lexc_cons);
The set excitation current (lexc_cons) when the phases (U, V, W) of the multiphase stator (18) are short-circuited so that the rotating electrical machine (10) generates the resistance torque. Applying an excitation current corresponding to 1 to the wound rotor (19);
A method comprising the steps of:
前記抵抗トルク(Tem)が、前記回転子の回転速度(Wmel_mes)から、測定された励磁電流(lexc_mes)から、および前記多相固定子(18)の内部抵抗(Rs)から推定されることを特徴とする、請求項1に記載の方法。   The resistance torque (Tem) is estimated from the rotational speed (Wmel_mes) of the rotor, from the measured excitation current (lexc_mes) and from the internal resistance (Rs) of the multiphase stator (18). The method of claim 1, characterized in that 前記内部抵抗(Rs)が、測定または推定される前記固定子の温度から決定されることを特徴とする、請求項2に記載の方法。   The method according to claim 2, characterized in that the internal resistance (Rs) is determined from the temperature of the stator measured or estimated. 前記回転子(lexc_mes)の前記励磁電流から、前記回転子の磁束の2乗(Φ )、直交固定子インダクタンスの2乗(Lq)、および直流固定子インダクタンス(Ld)と直交固定子インダクタンス(Lq)との積を決定するステップを含むことを特徴とする、請求項2または3に記載の方法。 From the excitation current of the rotor (lexc_mes), the rotor magnetic flux squared (Φ 0 2 ), quadrature stator inductance square (Lq 2 ), and DC stator inductance (Ld) and quadrature stator Method according to claim 2 or 3, characterized in that it comprises the step of determining the product with the inductance (Lq). 以下のデータ、すなわち、前記回転子の前記磁束の2乗(Φ )、前記直交固定子インダクタンスの2乗(Lq)、および前記直流固定子インダクタンス(Ld)と前記直交固定子インダクタンス(Lq)との前記積がそれぞれ、対応する作図法(C1、C2、C3)、特に寸法によって決定されることを特徴とする、請求項4に記載の方法。 The following data: square of the magnetic flux of the rotor (Φ 0 2 ), square of the quadrature stator inductance (Lq 2 ), and the DC stator inductance (Ld) and the quadrature stator inductance ( Method according to claim 4, characterized in that each of said products with Lq) is determined by a corresponding construction method (C1, C2, C3), in particular dimensions. 前記回転子の前記回転速度(Wmel_mes)から電気速度(ω)を決定するステップを含むことを特徴とする、請求項2から5のいずれか一項に記載の方法。   6. The method according to claim 2, comprising determining an electrical speed (ω) from the rotational speed (Wmel_mes) of the rotor. 7. 前記抵抗トルク(Tem)が、次式から推定され、
Temは推定される前記抵抗トルクであり、
ωは前記回転電気機械(10)の前記電気速度であり、
Rsは前記多相固定子(18)の前記内部抵抗であり、
Φは前記回転子(19)の前記磁束であり、
Lqは前記直交固定子インダクタンスであり、
Ldは前記直流固定子インダクタンスであり、
nppは極対数であり、
nφは前記回転電気機械(10)の相数である
ことを特徴とする、請求項4および6に記載の方法。
The resistance torque (Tem) is estimated from the following equation:
Tem is the estimated resistance torque,
ω is the electric speed of the rotating electrical machine (10),
Rs is the internal resistance of the multiphase stator (18);
Φ 0 is the magnetic flux of the rotor (19),
Lq is the orthogonal stator inductance,
Ld is the DC stator inductance,
npp is the number of pole pairs,
Method according to claims 4 and 6, characterized in that nφ is the number of phases of the rotating electrical machine (10).
前記回転子の前記回転速度(Wmel_mes)が、ホール効果アナログセンサ(H1、H2、H3)によって測定されることを特徴とする、請求項1から6のいずれか一項に記載の方法。   7. A method according to any one of the preceding claims, characterized in that the rotational speed (Wmel_mes) of the rotor is measured by Hall effect analog sensors (H1, H2, H3). 請求項1から8のいずれか一項に記載の方法を実施するためのソフトウェア命令を記憶するメモリを備える、制御モジュール。   A control module comprising a memory for storing software instructions for performing the method according to claim 1. 請求項1から8のいずれか一項に記載の前記回転電気機械によって生成された直流電流を推定するための方法を実施するように構成されたプログラマブル論理回路または集積回路を備えることを特徴とする、回転電気機械のための制御モジュール(14)。   9. A programmable logic circuit or an integrated circuit configured to implement a method for estimating a direct current generated by the rotating electrical machine according to any one of claims 1 to 8. A control module (14) for a rotating electrical machine.
JP2019029560A 2018-02-22 2019-02-21 Method for Assisting Coordination of Heat Engines by Rotating Electric Machines Active JP7281919B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851561A FR3078214B1 (en) 2018-02-22 2018-02-22 METHOD FOR ASSISTING THE SETTING OF A HEAT ENGINE BY A ROTATING ELECTRIC MACHINE
FR1851561 2018-02-22

Publications (2)

Publication Number Publication Date
JP2019180229A true JP2019180229A (en) 2019-10-17
JP7281919B2 JP7281919B2 (en) 2023-05-26

Family

ID=62816665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029560A Active JP7281919B2 (en) 2018-02-22 2019-02-21 Method for Assisting Coordination of Heat Engines by Rotating Electric Machines

Country Status (3)

Country Link
JP (1) JP7281919B2 (en)
CN (1) CN110190796B (en)
FR (1) FR3078214B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543264A (en) * 2005-05-31 2008-11-27 ヴァレオ エキプマン エレクトリク モトゥール Method and apparatus for estimating the current supplied by an automotive alternator
JP2010093917A (en) * 2008-10-07 2010-04-22 Mitsubishi Electric Corp Vehicle behavior controller
JP5971668B2 (en) * 2013-04-22 2016-08-17 三菱電機株式会社 Engine stop control device and engine stop control method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932707A (en) * 1995-07-24 1997-02-04 Hino Motors Ltd Forced stop device of engine
CN1225078C (en) * 2000-07-03 2005-10-26 卢骥 Frequency-conversion voltage-varying speed control method with high-torque vector control for asynchronous motor
US7088077B2 (en) * 2004-11-09 2006-08-08 General Motors Corporation Position-sensorless control of interior permanent magnet machines
JP4574412B2 (en) * 2005-03-30 2010-11-04 本田技研工業株式会社 Hybrid vehicle motor constant detection device and hybrid vehicle motor control device
US7687928B2 (en) * 2006-06-14 2010-03-30 Smiths Aerospace, Llc Dual-structured aircraft engine starter/generator
US7797096B2 (en) * 2006-08-31 2010-09-14 Gm Global Technology Operations, Inc. Torque estimation of engine driven generator
JP4592712B2 (en) * 2007-01-29 2010-12-08 株式会社日立製作所 Motor control device
FR2918222B1 (en) * 2007-06-27 2010-06-04 Valeo Equip Electr Moteur METHOD AND ELECTRIC BRAKE MACHINE OF A HEAT ENGINE AND VEHICLE DURING THE STOPPING PHASE THEREOF
FR2918027B1 (en) * 2007-06-28 2010-03-12 Valeo Equip Electr Moteur METHOD FOR CONTROLLING MICRO-HYBRID SYSTEM FOR VEHICLE, AND ENERGY STORAGE UNIT AND HYBRID SYSTEM FOR IMPLEMENTING SAID METHOD
US7755310B2 (en) * 2007-09-11 2010-07-13 Gm Global Technology Operations, Inc. Method and apparatus for electric motor torque monitoring
EP2235817B1 (en) * 2007-12-21 2017-03-08 Valeo Equipements Electriques Moteur Method and device for failsafe control of an alternator/starter system of the micro-hybrid type, and corresponding micro-hybrid system
JP4582168B2 (en) * 2008-03-21 2010-11-17 株式会社デンソー Rotating machine control device and rotating machine control system
FR2934331B1 (en) * 2008-07-24 2010-08-20 Valeo Equip Electr Moteur METHOD AND DEVICE FOR MONITORING THE STARTING TIME OF A THERMAL MOTOR OF A VEHICLE.
DE102008041535A1 (en) * 2008-08-26 2010-03-04 Robert Bosch Gmbh Method and device for stopping the operation of an internal combustion engine
FR2973607B1 (en) * 2011-03-30 2014-01-10 Renault Sa SYSTEM AND METHOD FOR CONTROLLING A MULTIPHASE ELECTRIC MOTOR TAKING INTO ACCOUNT CURRENT OSCILLATIONS.
FR2976422B1 (en) * 2011-06-08 2014-10-31 Valeo Equip Electr Moteur METHOD FOR CONTROLLING A RESISTANT TORQUE OF A MOTOR VEHICLE ALTERNATOR, AND SYSTEM FOR CARRYING OUT SAID METHOD
DE102011078958A1 (en) * 2011-06-30 2013-01-03 Robert Bosch Gmbh Method for operating an electric machine coupled to an internal combustion engine in a motor vehicle
FR2980408B1 (en) * 2011-09-22 2013-10-04 Peugeot Citroen Automobiles Sa TORQUE DISTRIBUTION METHOD OF A HYBRID VEHICLE AND VEHICLE THEREFOR
FR2981223B1 (en) * 2011-10-07 2017-11-03 Valeo Equip Electr Moteur MOTOR VEHICLE STARTER CIRCUIT FOR A VOLTAGE-INCREASING DEVICE AND EQUIPPED STARTER
JP5897298B2 (en) * 2011-10-12 2016-03-30 株式会社ミツバ Brushless motor control method, brushless motor control device, brushless motor, and electric power steering device
US8894540B2 (en) * 2012-09-13 2014-11-25 Ford Global Technologies, Llc Method and apparatus for controlling engine shutdown in hybrid vehicles
JP5962681B2 (en) * 2014-01-21 2016-08-03 トヨタ自動車株式会社 Control device for internal combustion engine
US20150229249A1 (en) * 2014-02-13 2015-08-13 GM Global Technology Operations LLC Electronic motor-generator system and method for controlling an electric motor-generator
CN103895647A (en) * 2014-03-07 2014-07-02 清华大学 Active damping system and method for direct-driven electric vehicle
FR3022601B1 (en) * 2014-06-19 2016-06-10 Valeo Embrayages TORQUE ESTIMATOR FOR DOUBLE CLUTCH
CN104283479B (en) * 2014-09-30 2017-02-01 卧龙电气集团杭州研究院有限公司 Permanent magnet synchronous motor load torque monitoring system based on three-dimensional motor parameter tables
DE102014017326B4 (en) * 2014-11-22 2017-10-26 Audi Ag Braking a motor vehicle internal combustion engine by means of an asynchronous machine
FR3035283B1 (en) * 2015-04-17 2017-04-07 Renault Sas METHOD FOR CONTROLLING THE TORQUE OF A SYNCHRONOUS ELECTRIC MACHINE
CN107645259B (en) * 2017-07-26 2021-03-05 中国第一汽车股份有限公司 Driving motor torque closed-loop control method for electric automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543264A (en) * 2005-05-31 2008-11-27 ヴァレオ エキプマン エレクトリク モトゥール Method and apparatus for estimating the current supplied by an automotive alternator
JP2010093917A (en) * 2008-10-07 2010-04-22 Mitsubishi Electric Corp Vehicle behavior controller
JP5971668B2 (en) * 2013-04-22 2016-08-17 三菱電機株式会社 Engine stop control device and engine stop control method

Also Published As

Publication number Publication date
JP7281919B2 (en) 2023-05-26
CN110190796B (en) 2023-06-06
FR3078214A1 (en) 2019-08-23
FR3078214B1 (en) 2020-03-20
CN110190796A (en) 2019-08-30

Similar Documents

Publication Publication Date Title
US6515446B1 (en) Motor control apparatus and control method
Alberti et al. IPM machine drive design and tests for an integrated starter–alternator application
JP6715320B2 (en) Magnetization state control method and magnetization state control device
BR112013022009B1 (en) method and system for controlling an electric motor in or near stall operating conditions
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP2014204451A (en) Controller of vehicular generator motor and method thereof
JP2016518105A (en) Method for estimating the angular position of a rotor of a multiphase rotating electrical machine and its application to the control of a multiphase inverter for such a machine
JP2004215318A (en) Apparatus and method for motor operated drive controlling and its program
JP5929492B2 (en) Induction machine control device
CN105992937B (en) Energizing the stator winding of an at least mechanically operable electric rotating field machine and measuring the temperature thereof
JP2016527436A (en) Method and apparatus for controlling alternator / starter of automobile and corresponding alternator / starter
JP7281919B2 (en) Method for Assisting Coordination of Heat Engines by Rotating Electric Machines
JP5131051B2 (en) Rotating machine control device and rotating machine control system
JP7167173B2 (en) Method for controlling motor torque cut in rotating electrical machine
JP7043168B2 (en) A method of controlling an electronic power module that can function as a synchronous rectifier, a corresponding controller and a rotating electric vehicle of an electric vehicle equipped with this type of controller.
JP2019146478A (en) Method for supporting adjustment of heat engine by rotary electric machine
JP6719588B2 (en) Electric motor control device
FR3078213A1 (en) METHOD OF ESTIMATING THE TORQUE APPLIED BY A ROTATING ELECTRIC MACHINE DURING A STEERING ASSISTANCE PHASE OF A THERMAL MOTOR
JP2021513313A (en) How to optimize the transition from one mode of operation of a rotating electromachine to another
JP7206723B2 (en) motor generator controller
JP2020500497A (en) Method for limiting avalanche energy at end of motor mode for alternator-starter inverter by reducing current
JP2023502948A (en) Control module and method for managing exiting motor mode of rotating electrical machine
CN110199111A (en) The method for restarting heat engine by alternator-starter
CN117780540A (en) Method for starting an internal combustion engine of a two-wheeled vehicle
FR3079370A1 (en) METHOD FOR COMPENSATING THE DEAD TIME DURATION OF AN INVERTER OF A ROTATING ELECTRIC MACHINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7281919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150