JP2019178224A - Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same - Google Patents

Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same Download PDF

Info

Publication number
JP2019178224A
JP2019178224A JP2018068197A JP2018068197A JP2019178224A JP 2019178224 A JP2019178224 A JP 2019178224A JP 2018068197 A JP2018068197 A JP 2018068197A JP 2018068197 A JP2018068197 A JP 2018068197A JP 2019178224 A JP2019178224 A JP 2019178224A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
fiber
epoxy
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018068197A
Other languages
Japanese (ja)
Inventor
裕一 谷口
Yuichi Taniguchi
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2018068197A priority Critical patent/JP2019178224A/en
Priority to KR1020190033649A priority patent/KR20190114807A/en
Priority to CN201910241616.0A priority patent/CN110317319A/en
Priority to TW108111188A priority patent/TW201942179A/en
Publication of JP2019178224A publication Critical patent/JP2019178224A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide an epoxy resin which is excellent in adhesion and has a new oxazolidone structure, an epoxy resin composition and a fiber-reinforced composite material using the epoxy resin.SOLUTION: An epoxy resin has an oxazolidone structure has an epoxy equivalent of 220-480 g/eq and a softening point of 100°C or lower, and contains 0.25-2.5 wt.% of hydrolysis chlorine.SELECTED DRAWING: None

Description

本発明は、接着性に優れた新規なオキサゾリドン構造を有するエポキシ樹脂およびこのエポキシ樹脂を使用したエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin having a novel oxazolidone structure excellent in adhesiveness and an epoxy resin composition using the epoxy resin.

繊維強化複合材料はガラス繊維、アラミド繊維や炭素繊維等の強化繊維と、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂、シアネート樹脂、ビスマレイミド樹脂等の熱硬化性マトリクス樹脂から構成され、軽量かつ、強度、耐食性や耐疲労性等の機械物性に優れることから、航空機、自動車、土木建築およびスポーツ用品等の構造材料として幅広く適応されている。   Fiber reinforced composite materials include glass fibers, reinforced fibers such as aramid fibers and carbon fibers, and thermosetting matrices such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, benzoxazine resins, cyanate resins, and bismaleimide resins. Since it is made of resin and is lightweight and has excellent mechanical properties such as strength, corrosion resistance, and fatigue resistance, it is widely applied as a structural material for aircraft, automobiles, civil engineering and sports equipment.

繊維強化複合材料の製造方法には、熱硬化性のマトリクス樹脂が予め強化繊維へ含浸されたプリプレグを用いるオートクレーブ成形法、シートワインディング成形法、プレス成形法や、強化繊維へ液状のマトリクス樹脂を含浸させる工程と熱硬化による成形工程を含む、ウェットレイアップ成形法、引き抜き成形法、フィラメントワインディング成形法、RTM法等の手法がある。   The fiber reinforced composite material manufacturing method includes an autoclave molding method, a sheet winding molding method, a press molding method, and a liquid matrix resin impregnated into a reinforcing fiber, using a prepreg in which a thermosetting matrix resin is impregnated in a reinforcing fiber in advance. There are techniques such as a wet lay-up molding method, a pultrusion molding method, a filament winding molding method, and an RTM method, which include a step of forming and a molding step by thermosetting.

フィラメントワインディング成形法の一つに、強化繊維へあらかじめ樹脂が含浸されたトゥプリプレグを用いるドライ法が挙げられる。ドライ法は巻き付け速度の短時間化や樹脂比率の安定性に優れることから、円筒やタンク形状の繊維強化複合材料を量産する点で優位性がある。   As one of the filament winding molding methods, there is a dry method using a tuprepreg in which a reinforcing fiber is impregnated with a resin in advance. The dry method is superior in terms of mass production of cylindrical or tank-shaped fiber-reinforced composite materials because it is excellent in shortening the winding speed and stability in the resin ratio.

オートクレーブ法やドライ法では得られる成形体の品質を高めるべく、用いられるマトリクス樹脂には硬化後に高弾性率、高強度や高ガラス転移温度に加え、靱性や強化繊維との高い接着性が求められる。   In order to improve the quality of the molded product obtained by the autoclave method and the dry method, the matrix resin used is required to have high elasticity, high strength and high glass transition temperature after curing, as well as toughness and high adhesion to reinforcing fibers. .

マトリクス樹脂の靱性を高める手法は様々あり、低弾性率なゴム状ポリマー、ブロックコポリマー、コアシェル型ゴム粒子、熱可塑樹脂の添加等が挙げられる。これらの手法は樹脂の高靱性化により接着性を高められるものの弾性率や強度の低下を招く傾向にあり、繊維強化複合材料に高い剛性が求められる用途では適応が難しい。特許文献1にはコアシェル型ゴム粒子を用いた樹脂組成物が提案されている。コアシェルゴムの添加により破壊靱性を上昇させている一方、弾性率の低下を招いている。   There are various methods for increasing the toughness of the matrix resin, and examples thereof include addition of a low elastic modulus rubber-like polymer, block copolymer, core-shell type rubber particles, and thermoplastic resin. Although these techniques can increase the adhesiveness by increasing the toughness of the resin, they tend to cause a decrease in the elastic modulus and strength, and are difficult to adapt in applications where high rigidity is required for the fiber-reinforced composite material. Patent Document 1 proposes a resin composition using core-shell type rubber particles. While the fracture toughness is increased by the addition of the core-shell rubber, the elastic modulus is lowered.

高弾性、高強度を発現マトリクス樹脂の靱性を高める手法としてエポキシ樹脂の構造に着目された検討もされており、ノボラック型エポキシ、オキサゾリドン環含有エポキシ、アミン型エポキシ等を添加する試みがなされている。   High elasticity and high strength have been studied with a focus on the structure of the epoxy resin as a technique to increase the toughness of the matrix resin, and attempts have been made to add novolac type epoxy, oxazolidone ring-containing epoxy, amine type epoxy, etc. .

特許文献2にはオキサゾリドン環含有エポキシを用いた樹脂組成物が提案されている。特許文献3にはアミン型エポキシを用いた樹脂組成物が提案されている。これらの文献ではオキサゾリドン環構造やグリシジルアミン構造の導入により強度の上昇が見受けられるが、エポキシ樹脂の加水分解塩素量に着目した強度上昇については言及されていない。   Patent Document 2 proposes a resin composition using an oxazolidone ring-containing epoxy. Patent Document 3 proposes a resin composition using an amine type epoxy. In these documents, an increase in strength is observed due to the introduction of an oxazolidone ring structure or a glycidylamine structure, but there is no mention of an increase in strength focusing on the amount of hydrolyzed chlorine in the epoxy resin.

特許文献4にはエポキシ樹脂の加水分解塩素量低減に着目した電気特性の改善が提案されており、また特許文献5には加水分解性塩素量の規定により加熱成形時の着色が少ないエポキシ樹脂と酸無水物からなる樹脂組成物が提案されている。一方、加水分解性塩素量に着目することによる強度や接着性の改善については言及されていない。   Patent Document 4 proposes an improvement in electrical characteristics with a focus on reducing the amount of hydrolyzed chlorine in the epoxy resin, and Patent Document 5 discloses an epoxy resin that is less colored at the time of heat molding due to the regulation of the amount of hydrolyzable chlorine. A resin composition comprising an acid anhydride has been proposed. On the other hand, there is no mention of improvement in strength and adhesion by paying attention to the amount of hydrolyzable chlorine.

繊維強化複合材料のマトリクス樹脂に関し、ゴム成分の添加やエポキシ樹脂の多官能化により成形物の剛性と強度、および強化繊維等の被着体との接着性を向上させる試みが成されているもののさらなる改善が望まれている。   Regarding matrix resins for fiber reinforced composite materials, attempts have been made to improve the rigidity and strength of molded products and adhesion to adherends such as reinforcing fibers by adding rubber components and polyfunctionalizing epoxy resins. Further improvements are desired.

特開2016−199673号公報JP 2006-199673 A 特開2009−112626号公報JP 2009-112626 A 特許第4811532号公報Japanese Patent No. 4811532 特開2017−137374号公報JP 2017-137374 A 特許第4752326号公報Japanese Patent No. 4752326

本発明は、硬化して得られる成形物の弾性率と接着強度が高く、高い剛性を示す繊維強化複合材料を得ることができるマトリクス樹脂として使用されるエポキシ樹脂、硬化性樹脂組成物およびそれを用いた繊維強化複合材料を提供することを目的とする。   The present invention relates to an epoxy resin, a curable resin composition, and an epoxy resin used as a matrix resin capable of obtaining a fiber-reinforced composite material having a high modulus of elasticity and adhesive strength obtained by curing and high rigidity. It aims at providing the used fiber reinforced composite material.

本発明者らは前述の課題を解決するため検討を行った結果、エポキシ樹脂の加水分解性塩素量、すなわちクロルヒドリン基の量に着目しつつオキサゾリドン環を含有するエポキシを得た後、硬化剤と配合させて硬化させることで成形物に高い強度と弾性率を与える樹脂組成物が得られることを見出し、本発明を完成させるに至った。   As a result of investigations to solve the above-mentioned problems, the present inventors obtained an epoxy containing an oxazolidone ring while paying attention to the hydrolyzable chlorine amount of the epoxy resin, that is, the amount of the chlorohydrin group, and then the curing agent and It discovered that the resin composition which gives a high intensity | strength and an elasticity modulus to a molded object by mixing and hardening was obtained, and came to complete this invention.

すなわち本発明は、エポキシ当量が220〜480g/eq、軟化点が100℃以下かつ0.25〜2.5重量%の加水分解塩素を含むことを特徴とするオキサゾリドン構造を有するエポキシ樹脂である。   That is, the present invention is an epoxy resin having an oxazolidone structure characterized by containing hydrolyzed chlorine having an epoxy equivalent of 220 to 480 g / eq, a softening point of 100 ° C. or less and 0.25 to 2.5% by weight.

また本発明は、下記一般式(1)で表され、エポキシ当量が165〜245g/eqであり、0.3〜3.0重量%の加水分解塩素を含むエポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させて得られる上記のオキサゾリドン構造を有するエポキシ樹脂である。

Figure 2019178224

(式中、nは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基であり、Gはそれぞれ独立して下記式(2)、下記式(3)または下記式(4)で表される基である)
Figure 2019178224
The present invention is represented by the following general formula (1), an epoxy equivalent of 165 to 245 g / eq, an epoxy resin (a) containing 0.3 to 3.0% by weight of hydrolyzed chlorine, and toluene diisocyanate. Or it is an epoxy resin which has said oxazolidone structure obtained by making it react with diphenylmethane diisocyanate.
Figure 2019178224

(In the formula, n represents 0 to 5, each R is independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, and G is independently represented by the following formula (2) or the following formula (3 Or a group represented by the following formula (4))
Figure 2019178224

更に本発明は、下記一般式(11)で表される請求項1に記載のオキサゾリドン構造を有するエポキシ樹脂である。

Figure 2019178224

(式中、mは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基であり、Yはそれぞれ独立して単結合、下記式(12)若しくは式(13)で表される基又はこれらの組み合わせであり、式(12)及び式(13)で表される基を複数含んでもよく、Yの15モル%以上は式(12)で表される基を含む。Gはそれぞれ独立して上記式(2)、式(3)または式(4)で表される基である。)
Figure 2019178224

(式中、R、Rは炭素数1〜8の二価の炭化水素残基であり、Aは炭素数4〜16の二価の炭化水素残基である。) Furthermore, this invention is an epoxy resin which has an oxazolidone structure of Claim 1 represented by following General formula (11).
Figure 2019178224

(Wherein, m represents 0 to 5, R 1 is independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, Y each independently represent a single bond, the following equation (12) or It is a group represented by the formula (13) or a combination thereof, and may contain a plurality of groups represented by the formula (12) and the formula (13), and 15 mol% or more of Y is represented by the formula (12). G is independently a group represented by the above formula (2), formula (3) or formula (4).
Figure 2019178224

(In the formula, R 2 and R 3 are divalent hydrocarbon residues having 1 to 8 carbon atoms, and A is a divalent hydrocarbon residue having 4 to 16 carbon atoms.)

また本発明は、上記のオキサゾリドン構造を有するエポキシ樹脂を製造するにあたり、上記エポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させることを特徴とするエポキシ樹脂の製造方法である。   Moreover, this invention is a manufacturing method of the epoxy resin characterized by making the said epoxy resin (a) react with toluene diisocyanate or diphenylmethane diisocyanate in manufacturing the epoxy resin which has said oxazolidone structure.

また本発明は、上記のエポキシ樹脂に、硬化剤(B)を配合してなるエポキシ樹脂組成物である。
硬化剤(B)としては、ジシアンジアミド又はその誘導体や、40℃で液状のポリアミンが好ましく挙げられる。
Moreover, this invention is an epoxy resin composition formed by mix | blending a hardening | curing agent (B) with said epoxy resin.
Preferred examples of the curing agent (B) include dicyandiamide or a derivative thereof and a polyamine that is liquid at 40 ° C.

更に本発明は、上記のエポキシ樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料である。繊維強化複合材料としては、強化繊維が炭素繊維であるプリプレグがある。
また本発明は、上記の繊維強化複合材料を硬化させて得られる成形体である。
Furthermore, this invention is a fiber reinforced composite material characterized by mix | blending a reinforced fiber with said epoxy resin composition. As the fiber reinforced composite material, there is a prepreg in which the reinforcing fiber is a carbon fiber.
Moreover, this invention is a molded object obtained by hardening said fiber reinforced composite material.

本発明のエポキシ樹脂またはこれを含むエポキシ樹脂組成物を使用して硬化させて得られる成形物は、高い強度と弾性率を示す。本発明のエポキシ樹脂またはこれを含むエポキシ樹脂組成物は強化繊維を配合してなる繊維強化複合材料に好適に用いられる。   A molded product obtained by curing using the epoxy resin of the present invention or an epoxy resin composition containing the epoxy resin exhibits high strength and elastic modulus. The epoxy resin of this invention or the epoxy resin composition containing this is used suitably for the fiber reinforced composite material formed by mix | blending a reinforced fiber.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のエポキシ樹脂は、エポキシ当量(g/eq)が220〜480、軟化点が100℃以下であり、0.25〜2.5重量%の加水分解塩素を含むオキサゾリドン構造を有するエポキシ樹脂である。   The epoxy resin of the present invention is an epoxy resin having an oxazolidone structure having an epoxy equivalent (g / eq) of 220 to 480, a softening point of 100 ° C. or less, and containing 0.25 to 2.5% by weight of hydrolyzed chlorine. is there.

このオキサゾリドン構造を有するエポキシ樹脂は、上記一般式(11)で表されるエポキシ樹脂であるか、これを主成分として含むエポキシ樹脂であることができる。   The epoxy resin having the oxazolidone structure can be an epoxy resin represented by the general formula (11) or an epoxy resin containing this as a main component.

また、このオキサゾリドン構造を有するエポキシ樹脂は、上記一般式(1)で表され、エポキシ当量が165〜245であり、0.3〜3.0重量%の加水分解塩素を含むエポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させて得られるものであることができる。   The epoxy resin having this oxazolidone structure is represented by the above general formula (1), has an epoxy equivalent of 165 to 245, and contains 0.3 to 3.0% by weight of hydrolyzed chlorine (a) And toluene diisocyanate or diphenylmethane diisocyanate can be obtained.

一般式(1)において、nは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基、好ましくは炭素数1〜4のアルキレン基又はアルキリデン基である。Rはエポキシ樹脂(a)に由来する基であるので、使用されるエポキシ樹脂の説明から理解される。   In the general formula (1), n represents 0 to 5, and each R is independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, preferably an alkylene group or alkylidene group having 1 to 4 carbon atoms. . Since R is a group derived from the epoxy resin (a), it is understood from the description of the epoxy resin used.

Gはそれぞれ独立して、上記式(2)、(3)または式(4)で表される基である。エポキシ樹脂(a)は加水分解塩素を0.3〜3.0重量%、好ましくは0.5〜2.5重量%含む。式(3)で表される基は加水分解塩素を含むので、その量を変化することにより、加水分解塩素量を調整することができる。   G is each independently a group represented by the above formula (2), (3) or formula (4). The epoxy resin (a) contains 0.3 to 3.0% by weight, preferably 0.5 to 2.5% by weight of hydrolyzed chlorine. Since the group represented by the formula (3) contains hydrolyzed chlorine, the amount of hydrolyzed chlorine can be adjusted by changing the amount thereof.

一般式(11)において、mは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基を表す。好ましい例は、一般式(1)におけるRと同様である。Yは単結合、上記式(12)若しくは式(13)で表される二価の基又はこれらの組み合わせであり、式(12)及び式(13)で表される基を複数含んでもよく、Yの15モル%以上は式(12)で表される基を含む。例えば、式(12)で表される基をE1、式(13)で表される基をE2とすると、YはE1-E2-E2のようにE1、E2の両者を含んでもよく、一方のみを含んでもよく、E1、E2を複数含んでもよく、E1、E2を含まない単結合であってもよい。通常は、単結合、又はE1、E2のいずれかを1つ含むものの合計がYの25モル%以上であることが好ましく、Yの長さはエポキシ当量からも制限される。しかし、Yの30モル%以上、好ましくは20〜50モル%はオキサゾリドン環を有するE1を含む基である。50モル%を超えると得られる樹脂の軟化点が高くなりすぎる恐れがある。Gは一般式(1)と同意である。 In the general formula (11), m represents 0 to 5, R 1 represents a divalent hydrocarbon residue having 1 to 8 carbon independently. Preferred examples are the same as R in the general formula (1). Y is a single bond, a divalent group represented by the above formula (12) or formula (13), or a combination thereof, and may contain a plurality of groups represented by formula (12) and formula (13), 15 mol% or more of Y contains group represented by Formula (12). For example, when the group represented by the formula (12) is E1, and the group represented by the formula (13) is E2, Y may contain both E1 and E2 as in E1-E2-E2, and only one of them. , E1 and E2 may be included, or a single bond not including E1 and E2 may be used. Usually, it is preferable that the total of those containing a single bond or one of E1 and E2 is 25 mol% or more of Y, and the length of Y is also limited from the epoxy equivalent. However, 30 mol% or more, preferably 20 to 50 mol%, of Y is a group containing E1 having an oxazolidone ring. If it exceeds 50 mol%, the softening point of the resulting resin may be too high. G is the same as the general formula (1).

式(12)、式(13)において、R、Rは炭素数1〜8の二価の炭化水素残基であり、好ましい例は、一般式(1)におけるRと同様である。Aは炭素数4〜16の二価の炭化水素残基であるが、好ましくは、芳香族環を1〜2個有する炭化水素残基である。Aはジイソシアネートの残基であるので、ジイソシアネートの説明からも理解される。mは0〜5であるが、0〜2の成分が主成分(50モル%以上)であることが好ましい。式(12)、式(13)において、左末端の多くは一般式(11)のOに結合し、右末端はGに結合するが、一部は式(12)又は式(13)の左末端と結合する。また、末端の*を付した線は結合を表す。式(2)〜式(4)の左末端の線も同様である。 In the formulas (12) and (13), R 2 and R 3 are divalent hydrocarbon residues having 1 to 8 carbon atoms, and preferred examples are the same as R in the general formula (1). A is a divalent hydrocarbon residue having 4 to 16 carbon atoms, and is preferably a hydrocarbon residue having 1 to 2 aromatic rings. Since A is a residue of diisocyanate, it is understood from the description of diisocyanate. Although m is 0-5, it is preferable that the component of 0-2 is a main component (50 mol% or more). In the formulas (12) and (13), most of the left end binds to O in the general formula (11) and the right end binds to G, but a part of the left end of the formula (12) or the formula (13) Join to the end. A line marked with * at the end represents a bond. The same applies to the left end line of Formula (2) to Formula (4).

本発明のオキサゾリドン構造を有するエポキシ樹脂を製造する方法は、上記エポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させるが、所定量の加水分解塩素を含むエポキシ樹脂(a)は、市販されているエポキシ樹脂がその条件を満たせば、それを使用することができる。しかし、エポキシ樹脂は通常電子材料用途に使用されることが多く、加水分解塩素の含有量が低い。そのため、ヒドロキシ化合物をエピクロロヒドリンでエポキシ化する工程で反応条件を変化させるなどして、所望の加水分解塩素濃度のエポキシ樹脂を製造するか、市販のエポキシ樹脂を改質して所望の加水分解塩素濃度のエポキシ樹脂とすることがよい。有利には加水分解塩素含有量が低いエポキシ樹脂と塩酸を反応させることで所望の加水分解塩素濃度のエポキシ樹脂をする方法である。塩酸と反応させることにより、エポキシ基の一部が式(3)と式(4)で表される基に変化すると考えられる。   In the method for producing an epoxy resin having an oxazolidone structure according to the present invention, the epoxy resin (a) is reacted with toluene diisocyanate or diphenylmethane diisocyanate. An epoxy resin (a) containing a predetermined amount of hydrolyzed chlorine is commercially available. If the epoxy resin being used meets the requirements, it can be used. However, epoxy resins are usually used for electronic materials and have a low content of hydrolyzed chlorine. For this reason, an epoxy resin having a desired hydrolyzed chlorine concentration is produced by changing the reaction conditions in the step of epoxidizing the hydroxy compound with epichlorohydrin, or a commercially available epoxy resin is modified to produce the desired hydrolyzed resin. It is preferable to use an epoxy resin having a decomposed chlorine concentration. Preferably, the epoxy resin having a desired hydrolyzed chlorine concentration is obtained by reacting an epoxy resin having a low hydrolyzed chlorine content with hydrochloric acid. By reacting with hydrochloric acid, a part of the epoxy group is considered to be changed to groups represented by the formulas (3) and (4).

一般式(1)におけるGの一部が、式(3)又は式(4)で表される基であると、オキサゾリドン環が生成せずに末端基として残ってしまうことが見いだされると共に、この末端基が一定量存在することにより、密着性の向上や成形物の強度等の物性が向上することが見いだされた。これは、上記末端基が密着性向上効果を発現すると共に、末端停止での分子量等が影響して成形物の物性向上を発現すると考えられる。   When a part of G in the general formula (1) is a group represented by the formula (3) or the formula (4), it is found that an oxazolidone ring is not generated and remains as a terminal group. It has been found that the presence of a certain amount of end groups improves physical properties such as improved adhesion and strength of the molded product. It is considered that this is because the end group exhibits an effect of improving the adhesion, and an increase in physical properties of the molded product due to the influence of the molecular weight at the end stop.

エポキシ樹脂(a)はエポキシ当量165〜245であり、0.3〜3.0重量%の加水分解塩素を含む。この範囲であるとトルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させて得られたオキサゾリドン構造を有するエポキシ樹脂(A)が、硬化剤(B)を用いて硬化させることで、耐熱性、強度弾性率、接着性に優れた成形体となる樹脂組成物が得られる。エポキシ樹脂(a)のエポキシ当量が165未満であると架橋密度が高くなることで脆性が発現して接着性が低くなり、245を超えると架橋密度が低くなり耐熱性が低下する。   The epoxy resin (a) has an epoxy equivalent of 165 to 245 and contains 0.3 to 3.0% by weight of hydrolyzed chlorine. In this range, the epoxy resin (A) having an oxazolidone structure obtained by reacting with toluene diisocyanate or diphenylmethane diisocyanate is cured using a curing agent (B), so that heat resistance, strength elastic modulus, adhesion A resin composition that is a molded article having excellent properties can be obtained. When the epoxy equivalent of the epoxy resin (a) is less than 165, the crosslink density becomes high, so that brittleness is developed and the adhesiveness is lowered, and when it exceeds 245, the crosslink density is lowered and the heat resistance is lowered.

エポキシ樹脂(a)の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等が挙げられる。   Specific examples of the epoxy resin (a) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, bisphenol E type epoxy resin, bisphenol Z type epoxy resin, isophorone bisphenol type epoxy resin and the like. .

オキサゾリドン構造を有するエポキシ樹脂は、エポキシ樹脂(a)とジイソシアネートとを反応させて得られる。ジイソシアネートとしては、トルエンジイソシアネートまたはジフェニルメタンジイソシアネート等の芳香族環を有するジイソシアネートが使用される。トルエンジイソシアネートとジフェニルメタンジイソシアネートはエポキシ基との反応性が良いため、安定した品質のオキサゾリドン構造を有するエポキシ樹脂が得られる。また経済性にも優れる。
この場合、エポキシ樹脂のエポキシ基がジイソシアネートと反応して五員環のオキサゾリドン構造を形成する。しかし、エポキシ基の全部を反応させるのではなく、所定のエポキシ当量となるように一部だけを反応させる。このためには、ジイソシアネートを理論量以下使用し、イソシアネート基が残らないようにその全部を反応させることがよい。
The epoxy resin having an oxazolidone structure is obtained by reacting the epoxy resin (a) with diisocyanate. As the diisocyanate, diisocyanate having an aromatic ring such as toluene diisocyanate or diphenylmethane diisocyanate is used. Since toluene diisocyanate and diphenylmethane diisocyanate have good reactivity with epoxy groups, an epoxy resin having a stable quality oxazolidone structure can be obtained. It is also economical.
In this case, the epoxy group of the epoxy resin reacts with diisocyanate to form a five-membered oxazolidone structure. However, not all of the epoxy groups are reacted, but only a part is reacted so as to have a predetermined epoxy equivalent. For this purpose, it is preferable to use less than the theoretical amount of diisocyanate and to react the whole so that no isocyanate groups remain.

本発明のオキサゾリドン構造を有するエポキシ樹脂は、エポキシ当量が220〜480であり、かつ軟化点が100℃以下である。エポキシ当量220〜480の範囲にある時、硬化剤と混合して硬化させることで、耐熱性、強度弾性率、接着性に優れた成形体となる樹脂組成物が得られる。また軟化点が100℃以下であると他の成分と混合した時も、相溶性と流動性に優れた樹脂組成物が得られ、安定した品質の成形体が得られる。また、加水分解塩素を0.25〜2.5重量%、好ましくは0.4〜2.0重量%含む。加水分解塩素は、原料として使用されるエポキシ樹脂(a)が有する加水分解塩素に由来するので、その加水分解塩素量からも概ねの数値は計算可能である。   The epoxy resin having an oxazolidone structure of the present invention has an epoxy equivalent of 220 to 480 and a softening point of 100 ° C or lower. When the epoxy equivalent is in the range of 220 to 480, by mixing with a curing agent and curing, a resin composition that becomes a molded article excellent in heat resistance, strength elastic modulus, and adhesiveness is obtained. When the softening point is 100 ° C. or lower, a resin composition excellent in compatibility and fluidity can be obtained even when mixed with other components, and a molded article with stable quality can be obtained. Further, 0.25 to 2.5% by weight, preferably 0.4 to 2.0% by weight of hydrolyzed chlorine is contained. Since hydrolyzed chlorine is derived from hydrolyzed chlorine contained in the epoxy resin (a) used as a raw material, an approximate numerical value can also be calculated from the amount of hydrolyzed chlorine.

本発明のエポキシ樹脂組成物は、上記オキサゾリドン構造を有するエポキシ樹脂(A)、硬化剤(B)を必須成分とする。以下、オキサゾリドン構造を有するエポキシ樹脂(A)を、エポキシ樹脂(A)又は(A)成分と、硬化剤(B)を(B)成分ともいい、エポキシ樹脂組成物は硬化性樹脂組成物であるので、硬化性樹脂組成物又は樹脂組成物ともいう。   The epoxy resin composition of the present invention contains the epoxy resin (A) having the oxazolidone structure and the curing agent (B) as essential components. Hereinafter, the epoxy resin (A) having an oxazolidone structure is also referred to as an epoxy resin (A) or (A) component, and the curing agent (B) is also referred to as a (B) component, and the epoxy resin composition is a curable resin composition. Therefore, it is also called a curable resin composition or a resin composition.

本発明の硬化性樹脂組成物は、上記エポキシ樹脂(A)と硬化剤(B)の他に他の成分を含むことができる。粘度調整等を目的としてエポキシ樹脂(A)100質量部に対し、50質量部未満であれば他のエポキシ樹脂を含んでも良い。   The curable resin composition of the present invention can contain other components in addition to the epoxy resin (A) and the curing agent (B). Other epoxy resins may be included as long as the amount is less than 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A) for the purpose of viscosity adjustment.

他のエポキシ樹脂としては、例えば1分子中に2つ以上のエポキシ基を有するビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、もしくはこれらビスフェノールのハロゲン、アルキル置換体、水添品、単量体に限らず複数の繰り返し単位を有する高分子量体、アルキレンオキサイド付加物のグリシジルエーテルや、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂や、3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレ−ト、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、1−エポキシエチル−3,4−エポキシシクロヘキサン等の脂環式エポキシ樹脂や、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリオキシアルキレンジグリシジルエーテル等の脂肪族エポキシ樹脂や、フタル酸ジグリシジルエステルや、テトラヒドロフタル酸ジグリシジルエステルや、ダイマー酸グリシジルエステル等のグリシジルエステルや、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミン等のグリシジルアミン類等を用いることができる。これらのエポキシ樹脂中、粘度増加率の観点から1分子中に2つのエポキシ基を有するエポキシ樹脂が好ましく、3官能以上の多官能のエポキシ樹脂は粘度増加率の観点からは好ましくない。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。   Other epoxy resins include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin having two or more epoxy groups in one molecule, Bisphenol-type epoxy resins such as isophorone bisphenol-type epoxy resins, or halogen, alkyl-substituted products, hydrogenated products, high-molecular weight products having a plurality of repeating units as well as monomers, glycidyl ethers of alkylene oxide adducts And novolac epoxy resins such as phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, and 3,4-epoxy-6-methylcyclohexylmethyl-3 Alicyclic epoxy resins such as 4-epoxy-6-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1-epoxyethyl-3,4-epoxycyclohexane, Aliphatic epoxy resins such as trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, polyoxyalkylene diglycidyl ether, glycidyl esters such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, and dimer acid glycidyl ester Tetraglycidyldiaminodiphenylmethane, tetraglycidyldiaminodiphenylsulfone, triglycidylaminophenol, triglycidylaminocresol, tetraglycidyl Glycidyl amines such as Gilles xylylenediamine and the like can be used. Among these epoxy resins, an epoxy resin having two epoxy groups in one molecule is preferable from the viewpoint of viscosity increase rate, and a trifunctional or higher polyfunctional epoxy resin is not preferable from the viewpoint of viscosity increase rate. These may be used alone or in combination of two or more.

硬化剤(B)としてはエポキシ樹脂用の硬化剤であれば制限なく使用できるが、ジシアンジアミドまたはその誘導体および40℃で液状のポリアミンが好ましい。ジシアンジアミドは常温で固体の硬化剤であり、室温ではエポキシ樹脂にほとんど溶解しないが、180℃以上まで加熱すると溶解し、エポキシ基と反応するという特性を有する室温での保存安定性に優れた潜在性硬化剤である。また、その誘導体としては、特開平11−119429号公報に記載のN‐ヘキシルジシアンジアミドのようなN‐置換ジシアンジアミド誘導体等を使用することが出来る。使用する量としてはエポキシ樹脂(A)のエポキシ基1当量に対して、0.2〜0.8当量(ジシアンジアミド1モルを4当量として計算)の範囲で配合することが好ましい。より好ましくは0.2〜0.5当量である。エポキシ当量に対して0.2当量未満では硬化物の架橋密度が低くなり、破壊靱性が低くなりやすくなり、0.8当量を超えると未反応のジシアンジアミドが残りやすくなるため、機械物性が悪くなる傾向にある。別の観点では硬化性樹脂組成物100重量部に対して0.01〜7重量部の範囲が好ましい。   Any curing agent for epoxy resins can be used as the curing agent (B), but dicyandiamide or a derivative thereof and a polyamine which is liquid at 40 ° C. are preferred. Dicyandiamide is a solid curing agent at room temperature, hardly dissolves in epoxy resin at room temperature, but dissolves when heated to 180 ° C or higher, and has the property of having excellent storage stability at room temperature. It is a curing agent. As the derivative, an N-substituted dicyandiamide derivative such as N-hexyl dicyandiamide described in JP-A-11-119429 can be used. The amount to be used is preferably in the range of 0.2 to 0.8 equivalents (calculated assuming 1 mol of dicyandiamide as 4 equivalents) per 1 equivalent of epoxy group of the epoxy resin (A). More preferably, it is 0.2-0.5 equivalent. If it is less than 0.2 equivalent to the epoxy equivalent, the crosslink density of the cured product is low, and fracture toughness tends to be low, and if it exceeds 0.8 equivalent, unreacted dicyandiamide tends to remain, resulting in poor mechanical properties. There is a tendency. From another viewpoint, the range of 0.01 to 7 parts by weight is preferable with respect to 100 parts by weight of the curable resin composition.

40℃で液状のポリアミンとしては一分子中にアミノ基を二つ以上有するアミン化合物であり、具体例としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、ポリプロピレングリコールジアミン、ポリプロピレングリコールトリアミン等のポリアミン、ビス(アミノメチル)シクロヘキサン、1,3,6−トリスアミノメチルシクロヘキサン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン、ビス(アミノメチル)ノルボルナン、イソフォロンジアミン、メチレンビス(シクロヘキシルアミン)等の環状脂肪族ポリアミン、メタキシリレンジアミン(MXDA)、ジエチレントルエンジアミン、ビス(4−アミノ−3−エチルフェニル)メタン等の芳香環を有するポリアミン、およびこれらの誘導体が挙げられる。これらの中で特にトリエチレンテトラミン、ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナン、イソフォロンジアミンが流動性、耐熱性の点で好ましい。   The liquid polyamine at 40 ° C. is an amine compound having two or more amino groups in one molecule. Specific examples thereof include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, iminobispropylamine. , Polyamines such as bis (hexamethylene) triamine, polypropylene glycol diamine, polypropylene glycol triamine, bis (aminomethyl) cyclohexane, 1,3,6-trisaminomethylcyclohexane, 3,9-bis (3-aminopropyl) -2 , 4,8,10-tetraoxaspiro (5.5) undecane, bis (aminomethyl) norbornane, isophoronediamine, methylenebis (cyclohexylamine), etc., cycloaliphatic polyamines, metaxylile Diamine (MXDA), diethylene toluene diamine, bis (4-amino-3-ethylphenyl) polyamines having an aromatic ring such as methane, and derivatives thereof. Of these, triethylenetetramine, bis (aminomethyl) cyclohexane, bis (aminomethyl) norbornane, and isophoronediamine are particularly preferred in terms of fluidity and heat resistance.

本発明の硬化性樹脂組成物は、硬化速度等を調整する目的で、ウレア化合物、イミダゾール化合物、フェノール化合物、リン化合物や三級アミン化合物物等の硬化促進剤を用いることができる。   The curable resin composition of the present invention can use a curing accelerator such as a urea compound, an imidazole compound, a phenol compound, a phosphorus compound, or a tertiary amine compound for the purpose of adjusting the curing rate.

ウレア化合物としては例えば、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、N−フェニル−N’,N’−ジメチルウレア、N−(4−クロロフェニル)−N’,N’−ジメチルウレア、N−(3,4−ジクロロフェニル)−N’,N’−ジメチルウレア、N−(3−クロロ−4−メチルフェニル)−N’,N’−ジメチルウレア、1−(N,N−ジメチルウレア)−3−(N,N−ジメチルウレアメチル)−3,5,5−トリメチルシクロヘキサン、N−(3−クロロ−4−メトキシフェニル)−N’,N’−ジメチルウレア、N−(4−メチル−3−ニトロフェニル)−N’,N’−ジメチルウレア、2,4−ビス(N’,N’−ジメチルウレイド)トルエン、メチレン−ビス(p−N’,N’−ジメチルウレイドフェニル)等を挙げることができ、この中でも3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレアが好ましい。   Examples of urea compounds include 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, N-phenyl-N ′, N′-. Dimethylurea, N- (4-chlorophenyl) -N ′, N′-dimethylurea, N- (3,4-dichlorophenyl) -N ′, N′-dimethylurea, N- (3-chloro-4-methylphenyl) ) -N ', N'-dimethylurea, 1- (N, N-dimethylurea) -3- (N, N-dimethylureamethyl) -3,5,5-trimethylcyclohexane, N- (3-chloro- 4-methoxyphenyl) -N ′, N′-dimethylurea, N- (4-methyl-3-nitrophenyl) -N ′, N′-dimethylurea, 2,4-bis (N ′, N′-dimethyl) Ureid) Toru And methylene-bis (pN ′, N′-dimethylureidophenyl), among which 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (3,4 -Dichlorophenyl) -1,1-dimethylurea is preferred.

イミダゾール化合物としては2−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル6−4′,5′−ジヒドロキシメチルイミダゾール、1−シアノエチル−2−エチル−4メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−S−トリアジンイソシアヌル酸付加物等が挙げられる。これらは1種又は2種以上を組み合わせて用いてもよく、化学的に安定で、かつ、常温ではエポキシ樹脂に溶解しないものであれば上記に限定されるものではない。   Examples of imidazole compounds include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, and 2-phenylimidazole. 2-phenyl-4-methylimidazole, 2-phenyl-6-4 ′, 5′-dihydroxymethylimidazole, 1-cyanoethyl-2-ethyl-4methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]- Ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4 ' Methylimidazolyl - (1 ')] - ethyl -S- triazine isocyanuric acid adduct, and the like. These may be used alone or in combination of two or more, and are not limited to the above as long as they are chemically stable and do not dissolve in the epoxy resin at room temperature.

フェノール化合物としては、カテコール、4−t−ブチルカテコール、ピロガロール、レゾルシン、ハイドロキノン、フロログルジノール、ビスフェノールA、ビスフェノールF、ジヒドロキシビフェニル、ジヒドロキシナフタレン1,1,1−トリス(4−ヒドキシフェニル)エタン及びビス(4−ヒドロキシフェニル)スルフォン等の化合物、ノボラック型あるいはレゾール型のフェノール樹脂ならびにポリビニルフェノール等のフェノール系重合体等が挙げられる。である。なかでもビスフェノールFが好ましい。フェノール系硬化促進剤としてのフェノール化合物の配合量は、樹脂組成物全体を100質量部とした場合、0.01〜10質量部、好ましくは0.1〜3.0質量部である。この範囲内に硬化促進剤が含有されることで硬化時の硬化促進による硬化時間を短縮でき、耐熱性の高い硬化物が得られる。   Phenol compounds include catechol, 4-t-butylcatechol, pyrogallol, resorcin, hydroquinone, phlorogludinol, bisphenol A, bisphenol F, dihydroxybiphenyl, dihydroxynaphthalene 1,1,1-tris (4-hydroxyphenyl) ethane And compounds such as bis (4-hydroxyphenyl) sulfone, novolak-type or resol-type phenol resins, and phenolic polymers such as polyvinylphenol. It is. Of these, bisphenol F is preferred. The compounding quantity of the phenol compound as a phenol type hardening accelerator is 0.01-10 mass parts when the whole resin composition is 100 mass parts, Preferably it is 0.1-3.0 mass parts. By containing a curing accelerator within this range, the curing time due to curing acceleration during curing can be shortened, and a cured product having high heat resistance can be obtained.

本発明の硬化性樹脂組成物には、添加剤として表面平滑性を向上させる目的で消泡剤、レベリング剤を添加することが可能である。これら添加剤は樹脂組成物全体を100質量部に対して0.01〜3質量部、好ましくは0.01〜1質量部を配合することができる。なお、樹脂組成物全体の計算には、樹脂成分と均質に混合しない充填材、繊維や、溶剤は含まない。   An antifoaming agent and a leveling agent can be added to the curable resin composition of the present invention for the purpose of improving the surface smoothness as an additive. These additives can mix | blend 0.01-3 mass parts with respect to 100 mass parts of the whole resin composition, Preferably 0.01-1 mass part can be mix | blended. Note that the calculation of the entire resin composition does not include fillers, fibers, and solvents that are not mixed homogeneously with the resin component.

また、本発明の硬化性樹脂組成物には、更に他の硬化性樹脂を配合することもできる。このような硬化性樹脂としては、不飽和ポリエステル樹脂、硬化性アクリル樹脂、硬化性アミノ樹脂、硬化性メラミン樹脂、硬化性ウレア樹脂、硬化性シアネートエステル樹脂、硬化性ウレタン樹脂、硬化性オキセタン樹脂、硬化性エポキシ/オキセタン複合樹脂等が挙げられるがこれらに限定されない。   Moreover, another curable resin can also be mix | blended with the curable resin composition of this invention. Such curable resins include unsaturated polyester resins, curable acrylic resins, curable amino resins, curable melamine resins, curable urea resins, curable cyanate ester resins, curable urethane resins, curable oxetane resins, Examples include, but are not limited to, curable epoxy / oxetane composite resins.

本発明の硬化性樹脂組成物には、カップリング剤や、カーボン粒子や金属めっき有機粒子等の導電性粒子、熱硬化性樹脂粒子、あるいはシリカゲル、ナノシリカ、アルミナファイバーやクレー等の無機フィラーや、導電性フィラーを配合することができる。導電性粒子や導電性フィラーを用いることにより得られる樹脂硬化物や繊維強化複合材料の導電性を向上させられる。   The curable resin composition of the present invention includes a coupling agent, conductive particles such as carbon particles and metal plating organic particles, thermosetting resin particles, or inorganic fillers such as silica gel, nano silica, alumina fiber, and clay, A conductive filler can be blended. The conductivity of the cured resin or fiber reinforced composite material obtained by using conductive particles or conductive filler can be improved.

導電性フィラーとしては、カーボンブラック、カーボンナノチューブ、フラーレン、金属ナノ粒子などが挙げられ、単独で使用しても併用してもよい。この中で特にカーボンナノチューブの配合は導電性を向上させるだけで無く、繊維強化複合材料に対して1wt%未満の配合量でも繊維強化複合材料の衝撃強度を高められるという点で広く知られており、好適に用いることができる。   Examples of the conductive filler include carbon black, carbon nanotube, fullerene, metal nanoparticles, and the like, and they may be used alone or in combination. Of these, carbon nanotube blending is widely known not only for improving electrical conductivity, but also for improving the impact strength of the fiber reinforced composite material even with a blending amount of less than 1 wt% with respect to the fiber reinforced composite material. Can be preferably used.

本発明の繊維強化複合材料は、本発明の硬化性樹脂組成物に、強化繊維を配合してなる。
本発明の硬化性樹脂組成物は、PCM法(Pre-preg Compression Molding)によって得られる繊維強化複合材料に好適に用いられる。
ここで、PCM法に用いられるプリプレグの製造方法は特に限定されないが、硬化性樹脂組成物をあらかじめ70〜90℃程度に加温して粘度を低下させた状態で離型紙上に所定の厚みに塗布することでシート状の樹脂組成物を作成する。この塗布方法は特に限定されず、ナイフコーター、リバースロールコーターなどにより塗布することが可能である。この得られたシート状の硬化性樹脂組成物にて強化繊維を挟み込んだのち、ロール等で加熱・加圧(通常80〜100℃)することで樹脂含浸された繊維強化複合材料としてのプリプレグを得ることができる。
The fiber-reinforced composite material of the present invention is obtained by blending reinforcing fibers with the curable resin composition of the present invention.
The curable resin composition of this invention is used suitably for the fiber reinforced composite material obtained by PCM method (Pre-preg Compression Molding).
Here, the production method of the prepreg used in the PCM method is not particularly limited, but the curable resin composition is heated to about 70 to 90 ° C. in advance and the viscosity is lowered to a predetermined thickness on the release paper. By applying, a sheet-like resin composition is created. This application method is not particularly limited, and it is possible to apply using a knife coater, a reverse roll coater, or the like. A prepreg as a fiber-reinforced composite material impregnated with resin by sandwiching reinforcing fibers with the obtained sheet-like curable resin composition and then heating and pressing with a roll or the like (usually 80 to 100 ° C.) Obtainable.

本発明の硬化性樹脂組成物からプリプレグまたはトゥプリプレグへ加工し、繊維強化複合材料を作製する方法は特に限定されないが、オートクレーブ法やプレス成形法での製造が望ましく適用される。   A method for producing a fiber-reinforced composite material by processing from the curable resin composition of the present invention to a prepreg or a tuprepreg is not particularly limited, but production by an autoclave method or a press molding method is desirably applied.

本発明のプリプレグまたはトゥプリプレグに用いられる強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等から選ばれるが、強度に優れた繊維強化複合材料を得るためには炭素繊維を使用するのが好ましい。   The reinforcing fiber used in the prepreg or tuprepreg of the present invention is selected from glass fiber, aramid fiber, carbon fiber, boron fiber, etc., but carbon fiber is used to obtain a fiber-reinforced composite material having excellent strength. Is preferred.

次に、本発明を実施例に基づいて具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。配合量を示す部は、特に断りがない限り質量部である。また、エポキシ当量の単位はg/eqである。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples unless it exceeds the gist. The part which shows a compounding quantity is a mass part unless there is particular notice. The unit of epoxy equivalent is g / eq.

(加水分解性塩素量の測定)
加水分解性塩素の測定は約0.2gの試料をジオキサン30mLに溶解させ、0.1mol/Lとなるよう苛性カリウムを溶解させたメタノール溶液を25mL加え、70℃で40分反応させた後、アセトン30mL、水10mL、酢酸3mLを加え、約0.01mol/Lの硝酸銀水溶液を滴定して電位差を測定し変曲点を検出した時の滴定量を用いて算出した。下記に加水分解性塩素量(Z)の計算式を示す。
Z(重量%)=100×(X×Y×35.5)/(1000×W)
ここで、Xは変曲点を検出した時の硝酸銀水溶液滴定量(mL)、Yは硝酸銀水溶液の濃度(mol/L)、Wは試料採取量(g)である。
(Measurement of hydrolyzable chlorine content)
For the measurement of hydrolyzable chlorine, about 0.2 g of sample was dissolved in 30 mL of dioxane, 25 mL of a methanol solution in which caustic potassium was dissolved so as to be 0.1 mol / L was added, and reacted at 70 ° C. for 40 minutes. 30 mL of acetone, 10 mL of water, and 3 mL of acetic acid were added, and an approximately 0.01 mol / L silver nitrate aqueous solution was titrated to measure the potential difference and calculated using the titration when the inflection point was detected. The calculation formula of the amount of hydrolyzable chlorine (Z) is shown below.
Z (% by weight) = 100 × (X × Y × 35.5) / (1000 × W)
Here, X is the silver nitrate aqueous solution titration (mL) when the inflection point is detected, Y is the concentration (mol / L) of the silver nitrate aqueous solution, and W is the sample collection amount (g).

合成例、実施例で使用した各成分の略号は下記の通りである。
YD−128:ビスフェノールA型エポキシ樹脂(新日鉄住金化学製、エポキシ当量187、加水分解性塩素量0.019重量%)
YDF−170:ビスフェノールF型エポキシ樹脂(新日鉄住金化学製、エポキシ当量169、加水分解性塩素量0.004重量%)
YDPN−6300:フェノールノボラック型エポキシ樹脂(新日鉄住金化学製、エポキシ当量173、加水分解性塩素量0.007重量%)
DICY:ジシアンジアミド
IPDA:イソフォロンジアミン
DCMU:3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア
2MZA:2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン
The abbreviations of the components used in the synthesis examples and examples are as follows.
YD-128: Bisphenol A type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical, epoxy equivalent 187, hydrolyzable chlorine content 0.019% by weight)
YDF-170: Bisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical, epoxy equivalent 169, hydrolyzable chlorine content 0.004% by weight)
YDPN-6300: phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical, epoxy equivalent 173, hydrolyzable chlorine amount 0.007% by weight)
DICY: Dicyandiamide IPDA: Isophoronediamine
DCMU: 3- (3,4-dichlorophenyl) -1,1-dimethylurea 2MZA: 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine

合成例1
攪拌装置、温度計、留分回収漕付き冷却管、窒素ガス導入装置を備えたガラス製セパラブルフラスコに、YD−128 210部、37%塩酸10部を仕込み、窒素ガスを導入しながら攪拌を行いつつ加熱して80℃まで昇温した。更に反応温度を80℃に保ち3時間反応を行った。その後減圧させながら130℃まで昇温し水分を留分回収漕へ揮発させ、エポキシ当量201、加水分解性塩素量が1.6重量%のエポキシ樹脂207部を得た。このエポキシ樹脂をa−1とする。
Synthesis example 1
A glass separable flask equipped with a stirrer, thermometer, fraction collection condenser tube, and nitrogen gas introduction device was charged with 210 parts of YD-128 and 10 parts of 37% hydrochloric acid, and stirred while introducing nitrogen gas. While heating, the temperature was raised to 80 ° C. Furthermore, the reaction temperature was kept at 80 ° C. for 3 hours. Thereafter, the temperature was raised to 130 ° C. while reducing the pressure, and water was volatilized into the fraction collection tank to obtain 207 parts of an epoxy resin having an epoxy equivalent 201 and a hydrolyzable chlorine content of 1.6% by weight. This epoxy resin is designated as a-1.

合成例2
合成例1と同様の装置にYDF−170 500部、37%塩酸10部を仕込み、窒素ガスを導入しながら攪拌を行いつつ加熱して80℃まで昇温した。更に反応温度を80℃に保ち2時間反応を行った。その後減圧させながら130℃まで昇温し水分を留分回収漕へ揮発させ、エポキシ当量177、加水分解性塩素量が0.6重量%のエポキシ樹脂501部を得た。このエポキシ樹脂をa−2とする。
Synthesis example 2
In the same apparatus as in Synthesis Example 1, 500 parts of YDF-170 and 10 parts of 37% hydrochloric acid were charged, heated while stirring while introducing nitrogen gas, and heated to 80 ° C. Furthermore, the reaction temperature was kept at 80 ° C. and the reaction was carried out for 2 hours. Thereafter, the temperature was raised to 130 ° C. while reducing the pressure, and the water was volatilized into the fraction collection tank to obtain 501 parts of an epoxy resin having an epoxy equivalent of 177 and a hydrolyzable chlorine content of 0.6 wt%. This epoxy resin is designated as a-2.

合成例3
合成例1と同様の装置にYDPN−6300 180部、37%塩酸12部を仕込み、窒素ガスを導入しながら攪拌を行いつつ加熱して100℃まで昇温した。更に反応温度を100℃に保ち2時間反応を行った。その後減圧させながら140℃まで昇温し水分を留分回収漕へ揮発させ、エポキシ当量202、加水分解性塩素量が2.1重量%のエポキシ樹脂174部を得た。このエポキシ樹脂をa−3とする。
Synthesis example 3
In the same apparatus as in Synthesis Example 1, 180 parts of YDPN-6300 and 12 parts of 37% hydrochloric acid were charged, heated while stirring while introducing nitrogen gas, and heated to 100 ° C. Furthermore, the reaction temperature was kept at 100 ° C. for 2 hours. Thereafter, the temperature was raised to 140 ° C. while reducing the pressure, and the water was volatilized into the fraction collection tank to obtain 174 parts of an epoxy resin having an epoxy equivalent of 202 and a hydrolyzable chlorine content of 2.1 wt%. This epoxy resin is designated as a-3.

実施例1
合成例1と同様の装置にa−1 100部、トリス−(2,6−ジメトキシフェニル)ホスフィン0.2部を仕込み、攪拌しながら150℃まで昇温した。次に滴下ロートを用いてトルエンジイソシアネート18部を3時間かけて滴下し反応を行った。更に反応温度を150℃に保ち3時間反応を行い、エポキシ当量385、加水分解性塩素量が1.4重量%、軟化点80℃のオキサゾリドン構造を有するエポキシ樹脂を115部得た。このエポキシ樹脂をA−1とする。
Example 1
In the same apparatus as in Synthesis Example 1, 100 parts of a-1 and 0.2 part of tris- (2,6-dimethoxyphenyl) phosphine were charged, and the temperature was raised to 150 ° C. while stirring. Next, using a dropping funnel, 18 parts of toluene diisocyanate was dropped over 3 hours to carry out the reaction. Furthermore, the reaction temperature was kept at 150 ° C., and the reaction was performed for 3 hours to obtain 115 parts of an epoxy resin having an oxazolidone structure having an epoxy equivalent of 385, a hydrolyzable chlorine content of 1.4% by weight, and a softening point of 80 ° C. This epoxy resin is designated as A-1.

実施例2
合成例1と同様の装置に、a−2 100部、テトラブチルアンモニウムブロマイド0.2部を仕込み、攪拌しながら140℃まで昇温した。次にトルエンジイソシアネート20部を4時間かけて分割投入し反応を行った。更に反応温度を140℃に保ち3時間反応を行い、エポキシ当量351、加水分解性塩素量が0.5重量%、軟化点91℃のオキサゾリドン構造を有するエポキシ樹脂116部を得た。このエポキシ樹脂をA−2とする。
Example 2
A device similar to Synthesis Example 1 was charged with 100 parts of a-2 and 0.2 part of tetrabutylammonium bromide and heated to 140 ° C. while stirring. Next, 20 parts of toluene diisocyanate was added in portions over 4 hours to carry out the reaction. The reaction temperature was further maintained at 140 ° C. for 3 hours to obtain 116 parts of an epoxy resin having an oxazolidone structure having an epoxy equivalent of 351, a hydrolyzable chlorine content of 0.5% by weight, and a softening point of 91 ° C. This epoxy resin is designated as A-2.

実施例3
合成例1と同様の装置に、a−3 100部、テトラブチルアンモニウムブロマイド0.2部を仕込み、攪拌しながら140℃まで昇温した。次にジフェニルメタンジイソシアネート15部を3時間かけて分割投入し反応を行った。更に反応温度を140℃に保ち3時間反応を行い、エポキシ当量294、加水分解性塩素量が1.8重量%、軟化点79℃のオキサゾリドン構造を有するエポキシ樹脂105部を得た。このエポキシ樹脂をA−3とする。
Example 3
A device similar to Synthesis Example 1 was charged with 100 parts of a-3 and 0.2 part of tetrabutylammonium bromide and heated to 140 ° C. while stirring. Next, 15 parts of diphenylmethane diisocyanate was added in portions over 3 hours to carry out the reaction. Furthermore, the reaction temperature was kept at 140 ° C., and the reaction was carried out for 3 hours to obtain 105 parts of an epoxy resin having an oxazolidone structure having an epoxy equivalent of 294, a hydrolyzable chlorine content of 1.8% by weight, and a softening point of 79 ° C. This epoxy resin is designated as A-3.

比較例1
合成例1と同様の装置にYD−128 100部、トリス−(2,6−ジメトキシフェニル)ホスフィン0.2部を仕込み、攪拌しながら150℃まで昇温した。次に滴下ロートを用いてトルエンジイソシアネート18部を3時間かけて滴下し反応を行った。更に反応温度を150℃に保ち3時間反応を行い、エポキシ当量356、加水分解性塩素量が0.05重量%、軟化点86℃のオキサゾリドン構造を有するエポキシ樹脂を113部得た。このエポキシ樹脂をB−1とする。
Comparative Example 1
In the same apparatus as in Synthesis Example 1, 100 parts of YD-128 and 0.2 part of tris- (2,6-dimethoxyphenyl) phosphine were charged and heated to 150 ° C. while stirring. Next, using a dropping funnel, 18 parts of toluene diisocyanate was dropped over 3 hours to carry out the reaction. Furthermore, the reaction temperature was kept at 150 ° C., and the reaction was carried out for 3 hours to obtain 113 parts of an epoxy resin having an oxazolidone structure having an epoxy equivalent of 356, a hydrolyzable chlorine content of 0.05% by weight and a softening point of 86 ° C. This epoxy resin is designated as B-1.

実施例4
(A)成分としてA−1を57部、(A)成分以外のエポキシ樹脂成分としてYD−128を37部、(B)成分としてDICYを3.5部、硬化促進剤としてDCMUを2.8部、150mLのポリ容器へ入れ、真空ミキサー(あわとり練太郎、シンキー社製)を用いて、室温下で5分間攪拌しながら混合し、硬化性樹脂組成物を得た。
Example 4
(A) 57 parts of A-1 as component, 37 parts of YD-128 as an epoxy resin component other than (A) component, 3.5 parts of DICY as component (B), 2.8 DCMU as a curing accelerator The mixture was placed in a 150 mL plastic container and mixed using a vacuum mixer (Awatori Netaro, manufactured by Shinky Corporation) at room temperature for 5 minutes with stirring to obtain a curable resin composition.

実施例5〜11、比較例2〜7
各成分を表1および表2に記載された組成にて各原料を使用した以外は、実施例4と同様の混合条件にて硬化性樹脂組成物を得た。
Examples 5-11, Comparative Examples 2-7
A curable resin composition was obtained under the same mixing conditions as in Example 4 except that each raw material was used in the composition described in Tables 1 and 2.

得られた硬化性樹脂組成物を使用して、ガラス転移温度、曲げ試験、および接着せん断強度測定用の試験片を作製した。   Using the obtained curable resin composition, test pieces for measuring glass transition temperature, bending test, and adhesive shear strength were prepared.

(ガラス転移温度、曲げ試験用試験片の作製)
硬化性樹脂組成物を、平板形状にくり抜かれた4mm厚のスペーサーを設けた縦120mm×横120mmの金型へ流し込み、120℃で2時間の後に150℃で2時間硬化させて測定用成形板(試験片1)とし、曲げ弾性率と曲げ強度の測定、および破壊靱性の測定に用いた。
(Glass transition temperature, preparation of bending test specimens)
Molding plate for measurement by pouring the curable resin composition into a 120 mm long by 120 mm wide mold provided with a 4 mm thick spacer cut into a flat plate shape, and curing at 120 ° C. for 2 hours and then at 150 ° C. for 2 hours (Test specimen 1) was used for measurement of flexural modulus and flexural strength, and measurement of fracture toughness.

(接着せん断強度用試験片の作製)
硬化性樹脂組成物を、100mm×25mm×厚さ2mmの冷間圧延鋼板の端部に、12.5mm×25mm×厚さ0.2mmに塗布し、同じ鋼板2枚を貼り合わせ、120℃で2時間の後に150℃で2時間硬化させて測定用試験板(試験片2)とし、接着せん断強度の測定に用いた。
(Preparation of adhesive shear strength test piece)
The curable resin composition is applied to the end of a cold rolled steel sheet of 100 mm × 25 mm × thickness 2 mm to 12.5 mm × 25 mm × thickness 0.2 mm, and the same two steel sheets are bonded together at 120 ° C. After 2 hours, it was cured at 150 ° C. for 2 hours to obtain a test plate for measurement (test piece 2), which was used for measuring the adhesive shear strength.

(ガラス転移温度測定用試験片への加工、ガラス転移温度の測定)
上記試験片1を卓上バンドソーにより2.5mm×2.5mmの大きさに切削し、さらにベルトディスクサンダーを用いておよそ0.8mmの厚さまで研磨加工した。示差走査熱量計を用い、窒素雰囲気下にて昇温速度10℃/分の条件で測定し、DSC曲線の変曲点での接線と、変曲の開始が見られる温度、すなわち変曲点から20〜30℃低い温度領域における接線との交点をガラス転移温度Tgとした。
(Processing for glass transition temperature measurement specimens, measurement of glass transition temperature)
The test piece 1 was cut into a size of 2.5 mm × 2.5 mm with a table band saw, and further polished to a thickness of about 0.8 mm using a belt disk sander. Using a differential scanning calorimeter, measurement was performed under a nitrogen atmosphere at a temperature increase rate of 10 ° C./min. The point of intersection with the tangent in the temperature range 20-30 ° C lower was defined as the glass transition temperature Tg.

(曲げ試験片の加工、曲げ弾性率、曲げ強度、接着せん断強度の測定)
上記試験片2を卓上バンドソーにより80mm×10mmの大きさに切削し、曲げ試験片をJISK7171に準拠する手法にて23℃の温度条件で曲げ試験を行い、曲げ弾性率と曲げ強度を算出した。
また、23℃の温度条件にてJISK6850に準拠した試験を実施し接着せん断強度を算出した。
(Measurement of bending test piece, bending elastic modulus, bending strength, adhesive shear strength)
The test piece 2 was cut into a size of 80 mm × 10 mm with a table-top band saw, and the bending test piece was subjected to a bending test under a temperature condition of 23 ° C. in accordance with JISK7171, thereby calculating the bending elastic modulus and bending strength.
Moreover, the test based on JISK6850 was implemented on the temperature conditions of 23 degreeC, and the adhesive shear strength was computed.

配合組成及び試験の結果をそれぞれ表1、及び表2に示す。   The composition and test results are shown in Table 1 and Table 2, respectively.

Figure 2019178224
Figure 2019178224

Figure 2019178224
Figure 2019178224

Claims (10)

エポキシ当量が220〜480g/eq、軟化点が100℃以下で、0.25〜2.5重量%の加水分解塩素を含むことを特徴とするオキサゾリドン構造を有するエポキシ樹脂。   An epoxy resin having an oxazolidone structure having an epoxy equivalent of 220 to 480 g / eq, a softening point of 100 ° C. or less, and containing 0.25 to 2.5% by weight of hydrolyzed chlorine. 下記一般式(1)で表され、エポキシ当量が165〜245g/eqであり、0.3〜3.0重量%の加水分解塩素を含むエポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させて得られる請求項1に記載のオキサゾリドン構造を有するエポキシ樹脂。
Figure 2019178224

(式中、nは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基であり、Gはそれぞれ独立して下記式(2)、下記式(3)または下記式(4)で表される基である)
Figure 2019178224
An epoxy resin (a) represented by the following general formula (1) having an epoxy equivalent of 165 to 245 g / eq and containing 0.3 to 3.0% by weight of hydrolyzed chlorine, and toluene diisocyanate or diphenylmethane diisocyanate. The epoxy resin which has an oxazolidone structure of Claim 1 obtained by making it react.
Figure 2019178224

(In the formula, n represents 0 to 5, each R is independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, and G is independently represented by the following formula (2) or the following formula (3 Or a group represented by the following formula (4))
Figure 2019178224
下記一般式(11)で表される請求項1に記載のオキサゾリドン構造を有するエポキシ樹脂。
Figure 2019178224

(式中、mは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基であり、Yはそれぞれ独立して単結合、下記式(12)若しくは式(13)で表される二価の基又はこれらの組み合わせであり、式(12)及び式(13)で表される二価の基を複数含んでもよく、Yの15モル%以上は式(12)で表される基を含む。Gはそれぞれ独立して下記式(2)、式(3)または式(4)で表される基である。)
Figure 2019178224

(式中、R、Rは炭素数1〜8の二価の炭化水素残基であり、Aは炭素数4〜16の二価の炭化水素残基である。)
Figure 2019178224
The epoxy resin which has an oxazolidone structure of Claim 1 represented by following General formula (11).
Figure 2019178224

(In the formula, m represents 0 to 5, R 1 is each independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, Y is independently a single bond, the following formula (12) or It is a divalent group represented by the formula (13) or a combination thereof, and may contain a plurality of divalent groups represented by the formula (12) and the formula (13). (Including the group represented by (12), each G is independently a group represented by the following formula (2), formula (3) or formula (4)).
Figure 2019178224

(In the formula, R 2 and R 3 are divalent hydrocarbon residues having 1 to 8 carbon atoms, and A is a divalent hydrocarbon residue having 4 to 16 carbon atoms.)
Figure 2019178224
下記一般式(1)で表され、エポキシ当量が165〜245g/eqであり、0.3〜3.0重量%の加水分解塩素を含むエポキシ樹脂(a)と、トルエンジイソシアネートまたはジフェニルメタンジイソシアネートとを反応させることを特徴とする請求項1又は2に記載のオキサゾリドン構造を有するエポキシ樹脂を製造する方法。
Figure 2019178224

(式中、nは0〜5を表し、Rはそれぞれ独立して炭素数1〜8の二価の炭化水素残基であり、Gはそれぞれ独立して下記式(2)、下記式(3)または下記式(4)で表される基である)
Figure 2019178224
An epoxy resin (a) represented by the following general formula (1) having an epoxy equivalent of 165 to 245 g / eq and containing 0.3 to 3.0% by weight of hydrolyzed chlorine, and toluene diisocyanate or diphenylmethane diisocyanate. The method for producing an epoxy resin having an oxazolidone structure according to claim 1 or 2, wherein the reaction is performed.
Figure 2019178224

(In the formula, n represents 0 to 5, each R is independently a divalent hydrocarbon residue having 1 to 8 carbon atoms, and G is independently represented by the following formula (2) or the following formula (3 Or a group represented by the following formula (4))
Figure 2019178224
請求項1〜3のいずれかに記載のエポキシ樹脂に、硬化剤(B)を配合してなるエポキシ樹脂組成物。   The epoxy resin composition formed by mix | blending a hardening | curing agent (B) with the epoxy resin in any one of Claims 1-3. 硬化剤(B)がジシアンジアミド又はその誘導体であることを特徴とする請求項5に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5, wherein the curing agent (B) is dicyandiamide or a derivative thereof. 硬化剤(B)が40℃で液状のポリアミンであることを特徴とする請求項5に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5, wherein the curing agent (B) is a polyamine which is liquid at 40 ° C. 請求項5〜7のいずれか一項に記載のエポキシ樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料。   A fiber-reinforced composite material comprising a reinforcing fiber blended in the epoxy resin composition according to any one of claims 5 to 7. 強化繊維が炭素繊維であり、繊維強化複合材料がプリプレグである請求項8に記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 8, wherein the reinforcing fiber is a carbon fiber, and the fiber-reinforced composite material is a prepreg. 請求項8または9に記載の繊維強化複合材料を硬化させて得られる成形体。
The molded object obtained by hardening the fiber reinforced composite material of Claim 8 or 9.
JP2018068197A 2018-03-30 2018-03-30 Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same Pending JP2019178224A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018068197A JP2019178224A (en) 2018-03-30 2018-03-30 Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same
KR1020190033649A KR20190114807A (en) 2018-03-30 2019-03-25 Epoxy resin, epoxy resin composition and fiber-reinforced composite material using same
CN201910241616.0A CN110317319A (en) 2018-03-30 2019-03-28 Epoxy resin, manufacturing method, composition epoxy resin, fiber reinforced composite material and formed body with oxazolidone structure
TW108111188A TW201942179A (en) 2018-03-30 2019-03-29 Epoxy resin having oxazolidinone structure, producing method, epoxy resin composition, fiber reinforced composite material and molded body having an oxazolidinone structure excellent in adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068197A JP2019178224A (en) 2018-03-30 2018-03-30 Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same

Publications (1)

Publication Number Publication Date
JP2019178224A true JP2019178224A (en) 2019-10-17

Family

ID=68112965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068197A Pending JP2019178224A (en) 2018-03-30 2018-03-30 Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same

Country Status (4)

Country Link
JP (1) JP2019178224A (en)
KR (1) KR20190114807A (en)
CN (1) CN110317319A (en)
TW (1) TW201942179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080475A (en) * 2018-01-16 2021-05-27 三菱ケミカル株式会社 Prepreg and fiber-reinforced composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220306822A1 (en) * 2019-11-27 2022-09-29 Kuraray Co., Ltd. Surface-modified fibers, reinforcing fibers, and molded article using same
CN112538155A (en) * 2020-11-02 2021-03-23 建滔(江苏)化工有限公司 Phosphorus-containing halogen-free epoxy resin and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551626B2 (en) * 1988-04-14 1996-11-06 三井石油化学工業株式会社 Method for producing trihydric phenol epoxy resin
JP2789325B2 (en) * 1996-02-23 1998-08-20 旭チバ株式会社 New epoxy resin and epoxy resin composition
CN100560631C (en) * 2004-06-29 2009-11-18 旭化成电子材料株式会社 Fire retarded epoxy resin composition
JP4752326B2 (en) 2004-12-27 2011-08-17 Dic株式会社 Epoxy resin composition for molding, molded cured product, and method for producing the molded cured product
JP4901629B2 (en) * 2007-07-26 2012-03-21 旭化成イーマテリアルズ株式会社 Epoxy resin composition
JP2009112626A (en) 2007-11-08 2009-05-28 Mrc Composite Products Co Ltd Fiber-reinforced resin shaft for golf club
JP6670045B2 (en) * 2015-03-13 2020-03-18 日鉄ケミカル&マテリアル株式会社 Oxazolidone ring-containing epoxy resin, production method thereof, epoxy resin composition and cured product
KR102375986B1 (en) * 2015-03-13 2022-03-17 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Oxazolidone ring-containing epoxy resin, method for producing the thereof, epoxy resin composition and cured product
JP6476045B2 (en) 2015-04-09 2019-02-27 株式会社カネカ Curable resin composition containing fine polymer particles with improved adhesion
JP6740619B2 (en) 2016-02-01 2020-08-19 三菱ケミカル株式会社 Epoxy resin, method for producing the same, and epoxy resin composition based on the resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080475A (en) * 2018-01-16 2021-05-27 三菱ケミカル株式会社 Prepreg and fiber-reinforced composite material
JP7409336B2 (en) 2018-01-16 2024-01-09 三菱ケミカル株式会社 Method for manufacturing prepreg and fiber reinforced composite materials

Also Published As

Publication number Publication date
CN110317319A (en) 2019-10-11
KR20190114807A (en) 2019-10-10
TW201942179A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6292345B2 (en) Molding materials and fiber reinforced composite materials
JP6144734B2 (en) Epoxy resin composition using solvated solid
JP6839980B2 (en) Epoxy resin composition for fiber matrix semi-finished products
KR102155006B1 (en) Two part adhesive composition and cured product thereof and vehicle material adhesive method
US12049539B2 (en) Cycloaliphatic amines for epoxy formulations: a novel curing agent for epoxy systems
CN110114385B (en) Curable epoxy resin composition and fiber-reinforced composite material using same
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2019178224A (en) Epoxy resin, epoxy resin composition and fiber-reinforced composite material using the same
US10808118B2 (en) Epoxy novolac composites
CN108473660B (en) Epoxy resin composition, prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2006291093A (en) Epoxy resin composition for fiber-reinforced composite material
JP7059000B2 (en) Curing method of epoxy resin composition
CN110234675B (en) Fast curing epoxy resin composition for fiber-matrix semi-finished products
WO2019065470A1 (en) Curable epoxy resin composition and fiber-reinforced composite material using same
JP2020158716A (en) Curable resin composition and two-prepreg using the same
JP7230433B2 (en) Epoxy resin composition, method for producing molding material, molding material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2023149614A (en) Epoxy resin composition, fiber-reinforced composite material, and molding
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
KR20230112327A (en) Polyol and polyurethane synthesis using bisphenol-Z and study on physical properties thereof
JP2022154652A (en) epoxy resin composition
JPWO2020066746A1 (en) Resin composition for fiber reinforced composite material and fiber reinforced composite material using it