JP2019174270A - Deformation resistance measuring method of elastic-plastic material - Google Patents

Deformation resistance measuring method of elastic-plastic material Download PDF

Info

Publication number
JP2019174270A
JP2019174270A JP2018062546A JP2018062546A JP2019174270A JP 2019174270 A JP2019174270 A JP 2019174270A JP 2018062546 A JP2018062546 A JP 2018062546A JP 2018062546 A JP2018062546 A JP 2018062546A JP 2019174270 A JP2019174270 A JP 2019174270A
Authority
JP
Japan
Prior art keywords
curve
plastic
elastic
load
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018062546A
Other languages
Japanese (ja)
Other versions
JP7010107B2 (en
Inventor
洋輝 成宮
Hiroki Narumiya
洋輝 成宮
隆一 西村
Ryuichi Nishimura
隆一 西村
崇史 藤田
Takashi Fujita
崇史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018062546A priority Critical patent/JP7010107B2/en
Publication of JP2019174270A publication Critical patent/JP2019174270A/en
Application granted granted Critical
Publication of JP7010107B2 publication Critical patent/JP7010107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To measure a deformation resistance of an elastic-plastic material with higher accuracy.SOLUTION: The deformation resistance measuring method of the elastic-plastic material includes: a step for calculating a relational expression of a coefficient group of an approximated curve of a plastic load curve and a coefficient group of a hardening rule of an elastic-plastic material by extracting a plastic load curve from a load curve and an unload curve contained in the load-displacement curve at the time of a hardness test of an elastic-plastic material; and a step for determining the coefficient group of the hardening rule of a measuring object elastic-plastic material based on the coefficient group and the relational expression of the approximated curve of the plastic load curve by extracting a plastic load curve from the load curve and unload curve contained in the load-displacement curve at the time of the hardness test of the measuring object elastic-plastic material.SELECTED DRAWING: Figure 1

Description

本発明は、弾塑性材料の変形抵抗測定方法に関する。   The present invention relates to a method for measuring deformation resistance of an elastic-plastic material.

変形抵抗を測定するには、引張試験片または圧縮試験片を素材から切り出して試験する必要があるため、微小な領域の変形抵抗の測定は容易ではない。一方、ナノインデンターを用いて変形抵抗を推定する手法も試みられているが、圧子が極めて小さいため、フェライト、パーライト、マルテンサイトなどの組織ごとの変形抵抗を知ることはできるものの、母材の平均値としてのマクロな変形抵抗を導出するためには多数の測定点での測定値を平均化する必要があり、これも容易ではない。また、ナノインデンターを用いた場合、推定される変形抵抗が最大数%のひずみまでであるため、鍛造や伸線などの大変形における変形抵抗は推定できない。   In order to measure the deformation resistance, it is necessary to cut and test a tensile test piece or a compression test piece from the material, and therefore it is not easy to measure the deformation resistance in a minute region. On the other hand, a method for estimating the deformation resistance using a nanoindenter has also been tried, but the indenter is extremely small, so although the deformation resistance of each structure such as ferrite, pearlite, and martensite can be known, In order to derive a macro deformation resistance as an average value, it is necessary to average the measurement values at a large number of measurement points, which is not easy. Further, when a nanoindenter is used, the estimated deformation resistance is up to several percent strain, so the deformation resistance in large deformation such as forging or wire drawing cannot be estimated.

これに対して、例えば特許文献1では、硬さ試験機を用いて弾塑性材料の材料定数を得る方法が提案されている。具体的には特許文献1では、弾塑性材料に対して硬さ試験を行った際に生じる荷重P−変位δ曲線の式をP=aδ+bδ+cとしたときのa,b,cからなる曲線定数組と、ある弾塑性材料における降伏応力σ、加工硬化指数n、加工硬化係数Aからなる材料定数組との関係を予めデータベース化しておき、調査対象材料の硬さ試験によって得られた荷重−変位曲線から実際の曲線定数組を得て、この曲線定数組をデータベースと照合させることで調査対象材料の材料定数組を決定する方法が記載されている。 On the other hand, for example, Patent Document 1 proposes a method for obtaining a material constant of an elastic-plastic material using a hardness tester. Specifically, in Patent Document 1, a curve composed of a, b, and c when a formula of a load P-displacement δ curve generated when a hardness test is performed on an elastoplastic material is P = aδ 2 + bδ + c. The relationship between the constant set and the material constant set consisting of the yield stress σ y , work hardening index n and work hardening coefficient A in a certain elastic-plastic material is stored in a database in advance, and the load obtained by the hardness test of the material to be investigated A method is described in which an actual curve constant set is obtained from a displacement curve, and the material constant set of the material to be investigated is determined by collating this curve constant set with a database.

特開平9−288050号公報JP-A-9-288050

しかしながら、特許文献1に記載された技術のように弾性変形と塑性変形との複合変形である載荷曲線を用いて変形抵抗を推定した場合、例えばデータベース作成時の試験片の弾性率と調査対象の試験片の弾性率が異なると十分な精度が得られないという問題があった。   However, when the deformation resistance is estimated using a loading curve which is a combined deformation of elastic deformation and plastic deformation as in the technique described in Patent Document 1, for example, the elastic modulus of the test piece at the time of creating the database and the investigation target When the elastic modulus of the test piece is different, there is a problem that sufficient accuracy cannot be obtained.

そこで、本発明は、弾塑性材料の変形抵抗をより高い精度で測定することが可能な、新規かつ改良された弾塑性材料の変形抵抗測定方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a novel and improved method for measuring deformation resistance of an elastic-plastic material, which can measure the deformation resistance of an elastic-plastic material with higher accuracy.

本発明のある観点によれば、弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線および除荷曲線から塑性載荷曲線を抽出し、塑性載荷曲線の近似曲線の係数組と弾塑性材料の硬化則の係数組との関係式を算出するステップと、測定対象弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線および除荷曲線から塑性載荷曲線を抽出し、塑性載荷曲線の近似曲線の係数組と関係式とに基づいて測定対象弾塑性材料の硬化則の係数組を決定するステップとを含む、弾塑性材料の変形抵抗測定方法が提供される。
上記の構成によれば、載荷工程で発生する塑性変位を示す塑性載荷曲線に基づいて測定対象弾塑性材料の硬化則の係数組が決定されるため、より高い精度で弾塑性材料の変形抵抗を測定することができる。
According to an aspect of the present invention, a plastic loading curve is extracted from a loading curve and an unloading curve included in a load-displacement curve at the time of a hardness test of an elastoplastic material, and a coefficient set and an elastic group of an approximate curve of the plastic loading curve are extracted. A step of calculating a relational expression with a coefficient set of a hardening law of a plastic material, and extracting a plastic load curve from a load curve and an unload curve included in a load-displacement curve at the time of a hardness test of an elastic plastic material to be measured, A method for measuring a deformation resistance of an elastoplastic material, comprising: determining a coefficient set of a hardening rule of an elastoplastic material to be measured based on a coefficient set of an approximate curve of a plastic loading curve and a relational expression.
According to the above configuration, since the coefficient set of the hardening rule of the elastoplastic material to be measured is determined based on the plastic loading curve indicating the plastic displacement generated in the loading process, the deformation resistance of the elastoplastic material can be determined with higher accuracy. Can be measured.

上記の弾塑性材料の変形抵抗測定方法において、塑性載荷曲線の近似曲線は、原点を通る3次曲線であり、弾塑性材料および測定対象弾塑性材料の硬化則は、Ludwik硬化則であってもよい。   In the above method for measuring deformation resistance of an elastoplastic material, the approximate curve of the plastic loading curve is a cubic curve passing through the origin, and the hardening law of the elastoplastic material and the elastoplastic material to be measured is the Ludwick hardening law. Good.

本発明の第1の実施形態に係る変形抵抗測定方法の概略的なステップを示すフローチャートである。It is a flowchart which shows the schematic step of the deformation resistance measuring method which concerns on the 1st Embodiment of this invention. 図1の例において弾塑性材料の硬さ試験時の荷重−変位曲線を取得する方法について説明するための図である。It is a figure for demonstrating the method to acquire the load-displacement curve at the time of the hardness test of an elastic-plastic material in the example of FIG. 図2Aの拡大図である。It is an enlarged view of FIG. 2A. 本発明の第1の実施形態における荷重−変位曲線の例を示すグラフである。It is a graph which shows the example of the load-displacement curve in the 1st Embodiment of this invention. 本発明の第1の実施形態における塑性載荷曲線の近似曲線の例を示すグラフである。It is a graph which shows the example of the approximate curve of the plastic loading curve in the 1st Embodiment of this invention. SUJ2−QT材について、実施例および比較例で決定された材料定数組から算出された塑性ひずみと、引張試験における塑性ひずみの実測値とを示す応力−塑性ひずみグラフである。It is a stress-plastic strain graph which shows the plastic strain computed from the material constant group determined by the Example and the comparative example about the SUJ2-QT material, and the measured value of the plastic strain in a tension test. SCr420ノルマ材について、実施例および比較例で決定された材料定数組から算出された塑性ひずみと、引張試験における塑性ひずみの実測値とを示す応力−塑性ひずみグラフである。It is a stress-plastic strain graph which shows the plastic strain computed from the material constant group determined by the Example and the comparative example about the SCr420 normal material, and the measured value of the plastic strain in a tension test. S10Cノルマ材について、実施例および比較例で決定された材料定数組から算出された塑性ひずみと、引張試験における塑性ひずみの実測値とを示す応力−塑性ひずみグラフである。It is a stress-plastic strain graph which shows the plastic strain computed from the material constant group determined by the Example and the comparative example, and the measured value of the plastic strain in a tensile test about S10C normal material.

以下に添付図面を参照しながら、本発明の例示的な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る変形抵抗測定方法の概略的なステップを示すフローチャートである。本実施形態において、変形抵抗測定方法は、硬化則の係数組(以下、材料定数組ともいう)が既知である弾塑性材料の硬さ試験時の荷重−変位曲線から塑性載荷曲線を抽出し、塑性載荷曲線の近似曲線の係数組(以下、曲線定数組ともいう)と弾塑性材料の材料定数組との関係式を算出するステップS10と、材料定数組が未知である測定対象弾塑性材料の硬さ試験時の荷重−変位曲線から塑性載荷曲線を抽出し、塑性載荷曲線の近似曲線の曲線定数組と上記の関係式とに基づいて測定対象弾塑性材料の材料定数組を決定するステップS20とを含む。ここで、硬化則は弾塑性材料の変形抵抗を数式で表現したものであるため、硬化則の材料定数組を決定することは、弾塑性材料の変形抵抗を測定することと等価である。
(First embodiment)
FIG. 1 is a flowchart showing schematic steps of a deformation resistance measuring method according to the first embodiment of the present invention. In the present embodiment, the deformation resistance measuring method extracts a plastic loading curve from a load-displacement curve at the time of a hardness test of an elastic-plastic material having a known hardening rule coefficient set (hereinafter also referred to as a material constant set). Step S10 for calculating a relational expression between a coefficient set of an approximate curve of a plastic loading curve (hereinafter also referred to as a curve constant set) and a material constant set of an elastoplastic material, and an elastoplastic material to be measured whose material constant set is unknown Step S20 for extracting a plastic loading curve from a load-displacement curve at the time of a hardness test and determining a material constant set of an elastic-plastic material to be measured based on a curve constant set of an approximate curve of the plastic loading curve and the above relational expression. Including. Here, since the hardening rule is a mathematical expression of the deformation resistance of the elastoplastic material, determining the material constant set of the hardening rule is equivalent to measuring the deformation resistance of the elastoplastic material.

図2Aおよび図2Bは、図1の例において弾塑性材料の硬さ試験時の荷重−変位曲線を取得する方法について説明するための図である。なお、図2Bは図2Aの拡大図である。弾塑性材料の硬化則の材料定数組が既知である場合、有限要素法(FEM)を用いることによって、硬さ試験時の押し込み量に対する荷重、すなわち荷重−変位曲線を高い精度で予測することができる。図2Aおよび図2Bには、このような方法で荷重−変位曲線を得るために用いられる2次元軸対称モデルの例が示されている。図示された例において、圧子1は弾性率1050GPa、ポアソン比0.1のダイヤモンドを想定した弾性体であり、先端球面の曲率半径は1/16インチ≒1.6mmである。圧子1の押し込み量は20μmとした。試験体2は直径20mm、高さ25mmの弾塑性体であり、弾性率190GPa、ポアソン比0.3である。   2A and 2B are diagrams for explaining a method for obtaining a load-displacement curve in the hardness test of the elastic-plastic material in the example of FIG. 2B is an enlarged view of FIG. 2A. When the material constant set of the hardening rule of the elastoplastic material is known, the load against the indentation amount during the hardness test, that is, the load-displacement curve can be predicted with high accuracy by using the finite element method (FEM). it can. 2A and 2B show an example of a two-dimensional axisymmetric model used to obtain a load-displacement curve in this way. In the illustrated example, the indenter 1 is an elastic body assuming a diamond having an elastic modulus of 1050 GPa and a Poisson's ratio of 0.1, and the radius of curvature of the tip spherical surface is 1/16 inch≈1.6 mm. The pushing amount of the indenter 1 was 20 μm. The test body 2 is an elastic-plastic body having a diameter of 20 mm and a height of 25 mm, and has an elastic modulus of 190 GPa and a Poisson's ratio of 0.3.

なお、上記のようなモデルにおいて、圧子1の先端球面の曲率半径が大きい方が、摩擦の影響が小さくなるため材料定数組の推定精度は向上する。その一方で、圧子1の先端球面の曲率半径を大きくすると押し込み時の反力が増加し、硬さ試験機の剛性を高めるために試験機が大型化する。これらの観点から、圧子1の先端球面の曲率半径は10mm〜0.25mmが望ましい。また、圧子1の先端形状は、球面には限られず、四角錐(ビッカース)、または三角錐(バーコビッチ)とすることも可能であるが、モデルを2次元軸対称にすることが可能である点で、球面または円錐などの軸対称な形状が有利である。   In the model as described above, the larger the radius of curvature of the tip spherical surface of the indenter 1 is, the smaller the influence of friction is, so that the estimation accuracy of the material constant group is improved. On the other hand, if the radius of curvature of the tip spherical surface of the indenter 1 is increased, the reaction force at the time of pushing increases, and the testing machine becomes larger in order to increase the rigidity of the hardness testing machine. From these viewpoints, the radius of curvature of the tip spherical surface of the indenter 1 is desirably 10 mm to 0.25 mm. Further, the tip shape of the indenter 1 is not limited to a spherical surface, but can be a quadrangular pyramid (Vickers) or a triangular pyramid (Berkovic), but the model can be two-dimensional axisymmetric. Thus, an axisymmetric shape such as a spherical surface or a cone is advantageous.

ここで、試験体2を構成する弾塑性材料については、Ludwik硬化則(σ=Y+Kε )の材料定数組(Y,K,n)が既知である。図1に示したステップS10では、硬化則の材料定数組が異なる複数の弾塑性材料について硬さ試験時の荷重−変位曲線を取得し、それぞれの荷重−変位曲線から抽出される塑性載荷曲線の近似曲線の曲線定数組と弾塑性材料の材料定数組との関係式を算出することによって、測定対象弾塑性材料の材料定数組を精度よく決定することが可能な関係式を得ることができる。以下で説明する例では、Ludwik硬化則の材料定数組について、Y(500MPa,1000MPa,2000MPa)、K(2000MPa,4000MPa,8000MPa)、およびn(0.1,0.2,0.4)にそれぞれ3通りの値を設定した3×3×3=27通りの弾塑性材料を用いて関係式を算出する。 Here, the elastic-plastic material constituting the specimen 2, Ludwik curing law (σ = Y 0 + Kε p n) of the material constants set (Y 0, K, n) are known. In step S10 shown in FIG. 1, a load-displacement curve at the time of a hardness test is acquired for a plurality of elastic-plastic materials having different material constant pairs of hardening rules, and the plastic loading curve extracted from each load-displacement curve is obtained. By calculating the relational expression between the curve constant group of the approximate curve and the material constant group of the elastoplastic material, a relational expression capable of accurately determining the material constant group of the elastoplastic material to be measured can be obtained. In the example described below, Y 0 (500 MPa, 1000 MPa, 2000 MPa), K (2000 MPa, 4000 MPa, 8000 MPa), and n (0.1, 0.2, 0.4) are set for the material constant group of the Ludwick curing rule. The relational expression is calculated using 3 × 3 × 3 = 27 elasto-plastic materials, each of which has three values set.

図3は、本発明の第1の実施形態における荷重−変位曲線の例を示すグラフである。図示された例では、Ludwik硬化則の材料定数組をY=2000MPa、K=4000MPa、n=0.2とした弾塑性材料について、上記で図2Aおよび図2Bを参照して説明した方法で取得された荷重−変位曲線が示されている。荷重−変位曲線は、圧子1を試験体2に所定荷重で押し込んだ時(載荷工程)の変位を示す載荷曲線と、その後に圧子1の押し込みを解除した時(除荷工程)の変位を示す除荷曲線とを含む。除荷工程では塑性変位が復元しないため、除荷曲線には残留塑性変位δが残る。除荷曲線を残留塑性変位δだけシフトして原点を通るようにしたシフト除荷曲線は、載荷工程で発生する弾性変位に対応する。従って、荷重−変位曲線に含まれる載荷曲線の変位(弾性変位+塑性変位)からシフト除荷曲線の変位(弾性変位)を引くことによって、載荷工程で発生する塑性変位を示す塑性載荷曲線を抽出することができる。 FIG. 3 is a graph showing an example of a load-displacement curve in the first embodiment of the present invention. In the illustrated example, an elastic-plastic material in which the material constant set of the Ludwick hardening rule is Y 0 = 2000 MPa, K = 4000 MPa, and n = 0.2 is determined by the method described above with reference to FIGS. 2A and 2B. The acquired load-displacement curve is shown. The load-displacement curve indicates a loading curve indicating the displacement when the indenter 1 is pushed into the test body 2 with a predetermined load (loading process), and the displacement when the indenter 1 is subsequently released (unloading process). Including unloading curve. Since the plastic displacement is not restored in the unloading process, the residual plastic displacement δ 0 remains in the unloading curve. The shift unloading curve obtained by shifting the unloading curve by the residual plastic displacement δ 0 and passing through the origin corresponds to the elastic displacement generated in the loading process. Therefore, by extracting the displacement (elastic displacement) of the shift unloading curve from the displacement (elastic displacement + plastic displacement) of the loading curve included in the load-displacement curve, the plastic loading curve indicating the plastic displacement generated in the loading process is extracted. can do.

図4は、本発明の第1の実施形態における塑性載荷曲線の近似曲線の例を示すグラフである。図示された例では、図3に例示された塑性載荷曲線の変位の33%〜100%の範囲が、原点を通る3次曲線(P=aδ+bδ+cδ)で近似されている。ここで、近似する範囲を変位の33%〜100%の範囲に限定したのは、変位が小さい領域では降伏伸びなどによる乱れによって近似の精度が低下する可能性があるためである。また、近似曲線を原点を通る3次曲線としたのは、塑性載荷曲線が原点を通り、またLudwik硬化則の材料定数組(Y,K,n)が3つの要素を含むためである。上述した27通りの弾塑性材料の材料定数組(Y,K,n)と、塑性載荷曲線の近似曲線の曲線定数組(a,b,c)とを以下の表1に示す。 FIG. 4 is a graph showing an example of an approximate curve of a plastic loading curve in the first embodiment of the present invention. In the illustrated example, the range of 33% to 100% of the displacement of the plastic loading curve illustrated in FIG. 3 is approximated by a cubic curve (P = aδ 3 + bδ 2 + cδ) passing through the origin. Here, the reason why the approximate range is limited to the range of 33% to 100% of the displacement is that in the region where the displacement is small, there is a possibility that the accuracy of approximation may be reduced due to disturbance due to yield elongation or the like. The reason why the approximate curve is a cubic curve that passes through the origin is that the plastic loading curve passes through the origin, and the material constant set (Y 0 , K, n) of the Ludwick hardening rule includes three elements. Table 1 below shows the material constant sets (Y 0 , K, n) of the 27 types of elastoplastic materials described above and the curve constant sets (a, b, c) of the approximate curves of the plastic loading curve.

Figure 2019174270
Figure 2019174270

表1に示された材料定数組と曲線定数組との関係から、以下の式(1)および表2の係数で表される関係式を算出することができる。式(1)では、曲線定数組(a,b,c)のそれぞれについて以下の表2に示すような係数d〜d27を設定することによって、27通りの弾塑性材料のすべてについて、材料定数組(Y,K,n)から曲線定数組(a,b,c)を算出することができる。なお、式(1)においてαはa,b,cのいずれか1つを示す。 From the relationship between the material constant group and the curve constant group shown in Table 1, a relational expression represented by the following formula (1) and the coefficients in Table 2 can be calculated. In the equation (1), by setting coefficients d 1 to d 27 as shown in the following Table 2 for each of the curve constant pairs (a, b, c), all 27 types of elastic-plastic materials The curve constant set (a, b, c) can be calculated from the constant set (Y 0 , K, n). In the formula (1), α represents any one of a, b, and c.

Figure 2019174270
Figure 2019174270

Figure 2019174270
Figure 2019174270

上記の式(1)および表2の係数で表される関係式によって、測定対象弾塑性材料の硬さ試験時の荷重−変位曲線から抽出される塑性載荷曲線の近似曲線の曲線定数組(a,b,c)から測定対象弾塑性材料の硬化則の材料定数組(Y,K,n)を決定することができる。具体的には、測定対象弾塑性材料について算出された曲線定数組(a,b,c)と、式(1)および表2の係数で表される関係式によって算出される曲線定数組(a,b,c)とが所定の誤差の範囲内で整合するような材料定数組(Y,K,n)として、測定対象弾塑性材料の材料定数組を決定することができる。 A set of curve constants of approximate curves of plastic loading curves (a , B, c), the material constant set (Y 0 , K, n) of the hardening rule of the elasto-plastic material to be measured can be determined. Specifically, a set of curve constants (a, b, c) calculated for the elastoplastic material to be measured and a set of curve constants (a , B, c) can be determined as a material constant set (Y 0 , K, n) that matches within a predetermined error range.

(第2の実施形態)
本発明の第2の実施形態として、上記の第1の実施形態と同様のステップで測定対象弾塑性材料の材料定数組を決定する変形抵抗測定方法において、弾塑性材料の硬化則としてLudwik硬化則に代えてn乗硬化則(σ=Kε )を用いてもよい。この場合、第1の実施形態と同様の方法で弾塑性材料の硬さ試験時の荷重−変位曲線から抽出された塑性載荷曲線を、原点を通過する2次曲線(P=aδ+bδ)で近似する。以下で説明する例では、n乗硬化則の材料定数組について、K(500MPa,1000MPa,2000MPa,8000MPa)に4通り、n(0.1,0.2,0.4)に3通りの値を設定した4×3=12通りの弾塑性材料を用いて関係式を算出する。12通りの弾塑性材料の材料定数組(K,n)と、塑性載荷曲線の変位の33%〜100%の範囲の近似曲線の曲線定数組(a,b)とを以下の表3に示す。
(Second Embodiment)
As a second embodiment of the present invention, in a deformation resistance measuring method for determining a material constant set of an elastic-plastic material to be measured in the same steps as in the first embodiment, a Ludwick hardening rule is used as a hardening rule for an elastic-plastic material. it may be used n-th power hardening law (σ = Kε p n) instead. In this case, the plastic loading curve extracted from the load-displacement curve at the time of the hardness test of the elastoplastic material by the same method as in the first embodiment is a quadratic curve (P = aδ 2 + bδ) passing through the origin. Approximate. In the example described below, with respect to the material constant group of the n-th power hardening rule, there are four values for K (500 MPa, 1000 MPa, 2000 MPa, 8000 MPa) and three values for n (0.1, 0.2, 0.4). The relational expression is calculated using 4 × 3 = 12 types of elastoplastic materials. Table 3 below shows the material constant groups (K, n) of 12 kinds of elastoplastic materials and the curve constant groups (a, b) of the approximate curve in the range of 33% to 100% of the displacement of the plastic loading curve. .

Figure 2019174270
Figure 2019174270

表3に示された材料定数組と曲線定数組との関係から、以下の式(2)および表4の係数で表される関係式を算出することができる。式(2)では、曲線定数組(a,b)のそれぞれについて以下の表4に示すような係数d〜d12を設定することによって、12通りの弾塑性材料のすべてについて、材料定数組(K,n)から曲線定数組(a,b)を算出することができる。なお、式(2)においてαはa,bのいずれか1つを示す。 From the relationship between the material constant group and the curve constant group shown in Table 3, a relational expression represented by the following equation (2) and the coefficient in Table 4 can be calculated. In equation (2), by setting coefficients d 1 to d 12 as shown in the following Table 4 for each of the curve constant groups (a, b), the material constant groups are obtained for all twelve elastoplastic materials. The curve constant set (a, b) can be calculated from (K, n). In the formula (2), α represents one of a and b.

Figure 2019174270
Figure 2019174270

Figure 2019174270
Figure 2019174270

上記の式(2)および表4の係数で表される関係式によって、測定対象弾塑性材料の硬さ試験時の荷重−変位曲線から抽出される塑性載荷曲線の近似曲線の曲線定数組(a,b)から測定対象弾塑性材料の硬化則の材料定数組(K,n)を決定することができる。具体的には、測定対象弾塑性材料について算出された曲線定数組(a,b)と、式(2)および表4の係数で表される関係式によって算出される曲線定数組(a,b)とが所定の誤差の範囲内で整合するような材料定数組(K,n)として、測定対象弾塑性材料の材料定数組を決定することができる。   A set of curve constants (a) of the approximate curve of the plastic loading curve extracted from the load-displacement curve at the time of the hardness test of the elastoplastic material to be measured by the relational expression represented by the above formula (2) and the coefficient in Table 4. , B), the material constant set (K, n) of the hardening rule of the elasto-plastic material to be measured can be determined. Specifically, the curve constant set (a, b) calculated for the measurement target elasto-plastic material and the relational expression expressed by the formulas (2) and the coefficients in Table 4 (a, b). ) Can be determined as a material constant pair (K, n) that matches within a predetermined error range.

(比較例)
比較例として、上記の第2の実施形態と同様に弾塑性材料の硬化則としてn乗硬化則(σ=Kε )を用いながら、弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線(図3参照。塑性載荷曲線とは異なる)を近似の対象とした例について説明する。以下で説明する例では、上記の第2の実施形態と同様にn乗硬化則の材料定数組について、Kに4通り、nに3通りの値を設定した12通りの弾塑性材料を用いて関係式を算出した。12通りの弾塑性材料の材料定数組(K,n)と、載荷曲線の変位を33%〜100%の範囲での近似した原点を通る2次曲線の曲線定数組(a,b)との関係を求めた結果を以下の表5に示す。
(Comparative example)
As a comparative example, while using the n-th power hardening law as curing law elastoplastic material as in the second embodiment described above the (σ = Kε p n), load at hardness test elastoplastic material - displacement curve An example in which the included loading curve (see FIG. 3, which is different from the plastic loading curve) is used as an approximation target will be described. In the example described below, as in the second embodiment described above, the material constant set of the n-th power hardening rule is set by using 12 types of elastoplastic materials in which K is set to 4 and n is set to 3 types. The relational expression was calculated. A set of material constants (K, n) of 12 elasto-plastic materials and a set of curve constants (a, b) of a quadratic curve passing through the approximated origin in the range of 33% to 100% of the displacement of the loading curve The results of determining the relationship are shown in Table 5 below.

Figure 2019174270
Figure 2019174270

表5に示された材料定数組と曲線定数組との関係から、上記の第2の実施形態で用いた式(2)および表6の係数で表される関係式を算出することができる。式(2)では、曲線定数組(a,b)のそれぞれについて以下の表6に示すような係数d〜d12を設定することによって、12通りの弾塑性材料のすべてについて、材料定数組(K,n)から曲線定数組(a,b)を算出することができる。 From the relationship between the material constant group and the curve constant group shown in Table 5, the relational expression represented by the equation (2) and the coefficient in Table 6 used in the second embodiment can be calculated. In the equation (2), by setting coefficients d 1 to d 12 as shown in the following Table 6 for each of the curve constant groups (a, b), the material constant groups are set for all twelve elastoplastic materials. The curve constant set (a, b) can be calculated from (K, n).

Figure 2019174270
Figure 2019174270

本比較例でも、上記の式(2)および表6の係数で表される関係式によって、測定対象弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線の近似曲線の曲線定数組(a,b)から測定対象弾塑性材料の硬化則の材料定数組(K,n)を決定することができる。具体的には、測定対象弾塑性材料について載荷曲線から算出された曲線定数組(a,b)と、式(2)および表6の係数で表される関係式によって算出される曲線定数組(a,b)とが所定の誤差の範囲内で整合するような材料定数組(K,n)として、測定対象弾塑性材料の材料定数組を決定することができる。   Also in this comparative example, the curve constant of the approximate curve of the load curve included in the load-displacement curve at the time of the hardness test of the elasto-plastic material to be measured is obtained by the relational expression represented by the above formula (2) and the coefficient of Table 6. From the set (a, b), the material constant set (K, n) of the hardening rule of the elasto-plastic material to be measured can be determined. Specifically, a set of curve constants (a, b) calculated from the loading curve for the elastoplastic material to be measured, and a set of curve constants calculated by the relational expressions represented by the coefficients in Formula (2) and Table 6 ( The material constant set of the elasto-plastic material to be measured can be determined as a material constant set (K, n) that matches a, b) within a predetermined error range.

(検証)
以上で説明した本発明の第1の実施形態(実施例1)、第2の実施形態(実施例2)、および比較例について、検証を実施した。具体的には、SUJ2−QT材、SCr420ノルマ材、およびS10Cノルマ材のそれぞれからJIS4号サブサイズ引張試験片を切り出して引張試験を行い、応力−ひずみ曲線から変形抵抗を求めた。なお、弾性率はSUJ2−QT材が190GPa、SCr420ノルマ材が200GPa、S10Cノルマ材が224GPaであった。この変形抵抗と弾性率を用いて、図2Aおよび図2Bを参照して説明したような方法で硬さ試験時の荷重−変位曲線を取得した。この荷重−変位曲線に対して、上記の実施例1(塑性載荷曲線を原点を通る3次曲線で近似)、実施例2(塑性載荷曲線を原点を通る2次関数で近似)、および比較例(載荷曲線を原点を通る2次関数で近似)でそれぞれ曲線定数組を得た結果を表7に示す。
(Verification)
Verification was performed for the first embodiment (Example 1), the second embodiment (Example 2), and the comparative example of the present invention described above. Specifically, a JIS No. 4 sub-size tensile test piece was cut out from each of the SUJ2-QT material, the SCr420 normal material, and the S10C normal material, a tensile test was performed, and the deformation resistance was obtained from the stress-strain curve. The elastic modulus was 190 GPa for the SUJ2-QT material, 200 GPa for the SCr420 normal material, and 224 GPa for the S10C normal material. Using this deformation resistance and elastic modulus, a load-displacement curve at the time of the hardness test was obtained by the method described with reference to FIGS. 2A and 2B. For this load-displacement curve, Example 1 (approximate the plastic loading curve with a cubic curve passing through the origin), Example 2 (approximate the plastic loading curve with a quadratic function passing through the origin), and Comparative Example Table 7 shows the results obtained for each curve constant set (approximate the loading curve with a quadratic function passing through the origin).

Figure 2019174270
Figure 2019174270

ここで、実施例1では、SUJ2−QT材、SCr420ノルマ材、およびS10Cノルマ材のそれぞれについて算出された曲線定数組(a,b,c)と、上記の式(1)および表2の係数で表される関係式によって算出される曲線定数組(a,b,c)とが1.0%以下の誤差の範囲内で整合するように、表計算ソフトのエクセル(Excel;登録商標)のソルバー機能を用いてLudwik硬化則の材料定数組(Y,K,n)を決定した。同様に、実施例2では、曲線定数組(a,b)と上記の式(2)および表4の係数で表される関係式によって算出される曲線定数組(a,b)とが1.0以下の誤差の範囲内で整合するようにn乗硬化則の材料定数組(K,n)を決定した。比較例でも同様に、曲線定数組(a,b)と上記の式(2)および表6に示した係数で表される関係式によって算出される曲線定数組(a,b)とが1.0以下の誤差の範囲内で整合するようにn乗硬化則の材料定数組(K,n)を決定した。実施例1、実施例2、および比較例において決定された材料定数組を表8に示す。 Here, in Example 1, the curve constant set (a, b, c) calculated for each of the SUJ2-QT material, the SCr420 normal material, and the S10C normal material, and the coefficients of the above formula (1) and Table 2 were used. In order to match the curve constant set (a, b, c) calculated by the relational expression expressed by the following formula within an error range of 1.0% or less, Excel (registered trademark) The material constant set (Y 0 , K, n) of the Ludwick hardening rule was determined using the solver function. Similarly, in Example 2, the curve constant set (a, b) and the curve constant set (a, b) calculated by the relational expression represented by the above-described equation (2) and the coefficients in Table 4 are 1. The material constant pair (K, n) of the n-th power hardening rule was determined so as to match within a range of error of 0 or less. Similarly, in the comparative example, the curve constant set (a, b) and the curve constant set (a, b) calculated by the relational expression represented by the coefficients shown in the above formula (2) and Table 6 are 1. The material constant pair (K, n) of the n-th power hardening rule was determined so as to match within a range of error of 0 or less. Table 8 shows the material constant groups determined in Example 1, Example 2, and Comparative Example.

Figure 2019174270
Figure 2019174270

図5、図6および図7は、それぞれ、SUJ2−QT材、SCr420ノルマ材、およびS10Cノルマ材について、実施例および比較例で決定された材料定数組から算出された塑性ひずみと、引張試験における塑性ひずみの実測値とを示す応力−塑性ひずみグラフである。SUJ2−QT材、SCr420ノルマ材、およびS10Cノルマ材のそれぞれについて、実施例1(Ludwik硬化則+塑性載荷曲線)が実測値を最も高い精度で再現している。また、実施例2(n乗硬化則+塑性載荷曲線)も、比較例(n乗硬化則+載荷曲線)よりも高い精度で実測値を再現している。SCr420ノルマ材およびS10Cノルマ材の弾性率は図2Aおよび図2Bを参照して説明した有限要素法(FEM)のモデルにおける試験体2の弾性率(190GPa)とは異なっているが、実施例1および実施例2ではそのような場合においても実測値を高い精度で再現することができた。   5, FIG. 6 and FIG. 7 respectively show the plastic strain calculated from the material constant set determined in Examples and Comparative Examples and the tensile test for SUJ2-QT material, SCr420 normal material, and S10C normal material. It is a stress-plastic strain graph which shows the measured value of plastic strain. For each of the SUJ2-QT material, the SCr420 normal material, and the S10C normal material, Example 1 (Ludwick hardening law + plastic loading curve) reproduces the measured value with the highest accuracy. Further, Example 2 (n-th power hardening law + plastic loading curve) also reproduces the measured values with higher accuracy than the comparative example (n-th power hardening law + loading curve). The elastic modulus of the SCr420 normal material and the S10C normal material is different from the elastic modulus (190 GPa) of the test body 2 in the finite element method (FEM) model described with reference to FIGS. 2A and 2B. In Example 2, even in such a case, the actual measurement value could be reproduced with high accuracy.

上記のような検証の結果から、測定対象弾塑性材料の材料定数組を決定するために硬さ試験時の荷重−変位曲線から抽出される塑性載荷曲線を用いる本発明の実施形態は、幅広い強度レベルの鋼材について、弾性率が関係式の算出時とは異なっていても、精度よく測定対象弾塑性材料の変形抵抗を測定するために有効であることが示された。また、本発明の実施形態において、硬化則としてLudwik硬化則を用い、近似曲線を原点を通る3次曲線とするとさらに精度が向上することも示された。   From the results of the above verification, the embodiment of the present invention using a plastic loading curve extracted from a load-displacement curve at the time of a hardness test in order to determine a material constant set of an elastic-plastic material to be measured has a wide range of strengths. Even if the elastic modulus of the steel material of the level is different from that at the time of calculating the relational expression, it is shown that it is effective for accurately measuring the deformation resistance of the elasto-plastic material to be measured. Further, in the embodiment of the present invention, it was also shown that the accuracy is further improved when the Ludwick curing rule is used as the curing rule and the approximate curve is a cubic curve passing through the origin.

以上、本発明の例示的な実施形態について説明したが、本発明の技術的範囲はこれらの実施形態に限定されることなく、請求の範囲に記載された技術的思想の範疇内において、本発明の属する技術の分野における通常の知識を有する者が想到しうるところに従って変更または修正された実施形態を含む。   Although exemplary embodiments of the present invention have been described above, the technical scope of the present invention is not limited to these embodiments, and the present invention is within the scope of the technical idea described in the claims. Including embodiments that have been changed or modified in accordance with what can be conceived by those having ordinary skill in the art.

1…圧子、2…試験体。   1 ... indenter, 2 ... specimen.

Claims (2)

弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線および除荷曲線から塑性載荷曲線を抽出し、前記塑性載荷曲線の近似曲線の係数組と前記弾塑性材料の硬化則の係数組との関係式を算出するステップと、
測定対象弾塑性材料の硬さ試験時の荷重−変位曲線に含まれる載荷曲線および除荷曲線から塑性載荷曲線を抽出し、前記塑性載荷曲線の近似曲線の係数組と前記関係式とに基づいて前記測定対象弾塑性材料の硬化則の係数組を決定するステップと
を含む、弾塑性材料の変形抵抗測定方法。
The plastic loading curve is extracted from the loading curve and unloading curve included in the load-displacement curve at the time of the hardness test of the elastoplastic material, and the coefficient set of the approximate curve of the plastic loading curve and the coefficient of the hardening law of the elastoplastic material Calculating a relational expression with the pair;
The plastic loading curve is extracted from the loading curve and unloading curve included in the load-displacement curve at the time of the hardness test of the elastoplastic material to be measured, and based on the coefficient set of the approximate curve of the plastic loading curve and the relational expression Determining a coefficient group of a hardening rule of the elastoplastic material to be measured, and measuring a deformation resistance of the elastoplastic material.
前記塑性載荷曲線の近似曲線は、原点を通る3次曲線であり、
前記弾塑性材料および前記測定対象弾塑性材料の硬化則は、Ludwik硬化則である、請求項1に記載の弾塑性材料の変形抵抗測定方法。
The approximate curve of the plastic loading curve is a cubic curve passing through the origin,
The method for measuring deformation resistance of an elastoplastic material according to claim 1, wherein a hardening rule of the elastoplastic material and the elastoplastic material to be measured is a Ludwick hardening rule.
JP2018062546A 2018-03-28 2018-03-28 Deformation resistance measurement method for elasto-plastic materials Active JP7010107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062546A JP7010107B2 (en) 2018-03-28 2018-03-28 Deformation resistance measurement method for elasto-plastic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062546A JP7010107B2 (en) 2018-03-28 2018-03-28 Deformation resistance measurement method for elasto-plastic materials

Publications (2)

Publication Number Publication Date
JP2019174270A true JP2019174270A (en) 2019-10-10
JP7010107B2 JP7010107B2 (en) 2022-01-26

Family

ID=68170283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062546A Active JP7010107B2 (en) 2018-03-28 2018-03-28 Deformation resistance measurement method for elasto-plastic materials

Country Status (1)

Country Link
JP (1) JP7010107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149364A1 (en) 2022-02-07 2023-08-10 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and method for manufacturing steel pipe
JP7469671B2 (en) 2020-12-17 2024-04-17 日本製鉄株式会社 Method for calculating deformation resistance curve of welded portion, program for calculating deformation resistance curve of welded portion, and device for calculating deformation resistance curve of welded portion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134954A (en) * 1996-04-15 2000-10-24 Massachusetts Institute Of Technology Depth sensing indentation and methodology for mechanical property measurements
JP2003279458A (en) * 2002-03-22 2003-10-02 Japan Atom Energy Res Inst Material constant evaluation device by microhardness measuring method
JP2009174886A (en) * 2008-01-22 2009-08-06 Toshiba Corp Mechanical characteristics evaluation method with respect to modified portion
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2011033582A (en) * 2009-08-05 2011-02-17 Toshiba Corp Residual stress evaluation method and shock load evaluation method of peened part
CN103411833A (en) * 2013-08-21 2013-11-27 中国人民解放军装甲兵工程学院 Instrumentation indentation test method for elastic-plastic parameters of material based on single Vickers pressure head
JP2017062205A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Calculation method of deformation resistance curve in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134954A (en) * 1996-04-15 2000-10-24 Massachusetts Institute Of Technology Depth sensing indentation and methodology for mechanical property measurements
JP2003279458A (en) * 2002-03-22 2003-10-02 Japan Atom Energy Res Inst Material constant evaluation device by microhardness measuring method
JP2009174886A (en) * 2008-01-22 2009-08-06 Toshiba Corp Mechanical characteristics evaluation method with respect to modified portion
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2011033582A (en) * 2009-08-05 2011-02-17 Toshiba Corp Residual stress evaluation method and shock load evaluation method of peened part
CN103411833A (en) * 2013-08-21 2013-11-27 中国人民解放军装甲兵工程学院 Instrumentation indentation test method for elastic-plastic parameters of material based on single Vickers pressure head
JP2017062205A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Calculation method of deformation resistance curve in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469671B2 (en) 2020-12-17 2024-04-17 日本製鉄株式会社 Method for calculating deformation resistance curve of welded portion, program for calculating deformation resistance curve of welded portion, and device for calculating deformation resistance curve of welded portion
WO2023149364A1 (en) 2022-02-07 2023-08-10 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and method for manufacturing steel pipe

Also Published As

Publication number Publication date
JP7010107B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
Navarro et al. A general model to estimate life in notches and fretting fatigue
EP2038630B1 (en) A method of determining material dependent constants of a metal object based on fatigue testing
KR101461858B1 (en) Component fracture evaluation device, component fracture evaluation method, and computer readable recording medium having computer program recorded thereon
Banholzer et al. Analytical evaluation of pull-out tests—the inverse problem
Vázquez et al. A model to predict fretting fatigue life including residual stresses
Wang et al. An Experimental‐Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking
US20130298691A1 (en) Part fatigue fracture evaluating apparatus, part fatigue fracture evaluating method, and computer program
Strzelecki et al. Experimental method for plotting SN curve with a small number of specimens
Strzelecki et al. Application of Weibull distribution to describe SN curve with using small number specimens
JP2010256351A (en) Device and method for estimating fatigue fracture probability of member, and computer program
JP2019174270A (en) Deformation resistance measuring method of elastic-plastic material
You et al. Low cycle fatigue life prediction in shot‐peened components of different geometries—part I: residual stress relaxation
Jacq et al. On the influence of residual stresses in determining the micro-yield stress profile in a nitrided steel by nano-indentation
RU2599069C1 (en) Method of determining endurance limit of material at tension-compression
JP2010101876A (en) Material property specification method of elastoplastic material by indentor indentation test
Mahmoudi et al. An alternative approach to determine material characteristics using spherical indentation and neural networks for bulk metals
JP2011058849A (en) Method and device for estimating low cycle fatigue characteristics
Wagener et al. Deriving a continuous fatigue life curve from LCF to VHCF
Burik et al. Effect of pile-up on the mechanical characteristics of steel by depth sensing indentation
Duran et al. Numerical stress-life curves for the AISI 4340 steel using two sets of materials properties and different bi-axial stress ratios
JP2019020332A (en) Toughness prediction device, toughness prediction method, and program
RU2554306C2 (en) Method of assessment of micromechanical characteristics of local areas of metals
Aleksic et al. Experimental and numerical investigations of the critical values of J-integral for the steel of steam pipelines
Sajith et al. Fatigue crack growth and life prediction under mixed-mode loading
Grushko Development of usage of brinell hardness test method for flow stress definition during cold deformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227