JP2009174886A - Mechanical characteristics evaluation method with respect to modified portion - Google Patents

Mechanical characteristics evaluation method with respect to modified portion Download PDF

Info

Publication number
JP2009174886A
JP2009174886A JP2008011105A JP2008011105A JP2009174886A JP 2009174886 A JP2009174886 A JP 2009174886A JP 2008011105 A JP2008011105 A JP 2008011105A JP 2008011105 A JP2008011105 A JP 2008011105A JP 2009174886 A JP2009174886 A JP 2009174886A
Authority
JP
Japan
Prior art keywords
displacement
mechanical
indenter
residual
indentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008011105A
Other languages
Japanese (ja)
Inventor
Katsunobu Watanabe
勝信 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008011105A priority Critical patent/JP2009174886A/en
Publication of JP2009174886A publication Critical patent/JP2009174886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical characteristics evaluation method for a surface-modified portion, using the surface-modified portion as a measuring object. <P>SOLUTION: The method includes an elastoplasticity analysis step wherein a condition similar to an indenter indentation test to the measuring object which is the surface-modified portion is simulated, and elastoplasticity analysis is performed by using a numerical value showing the mechanical-physical characteristics of the measuring object as a parameter, and correlation between indenter maximum indentation displacement, residual displacement or elastic displacement and the numerical value showing the mechanical-physical characteristic is acquired and arranged to form a database; an indentation test step, wherein the indenter indentation test is performed actually to the measuring object, and the indenter maximum indentation displacement, the residual displacement or the elastic displacement is acquired from a result of the indenter indentation test; and a mechanical-physical characteristic identification step wherein the indenter maximum indentation displacement, the residual displacement or the elastic displacement acquired in the indentation test step is compared with the correlation formed as the database between the indenter maximum indentation displacement, the residual displacement or the elastic displacement and the numerical value showing the mechanical-physical characteristic, and the numerical value showing the mechanical-physiccal characteristics of the measuring object is identified. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造物などの機械的特性評価技術に係り、特に被測定物の表面改質部の機械的・物理的特性を評価する機械的特性評価方法に関する。   The present invention relates to a mechanical property evaluation technique for a structure or the like, and more particularly, to a mechanical property evaluation method for evaluating mechanical and physical properties of a surface modification portion of an object to be measured.

発電プラントや各種作業用プラントなどの構造物は、溶接などの熱影響による残留引っ張り応力の存在や構造物の腐食環境の相互作用により、応力腐食割れが生じる場合がある。このような構造物の材質には耐腐食性のある金属材料が用いられ、さらには構造物の破損を未然に防ぐため定期的な取替えが実施される。   Structures such as power plants and various work plants may experience stress corrosion cracking due to the presence of residual tensile stress due to thermal effects such as welding and the interaction of the corrosive environment of the structure. As a material of such a structure, a metal material having corrosion resistance is used, and further periodic replacement is performed in order to prevent damage to the structure.

しかし、例えば沸騰水型原子炉における炉心シュラウドやそのサポート構造、原子炉炉底部にある制御棒駆動機構ハウジングなどの構造物は、溶接構造であることから切断等をしない限り取り替えることはできず、半永久的に使用される構造物である。   However, for example, a core shroud in a boiling water reactor, its support structure, and a structure such as a control rod drive mechanism housing at the bottom of the reactor cannot be replaced unless it is cut or the like because it is a welded structure. It is a structure used semi-permanently.

そうした取替えが困難な構造物に対して応力腐食割れを事前に予防する手段として、構造物の表面に衝撃を与え、構造物に存在する引っ張り応力を圧縮応力へ改善することで構造物の表面改質を行う表面改質手段がある。例えばプラズマの衝撃力を利用するレーザピーニング(特許文献1参照)や、キャビテーション破壊時の衝撃力を利用するウォータジェットピーニング(特許文献2参照)がある。   As a means of preventing stress corrosion cracking in advance for structures that are difficult to replace, the surface of the structure is modified by impacting the surface of the structure and improving the tensile stress existing in the structure to compressive stress. There are surface modification means for quality. For example, there are laser peening that uses the impact force of plasma (see Patent Document 1) and water jet peening that uses the impact force at the time of cavitation destruction (see Patent Document 2).

レーザピーニングなどの施工後の施工部位に対する効果の確認は目視などにより行われ、施工後の施工部位に存在する残留圧縮応力の程度は、あらかじめ実際の施工部位相当の形状を有する試験材料を用いて試施工を行い、この試験材料に対しX線回折法などを用いて残留圧縮応力の大きさを測定することで担保している。   The effect on the construction site after construction such as laser peening is confirmed by visual inspection, etc. The degree of residual compressive stress existing in the construction site after construction is measured in advance using a test material having a shape equivalent to the actual construction site. Trial construction is performed, and this test material is secured by measuring the magnitude of residual compressive stress using an X-ray diffraction method or the like.

ここで、材料の機械的・物理的特性を表す材料定数や残留ひずみを測定する方法として、特許文献3および特許文献4に示された発明がある。   Here, there are inventions disclosed in Patent Document 3 and Patent Document 4 as methods for measuring material constants and residual strains representing mechanical and physical properties of materials.

特許文献3に示された発明は、あらかじめ弾塑性材料に対して圧子押込試験を行い、この圧子押込試験に基づき得られた変位―荷重曲線の曲線定数組と、複数の弾塑性材料における降伏応力、加工硬化指数および加工硬化係数からなる材料定数組との関係をデータベース化する。また、調査対象材料に対する圧子押込試験に基づき得られた変位―荷重曲線の曲線定数組を得て、この曲線定数組をデータベース化された曲線定数組と照合することにより、調査対象材料の材料定数組を決定する方法である。   In the invention disclosed in Patent Document 3, an indenter indentation test is performed in advance on an elastoplastic material, a set of curve constants of displacement-load curves obtained based on the indenter indentation test, and yield stress in a plurality of elastoplastic materials. Then, a database of the relationship with the material constant group consisting of work hardening index and work hardening coefficient is created. Also, by obtaining the curve constant set of displacement-load curve obtained based on the indenter indentation test for the material to be investigated, and collating this curve constant set with the curve constant set in the database, the material constant of the material to be investigated is obtained. This is a method for determining a pair.

特許文献4に示された発明は、あらかじめ材料に対し圧子押込試験を行い得られた押し込み深さや硬さと残留ひずみとの相関関係と、調査対象材料に対し圧子押込試験を行い得られた圧子押込深さや硬さとを照合することにより、残留ひずみを決定する方法である。
特開平7−246483号公報 特開平6−47667号公報 特開平9−288050号公報 特開平8−247914号公報
The invention disclosed in Patent Document 4 is based on the correlation between the indentation depth and hardness obtained by performing an indenter indentation test on a material in advance, and the indenter indentation obtained by performing an indenter indentation test on a material to be investigated. This is a method of determining the residual strain by comparing depth and hardness.
JP 7-246483 A JP-A-6-47667 JP-A-9-288050 JP-A-8-247914

ウォータジェットピーニングなどの表面改質手段を利用して構造物に表面改質を行った場合、施工後の施工部位には残留圧縮応力が発生する。また、ピーニング施工後の施工部位である表面改質層には、残留応力の変化のみならず降伏応力や縦弾性係数などの機械的・物理的特性を表す値も変化する。これらの機械的・物理的特性を表す値は、ピーニング施工後の構造物の健全性評価に大きな影響を与える。   When surface modification is performed on a structure using surface modification means such as water jet peening, residual compressive stress is generated at a construction site after construction. In addition, the surface modified layer, which is a construction site after peening, changes not only the residual stress but also the values representing mechanical and physical characteristics such as yield stress and longitudinal elastic modulus. The values representing these mechanical and physical characteristics have a great influence on the soundness evaluation of structures after peening.

ピーニング施工後の構造物に対し、特許文献3および4に示す発明を適用し降伏応力などの材料定数を決定することが考えられる。しかし、特許文献3および4に示す発明は、表面改質を行った構造物に存在する影響については考慮されていなかった。   It can be considered that the material constants such as yield stress are determined by applying the inventions shown in Patent Documents 3 and 4 to the structure after peening. However, the inventions disclosed in Patent Documents 3 and 4 have not taken into consideration the influence existing in the structure subjected to the surface modification.

本発明はこのような事情を考慮してなされたもので、表面改質後の施工部位に与える影響を考慮した表面改質部に対する機械的特性評価方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for evaluating mechanical properties of a surface modified portion in consideration of the influence on a construction site after surface modification.

本発明に係る表面改質部に対する機械的特性評価方法は、上述した課題を解決するために、表面改質手段により表面特性を改質した表面改質部を有する被測定物に対する圧子押込試験と同様の条件を模擬し、前記被測定物の機械的・物理的特性を表す数値をパラメータとして弾塑性解析を行い、圧子最大押込変位、残留変位または弾性変位と前記機械的・物理的特性を表す数値との相関関係を取得しデータベース化する弾塑性解析ステップと、前記被測定物に前記圧子押込試験を行い、前記圧子押込試験の結果から圧子最大押込変位、残留変位または弾性変位を取得する押込試験ステップと、前記押込試験ステップで取得した圧子最大押込変位、残留変位または弾性変位を、前記データベース化された圧子最大押込変位、残留変位または弾性変位と前記機械的・物理的特性を表す数値との相関関係と比較し、前記被測定物の前記機械的・物理的特性を表す数値を同定する機械的・物理的特性同定ステップとを具備することを特徴とする。   In order to solve the above-described problems, the mechanical property evaluation method for a surface modified portion according to the present invention includes an indenter indentation test for an object to be measured having a surface modified portion whose surface property has been modified by a surface modifying means. Simulate the same conditions, perform elasto-plastic analysis using the numerical values representing the mechanical and physical properties of the object to be measured as parameters, and express the indenter maximum indentation displacement, residual displacement or elastic displacement and the mechanical and physical properties. An elasto-plastic analysis step that obtains a correlation with a numerical value and creates a database, and an indentation that performs the indenter indentation test on the object to be measured and obtains an indenter maximum indentation displacement, residual displacement, or elastic displacement from the result of the indenter indentation test The indenter maximum indentation displacement, residual displacement or elasticity obtained in the test step and the indentation test step is converted into the database indenter maximum indentation displacement, residual displacement or elasticity. A mechanical / physical property identification step for comparing a correlation between a position and a numerical value representing the mechanical / physical property and identifying the numerical value representing the mechanical / physical property of the object to be measured. It is characterized by that.

本発明に係る表面改質部に対する機械的特性評価方法は、表面改質後の施工部位に与える影響を考慮して、表面改質部の機械的特性評価を正確に行うことができる。   The mechanical property evaluation method for the surface modified portion according to the present invention can accurately perform the mechanical property evaluation of the surface modified portion in consideration of the influence on the construction site after the surface modification.

本発明に係る表面改質部の機械的特性評価方法の実施形態を添付図面に基づいて説明する。   An embodiment of a method for evaluating mechanical properties of a surface modified portion according to the present invention will be described with reference to the accompanying drawings.

本実施形態における表面改質部に対する機械的特性評価方法は、一例としてオーステナイト系ステンレス鋼などからなる原子力発電プラントの原子炉内構造物であって、例えばウォータジェットピーニングなどの表面改質手段を用いて表面改質が行われたピーニング施工部位の機械的・物理的特性を評価する場合に適用して説明する。この表面改質部に対する機械的特性評価方法は、原子力発電プラント内の原子炉内構造物において、特に取り外して機械的・物理的特性の評価を実施することが困難な原子炉内構造物に対して有効である。なお、本実施形態における表面改質部に対する機械的特性評価方法は、機械的・物理的特性を表す数値である残留応力、降伏応力および縦弾性係数を同定することによる評価方法として説明する。   The mechanical property evaluation method for the surface modified portion in the present embodiment is a nuclear power plant structure made of austenitic stainless steel as an example, and uses, for example, a surface modifying means such as water jet peening. This is applied to the case where the mechanical and physical characteristics of the peened site where surface modification has been performed are evaluated. This mechanical property evaluation method for the surface reforming part is used for reactor internal structures in nuclear power plants, especially for reactor internal structures that are difficult to remove and evaluate mechanical and physical characteristics. It is effective. The mechanical property evaluation method for the surface modified portion in this embodiment will be described as an evaluation method by identifying residual stress, yield stress, and longitudinal elastic modulus, which are numerical values representing mechanical and physical properties.

[第1の実施形態]
本実施形態における表面改質部の機械的特性評価方法に用いる圧子押込試験装置の一例について説明する。
[First Embodiment]
An example of an indenter indentation test apparatus used for the mechanical property evaluation method for the surface modified portion in this embodiment will be described.

圧子押込試験装置は、被測定物に圧子を押し込むことで所定の荷重を付加し、押込点の変位を測定する圧子を備える計測部が、原子炉内に挿入可能に構成される。また原子炉内において、計測部の位置を制御する位置制御機構や、原子炉外などに設置され、計測部から得られた被測定物の測定データを処理するコンピュータなどからなるデータ処理部などで構成される。   The indenter indentation test apparatus is configured such that a measuring unit including an indenter that applies a predetermined load by pushing the indenter into a measurement object and measures the displacement of the indentation point can be inserted into the nuclear reactor. Also, in the reactor, a position control mechanism that controls the position of the measurement unit, a data processing unit that is installed outside the reactor, etc., and that consists of a computer that processes the measurement data of the measurement object obtained from the measurement unit Composed.

計測部に備えられた圧子は、所定の荷重により被測定物に押し込まれることで被測定物における押込点の荷重方向の変位を測定する。圧子の押し込みは、駆動源としてモータなどを利用し遠隔操作で行われる。また、押込荷重については被測定物の硬さに応じて設定されるため、所定範囲で可変に構成される。   The indenter provided in the measuring unit measures the displacement in the load direction of the indentation point in the measurement object by being pushed into the measurement object by a predetermined load. The indenter is pushed in remotely by using a motor or the like as a drive source. Further, since the indentation load is set according to the hardness of the object to be measured, it is variably configured within a predetermined range.

計測部から得られた測定データはデータ処理部で処理され、被測定物の変位―荷重曲線を得る。また、データ処理部は、機械的・物理的特性を表す数値である残留応力などと圧子押し込みによる各変位との相関関係を解析的手法を用いて取得し、これをデータベース化する処理などを実行する。   The measurement data obtained from the measurement unit is processed by the data processing unit to obtain a displacement-load curve of the object to be measured. In addition, the data processing unit acquires the correlation between residual stress, which is a numerical value representing mechanical and physical characteristics, and each displacement caused by indentation using an analytical method, and executes processing to create a database To do.

このような圧子押込装置を用いて、被測定物に対し圧子押込試験を実施した場合、被測定物に付加した荷重と押込点の荷重方向の変位との関係を表す、変位―荷重曲線が得られる。図1に変位―荷重曲線の一例を示す。   When an indenter indentation test is performed on an object to be measured using such an indenter indentation device, a displacement-load curve representing the relationship between the load applied to the object to be measured and the displacement in the load direction of the indentation point is obtained. It is done. FIG. 1 shows an example of a displacement-load curve.

この変位―荷重曲線は、縦軸に圧子押込試験装置より付加された荷重を表し、横軸に荷重方向の圧子の押込変位量を表している。変位―荷重曲線は、ヒステリシス性を有し、圧子押込時に得られる押込時変位―荷重曲線、および圧子引抜時に得られる引抜時変位―荷重曲線からなる。   In this displacement-load curve, the vertical axis represents the load applied from the indenter indentation test apparatus, and the horizontal axis represents the indentation displacement amount in the load direction. The displacement-load curve has a hysteresis property, and is composed of a displacement-load curve at the time of pushing obtained when the indenter is pushed and a displacement-load curve at the time of drawing obtained when the indenter is drawn.

変位―荷重曲線からは、圧子最大押込変位hmax、残留変位hおよび弾性変位hを読み取ることができる。圧子最大押込変位hmaxは、押込時変位―荷重曲線における圧子押込時における最大変位量である。また、残留変位hは圧子引抜後における圧子押込前からの変位量である。弾性変位hは圧子引抜後の弾性変位量であって、圧子最大押込変位hmaxと残留変位hの差で表される。 Displacement - from the load curve can be read indenter Maximum indentation depth h max, the residual displacement h r and the elastic displacement h e. The indenter maximum indentation displacement h max is the maximum displacement amount during indenter indentation in the indentation displacement-load curve. Further, the residual displacement h r is the displacement from the previous indenter indentation after indenter drawing. The elastic displacement h e an elastic displacement amount after indenter drawing, represented by the difference between the residual displacement h r and indenter Maximum indentation depth h max.

次に、本実施形態における表面改質部に対する機械的特性評価方法を説明する。本実施形態における表面改質部に対する機械的特性評価方法は、有限要素法(Finite Element Method,FEM)などの解析的手法を用いて取得した解析データをデータベース化し、このデータベースを参照することにより被測定物の機械的・物理的特性の評価を行う。図2は、解析データ取得処理の工程を示すフローチャートである。   Next, a mechanical property evaluation method for the surface modified portion in the present embodiment will be described. In the present embodiment, the mechanical property evaluation method for the surface modified portion is a database of analysis data obtained by using an analytical method such as a finite element method (FEM), and this data is referred to by referring to this database. Evaluate the mechanical and physical properties of the measurement object. FIG. 2 is a flowchart showing the process of analysis data acquisition processing.

ステップS1において、圧子押込試験装置を用いた圧子押込試験に用いられる圧子の形状や付加荷重などの試験条件と同一条件を模擬して、弾塑性解析を行う。弾塑性解析は、残留応力(σ)、降伏応力(σ)および縦弾性係数(E)のうち少なくとも一つをパラメータとして実施する。以後、L個(L≧2)の残留応力をパラメータとして弾塑性解析を行う例を説明する。 In step S1, an elasto-plastic analysis is performed by simulating the same conditions as the test conditions such as the shape and additional load of the indenter used in the indenter indentation test using the indenter indentation test apparatus. The elasto-plastic analysis is performed using at least one of residual stress (σ r ), yield stress (σ y ), and longitudinal elastic modulus (E) as a parameter. Hereinafter, an example in which elastoplastic analysis is performed using L (L ≧ 2) residual stresses as parameters will be described.

ステップS2において、解析実施ステップS1で行った弾塑性解析の解析結果から、付加荷重と被測定物の押込変位との関係を表す変位―荷重曲線を取得する。図3は、弾塑性解析を行い取得した変位―荷重曲線の一例を示すグラフである。弾塑性解析は、L個の残留応力の値をパラメータとして行うため、パラメータの値に応じてL本の変位―荷重曲線が得られる。   In step S2, a displacement-load curve representing the relationship between the applied load and the indentation displacement of the object to be measured is acquired from the analysis result of the elasto-plastic analysis performed in analysis execution step S1. FIG. 3 is a graph showing an example of a displacement-load curve obtained by performing an elasto-plastic analysis. Since the elasto-plastic analysis is performed using L residual stress values as parameters, L displacement-load curves are obtained according to the parameter values.

ステップS3において、残留応力をパラメータとした変位―荷重曲線から、残留応力(σ)の値と、圧子最大押込変位hmax、残留変位hおよび弾性変位hとの相関関係を求める。また、L個の残留応力の値をパラメータとしたため、L個の残留応力に対応する圧子最大押込変位hmax、残留変位hおよび弾性変位hのL組のデータが得られる。 In step S3, displacement and residual stress as a parameter - from the load curve to determine the value of the residual stress (sigma r), indenter Maximum indentation depth h max, the correlation between the residual displacement h r and the elastic displacement h e. Further, since the value of the L residual stress as a parameter, the L indenter Maximum indentation depth corresponding to the residual stresses h max, L sets of data of the residual displacement h r and the elastic displacement h e is obtained.

図4は、パラメータとしてのL個の残留応力の値と、圧子最大押込変位hmax、残留変位hおよび弾性変位hとの関係の解析結果の一例を示す図である。横軸は残留応力の値であり、正の値を引っ張り応力、負の値を圧縮応力とした。縦軸は圧子最大押込変位hmax、残留変位hおよび弾性変位hの変化の割合であって、残留応力が0[MPa]の時の各変位量を基準値とし、この基準値に対する変化の割合を示す。変化の割合が負の値をとる場合には基準値よりも変位が小さいことを示し、変化の割合が正の値をとる場合には基準値よりも変位が大きいことを示す。 Figure 4 is a diagram showing the values of the L residual stress as a parameter, an indenter Maximum indentation depth h max, an example of the analysis result of the relationship between the residual displacement h r and the elastic displacement h e. The horizontal axis is the value of residual stress, with positive values being tensile stresses and negative values being compressive stresses. The vertical axis indenter Maximum indentation depth h max, a rate of change of the residual displacement h r and the elastic displacement h e, residual stress is a reference value of each displacement amount when the 0 [MPa], changes to the reference value Indicates the percentage. When the rate of change is a negative value, it indicates that the displacement is smaller than the reference value, and when the rate of change is a positive value, it indicates that the displacement is greater than the reference value.

図4より、被測定物に存在する残留応力が小さく(圧縮に)なるほど圧子最大押込変位hmaxおよび残留変位hは基準値よりも小さくなり、残留応力が大きく(引っ張りに)なるほど大きくなることがわかる。一方、弾性変位hについては、圧子最大押込変位hmaxおよび残留変位hとは逆の相関関係をなし、残留応力が小さく(圧縮に)なるほど弾性変位hは基準値よりも大きくなり、残留応力が大きく(引っ張りに)なるほど小さくなることがわかる。 From FIG. 4, the residual stress is small (compressed) indeed indenter Maximum indentation depth h max and residual displacement h r present in the object to be measured is smaller than the reference value, the residual stress is large (tensile) indeed made that increased I understand. On the other hand, the elastic displacement h e, an inverted correlation is the maximum indentation depth h max and residual displacement h r indenter, the residual stress is small (the compression) the more elastic displacement h e is larger than the reference value, It turns out that it becomes small, so that a residual stress becomes large (it becomes tensile).

なお、図5は、パラメータとしてのM個の降伏応力の値と、圧子最大押込変位hmax、残留変位hおよび弾性変位hとの関係の解析結果の一例を示す図である。M個(M≧2)の降伏応力の値をパラメータとしたため、M個の降伏応力の値に対応する圧子最大押込変位hmax、残留変位hおよび弾性変位hのM組のデータが表される。 Incidentally, FIG. 5 is a diagram showing the values of M yield stress as a parameter, an indenter Maximum indentation depth h max, an example of the analysis result of the relationship between the residual displacement h r and the elastic displacement h e. Since the value of the yield stress of the M (M ≧ 2) as a parameter, M-number of indenter Maximum indentation depth corresponding to the value of the yield stress h max, M sets of data of the residual displacement h r and the elastic displacement h e tables Is done.

横軸は降伏応力の変化の割合であって、ピーニング施工前の被測定物の降伏応力値を基準値とし、この基準値に対する変化の割合を示す。変化の割合が負の値をとる場合には基準値よりも降伏応力が低下することを示し、変化の割合が正の値をとる場合には基準値よりも降伏応力が上昇することを示す。   The horizontal axis represents the rate of change in yield stress, and the yield stress value of the object to be measured before peening is taken as the reference value, and the rate of change relative to this reference value is shown. When the rate of change is a negative value, it indicates that the yield stress is lower than the reference value, and when the rate of change is a positive value, it indicates that the yield stress is higher than the reference value.

縦軸は圧子最大押込変位hmax、残留変位hおよび弾性変位hの変化の割合であって、被測定物の降伏応力をピーニング施工前の降伏応力値とした場合の各変位量を基準値とし、この基準値に対する変化の割合を示す。変化の割合が負の値をとる場合には基準値よりも変位が小さいことを示し、変化の割合が正の値をとる場合には基準値よりも変位が大きいことを示す。 The vertical axis indenter Maximum indentation depth h max, a rate of change of the residual displacement h r and the elastic displacement h e, based on the respective amount of displacement when the yield stress value prior to peening the yield stress of the object to be measured The value represents the rate of change with respect to this reference value. When the rate of change is a negative value, it indicates that the displacement is smaller than the reference value, and when the rate of change is a positive value, it indicates that the displacement is greater than the reference value.

図5より、被測定物に存在する降伏応力が上昇するほど圧子最大押込変位hmaxおよび残留変位hは基準値よりも小さくなり、降伏応力が低下するほど大きくなることがわかる。一方、弾性変位hについては、圧子最大押込変位hmaxおよび残留変位hとは逆の相関関係をなし、降伏応力が上昇するほど弾性変位hは基準値よりも大きくなり、降伏応力が低下するほど小さくなることがわかる。 5 that the indenter Maximum indentation depth h max and residual displacement h r as the yield stress present in the object to be measured is increased is smaller than the reference value, the yield stress is seen that the larger drops. On the other hand, the elastic displacement h e, an inverted correlation is the maximum indentation depth h max and residual displacement h r indenter, elastic displacement h e higher yield stress increases is larger than the reference value, the yield stress It turns out that it becomes small, so that it falls.

図6は、パラメータとしてのN個の縦弾性係数の値と、圧子最大押込変位hmax、残留変位hおよび弾性変位hとの関係の解析結果の一例を示す図である。N個(N≧2)の縦弾性係数をパラメータとしたため、N個の降伏応力に対応する圧子最大押込変位hmax、残留変位hおよび弾性変位hのN組のデータが取得できる。 Figure 6 is a diagram showing the values of the N modulus of longitudinal elasticity as a parameter, an indenter Maximum indentation depth h max, an example of the analysis result of the relationship between the residual displacement h r and the elastic displacement h e. Due to the modulus of longitudinal elasticity of N (N ≧ 2) as a parameter, indenter Maximum indentation depth corresponding to N the yield stress h max, N sets of data of the residual displacement h r and the elastic displacement h e can be obtained.

横軸は縦弾性係数の変化の割合であって、ピーニング施工前の被測定物の縦弾性係数を基準値とし、この基準値に対する変化の割合を示す。変化の割合が負の値をとる場合には基準値よりも縦弾性係数が低下することを示し、変化の割合が正の値をとる場合には基準値よりも縦弾性係数が上昇することを示す。   The horizontal axis represents the rate of change in the longitudinal elastic modulus, and the longitudinal elastic modulus of the object to be measured before peening is taken as the reference value, and the rate of change relative to this reference value is shown. When the rate of change is negative, it indicates that the longitudinal elastic modulus is lower than the reference value, and when the rate of change is positive, it indicates that the longitudinal elastic modulus is higher than the reference value. Show.

縦軸は圧子最大押込変位hmax、残留変位hおよび弾性変位hの変化の割合であって、被測定物の縦弾性係数をピーニング施工前の縦弾性係数とした場合の各変位量を基準値とし、この基準値に対する変化の割合を示す。変化の割合が負の値をとる場合には基準値よりも変位が小さいことを示し、変化の割合が正の値をとる場合には基準値よりも変位が大きいことを示す。 The vertical axis indenter Maximum indentation depth h max, a rate of change of the residual displacement h r and the elastic displacement h e, each displacement amount in the case of the longitudinal elastic coefficient before peening the longitudinal elastic coefficient of the DUT As a reference value, the ratio of change with respect to this reference value is shown. When the rate of change is a negative value, it indicates that the displacement is smaller than the reference value, and when the rate of change is a positive value, it indicates that the displacement is greater than the reference value.

図6より、被測定物に存在する縦弾性係数が上昇するほど圧子最大押込変位hmax、残留変位hおよび弾性変位hは基準値よりも小さくなり、降伏応力が低下するほど大きくなることがわかる。なお、この相関関係は、弾性変位hでより強く見られる。 From FIG. 6, the indenter Maximum indentation depth h max as modulus present in the object to be measured is increased, the residual displacement h r and the elastic displacement h e is smaller than the reference value, the yield stress increases as decreases I understand. Incidentally, this correlation is seen more strongly elastic displacement h e.

ステップS4において、データ取得ステップS3で取得したL組の残留応力と各変位との相関関係から、以下に示すL−1次の多項近似式を最小二乗法などを用いて求める。残留応力を各変位の関数として表したL−1次の多項近似式は、以下のように表される。
[数1]
σ=a1r+a2rmax+a3rmax +・・・+aLrmax L−1
[数2]
σ=b1r+b2r+b3r +・・・+bLr L−1
[数3]
σ=c1r+c2r+c3r +・・・+cLr L−1
一方、各変位を残留応力の関数として表したL−1次の多項近似式を求めることもできる。
[数4]
max=d1r+d2rσ+d3rσ +・・・+dLrσ L−1
[数5]
=e1r+e2rσ+e3rσ +・・・+eLrσ L−1
[数6]
=f1r+f2rσ+f3rσ +・・・+fLrσ L−1
[数4]は圧子最大押込変位hmaxを残留応力の関数として表したL−1次の多項近似式、[数5]は残留変位hを残留応力の関数として表したL−1次の多項近似式、[数6]は弾性変位hを残留応力の関数として表したL−1次の多項近似式である。
In step S4, from the correlation between the L sets of residual stresses acquired in the data acquisition step S3 and the respective displacements, an L-1 order polynomial approximate expression shown below is obtained using a least square method or the like. An L-1 order polynomial approximate expression expressing the residual stress as a function of each displacement is expressed as follows.
[Equation 1]
σ r = a 1r + a 2r h max + a 3r h max 2 + ... + a Lr h max L-1
[Equation 2]
σ r = b 1r + b 2r h r + b 3r h r 2 +... + b Lr h r L−1
[Equation 3]
σ r = c 1r + c 2r h e + c 3r h e 2 + ··· + c Lr h e L-1
On the other hand, an L-1 order polynomial approximate expression expressing each displacement as a function of residual stress can also be obtained.
[Equation 4]
h max = d 1r + d 2r σ r + d 3r σ r 2 +... + d Lr σ r L-1
[Equation 5]
h r = e 1r + e 2r σ r + e 3r σ r 2 +... + e Lr σ r L-1
[Equation 6]
h e = f 1r + f 2r σ r + f 3r σ r 2 +... + f Lr σ r L−1
[Equation 4] is L-1 order polynomial approximate expression representing the maximum indentation depth h max indenter as a function of residual stress, Equation 5 is L-1-order representation of the residual displacement h r as a function of residual stress polynomial approximation, [6] is a polynomial approximation L-1-order representation of the elastic displacement h e as a function of residual stress.

なお、σは残留応力、hmaxは圧子最大押込変位hmax、hは残留変位h、hは弾性変位hを示す。また、[数1]におけるa1r、a2r、・・・、aLr、[数2]におけるb1r、b2r、・・・、bLr、および[数3]におけるc1r、c2r、・・・、cLr、[数4]におけるd1r、d2r、・・・、dLr、[数5]におけるe1r、e2r、・・・、eLr、および[数6]におけるf1r、f2r、・・・、fLrは定数である。 Incidentally, sigma r is the residual stress, h max is indenter Maximum indentation depth h max, h r the residual displacement h r, h e represents the elastic displacement h e. A 1r , a 2r ,..., A Lr in [ Equation 1], b 1r , b 2r ,..., B Lr in [ Equation 2], and c 1r , c 2r in [ Equation 3], .., C Lr , d 1r , d 2r in [ Equation 4], d Lr , e 1r in [ Equation 5], e 2r ,..., E Lr , and f in [ Equation 6] 1r , f2r ,..., FLr are constants.

また、M組の降伏応力と各変位との相関関係を用いて、降伏応力を各変位の関数として表したM−1次の多項近似式は、以下のように表される。
[数7]
σ=a1y+a2ymax+a3ymax +・・・+aMymax M−1
[数8]
σ=b1y+b2y+b3y +・・・+bMy M−1
[数9]
σ=c1y+c2y+c3y +・・・+cMy M−1
または、各変位を降伏応力の関数として表したM−1次の多項近似式を求めることもできる。
[数10]
max=d1y+d2yσ+d3yσ +・・・+dMyσ M−1
[数11]
=e1y+e2yσ+e3yσ +・・・+eMyσ M−1
[数12]
=f1y+f2yσ+f3yσ +・・・+fMyσ M−1
[数10]は圧子最大押込変位hmaxを降伏応力の関数として表したM−1次の多項近似式、[数11]は残留変位hを降伏応力の関数として表したM−1次の多項近似式、[数12]は弾性変位hを降伏応力の関数として表したM−1次の多項近似式である。
In addition, an M−1 order polynomial approximate expression expressing the yield stress as a function of each displacement using the correlation between the M sets of yield stress and each displacement is expressed as follows.
[Equation 7]
σ y = a 1y + a 2y h max + a 3y h max 2 + ... + a My h max M-1
[Equation 8]
σ y = b 1y + b 2y h r + b 3y h r 2 + ··· + b My h r M-1
[Equation 9]
σ y = c 1y + c 2y h e + c 3y h e 2 + ··· + c My h e M-1
Alternatively, it is also possible to obtain an M−1 order polynomial approximate expression expressing each displacement as a function of yield stress.
[Equation 10]
h max = d 1 y + d 2 y σ y + d 3 y σ y 2 +... + d My σ y M−1
[Equation 11]
h r = e 1y + e 2y σ y + e 3y σ y 2 +... + e My σ y M−1
[Equation 12]
h e = f 1y + f 2y σ y + f 3y σ y 2 +... + f My σ y M−1
[Expression 10] M-1 order polynomial approximate expression representing the maximum indentation depth h max indenter as a function of yield stress, Equation 11] M-1 order, which represents the residual displacement h r as a function of yield stress polynomial approximation, equation 12] is a polynomial approximation M-1 order, which represents the elastic displacement h e as a function of yield stress.

なお、σは残留応力を示す。また、[数7]におけるa1y、a2y、・・・、aMy、[数8]におけるb1y、b2y、・・・、bMy、および[数9]におけるc1y、c2y、・・・、cMy、[数10]におけるd1y、d2y、・・・、dMy、[数11]におけるe1y、e2y、・・・、eMy、および[数12]におけるf1y、f2y、・・・、fMyは定数である。 Note that σ r indicates a residual stress. Further, a 1y , a 2y ,..., A My in [ Equation 7], b 1y , b 2y ,..., B My in [ Equation 8], and c 1y , c 2y in [ Equation 9], , C My , d 1y , d 2y ,..., D My in [ Equation 10], e 1y , e 2y ,..., E My in [ Equation 11], and f in [Equation 12] 1y, f 2y, ···, f My is a constant.

また、N組の縦弾性係数と各変位との相関関係を用いて、縦弾性係数を各変位の関数として表したN−1次の多項近似式は、以下のように表される。
[数13]
E=a1E+a2Emax+a3Emax +・・・+aNEmax N−1
[数14]
E=b1E+b2E+b3E +・・・+bNE N−1
[数15]
E=c1E+c2E+c3E +・・・+cNE N−1
または、各変位を縦弾性係数の関数として表したN−1次の多項近似式を求めることもできる。
[数16]
max=d1E+d2EE+d3E+・・・+dNEN−1
[数17]
=e1E+e2EE+e3E+・・・+eNEN−1
[数18]
=f1E+f2EE+f3E+・・・+fNEN−1
[数16]は圧子最大押込変位hmaxを縦弾性係数の関数として表したN−1次の多項近似式、[数17]は残留変位hを縦弾性係数の関数として表したN−1次の多項近似式、[数18]は弾性変位hを縦弾性係数の関数として表したN−1次の多項近似式である。
Further, an N−1 order polynomial approximation expression in which the longitudinal elastic modulus is expressed as a function of each displacement using the correlation between N sets of longitudinal elastic modulus and each displacement is expressed as follows.
[Equation 13]
E = a 1E + a 2E h max + a 3E h max 2 +... + A NE h max N−1
[Formula 14]
E = b 1E + b 2E h r + b 3E h r 2 + ··· + b NE h r N-1
[Equation 15]
E = c 1E + c 2E h e + c 3E h e 2 + ··· + c NE h e N-1
Alternatively, it is also possible to obtain an N−1 order polynomial approximate expression in which each displacement is expressed as a function of the longitudinal elastic modulus.
[Equation 16]
h max = d 1E + d 2E E + d 3E E 2 +... + d NE E N−1
[Equation 17]
h r = e 1E + e 2E E + e 3E E 2 +... + e NE E N−1
[Equation 18]
h e = f 1E + f 2E E + f 3E E 2 +... + f NE E N−1
[Expression 16] is N-1 order polynomial approximation represents the maximum indentation depth h max indenter as a function of the modulus of longitudinal elasticity, Equation 17] N-1 which represents a residual displacement h r as a function of the longitudinal elastic modulus following polynomial approximation, equation 18] is a polynomial approximation N-1 order, which represents the elastic displacement h e as a function of the modulus of longitudinal elasticity.

なお、Eは縦弾性係数を示す。また、[数13]におけるa1E、a2E、・・・、aNE、[数14]におけるb1E、b2E、・・・、bNE、および[数15]におけるc1E、c2E、・・・、cNE、[数16]におけるd1E、d2E、・・・、dNE、[数17]におけるe1E、e2E、・・・、eNE、および[数18]におけるf1E、f2E、・・・、fNEは定数である。 E represents a longitudinal elastic modulus. In addition, a 1E , a 2E ,..., A NE in [ Equation 13], b 1E , b 2E ,..., B NE in [ Equation 14], and c 1E , c 2E in [ Equation 15], , C NE , d 1E , d 2E in [ Equation 16], d NE , e 1E in [ Equation 17], e 2E ,..., E NE , and f in [Equation 18] 1E , f2E ,..., FNE are constants.

取得した多項近似式はデータベース化され、解析データ取得処理は終了する。   The acquired polynomial approximation formula is made into a database, and the analysis data acquisition process ends.

次に、被測定物の機械的・物理的特性を表す数値を同定する工程について説明する。図7は、機械的・物理的特性を表す数値を同定するための工程を説明するフローチャートである。以下に説明する機械的・物理的特性を表す数値を同定する工程では、特に機械的・物理的特性を表す数値のうち残留応力を同定する場合について説明する。   Next, the process of identifying numerical values representing the mechanical and physical characteristics of the object to be measured will be described. FIG. 7 is a flowchart illustrating a process for identifying numerical values representing mechanical and physical characteristics. In the step of identifying numerical values representing mechanical / physical characteristics described below, a case where residual stress is identified among numerical values representing mechanical / physical characteristics will be described.

ステップS11において、圧子押込試験装置を用いて、被測定物におけるピーニング施工部位(表面改質部)に対し圧子押込試験を実施する。圧子押込試験は、被測定物のピーニング施工部位に対して所定の荷重を付加し、被測定物における押込点の荷重方向の変位を測定する。このとき被測定物に付加される所定の荷重は、弾塑性解析で模擬された付加荷重と同様の荷重である。   In step S11, an indenter indentation test is performed on the peening site (surface modified portion) in the object to be measured using an indenter indentation test apparatus. In the indenter indentation test, a predetermined load is applied to the peening site of the object to be measured, and the displacement in the load direction of the indentation point in the object to be measured is measured. At this time, the predetermined load applied to the object to be measured is the same load as the additional load simulated by the elastic-plastic analysis.

ステップS12において、圧子押込試験実施ステップS11の測定結果から、図1に示すような変位―荷重曲線を求める。   In step S12, a displacement-load curve as shown in FIG. 1 is obtained from the measurement result of indenter indentation test execution step S11.

ステップS13において、変位―荷重曲線から圧子最大押込変位hmax、残留変位hおよび弾性変位hを取得する。 In step S13, the displacement - indenter Maximum indentation depth from the load curve h max, to obtain the residual displacement h r and the elastic displacement h e.

ステップS14では、解析データ取得処理における多項近似式取得ステップS4において取得しデータベース化された多項近似式に、変位取得ステップS13で取得した圧子最大押込変位hmax、残留変位hまたは弾性変位hの値をそれぞれ代入することにより、機械的・物理的特性を表す数値である残留応力(σ)を同定する。 In step S14, the indenter maximum indentation displacement h max , residual displacement h r or elastic displacement h e acquired in the displacement acquisition step S13 is added to the polynomial approximation expression acquired in the polynomial approximation expression acquisition step S4 in the analysis data acquisition process and converted into a database. By substituting each value, residual stress (σ r ), which is a numerical value representing mechanical and physical characteristics, is identified.

具体的には、取得した圧子最大押込変位hmaxの値を用いて残留応力を求める場合、上述した[数1]または[数4]に示す多項近似式に、圧子最大押込変位hmaxの値を代入する。また、取得した残留変位hの値を用いて残留応力を求める場合、上述した[数2]または[数5]に示す多項近似式に、圧子押込試験で取得した残留変位hの値を代入する。取得した弾性変位hの値を用いて残留応力を求める場合には、上述した[数3]または[数6]に示す多項近似式に、圧子押込試験で取得した残留変位hの値を代入する。 Specifically, when obtaining the residual stress using the value of the acquired indenter Maximum indentation depth h max, the polynomial approximate expression shown in the above-described Equation 1 or Equation 4], indenter Maximum indentation values of displacement h max Is assigned. Also, when obtaining the residual stress using the value of the acquired residual displacement h r, the polynomial approximate expression shown in the above-described Equation 2 or Equation 5, the value of the residual displacement h r obtained in indenter indentation test substitute. When determining the residual stress using the value of the acquired acoustic displacement h e is the polynomial approximate expression shown in the above-described [Expression 3] or [6], the value of the residual displacement h r obtained in indenter indentation test substitute.

残留応力の値は構造物の健全性の評価に用いられることで、表面改質部に対する機械的特性評価方法が行われる。   The residual stress value is used for evaluating the soundness of the structure, so that a mechanical property evaluation method for the surface modified portion is performed.

以上で被測定物の機械的・物理的特性を表す数値を同定するための工程は終了する。   The process for identifying numerical values representing the mechanical and physical characteristics of the object to be measured is thus completed.

なお、機械的・物理的特性のうち残留応力を同定する工程について説明したが、降伏応力および縦弾性係数についても同様に求めることができる。具体的には、変位取得ステップS13で取得した圧子最大押込変位hmax、残留変位hまたは弾性変位hの値を、[数7]〜[数18]にそれぞれ代入することで、機械的・物理的特性を表す数値に係る降伏応力、縦弾性係数についても同様に同定することができる。 In addition, although the process which identifies a residual stress among mechanical and physical characteristics was demonstrated, it can obtain | require similarly about a yield stress and a longitudinal elastic modulus. Specifically, the indenter Maximum indentation depth h max obtained by the displacement acquiring step S13, the value of the residual displacement h r or elastic displacement h e, by substituting each of [Expression 7] to [Expression 18], mechanical -Yield stress and longitudinal elastic modulus related to numerical values representing physical characteristics can be similarly identified.

この表面改質部に対する機械的特性評価方法によれば、表面改質が行われたことによる機械的・物理的特性の影響評価を考慮して、残留応力、降伏応力および縦弾性係数を同定するため、より正確に機械的・物理的特性を評価することができる。   According to the mechanical property evaluation method for the surface modification part, the residual stress, yield stress and longitudinal elastic modulus are identified in consideration of the influence evaluation of the mechanical and physical properties due to the surface modification. Therefore, mechanical and physical characteristics can be evaluated more accurately.

また、表面改質が行われたことによる残留応力の変化のみならず、降伏応力、縦弾性係数などの健全性評価に影響を与える他の数値についても求めることができる。   In addition to the change in residual stress due to the surface modification, other numerical values that affect the soundness evaluation such as yield stress and longitudinal elastic modulus can be obtained.

さらに、たとえば原子力発電プラント内の原子炉内構造物など、特に取り外して機械的・物理的特性の評価を実施することが困難な原子炉内構造物に対しても機械的・物理的特性の評価を行うことができる点で有効である。   In addition, evaluation of mechanical / physical characteristics, especially for structures inside nuclear reactors that are difficult to remove and evaluate mechanical / physical characteristics, such as internal structures in nuclear power plants, etc. It is effective in that it can be performed.

本実施形態においては、解析データから多項近似式を取得してデータベース化したが、残留応力などと圧子最大押込変位hmax、残留変位hおよび弾性変位hとの相関関係が一対一に対応付けられたデータを解析データとしてデータベース化し、残留応力などを同定してもよい。例えば、実際に被測定物に対して圧子押込試験を行うことで得られた圧子最大押込変位hmax、残留変位hまたは弾性変位hの値と、弾塑性解析を行うことで取得した残留応力と一対一に対応付けられた各変位の値である解析データを比較する。解析データにおける各変位のうち、変位取得ステップS13で取得した変位と一致する変位を決定し、その値に対応付けられた残留応力の値を被測定物の残留応力の値として同定する。また、一致する変位の値が存在しない場合には、解析データの中で最も近い変位の値を決定し、例えば線形補間を行うことで残留応力の値を同定する。 In the present embodiment, although a database to obtain the polynomial approximation from the analysis data, such as an indenter Maximum indentation depth residual stress h max, the correlation between the residual displacement h r and the elastic displacement h e is one-to-one correspondence The attached data may be converted into a database as analysis data to identify residual stress and the like. For example, actual indenter indentation test indenter Maximum obtained by performing push displacement h max relative to the object to be measured, and the value of the residual displacement h r or elastic displacement h e, residual obtained by performing the elastoplastic analysis The analysis data, which is the value of each displacement associated with the stress one-to-one, is compared. Among the displacements in the analysis data, a displacement that matches the displacement acquired in the displacement acquisition step S13 is determined, and the value of the residual stress associated with the value is identified as the value of the residual stress of the object to be measured. If there is no matching displacement value, the closest displacement value in the analysis data is determined, and the residual stress value is identified by performing linear interpolation, for example.

また、被測定物は原子炉内構造物に限らず、表面改質部を有する種々の構造物を被測定物として適用することができる。   In addition, the object to be measured is not limited to the reactor internal structure, and various structures having a surface modification portion can be applied as the object to be measured.

また、表面改質手段としては、ウォータジェットピーニングに限らず、例えば構造物の表面上に対して皮膜形成を行うなど他の表面改質手段を用いた場合についても適用することができる。   Further, the surface modifying means is not limited to water jet peening, and can be applied to the case where other surface modifying means such as, for example, forming a film on the surface of a structure is used.

[第2の実施形態]
次に、本発明に係る表面改質部に対する機械的特性評価方法の第2実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the mechanical property evaluation method for the surface modified portion according to the present invention will be described.

表面改質部の機械的・物理的特性を表す種々の数値は、独立して一の値のみが変化するのではなく、それぞれの数値が変化する。例えば、表面改質の影響を受けて残留応力の数値のみが変化するのではなく、降伏応力と縦弾性係数と共に互いに影響し合い変化することが想定される。このため、独立した数値を求める関数のみならず、機械的・物理的特性を表す残留応力、降伏応力および縦弾性係数の数値を互いに関連付けて取得することで、より高精度な機械的特性評価を行うことができる。本実施形態においては、機械的・物理的特性を表す残留応力、降伏応力および縦弾性係数の数値を互いに関連付けて取得するために、第1実施形態において取得した多項近似式を用いる。   Of the various numerical values representing the mechanical and physical characteristics of the surface modified portion, not only one value changes independently, but each numerical value changes. For example, it is assumed that not only the value of the residual stress changes due to the effect of surface modification, but also influences and changes with the yield stress and the longitudinal elastic modulus. For this reason, not only functions for obtaining independent numerical values but also the residual stress, yield stress, and longitudinal elastic modulus values representing mechanical and physical properties are obtained in association with each other, thereby enabling more accurate mechanical property evaluation. It can be carried out. In the present embodiment, the polynomial approximate expression acquired in the first embodiment is used in order to acquire the residual stress, the yield stress, and the longitudinal elastic modulus representing the mechanical and physical characteristics in association with each other.

本実施形態における表面改質部に対する機械的特性評価方法を説明する。図8は、解析データ取得処理の工程を示すフローチャートである。   A mechanical property evaluation method for the surface modified portion in the present embodiment will be described. FIG. 8 is a flowchart showing the process of analysis data acquisition processing.

解析実施ステップS21〜多項近似式取得ステップS23は、第1実施形態における解析データ取得処理の解析実施ステップS1〜多項近似式取得ステップS4の工程とほぼ同様であるため、説明は省略する。   Since the analysis execution step S21 to the polynomial approximate expression acquisition step S23 are substantially the same as the analysis execution step S1 to the polynomial approximation expression acquisition step S4 of the analysis data acquisition process in the first embodiment, the description thereof is omitted.

ステップS24において、圧子最大押込変位hmax、残留変位hおよび弾性変位hを、残留応力(σ)、降伏応力(σ)および縦弾性係数(E)の関数として表した関数を取得し、データベース化する。 In step S24, acquires indenter Maximum indentation depth h max, the residual displacement h r and the elastic displacement h e, the residual stress (sigma r), a function expressed as a function of yield stress (sigma y) and the modulus of longitudinal elasticity (E) And create a database.

圧子最大押込変位hmaxは、圧子最大押込変位hmaxを残留応力の関数として表したL−1次の多項近似式である[数4]、降伏応力の関数として表したM−1次の多項近似式である[数10]、および縦弾性係数の関数として表したN−1次の多項近似式である[数16]の和を取ることで、残留応力、降伏応力および縦弾性係数の関数として表される。
[数19]
max=(d1r+d2rσ+d3rσ +・・・+dLrσ L−1)+(d1y+d2yσ+d3yσ +・・・+dMyσ M−1)+(d1E+d2EE+d3E+・・・+dNEN−1
また、残留変位hは、残留変位hを残留応力の関数として表したL−1次の多項近似式である[数5]、降伏応力の関数として表したM−1次の多項近似式である[数11]、および縦弾性係数の関数として表したN−1次の多項近似式である[数17]の和を取ることで、残留応力、降伏応力および縦弾性係数の関数として表される。
[数20]
=(e1r+e2rσ+e3rσ +・・・+eLrσ L−1)+(e1y+e2yσ+e3yσ +・・・+eMyσ M−1)+(e1E+e2EE+e3E+・・・+eNEN−1
さらに、弾性変位hは、弾性変位hを残留応力の関数として表したL−1次の多項近似式である[数6]、降伏応力の関数として表したM−1次の多項近似式である[数12]、および縦弾性係数の関数として表したN−1次の多項近似式である[数18]の和を取ることで、残留応力、降伏応力および縦弾性係数の関数として表される。
[数21]
=(f1r+f2rσ+f3rσ +・・・+fLrσ L−1)+(f1y+f2yσ+f3yσ +・・・+fMyσ M−1)+(f1E+f2EE+f3E+・・・+fNEN−1
[数19]〜[数21]で表される各変位の関数はデータベース化され、解析データ取得処理は終了する。
The indenter maximum indentation displacement h max is an L−1 order polynomial approximate expression expressing the indenter maximum indentation displacement h max as a function of residual stress [Equation 4], and an M−1 order polynomial expressed as a function of yield stress. By taking the sum of [Equation 10] which is an approximate expression and [Equation 16] which is an N-1 order polynomial approximate expression expressed as a function of the longitudinal elastic modulus, a function of residual stress, yield stress and longitudinal elastic modulus is obtained. Represented as:
[Equation 19]
h max = (d 1r + d 2r σ r + d 3r σ r 2 +... + d Lr σ r L-1 ) + (d 1y + d 2y σ y + d 3y σ y 2 +... + d My σ y M− 1) + (d 1E + d 2E E + d 3E E 2 + ··· + d NE E N-1)
Further, the residual displacement h r is a polynomial approximation L-1-order representation of the residual displacement h r as a function of residual stress Equation 5], M-1 order polynomial approximation expressed as a function of yield stress [Equation 11] and [Numerical equation 17], which is an N−1 order polynomial approximation expressed as a function of the longitudinal elastic modulus, are obtained as a function of residual stress, yield stress and longitudinal elastic modulus. Is done.
[Equation 20]
h r = (e 1r + e 2r σ r + e 3r σ r 2 +... + e Lr σ r L-1 ) + (e 1y + e 2y σ y + e 3y σ y 2 +... + e My σ y M− 1 ) + (e 1E + e 2E E + e 3E E 2 +... + E NE E N-1 )
Further, the elastic displacement h e is a polynomial approximation L-1-order representation of the elastic displacement h e as a function of residual stress Equation 6], M-1 order polynomial approximation expressed as a function of yield stress [Equation 12] and [Numerical equation 18], which is an N-1 order polynomial approximate expression expressed as a function of the longitudinal elastic modulus, can be expressed as a function of residual stress, yield stress and longitudinal elastic modulus. Is done.
[Equation 21]
h e = (f 1r + f 2r σ r + f 3r σ r 2 +... + f Lr σ r L-1 ) + (f 1y + f 2y σ y + f 3y σ y 2 +... + f My σ y M− 1 ) + (f 1E + f 2E E + f 3E E 2 +... + F NE E N-1 )
The functions of the displacements represented by [Equation 19] to [Equation 21] are compiled into a database, and the analysis data acquisition process ends.

次に、被測定物の機械的・物理的特性を表す数値を同定する工程について説明する。図9は、機械的・物理的特性を表す数値を同定するための工程を説明するフローチャートである。   Next, the process of identifying numerical values representing the mechanical and physical characteristics of the object to be measured will be described. FIG. 9 is a flowchart for explaining a process for identifying numerical values representing mechanical and physical characteristics.

圧子押込試験実施ステップS31〜変位取得ステップS33は、第1実施形態における機械的・物理的特性を表す数値を同定する工程における圧子押込試験実施ステップS11〜変位取得ステップS13とほぼ同様であるため、説明は省略する。   The indenter indentation test execution step S31 to the displacement acquisition step S33 are substantially the same as the indenter indentation test execution step S11 to the displacement acquisition step S13 in the step of identifying numerical values representing the mechanical and physical characteristics in the first embodiment. Description is omitted.

ステップS34において、解析データ取得処理における関数取得ステップS24において取得した各変位の関数である[数19]〜[数21]に、変位取得ステップS33で取得した圧子最大押込変位hmax、残留変位hまたは弾性変位hの値をそれぞれ代入して連立方程式を取得する。この連立方程式の解を求めることで、残留応力、降伏応力および縦弾性係数の値が同定され、この値を用いて表面改質部の機械的特性評価を行うことができる。以上で機械的・物理的特性を表す数値を同定する工程は終了する。 In step S34, the indenter maximum indentation displacement h max and the residual displacement h acquired in the displacement acquisition step S33 are added to [Equation 19] to [Equation 21] which are functions of each displacement acquired in the function acquisition step S24 in the analysis data acquisition process. and r or the value of the elastic displacement h e assigns each to obtain simultaneous equations. By obtaining a solution of the simultaneous equations, the values of residual stress, yield stress and longitudinal elastic modulus are identified, and the mechanical property evaluation of the surface modified portion can be performed using these values. This completes the process of identifying numerical values representing mechanical and physical characteristics.

この表面改質部に対する機械的特性評価方法によれば、機械的・物理的特性を表す残留応力、降伏応力および縦弾性係数の数値を互いに関連付けて同定することで、より高精度な機械的特性評価を行うことができる。   According to the mechanical property evaluation method for this surface modification part, the higher-accuracy mechanical properties are identified by identifying the residual stress, yield stress and longitudinal elastic modulus values that represent the mechanical and physical properties. Evaluation can be made.

被測定物に対する圧子押込試験の測定結果である変位―荷重曲線の一例を示す図。The figure which shows an example of the displacement-load curve which is a measurement result of the indenter indentation test with respect to a to-be-measured object. 第1実施形態における解析データ取得処理を説明するフローチャート。The flowchart explaining the analysis data acquisition process in 1st Embodiment. 弾塑性解析を行い取得した変位―荷重曲線の一例を示すグラフ。The graph which shows an example of the displacement-load curve acquired by performing the elastic-plastic analysis. 残留応力と各変位との相関関係の解析結果の一例を示す図。The figure which shows an example of the analysis result of the correlation with a residual stress and each displacement. 降伏応力と各変位との相関関係の解析結果の一例を示す図。The figure which shows an example of the analysis result of the correlation with a yield stress and each displacement. 縦弾性係数と各変位との相関関係の解析結果の一例を示す図。The figure which shows an example of the analysis result of the correlation with a longitudinal elastic modulus and each displacement. 第1実施形態における機械的・物理的特性を同定する工程を説明するフローチャート。The flowchart explaining the process of identifying the mechanical and physical characteristic in 1st Embodiment. 第2実施形態における解析データ取得処理を説明するフローチャート。The flowchart explaining the analysis data acquisition process in 2nd Embodiment. 第2実施形態における機械的・物理的特性を同定する工程を説明するフローチャート。The flowchart explaining the process of identifying the mechanical and physical characteristic in 2nd Embodiment.

Claims (4)

表面改質手段により表面特性を改質した表面改質部を有する被測定物に対する圧子押込試験と同様の条件を模擬し、前記被測定物の機械的・物理的特性を表す数値をパラメータとして弾塑性解析を行い、圧子最大押込変位、残留変位または弾性変位と前記機械的・物理的特性を表す数値との相関関係を取得しデータベース化する弾塑性解析ステップと、
前記被測定物に前記圧子押込試験を行い、前記圧子押込試験の結果から圧子最大押込変位、残留変位または弾性変位を取得する押込試験ステップと、
前記押込試験ステップで取得した圧子最大押込変位、残留変位または弾性変位を、前記データベース化された圧子最大押込変位、残留変位または弾性変位と前記機械的・物理的特性を表す数値との相関関係と比較し、前記被測定物の前記機械的・物理的特性を表す数値を同定する機械的・物理的特性同定ステップとを具備することを特徴とする表面改質部に対する機械的特性評価方法。
Simulates the same conditions as the indentation test for an object having a surface modified portion whose surface characteristics have been modified by surface modification means, and numerical values representing the mechanical and physical characteristics of the object to be measured are used as parameters. An elasto-plastic analysis step of performing a plastic analysis, obtaining a correlation between the indenter maximum indentation displacement, residual displacement or elastic displacement and a numerical value representing the mechanical / physical characteristics and creating a database;
Performing an indenter indentation test on the object to be measured, and obtaining an indenter maximum indentation displacement, residual displacement or elastic displacement from a result of the indenter indentation test; and
The indenter maximum indentation displacement, residual displacement or elastic displacement obtained in the indentation test step is the correlation between the databased indenter maximum indentation displacement, residual displacement or elastic displacement and the numerical value representing the mechanical / physical characteristics. A mechanical property evaluation method for a surface modification portion, comprising: a mechanical / physical property identification step for comparing and identifying a numerical value representing the mechanical / physical property of the object to be measured.
前記機械的・物理的特性を表す数値は、残留応力、降伏応力および縦弾性係数の少なくとも一つの値であることを特徴とする請求項1記載の表面改質部に対する機械的特性評価方法。 2. The method for evaluating mechanical characteristics of a surface modified portion according to claim 1, wherein the numerical value representing the mechanical / physical characteristics is at least one of residual stress, yield stress and longitudinal elastic modulus. 前記弾塑性解析ステップで取得した前記圧子最大押込変位、残留変位または弾性変位と、前記機械的・物理的特性を表す数値との相関関係は、多項近似式で表してデータベース化し、
前記機械的・物理的特性同定ステップは、前記多項近似式に前記押込試験ステップで取得した圧子最大押込変位、残留変位または弾性変位を代入して前記機械的・物理的特性を表す数値を同定することを特徴とする請求項1記載の表面改質部に対する機械的特性評価方法。
Correlation between the indenter maximum indentation displacement, residual displacement or elastic displacement acquired in the elastoplastic analysis step and the numerical value representing the mechanical / physical characteristics is expressed in a polynomial approximation formula to create a database,
In the mechanical / physical property identification step, a numerical value representing the mechanical / physical property is identified by substituting the indenter maximum indentation displacement, residual displacement, or elastic displacement acquired in the indentation test step into the polynomial approximation formula. The mechanical property evaluation method for a surface modified portion according to claim 1.
前記弾塑性解析ステップで取得した前記圧子最大押込変位、残留変位または弾性変位と、前記機械的・物理的特性を表す数値との相関関係は、
前記圧子最大押込変位を前記機械的・物理的特性を表す数値の関数として表す式と、前記残留変位を前記機械的・物理的特性を表す数値の関数として表す式と、前記弾性変位を前記機械的・物理的特性を表す数値の関数として表す式とで表してデータベース化し、
前記機械的・物理的特性同定ステップは、前記圧子最大押込変位、残留変位および弾性変位を、前記圧子最大押込変位を前記機械的・物理的特性を表す数値の関数として表す式と、前記残留変位を前記機械的・物理的特性を表す数値の関数として表す式と、前記弾性変位を前記機械的・物理的特性を表す数値の関数として表す式とにそれぞれ代入して連立方程式を取得し、前記連立方程式を解くことで前記機械的・物理的特性を表す数値を同定することを特徴とする請求項1記載の表面改質部に対する機械的特性評価方法。
The correlation between the indenter maximum indentation displacement, residual displacement or elastic displacement acquired in the elasto-plastic analysis step and the numerical value representing the mechanical / physical characteristics is as follows:
An expression representing the indenter maximum indentation displacement as a function of a numerical value representing the mechanical / physical characteristics; an expression representing the residual displacement as a function of a numerical value representing the mechanical / physical characteristics; Represented as a function of numerical values representing physical and physical characteristics and created as a database,
The mechanical / physical characteristic identification step includes: expressing the indenter maximum indentation displacement, residual displacement and elastic displacement as a function of a numerical value representing the mechanical and physical characteristics of the indenter maximum indentation displacement; To obtain a simultaneous equation by substituting the equation representing the mechanical and physical properties as a function of the numerical value and the equation representing the elastic displacement as a numerical function representing the mechanical and physical properties, respectively, 2. The method for evaluating mechanical properties of a surface modified portion according to claim 1, wherein numerical values representing the mechanical and physical properties are identified by solving simultaneous equations.
JP2008011105A 2008-01-22 2008-01-22 Mechanical characteristics evaluation method with respect to modified portion Pending JP2009174886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011105A JP2009174886A (en) 2008-01-22 2008-01-22 Mechanical characteristics evaluation method with respect to modified portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011105A JP2009174886A (en) 2008-01-22 2008-01-22 Mechanical characteristics evaluation method with respect to modified portion

Publications (1)

Publication Number Publication Date
JP2009174886A true JP2009174886A (en) 2009-08-06

Family

ID=41030146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011105A Pending JP2009174886A (en) 2008-01-22 2008-01-22 Mechanical characteristics evaluation method with respect to modified portion

Country Status (1)

Country Link
JP (1) JP2009174886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115519A1 (en) * 2011-10-11 2013-04-11 HS - Technische Beratung Method for testing material, particularly for hardness testing, involves producing impression in to be tested material in experimental manner with test body with known geometry and with known test load
WO2018169013A1 (en) * 2017-03-16 2018-09-20 新日鐵住金株式会社 Method for estimating hardness of cold worked part, and method for acquiring hardness/equivalent plastic strain curve of steel material
JP2019174270A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Deformation resistance measuring method of elastic-plastic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115519A1 (en) * 2011-10-11 2013-04-11 HS - Technische Beratung Method for testing material, particularly for hardness testing, involves producing impression in to be tested material in experimental manner with test body with known geometry and with known test load
WO2018169013A1 (en) * 2017-03-16 2018-09-20 新日鐵住金株式会社 Method for estimating hardness of cold worked part, and method for acquiring hardness/equivalent plastic strain curve of steel material
JP6399269B1 (en) * 2017-03-16 2018-10-03 新日鐵住金株式会社 Hardness estimation method for cold-worked parts and hardness-equivalent plastic strain curve acquisition method for steel
US11131612B2 (en) 2017-03-16 2021-09-28 Nippon Steel Corporation Method for estimating hardness of cold worked component and method for acquiring hardness-equivalent plastic strain curve of steel material
JP2019174270A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Deformation resistance measuring method of elastic-plastic material
JP7010107B2 (en) 2018-03-28 2022-01-26 日本製鉄株式会社 Deformation resistance measurement method for elasto-plastic materials

Similar Documents

Publication Publication Date Title
JP6371409B2 (en) Method for evaluating the condition of members
US20200408657A1 (en) Method to Determine Mixed-Mode (I/III) Dynamic Fracture Toughness of Materials
Yekta et al. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds
Campagnolo et al. Crack initiation life in notched steel bars under torsional fatigue: Synthesis based on the averaged strain energy density approach
Alashti et al. Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
Yagi et al. Evaluation of crack propagation behaviors in a T-shaped tubular joint employing tetrahedral FE modeling
Akopyan et al. On a deformation sign for identifying defects on the basis of the analysis of the forms of the natural vibrations of a cantilever with a notch
JP2011033582A (en) Residual stress evaluation method and shock load evaluation method of peened part
JP2009174886A (en) Mechanical characteristics evaluation method with respect to modified portion
Zai et al. Instant dynamic response measurements for crack monitoring in metallic beams
Manchoul et al. A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316L target
JP2007057325A (en) Remaining lifetime prediction method
Dinovitzer et al. Geometric dent characterization
Zhu et al. Effect of residual stress or plastic deformation history on fatigue life simulation of pipeline dents
Lewis et al. Determination of remnant residual stresses in fracture toughness specimens extracted from large components
JP6129500B2 (en) Life prediction apparatus, method and program for reactor internal structure
Ahmed Damage detection in reinforced concrete square slabs using modal analysis and artifical neural network
Barua et al. Fatigue Modeling of 508 LAS Under Variable Amplitude Loading: A Mechanistic Based Analytical Approach
Mohanty et al. Study the Cyclic Plasticity Behavior of 508 LAS Under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components
JP6650328B2 (en) Residual stress estimation method and residual stress estimation device
Pinheiro et al. Stress concentration factors of dented pipelines
Mirzaee-Sisan et al. Standardisation on Measurement and Interpretation of Residual Stress Data
Ryu et al. Effects of work hardening models on low-cycle fatigue evaluations of coiled tubing with CT-100 steel
Fekete et al. Extending reliability of FEM simulations, based on optically assisted tensile tests and digital twins

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426