JP2011033582A - Residual stress evaluation method and shock load evaluation method of peened part - Google Patents

Residual stress evaluation method and shock load evaluation method of peened part Download PDF

Info

Publication number
JP2011033582A
JP2011033582A JP2009182734A JP2009182734A JP2011033582A JP 2011033582 A JP2011033582 A JP 2011033582A JP 2009182734 A JP2009182734 A JP 2009182734A JP 2009182734 A JP2009182734 A JP 2009182734A JP 2011033582 A JP2011033582 A JP 2011033582A
Authority
JP
Japan
Prior art keywords
residual stress
peening
construction part
impact load
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009182734A
Other languages
Japanese (ja)
Inventor
Katsunobu Watanabe
勝信 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009182734A priority Critical patent/JP2011033582A/en
Publication of JP2011033582A publication Critical patent/JP2011033582A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of evaluating residual stress and shock load of a peened part of a peened structure more easily and speedily than before. <P>SOLUTION: In the residual stress evaluation method for evaluating residual stress of a peened part of a peened structure, an indentation test is performed to the peened part to acquire an evaluation index of residual stress. Elasto-plasticity analysis is performed with residual stress as a parameter to determine the relationship between a predicted value of residual stress predicted for a system on which the indentation test is performed and the evaluation index of residual stress. A predicted value of residual stress of the peened part is determined on the basis of the evaluation index of residual stress determined by the indentation test and the relationship between the predicted value of residual stress and the evaluation index of residual stress determined by the elasto-plastic analysis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発電プラントや各種産業用プラント内の腐食環境にある構造物等のピーニング施工部の残留応力及び衝撃荷重を評価するためのピーニング施工部の残留応力評価方法及び衝撃荷重評価方法に関する。   The present invention relates to a residual stress evaluation method and an impact load evaluation method for a peening construction part for evaluating a residual stress and an impact load of a peening construction part such as a structure in a corrosive environment in a power plant or various industrial plants.

一般に、発電プラント等の構造物や、各種産業用プラント内の腐食環境にある構造物等では、特に溶接等の熱影響を受けて残留引っ張り応力が構造物に存在すると、この局所的な部分において、その引っ張り応力や腐食環境の相互作用により応力腐食割れが生じる場合がある。このため、このような部位を構成する材料としては、腐食し難い金属材料が用いられ、また、破損を未然に防ぐため定期的に取替えを実施する。   In general, in structures such as power plants and in corrosive environments in various industrial plants, especially when there is residual tensile stress in the structure due to thermal effects such as welding, this local part Stress corrosion cracking may occur due to the interaction between the tensile stress and the corrosive environment. For this reason, a metal material which does not easily corrode is used as a material constituting such a portion, and replacement is periodically performed in order to prevent damage.

しかしながら、例えば沸騰水型原子炉における炉心シュラウドやそのサポート構造、さらには原子炉の炉低部にある制御棒駆動機構ハウジング等は溶接構造となっており、切断等をしない限り取り替えることはできず、本来は半永久的な構造物である。   However, for example, the core shroud in a boiling water reactor and its support structure, as well as the control rod drive mechanism housing in the lower part of the reactor, have a welded structure and cannot be replaced unless they are cut. Originally a semi-permanent structure.

上記のような取替えが困難な構造物に対して応力腐食割れを事前に防ぐ予防手段として、材質表面に衝撃を与えて引っ張り応力を圧縮応力へ改善し表面改質を行うピーニング技術がある。ピーニング技術としては、プラズマの衝撃力を利用するレーザピーニング(例えば、特許文献1参照。)、キャビテーション崩壊時の衝撃力を利用するキャビテーションショットレスピーニング又はウォータージェットピーニング(例えば、特許文献2参照)、ショットピーニング等が知られている。   As a preventive measure for preventing stress corrosion cracking in advance for a structure that is difficult to replace as described above, there is a peening technique in which an impact is applied to the surface of a material to improve the tensile stress to a compressive stress and thereby improve the surface. As the peening technique, laser peening using the impact force of plasma (for example, refer to Patent Document 1), cavitation shotless peening or water jet peening using the impact force at the time of cavitation collapse (for example, refer to Patent Document 2), Shot peening and the like are known.

従来、上記のピーニング技術を実機に対して施工した後の確認は、基本的には施工部位に対する目視確認のみで行っている。また、残留圧縮応力の程度は、施工前に実機施工と同様な条件で、施工部位の材料と同じ試験材料に対して試施工を行い、施工済試験材の残留圧縮応力の大きさをX線回折法等により測定して確認することによって、その性能を担保している。   Conventionally, confirmation after applying the above peening technique to an actual machine is basically performed only by visual confirmation of the construction site. Also, the degree of residual compressive stress is the same as the actual machine construction prior to construction. The performance is ensured by measuring and confirming using a diffraction method or the like.

また、上記のピーニングによる加工能力は、ピーニングによる衝撃荷重によるものであり、衝撃荷重を最も効率良く与えることが重要となる。但し、必ずしも衝撃荷重が大きければ良いというわけではなく、ある一定以上の衝撃荷重を与えると、逆に構造物に壊食等の損傷を与えてしまう恐れもあり、表面改質に必要な残留圧縮応力が得られれば、それ以上の衝撃荷重を与える必要はない。   Further, the processing ability by the above peening is due to the impact load by peening, and it is important to apply the impact load most efficiently. However, the impact load is not necessarily large. If an impact load of a certain level or more is applied, the structure may be damaged, such as erosion. If the stress is obtained, it is not necessary to apply an impact load beyond that.

こうしたことから、ウォータージェットピーニングに関しては、ピーニング効果が有効に得られるように、ノズルに衝撃パルスセンサを設置して、測定される周波数特性が予測された周波数特性の最適値となるようにノズル−加工面距離や、水の噴射圧力を制御する手段を具備するものや(例えば、特許文献3参照。)、遠隔操作における水中ピーニング施工の状態を外部から監視するために、センサを加工対象部材近傍に配置し、残留応力が十分に改善される施工条件になっているか監視する手段を具備するものがある(例えば、特許文献4参照)。   For this reason, with regard to water jet peening, an impact pulse sensor is installed in the nozzle so that the peening effect can be effectively obtained, and the nozzle frequency is set so that the measured frequency characteristic becomes the optimum value of the predicted frequency characteristic. In order to monitor the processing surface distance and the means for controlling the water jet pressure (for example, refer to Patent Document 3), and the state of underwater peening in remote operation from the outside, a sensor is provided near the processing target member. And a means for monitoring whether or not the construction conditions are such that the residual stress is sufficiently improved (see, for example, Patent Document 4).

一方、硬さ試験等に用いる圧子押込により、弾塑性材料定数を決定する方法が知られている。例えば、前もって圧子押込時の変位−荷重曲線を2次関数で表しておき、対象物に対して圧子押込試験を行って得られる変位−荷重曲線の2次関数から、降伏応力、加工硬化指数、及び加工硬化係数を決定する手法が知られている(例えば、特許文献5参照。)。また、前もって押込深さや硬さと残留ひずみの相関を求めておき、対象物(主に原子炉用黒鉛材料)に対して圧子押込試験を行って、押込深さや硬さから残留ひずみを決定する方法が知られている(例えば、特許文献6参照。)。   On the other hand, a method for determining an elastoplastic material constant by indentation used for a hardness test or the like is known. For example, a displacement-load curve at the time of indenter indentation is expressed by a quadratic function in advance, and a yield stress, work hardening index, and a quadratic function of a displacement-load curve obtained by performing an indenter indentation test on an object are obtained. and techniques for determining the work hardening coefficient is known (e.g., see Patent Document 5.). In addition, the correlation between indentation depth and hardness and residual strain is obtained in advance, and an indenter indentation test is performed on the object (mainly graphite material for nuclear reactors) to determine the residual strain from the indentation depth and hardness. Is known (for example, see Patent Document 6).

特許3373638号公報Japanese Patent No. 3373638 特許2878529号公報Japanese Patent No. 2878529 特開平6−47668号公報Japanese Patent Laid-Open No. 6-47668 特開平8−71919号公報JP-A-8-71919 特開平9―288050号公報JP-A-9-288050 特開平8−247914号公報JP-A-8-247914

前述のとおり、従来においては、原子炉内構造物等にピーニング施工を行った場合、施工後の確認は目視確認であり、残留圧縮応力の程度は、施工前に実機施工と同様な条件で、施工部位の材料と同じ試験材料に対して試施工を行うことで性能を担保している。同様にピーニングによる衝撃荷重についても、施工前の施工部位の材料と同じ試験材料に対して試施工を行い、圧電素子等の各種センサを試験材料に設置し測定を行って、施工時のピーニング条件を決めて担保している。   As mentioned above, in the past, when peening construction was performed on the reactor internal structure, etc., the confirmation after construction was visual confirmation, and the degree of residual compressive stress was the same as the actual equipment construction before construction, Performance is ensured by performing trial construction on the same test material as the construction site material. Similarly, with regard to the impact load due to peening, trial construction is performed on the same test material as the material at the construction site before construction, and various sensors such as piezoelectric elements are placed on the test material and measured, and peening conditions during construction are measured. It is determined and secured.

また、実際に残留応力を測定する手段としては、X線回折法等があるが、実機施工部にX線回折法を適用するのは困難である。同様に衝撃荷重を測定する手段も、施工部位側にセンサを設置する必要があり、特に原子炉内構造物等に対しては設置困難であるとともに、工事コストの増加要因となる。   Moreover, as means for actually measuring the residual stress, there is an X-ray diffraction method or the like, but it is difficult to apply the X-ray diffraction method to an actual machine construction part. Similarly, the means for measuring the impact load also needs to install a sensor on the construction site side, which is difficult to install especially for the reactor internal structure and the like, and increases the construction cost.

一方、施工前の施工部位と同じ試験材料片に対する試施工での性能確認においては、残留応力の測定と衝撃荷重測定はそれぞれ独立して実施するか若しくは残留応力測定のみで性能を担保している。そして、施工部位や施工条件が変化する毎に条件に合わせて試施工を実施し確認しており、ピーニング施工部の残留応力及び衝撃荷重の簡便な評価方法の開発が望まれていた。   On the other hand, in the performance confirmation in the trial construction for the same test material piece as the construction site before construction, the residual stress measurement and the impact load measurement are performed independently or the performance is guaranteed only by the residual stress measurement. . And every time the construction site and construction conditions change, trial construction is carried out according to the conditions, and it has been desired to develop a simple evaluation method for residual stress and impact load of the peening construction part.

本発明は、上記課題を解決するためになされたものであり、ピーニング施工した構造物のピーニング施工部の残留応力及び衝撃荷重を従来に比べて簡便かつ迅速に評価することのできるピーニング施工部の残留応力評価方法及び衝撃荷重評価方法を提供することを目的としている。   The present invention has been made in order to solve the above-mentioned problems, and it is possible to easily and quickly evaluate the residual stress and impact load of a peened construction part of a structure subjected to peening construction as compared with the conventional peening construction part. It aims at providing the residual stress evaluation method and the impact load evaluation method.

本発明のピーニング施工部の残留応力評価方法の一態様は、ピーニング施工した構造物のピーニング施工部の残留応力を評価するためのピーニング施工部の残留応力評価方法であって、前記ピーニング施工部に対して圧子押込試験を行い、残留応力評価指標を得るとともに、残留応力をパラメータとした弾塑性解析を行い、前記圧子押込試験を行う体系において予測される残留応力予測値と前記残留応力評価指標との関係を求め、前記圧子押込試験により求められた前記残留応力評価指標と、前記弾塑性解析により求められた残留応力予測値と前記残留応力評価指標との関係とから、前記ピーニング施工部の残留応力予測値を求めることを特徴とする。   One aspect of the method for evaluating residual stress of a peening construction part according to the present invention is a residual stress evaluation method for a peening construction part for evaluating the residual stress of the peening construction part of a structure subjected to peening construction. An indenter indentation test is performed to obtain a residual stress evaluation index, an elastoplastic analysis is performed using the residual stress as a parameter, and a predicted residual stress value and a residual stress evaluation index predicted in the system performing the indenter indentation test From the relationship between the residual stress evaluation index obtained by the indenter indentation test, the predicted residual stress value obtained by the elasto-plastic analysis and the residual stress evaluation index, the residual of the peening construction part A stress prediction value is obtained.

本発明のピーニング施工部の衝撃荷重評価方法の一態様は、構造物へのピーニング施工時のピーニング施工部への衝撃荷重の大きさを評価するためのピーニング施工部の衝撃荷重評価方法であって、前記ピーニング施工部に対して圧子押込試験を行い、残留応力評価指標を得るとともに、残留応力をパラメータとした弾塑性解析を行い、前記圧子押込試験を行う体系において予測される残留応力予測値と前記残留応力評価指標との関係を求め、前記圧子押込試験により求められた前記残留応力評価指標と、前記弾塑性解析により求められた残留応力予測値と前記残留応力評価指標との関係とから、前記ピーニング施工部の残留応力予測値を求める工程と、前記衝撃荷重の大きさを仮定して弾塑性解析を行い、前記ピーニング施工部の仮定残留応力分布を求める弾塑性解析工程と、前記ピーニング施行部の残留応力予測値と前記仮定残留応力分布とを比較し、これらが所定の精度で一致するまで前記弾塑性解析工程を繰り返して実施して前記衝撃荷重の大きさを評価する工程とを具備したことを特徴とする。   One aspect of the impact load evaluation method of the peening construction part of the present invention is an impact load evaluation method of the peening construction part for evaluating the magnitude of the impact load to the peening construction part at the time of peening construction to a structure. The indenter indentation test is performed on the peening construction part, a residual stress evaluation index is obtained, an elastoplastic analysis is performed using the residual stress as a parameter, and a predicted residual stress value in the system performing the indenter indentation test Obtaining the relationship with the residual stress evaluation index, the residual stress evaluation index determined by the indenter indentation test, and the relationship between the residual stress prediction value and the residual stress evaluation index determined by the elastic-plastic analysis, A process for obtaining a predicted residual stress value of the peened construction part, and an elasto-plastic analysis assuming the magnitude of the impact load, and an assumed residual of the peening construction part The elasto-plastic analysis step for obtaining the force distribution, the predicted residual stress value of the peening execution part and the assumed residual stress distribution are compared, and the elasto-plastic analysis step is repeated until they match with a predetermined accuracy. characterized by comprising a step of evaluating the magnitude of the impact load.

本発明のピーニング施工部の衝撃荷重評価方法の他の態様は、造物へのピーニング施工時のピーニング施工部への衝撃荷重の大きさを評価するためのピーニング施工部の衝撃荷重評価方法であって、前記衝撃荷重の大きさを仮定して弾塑性解析を行い、前記ピーニング施工部の仮定残留応力分布を求める弾塑性解析工程と、前記ピーニング施行部の残留応力予測値又は前記ピーニング施行部の残留応力測定値と前記仮定残留応力分布とを比較し、これらが所定の精度で一致するまで前記弾塑性解析工程を繰り返して実施して前記衝撃荷重の大きさを評価する工程とを具備したことを特徴とする。   Another aspect of the impact load evaluation method of the peening construction part of the present invention is an impact load evaluation method of the peening construction part for evaluating the magnitude of the impact load to the peening construction part at the time of peening construction to a structure. An elasto-plastic analysis assuming the magnitude of the impact load, an elasto-plastic analysis step for obtaining an assumed residual stress distribution of the peening construction part, and a residual stress prediction value of the peening execution part or a residual of the peening execution part Comparing the measured stress value with the assumed residual stress distribution, and repeating the elasto-plastic analysis step until they match with a predetermined accuracy to evaluate the magnitude of the impact load. Features.

本発明によれば、ピーニング施工した構造物のピーニング施工部の残留応力及び衝撃荷重を従来に比べて簡便かつ迅速に評価することのできるピーニング施工部の残留応力評価方法及び衝撃荷重評価方法を提供することができる。   According to the present invention, there is provided a residual stress evaluation method and an impact load evaluation method for a peening construction part that can easily and quickly evaluate a residual stress and an impact load of a peening construction part of a structure subjected to peening construction as compared with conventional ones. can do.

本発明方法を説明するための圧子押込による変位−荷重曲線例を示す図。The figure which shows the example of the displacement-load curve by indenter indentation for demonstrating the method of this invention. 本発明方法を説明するための残留応力と圧子最大押込変位、残留変位、弾性変位の変化の割合との関係解析結果例を示す図。The figure which shows the example of a relationship analysis result of the residual stress for explaining this invention method, and the ratio of the change of the indenter maximum indentation displacement, residual displacement, and elastic displacement. 本発明方法の一実施形態における評価フローを説明するための図。The figure for demonstrating the evaluation flow in one Embodiment of the method of this invention. 本発明方法の一実施形態における評価フローを示すフローチャート。The flowchart which shows the evaluation flow in one Embodiment of the method of this invention. 本発明方法の一実施形態における評価フローを示すフローチャート。The flowchart which shows the evaluation flow in one Embodiment of the method of this invention. 本発明方法の一実施形態における評価フローを説明するための図。The figure for demonstrating the evaluation flow in one Embodiment of the method of this invention. 本発明方法の他の実施形態における評価フローを説明するための図。The figure for demonstrating the evaluation flow in other embodiment of the method of this invention.

以下、本発明のピーニング施工部の残留応力評価方法及び衝撃荷重評価方法の詳細を、図面を参照して実施形態について説明する。   Hereinafter, the details of the residual stress evaluation method and the impact load evaluation method of the peening construction part of the present invention will be described with reference to the drawings.

図1は、本発明のピーニング施工部の残留応力評価方法を説明するための図であり、圧子押込による変位−荷重曲線の一例を示している。本実施形態では、図1に示すように、圧子20を、ピーニング施工部21に対して、一定の付加荷重で押込む圧子押込試験を行う。これによって、縦軸を荷重、横軸を変位とした図1中のグラフに示すような変位−荷重曲線が得られる。   FIG. 1 is a diagram for explaining a residual stress evaluation method for a peening construction portion according to the present invention, and shows an example of a displacement-load curve by indenter indentation. In this embodiment, as shown in FIG. 1, an indenter indentation test is performed in which the indenter 20 is pushed into the peening construction portion 21 with a constant additional load. As a result, a displacement-load curve as shown in the graph of FIG. 1 is obtained with the vertical axis representing the load and the horizontal axis representing the displacement.

変位−荷重曲線は、圧子押込時変位−荷重曲線15と、圧子引抜時変位−荷重曲線16とから成る。このヒステリシス性のある曲線から、図1の下部に示すように、残留変位17、弾性変位18、及び圧子最大押込変位19を読み取ることができる。   The displacement-load curve is composed of a displacement-load curve 15 when the indenter is pushed in and a displacement-load curve 16 when the indenter is pulled out. As shown in the lower part of FIG. 1, the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 can be read from this hysteresis curve.

上記圧子最大押込変位19は、圧子20を、ピーニング施工部21に対して一定の付加荷重で押込んだ際の最大の変位を示すものである。また、弾性変位18は、圧子最大押込変位19の状態から荷重を除いた時に、ピーニング施工部21の弾性により減少した変位を示すものである。また、残留変位17は、圧子最大押込変位19の状態から荷重を除いた時に残留した変位を示すもので、圧子最大押込変位19から弾性変位18を差し引いたものである。   The indenter maximum indentation displacement 19 indicates the maximum displacement when the indenter 20 is pushed into the peening construction portion 21 with a constant additional load. The elastic displacement 18 indicates a displacement that is reduced by the elasticity of the peening portion 21 when a load is removed from the state of the indenter maximum indentation displacement 19. The residual displacement 17 indicates a displacement remaining when a load is removed from the state of the indenter maximum indentation displacement 19, and is obtained by subtracting the elastic displacement 18 from the indenter maximum indentation displacement 19.

一方、圧子押込試験と同形状の圧子と付加荷重を模擬し、圧子押込試験を行う体系と同一の体系で、かつ残留応力をパラメータとして弾塑性解析を行う。つまり、設定する残留応力の値(残留応力条件)を異ならせて複数の値の残留応力に対して弾塑性解析を行うと、図1と同様な変位−荷重曲線が、各残留応力の値に対して得られる。ここで、変位−荷重曲線は、残留応力の影響を受けるため、残留応力を変化させて弾塑性解析を行うと、各残留応力に応じた変位−荷重曲線が得られる。つまり弾塑性解析を行うことで各残留応力条件に応じて、残留変位17、弾性変位18、及び圧子最大押込変位19の値を得ることができる。   On the other hand, an indenter having the same shape as the indenter indentation test and an additional load are simulated, and an elasto-plastic analysis is performed using the same system as the indenter indentation test and using the residual stress as a parameter. In other words, if the elasto-plastic analysis is performed on a plurality of residual stress values with different residual stress values (residual stress conditions) to be set, the displacement-load curve similar to FIG. Against. Here, since the displacement-load curve is affected by the residual stress, when the elasto-plastic analysis is performed by changing the residual stress, a displacement-load curve corresponding to each residual stress is obtained. That is, by performing the elasto-plastic analysis, the values of the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 can be obtained according to each residual stress condition.

図2は、残留応力条件を変化させて弾塑性解析を実施し、これにより得られた残留応力と、残留変位17、弾性変位18、及び圧子最大押込み変位19の関係の解析結果の一例を示すグラフである。ここで横軸に示す値は残留応力であり、負の値では圧縮応力を意味し、正の値は引張り応力を意味する。また縦軸に示す値は、残留変位17、弾性変位18、及び圧子最大押込変位19の、基準値(この場合は残留応力がゼロのときの値)に対する変化の割合を示しており、負の値は基準値よりも小さい値を、正の値は基準値よりも大きい値を示すことを意味する。   FIG. 2 shows an example of the analysis result of the relationship between the residual stress obtained by changing the residual stress condition and the residual stress 17 and the elastic displacement 18 and the indenter maximum indentation displacement 19. It is a graph. Here, the value shown on the horizontal axis is a residual stress, a negative value means a compressive stress, and a positive value means a tensile stress. The value shown on the vertical axis indicates the rate of change of the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 with respect to the reference value (in this case, the value when the residual stress is zero). A value means a value smaller than the reference value, and a positive value means a value larger than the reference value.

図2に示されるように、残留変位17及び圧子最大押込変位19は、残留応力が圧縮になるほど小さく、引張りになるほど大きくなる相関関係にあることがわかる。なお、図2中、残留変位17を示す曲線と圧子最大押込変位19を示す曲線とは、略重なっている。一方、弾性変位18と残留応力との相関関係は、残留変位17及び圧子最大押込変位19と残留応力との相関関係と逆の相関関係になっていることがわかる。つまり、弾性変位18は、残留応力が圧縮になるほど大きく、引張りになるほど小さくなる。したがって、これらの残留変位17、弾性変位18、圧子最大押込変位19が残留応力評価指標となる。   As shown in FIG. 2, it can be seen that the residual displacement 17 and the indenter maximum indentation displacement 19 have a correlation that is smaller as the residual stress is compressed and larger as it is pulled. In FIG. 2, the curve indicating the residual displacement 17 and the curve indicating the maximum indenter displacement 19 substantially overlap each other. On the other hand, it can be seen that the correlation between the elastic displacement 18 and the residual stress is opposite to the correlation between the residual displacement 17 and the maximum indenter displacement 19 and the residual stress. That is, the elastic displacement 18, large enough residual stress is compressive, decrease with decreasing tension. Therefore, the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 serve as a residual stress evaluation index.

本実施の形態では、上記のピーニング施工部に対する圧子押込試験と弾塑性解析とを行うことによって、ピーニング施工部の残留応力を予測し、評価する。図3は、本実施形態の評価フローの説明図であり、図4は本実施形態の評価フローを示すフローチャートである。以下、図3、図4を参照して本実施形態の評価フローを説明する。   In this Embodiment, the residual stress of a peening construction part is estimated and evaluated by performing the indenter indentation test and elastoplastic analysis with respect to said peening construction part. FIG. 3 is an explanatory diagram of the evaluation flow of the present embodiment, and FIG. 4 is a flowchart showing the evaluation flow of the present embodiment. Hereinafter, the evaluation flow of this embodiment will be described with reference to FIGS. 3 and 4.

図3に示すように、本実施形態では、圧子押込試験と同形状の圧子と付加荷重を模擬し、圧子押込試験を行う体系と同一の体系で、かつ残留応力をパラメータとして弾塑性解析を実施し(301)、変位−荷重曲線を取得する(302)(図4のステップ401)。この弾塑性解析は、残留応力を異ならせた条件で所定回数実施し(図4のステップ402)、複数の変位−荷重曲線を取得する。   As shown in FIG. 3, in this embodiment, an indenter having the same shape as the indenter indentation test and an additional load are simulated, and an elasto-plastic analysis is performed using the same system as the indenter indenter test and using residual stress as a parameter. (301), and a displacement-load curve is acquired (302) (step 401 in FIG. 4). This elasto-plastic analysis is performed a predetermined number of times under different conditions of the residual stress (step 402 in FIG. 4), and a plurality of displacement-load curves are acquired.

次に、得られた変位−荷重曲線から、残留応力と残留変位17、残留応力と弾性変位18、残留応力と圧子最大押込変位19の少なくともいずれか1つの相関関係を示すデータベースを作成する(303)(図4のステップ403)。   Next, from the obtained displacement-load curve, a database showing a correlation between at least one of residual stress and residual displacement 17, residual stress and elastic displacement 18, and residual stress and maximum indenter displacement 19 is created (303). (Step 403 in FIG. 4).

一方、ピーニング施工部に対しては、圧子押込試験を実施し(311)、ピーニング施工部についての変位−荷重曲線を取得する(312)(図4のステップ404)。そして、残留変位17、弾性変位18、圧子最大押込変位19の少なくともいずれか1つのデータを取得する(313)(図4のステップ405)。なお、ピーニング施工部に対する圧子押込試験を先に実施し、弾塑性解析を後に実施しても、これらを同時に並列的に行ってもよい。   On the other hand, for the peening construction part, an indenter indentation test is performed (311), and a displacement-load curve for the peening construction part is acquired (312) (step 404 in FIG. 4). Then, at least one of the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 is acquired (313) (step 405 in FIG. 4). Note that the indenter indentation test for the peening construction part may be performed first and the elasto-plastic analysis may be performed later, or these may be performed simultaneously in parallel.

そして、ピーニング施工部に対する圧子押込試験によって得られた残留変位17、弾性変位18、圧子最大押込変位19の少なくともいずれか1つのデータを、弾塑性解析による上記したデータベース内のデータと比較して、図2に示した曲線等から対応する残留応力値を読み出し、残留応力予測値として残留応力を評価する(320)(図4のステップ406)。   And at least any one data of the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19 obtained by the indenter indentation test for the peening construction part is compared with the data in the database described above by the elastoplastic analysis, The corresponding residual stress value is read from the curve or the like shown in FIG. 2, and the residual stress is evaluated as a residual stress prediction value (320) (step 406 in FIG. 4).

本実施形態では、上記の評価手順により、ピーニング施工部の残留応力を、簡便かつ迅速に評価することができる。   In this embodiment, the residual stress of a peening construction part can be simply and quickly evaluated by the above evaluation procedure.

次に、ピーニング施工部の衝撃荷重評価方法について説明する。図6は、ピーニング施工部の衝撃荷重分布の評価方法を、一般化して示すフロー図である。図6において、1はレーザピーニングの模式図、2はウォータージェットピーニング(又はキャビテーションショットレスピーニング)の模式図、3はショットピーニングの模式図である。   Next, the impact load evaluation method of a peening construction part is demonstrated. FIG. 6 is a flowchart showing a generalized method of evaluating the impact load distribution of the peening construction part. In FIG. 6, 1 is a schematic diagram of laser peening, 2 is a schematic diagram of water jet peening (or cavitation shotless peening), and 3 is a schematic diagram of shot peening.

レーザピーニング1では、パルスレーザ光4を構造物6表面に照射することでプラズマ5が発生し、そのプラズマ5の崩壊時に誘起される衝撃波9によって、構造物6表面付近に残留圧縮応力が付与される。   In laser peening 1, plasma 5 is generated by irradiating the surface of the structure 6 with pulsed laser light 4, and residual compressive stress is applied to the vicinity of the surface of the structure 6 by a shock wave 9 induced when the plasma 5 is collapsed. The

ウォータージェットピーニング(又はキャビテーションショットレスピーニング)2では、ノズルからの高圧水噴流によって生成されたキャビテーション泡7を構造物6表面に衝突させ、キャビテーション泡7の崩壊時に発生する衝撃波9によって、構造物6表面付近に残留圧縮応力が付与される。   In water jet peening (or cavitation shotless peening) 2, cavitation bubbles 7 generated by a high-pressure water jet from a nozzle collide with the surface of the structure 6, and a shock wave 9 generated when the cavitation bubble 7 collapses causes the structure 6 Residual compressive stress is applied near the surface.

ショットピーニング3では、球形状のショット8を構造物6表面に衝突させ、衝突時に発生する衝撃波9によって、構造物6表面付近に残留圧縮応力が付与される。   In the shot peening 3, a spherical shot 8 is caused to collide with the surface of the structure 6, and a residual compressive stress is applied near the surface of the structure 6 by a shock wave 9 generated at the time of the collision.

つまり各ピーニングでは手段は異なるものの、構造物6に衝撃荷重を与えることで、引張り応力を圧縮応力へ改善し表面改質を行っている。これらピーニングによって生じた残留応力分布(残留圧縮応力分布)10は、ピーニング手段によってそれぞれ異なり、残留応力の予測または測定手段11によって判明する。つまり、前述した実施形態のようにして残留応力を予測するか、又はX線回折法等により測定することによって求めることができる。   That is, although means differ in each peening, by applying an impact load to the structure 6, the tensile stress is improved to the compressive stress and the surface modification is performed. The residual stress distribution (residual compressive stress distribution) 10 generated by the peening differs depending on the peening means, and is determined by the residual stress prediction or measurement means 11. That is, it can be obtained by predicting the residual stress as in the above-described embodiment, or by measuring by the X-ray diffraction method or the like.

一方、各ピーニングの衝撃荷重分布入力14を仮定すれば、弾塑性解析手段13を用いて、仮定した衝撃荷重分布入力14に応じた仮定残留応力分布12を得ることができ、各ピーニングによる残留応力分布(予測値又は測定値)10と弾塑性解析による仮定残留応力分布12を比較することができる。そして、弾塑性解析による仮定残留応力分布12を、各ピーニングによる残留応力分布10に合うように衝撃荷重入力14を同定することで、各ピーニング施工時の衝撃荷重の大きさを評価することができる。   On the other hand, if the impact load distribution input 14 of each peening is assumed, the assumed residual stress distribution 12 corresponding to the assumed impact load distribution input 14 can be obtained using the elastic-plastic analysis means 13, and the residual stress due to each peening can be obtained. The distribution (predicted value or measured value) 10 and the assumed residual stress distribution 12 by elastoplastic analysis can be compared. And the magnitude | size of the impact load at each peening construction can be evaluated by identifying the impact load input 14 so that the assumed residual stress distribution 12 by elasto-plastic analysis matches the residual stress distribution 10 by each peening. .

次に、図3及び図5のフローチャートを参照して、ピーニング施工部の衝撃荷重評価方法のより具体的な手順について説明する。図3に示すように、衝撃荷重評価では、仮定した衝撃荷重分布入力14を行い(331)(図5のステップ501)、弾塑性解析手段13により弾塑性解析を行い(332)、仮定残留応力分布12を算出する(333)(図5のステップ502)。   Next, with reference to the flowchart of FIG.3 and FIG.5, the more specific procedure of the impact load evaluation method of a peening construction part is demonstrated. As shown in FIG. 3, in the impact load evaluation, an assumed impact load distribution input 14 is performed (331) (step 501 in FIG. 5), an elastoplastic analysis is performed by the elastoplastic analysis means 13 (332), and an assumed residual stress is obtained. The distribution 12 is calculated (333) (step 502 in FIG. 5).

次に、求められた仮定残留応力分布12と、前述したようにして予測された残留応力予測値(図6に示した残留応力分布10)と比較し(334)、これらが一致するようにフィードバックし(335)、再度の衝撃荷重分布入力14(331)、弾塑性解析手段13による弾塑性解析(332)、仮定残留応力分布12の算出(333)を、仮定残留応力分布12と残留応力予測値とが所定の精度で一致するまで繰り返して実施する(図5のステップ503)。   Next, the calculated assumed residual stress distribution 12 is compared with the predicted residual stress value (residual stress distribution 10 shown in FIG. 6) predicted as described above (334), and feedback is made so that they match. (335), the impact load distribution input 14 (331) again, the elastoplastic analysis by the elastoplastic analysis means 13 (332), the calculation of the assumed residual stress distribution 12 (333), the assumed residual stress distribution 12 and the residual stress prediction. and the values carried out repeatedly until it matches with predetermined accuracy (step 503 in FIG. 5).

そして、仮定残留応力分布12と予測された残留応力予測値(図6に示した残留応力分布10)とが所定の精度で一致した際の入力された衝撃荷重分布を、評価結果とする(図5のステップ504)。   Then, the input impact load distribution when the assumed residual stress distribution 12 and the predicted predicted residual stress (residual stress distribution 10 shown in FIG. 6) match with a predetermined accuracy is used as the evaluation result (FIG. 5 step 504).

本実施形態では、上記の評価手順により、ピーニング施工部の衝撃荷重分布を、簡便かつ迅速に評価することができる。   In the present embodiment, the impact load distribution of the peening construction part can be easily and quickly evaluated by the above evaluation procedure.

なお、上記の実施形態では、衝撃荷重分布を入力して、弾塑性解析により算出した仮定残留応力分布12を、残留応力予測値と比較したが、適用可能であるならば、前述したとおり、X線回折法等のX線を利用した残留応力測定値と比較してもよい。   In the above embodiment, the impact load distribution is input and the assumed residual stress distribution 12 calculated by the elasto-plastic analysis is compared with the predicted residual stress value. However, if applicable, as described above, You may compare with the residual stress measurement value using X-rays, such as a line diffraction method.

次に、図7を参照して本発明の他の実施形態について説明する。なお、前述した図3の実施形態と対応する部分については、同一の符号を付して、重複した説明は省略する。   Next, another embodiment of the present invention will be described with reference to FIG. In addition, about the part corresponding to embodiment of FIG. 3 mentioned above, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

本実施形態では、圧子20をピーニング施工部21にある一定付加荷重で押込む圧子押込試験と同形状の圧子と付加荷重を模擬し、かつL個の残留応力をパラメータとして弾塑性解析を行うことで(701)、L個の変位−荷重曲線を取得し(702)、L個の変位−荷重曲線から、残留応力と残留変位17のL組のデータ、残留応力と弾性変位18のL組のデータ、及び残留応力と圧子最大押込変位19のL組のデータの少なくともいずれか1つを得る(703)。   In the present embodiment, an indenter having the same shape as the indenter indentation test in which the indenter 20 is pushed into the peening construction portion 21 with a constant additional load and the additional load are simulated, and an elastic-plastic analysis is performed using L residual stresses as parameters. (701), L displacement-load curves are acquired (702). From the L displacement-load curves, L sets of data of residual stress and residual displacement 17, L sets of residual stress and elastic displacement 18 are obtained. Data and / or at least one of residual data and L sets of indenter maximum indentation displacement 19 are obtained (703).

図7に示すように、これらのそれぞれのデータ組からは、残留応力を、圧子最大押込変位19、残留変位17及び弾性変位18それぞれのL−1次の関数で表すことができる。また、残留応力を、圧子最大押込変位19と残留変位17と弾性変位18の関数として表すこともできる(704)。   As shown in FIG. 7, from each of these data sets, the residual stress can be expressed by an L−1 order function of each of the indenter maximum indentation displacement 19, the residual displacement 17 and the elastic displacement 18. Residual stress can also be expressed as a function of indenter maximum indentation displacement 19, residual displacement 17 and elastic displacement 18 (704).

一方、圧子20をピーニング施工部21に、一定付加荷重で押込む圧子押込試験を実施し(311)、ピーニング施工部の変位−荷重曲線を取得する(312)。   On the other hand, an indenter indentation test is performed in which the indenter 20 is pushed into the peening construction section 21 with a constant additional load (311), and a displacement-load curve of the peening construction section is acquired (312).

そして、ピーニング施工部の変位−荷重曲線から、残留変位17、弾性変位18、圧子最大押込変位19のうちの少なくともいずれか1つ、例えば、圧子最大押込変位19を取得し(313)、取得した値を、前述した圧子最大押込変位19のL−1次の関数に代入することで、予測残留応力値を求めることができる(320)。   Then, at least one of the residual displacement 17, the elastic displacement 18, and the indenter maximum indentation displacement 19, for example, the indenter maximum indentation displacement 19 is obtained from the displacement-load curve of the peening construction part (313). By substituting the value into the L-1 order function of the indenter maximum indentation displacement 19 described above, the predicted residual stress value can be obtained (320).

本実施形態によれば、図7に示すように、圧子押込試験と、圧子押込試験の弾塑性解析から定められた関数とを用いて、ピーニング施工部位の残留応力を簡便かつ迅速に予測評価することができる。   According to the present embodiment, as shown in FIG. 7, the residual stress at the peening site is predicted and evaluated easily and quickly using an indenter indentation test and a function determined from an elasto-plastic analysis of the indenter indentation test. be able to.

上記の図7に示した実施形態では、圧子押込試験と、圧子押込試験の弾塑性解析は、図6に示した衝撃荷重分布における残留圧縮応力の予測または測定手段11に相当する。さらに、これにより予測された各ピーニングによる残留応力分布10と、仮定した各ピーニングの衝撃荷重入力14による各ピーニング施工時の弾塑性解析による仮定残留応力分布12を比較し、弾塑性解析による仮定残留応力分布12を、各ピーニングによる残留応力分布10に合うように衝撃荷重入力14を同定することで、各ピーニング施工時の衝撃荷重の大きさを評価することができる。   In the embodiment shown in FIG. 7, the indenter indentation test and the elastoplastic analysis of the indenter indentation test correspond to the prediction or measuring means 11 of the residual compressive stress in the impact load distribution shown in FIG. Furthermore, the predicted residual stress distribution 10 by each peening is compared with the assumed residual stress distribution 12 by the elasto-plastic analysis at the time of each peening construction by the impact load input 14 of each assumed peening, and the assumed residual by the elasto-plastic analysis is compared. By identifying the impact load input 14 so that the stress distribution 12 matches the residual stress distribution 10 by each peening, the magnitude of the impact load at the time of each peening operation can be evaluated.

1…レーザピーニング、2…ウォータージェットピーニング、3…ショットピーニング、4…パルスレーザ光、5…プラズマ、6…構造物、7…キャビテーション泡、8…ショット、9…衝撃波、10…各ピーニングによる残留圧縮応力分布、11…残留圧縮応力の予測または測定手段、12…弾塑性解析による残留圧縮応力分布、13…弾塑性解析手段、14…衝撃荷重入力、15…圧子押込時変位−荷重曲線、16…圧子引抜時変位−荷重曲線、17…残留変位、18…弾性変位、19…圧子最大押込変位、20…圧子、21…ピーニング施工部。   DESCRIPTION OF SYMBOLS 1 ... Laser peening, 2 ... Water jet peening, 3 ... Shot peening, 4 ... Pulse laser beam, 5 ... Plasma, 6 ... Structure, 7 ... Cavitation bubble, 8 ... Shot, 9 ... Shock wave, 10 ... Residue by each peening Compressive stress distribution, 11 ... Predictive or measuring means for residual compressive stress, 12 ... Residual compressive stress distribution by elastoplastic analysis, 13 ... Elastoplastic analysis means, 14 ... Impact load input, 15 ... Displacement-load curve at indenter indentation, 16 ... displacement at the time of indenter drawing-load curve, 17 ... residual displacement, 18 ... elastic displacement, 19 ... maximum indenter displacement, 20 ... indenter, 21 ... peening construction part.

Claims (9)

ピーニング施工した構造物のピーニング施工部の残留応力を評価するためのピーニング施工部の残留応力評価方法であって、
前記ピーニング施工部に対して圧子押込試験を行い、残留応力評価指標を得るとともに、
残留応力をパラメータとした弾塑性解析を行い、前記圧子押込試験を行う体系において予測される残留応力予測値と前記残留応力評価指標との関係を求め、
前記圧子押込試験により求められた前記残留応力評価指標と、前記弾塑性解析により求められた残留応力予測値と前記残留応力評価指標との関係とから、前記ピーニング施工部の残留応力予測値を求める
ことを特徴とするピーニング施工部の残留応力評価方法。
It is a residual stress evaluation method of a peening construction part for evaluating a residual stress of a peening construction part of a structure subjected to peening construction,
While performing an indenter indentation test on the peening construction part to obtain a residual stress evaluation index,
Perform an elastoplastic analysis with the residual stress as a parameter, and obtain the relationship between the residual stress prediction value predicted in the system performing the indenter indentation test and the residual stress evaluation index,
From the residual stress evaluation index obtained by the indenter indentation test and the relationship between the residual stress prediction value obtained by the elasto-plastic analysis and the residual stress evaluation index, the residual stress prediction value of the peening construction part is obtained. The residual stress evaluation method of the peening construction part characterized by this.
請求項1記載のピーニング施工部の残留応力評価方法において、
前記残留応力評価指標は、前記圧子押込試験における圧子最大押込変位の値である
ことを特徴とするピーニング施工部の残留応力評価方法。
In the residual stress evaluation method of the peening construction part according to claim 1,
The residual stress evaluation index is a value of an indenter maximum indentation displacement in the indenter indentation test.
請求項1記載のピーニング施工部の残留応力評価方法において、
前記残留応力評価指標は、前記圧子押込試験における残留変位の値である
ことを特徴とするピーニング施工部の残留応力評価方法。
In the residual stress evaluation method of the peening construction part according to claim 1,
The residual stress evaluation index is a value of residual displacement in the indenter indentation test.
請求項1記載のピーニング施工部の残留応力評価方法において、
前記残留応力評価指標は、前記圧子押込試験における弾性変位の値である
ことを特徴とするピーニング施工部の残留応力評価方法。
In the residual stress evaluation method of the peening construction part according to claim 1,
The residual stress evaluation index is a value of elastic displacement in the indenter indentation test.
請求項2乃至4いずれか1項記載のピーニング施工部の残留応力評価方法において、
前記弾塑性解析により求められた前記残留応力予測値と前記残留応力評価指標との関係を、
前記弾塑性解析により得られる前記残留応力予測値と前記残留応力評価指標のL組(L≧2)のデータから、前記残留応力予測値と前記残留応力評価指標のL−1次の関数として表す
ことを特徴とするピーニング施工部の残留応力評価方法。
In the residual stress evaluation method of the peening construction part according to any one of claims 2 to 4,
The relationship between the residual stress prediction value obtained by the elasto-plastic analysis and the residual stress evaluation index,
From the residual stress prediction value obtained by the elasto-plastic analysis and data of L sets (L ≧ 2) of the residual stress evaluation index, it is expressed as an L−1 order function of the residual stress prediction value and the residual stress evaluation index. The residual stress evaluation method of the peening construction part characterized by this.
構造物へのピーニング施工時のピーニング施工部への衝撃荷重の大きさを評価するためのピーニング施工部の衝撃荷重評価方法であって、
前記ピーニング施工部に対して圧子押込試験を行い、残留応力評価指標を得るとともに、残留応力をパラメータとした弾塑性解析を行い、前記圧子押込試験を行う体系において予測される残留応力予測値と前記残留応力評価指標との関係を求め、前記圧子押込試験により求められた前記残留応力評価指標と、前記弾塑性解析により求められた残留応力予測値と前記残留応力評価指標との関係とから、前記ピーニング施工部の残留応力予測値を求める工程と、
前記衝撃荷重の大きさを仮定して弾塑性解析を行い、前記ピーニング施工部の仮定残留応力分布を求める弾塑性解析工程と、
前記ピーニング施行部の残留応力予測値と前記仮定残留応力分布とを比較し、これらが所定の精度で一致するまで前記弾塑性解析工程を繰り返して実施して前記衝撃荷重の大きさを評価する工程と
を具備したことを特徴とするピーニング施工部の衝撃荷重評価方法。
It is an impact load evaluation method of a peening construction part for evaluating the magnitude of the impact load to the peening construction part at the time of peening construction to a structure,
Perform an indenter indentation test on the peening construction part, obtain a residual stress evaluation index, perform an elasto-plastic analysis using the residual stress as a parameter, and predict the residual stress predicted in the system performing the indenter indentation test The relationship between the residual stress evaluation index, the residual stress evaluation index determined by the indenter indentation test, and the relationship between the residual stress prediction value determined by the elastic-plastic analysis and the residual stress evaluation index, A process of obtaining a residual stress prediction value of the peening construction part;
Elasto-plastic analysis assuming the magnitude of the impact load, an elasto-plastic analysis step for obtaining an assumed residual stress distribution of the peening construction part,
A step of comparing the predicted residual stress value of the peening execution portion with the assumed residual stress distribution and repeatedly performing the elasto-plastic analysis step until they match with a predetermined accuracy to evaluate the magnitude of the impact load An impact load evaluation method for a peening construction part, characterized by comprising:
請求項6記載のピーニング施工部の衝撃荷重評価方法において、
レーザピーニング、ウォータージェットピーニング、キャビテーションショットレスピーニング、ショットピーニングのいずれかの衝撃荷重を同定することを特徴とするピーニング施工部の衝撃荷重評価方法。
In the impact load evaluation method of the peening construction part according to claim 6,
An impact load evaluation method for a peening construction portion, characterized by identifying an impact load of laser peening, water jet peening, cavitation shotless peening, or shot peening.
構造物へのピーニング施工時のピーニング施工部への衝撃荷重の大きさを評価するためのピーニング施工部の衝撃荷重評価方法であって、
前記衝撃荷重の大きさを仮定して弾塑性解析を行い、前記ピーニング施工部の仮定残留応力分布を求める弾塑性解析工程と、
前記ピーニング施行部の残留応力予測値又は前記ピーニング施行部の残留応力測定値と前記仮定残留応力分布とを比較し、これらが所定の精度で一致するまで前記弾塑性解析工程を繰り返して実施して前記衝撃荷重の大きさを評価する工程と
を具備したことを特徴とするピーニング施工部の衝撃荷重評価方法。
It is an impact load evaluation method of a peening construction part for evaluating the magnitude of the impact load to the peening construction part at the time of peening construction to a structure,
Elasto-plastic analysis assuming the magnitude of the impact load, an elasto-plastic analysis step for obtaining an assumed residual stress distribution of the peening construction part,
The predicted residual stress value of the peening execution part or the residual stress measurement value of the peening execution part is compared with the assumed residual stress distribution, and the elasto-plastic analysis process is repeated until they match with a predetermined accuracy. And a step of evaluating the magnitude of the impact load. An impact load evaluation method for a peening construction part.
請求項8記載のピーニング施工部の衝撃荷重評価方法において、
前記ピーニング施行部の残留応力測定値は、前記ピーニング施行部にX線を照射し、X線回折法により測定することを特徴とするピーニング施工部の衝撃荷重評価方法。
In the impact load evaluation method of the peening construction part according to claim 8,
The method for evaluating an impact load of a peening execution part, wherein the residual stress measurement value of the peening execution part is measured by irradiating the peening execution part with X-rays and using an X-ray diffraction method.
JP2009182734A 2009-08-05 2009-08-05 Residual stress evaluation method and shock load evaluation method of peened part Withdrawn JP2011033582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182734A JP2011033582A (en) 2009-08-05 2009-08-05 Residual stress evaluation method and shock load evaluation method of peened part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182734A JP2011033582A (en) 2009-08-05 2009-08-05 Residual stress evaluation method and shock load evaluation method of peened part

Publications (1)

Publication Number Publication Date
JP2011033582A true JP2011033582A (en) 2011-02-17

Family

ID=43762781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182734A Withdrawn JP2011033582A (en) 2009-08-05 2009-08-05 Residual stress evaluation method and shock load evaluation method of peened part

Country Status (1)

Country Link
JP (1) JP2011033582A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002917A2 (en) * 2012-06-27 2014-01-03 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
CN104655505A (en) * 2015-01-23 2015-05-27 浙江工业大学 Instrumented-ball-pressing-technology-based residual stress detection method
JP2016140974A (en) * 2015-02-05 2016-08-08 三菱重工業株式会社 Residual stress evaluation method
JP2019174270A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Deformation resistance measuring method of elastic-plastic material
WO2020095485A1 (en) * 2018-11-07 2020-05-14 新東工業株式会社 Deterioration evaluation method
CN113528777A (en) * 2021-06-18 2021-10-22 华南理工大学 Residual stress regulation and control method for laser shot blasting repair process of damaged part of airplane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9486894B2 (en) 2012-06-27 2016-11-08 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
WO2014002917A3 (en) * 2012-06-27 2014-03-27 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
WO2014002917A2 (en) * 2012-06-27 2014-01-03 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
US9821434B2 (en) 2012-06-27 2017-11-21 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
CN104655505A (en) * 2015-01-23 2015-05-27 浙江工业大学 Instrumented-ball-pressing-technology-based residual stress detection method
JP2016140974A (en) * 2015-02-05 2016-08-08 三菱重工業株式会社 Residual stress evaluation method
WO2016125319A1 (en) * 2015-02-05 2016-08-11 三菱重工業株式会社 Residual stress evaluation method
JP2019174270A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Deformation resistance measuring method of elastic-plastic material
JP7010107B2 (en) 2018-03-28 2022-01-26 日本製鉄株式会社 Deformation resistance measurement method for elasto-plastic materials
WO2020095485A1 (en) * 2018-11-07 2020-05-14 新東工業株式会社 Deterioration evaluation method
JP2020076623A (en) * 2018-11-07 2020-05-21 新東工業株式会社 Degradation evaluation method
CN112639442A (en) * 2018-11-07 2021-04-09 新东工业株式会社 Deterioration evaluation method
US11561140B2 (en) 2018-11-07 2023-01-24 Sintokogio, Ltd. Deterioration evaluation method
CN113528777A (en) * 2021-06-18 2021-10-22 华南理工大学 Residual stress regulation and control method for laser shot blasting repair process of damaged part of airplane
CN113528777B (en) * 2021-06-18 2022-06-14 华南理工大学 Residual stress regulation and control method for laser shot blasting repair process of damaged part of airplane

Similar Documents

Publication Publication Date Title
JP2011033582A (en) Residual stress evaluation method and shock load evaluation method of peened part
JP5011416B2 (en) Water jet peening residual stress evaluation method and water jet peening construction method
EP2799828A2 (en) System and method for predicting distortion of a workpiece resulting from a peening machine process
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
Seddik et al. A simple methodology to optimize shot-peening process parameters using finite element simulations
JP5276723B2 (en) Health evaluation system for nuclear power plants
Kang et al. Engineering criticality analysis on an offshore structure using the first-and second-order reliability method
JP5087015B2 (en) Fracture strength evaluation method for dissimilar joints
Dillstrom et al. Procedure for safety assessment of components with defects
JP2005091028A (en) Method for diagnosing corrosion fatigue damage of boiler water wall tube
JP2009174886A (en) Mechanical characteristics evaluation method with respect to modified portion
JP2008032480A (en) Damage evaluation method of heat-resistant steel, and damage evaluation device thereof
JP6129500B2 (en) Life prediction apparatus, method and program for reactor internal structure
Lewis et al. Determination of remnant residual stresses in fracture toughness specimens extracted from large components
Bradford Application of probabilistic assessments to the lifetime management of nuclear boilers in the creep regime
Mohanty et al. Pressurized Water Reactor Environment Effect on 316 Stainless Steel Stress Hardening/Softening: An Experimental Study
Udagawa et al. Failure probability analyses for PWSCC in Ni-based alloy welds
Brust et al. Modeling crack growth in weld residual stress fields using the finite element alternating method
Moczko et al. Numerical and Experimental Investigations of the Influence of Operation on the Technical Condition of Pressure Vessels. Materials 2022, 15, 7281
Morinaka et al. Field experience of water jet peening application on BWR reactor internals with cracked surfaces
Matsubara et al. Stress evaluation method of baffle former bolt and its maintenance program
Cronvall Susceptibility of boiling water reactor pressure vessel and its internals to degradation
Mahdavipour Failure prediction of steel components under the coupled effect of excessive plastic deformations and pitting corrosion
Ramuhalli et al. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies-Advanced Reactor Technology Milestone: M3AT-16PN2301043
Cronvall Long-term operation of a boiling pressure vessel and its internals

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120614

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106