JP2019172561A - Granular fertilizer and method of producing granular fertilizer - Google Patents

Granular fertilizer and method of producing granular fertilizer Download PDF

Info

Publication number
JP2019172561A
JP2019172561A JP2019041297A JP2019041297A JP2019172561A JP 2019172561 A JP2019172561 A JP 2019172561A JP 2019041297 A JP2019041297 A JP 2019041297A JP 2019041297 A JP2019041297 A JP 2019041297A JP 2019172561 A JP2019172561 A JP 2019172561A
Authority
JP
Japan
Prior art keywords
fertilizer
weight
granular fertilizer
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019041297A
Other languages
Japanese (ja)
Other versions
JP7107253B2 (en
Inventor
平 足立
Taira Adachi
平 足立
佳丈 高橋
Yoshitake Takahashi
佳丈 高橋
哲郎 上村
Tetsuro Uemura
哲郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019172561A publication Critical patent/JP2019172561A/en
Application granted granted Critical
Publication of JP7107253B2 publication Critical patent/JP7107253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glanulating (AREA)
  • Fertilizers (AREA)

Abstract

To provide a nitrogen and magnesium-fortified granular fertilizer productivity of which is high, which has favorable characteristics for machine dispersion, and is uniform in elution rate of a fertilizer component.SOLUTION: A granular fertilizer of this invention is formed as secondary particles by integrating particles made practically from a nitrogen fertilizer component (particles A) and particles made practically from a magnesium fertilizer component (particles B). Particles whose diameters are more than 0.1 mm and equal to or less than 2 mm account for 50 wt.% of the particles A and particles whose diameters are more than 0.1 mm and equal to or less than 2 mm account for 50 wt.% of the particles B, and the nitrogen fertilizer component of 50-80 wt.% and the magnesium fertilizer component of 50-20 wt.% are contained in the fertilizer.SELECTED DRAWING: None

Description

本発明は、主原料として硫酸アンモニウム等の窒素肥料成分と硫酸マグネシウム等のマグネシウム肥料成分で構成される粒状の肥料およびその製造方法に関する。   The present invention relates to a granular fertilizer composed of a nitrogen fertilizer component such as ammonium sulfate and a magnesium fertilizer component such as magnesium sulfate as main raw materials, and a method for producing the same.

窒素肥料成分とマグネシウム肥料成分を含む粒状肥料は、作物の葉の生育強化のために施肥する肥料として知られ、主成分として窒素肥料では硫酸アンモニウム、マグネシウム肥料成分では硫酸マグネシウムが代表的なものである。窒素肥料成分とマグネシウム肥料成分を含むため、それらが不足している土壌や茶の栽培において有用である。また、粒状の肥料としては、散布方法に応じて球状、ペレット状など様々な形状のものが知られているが、特に広大な農地での施肥においてはブロードキャスター等を用いた機械散布が主流であることから、到達飛距離が長くてかつ均一に施肥し易い点で球状の肥料が求められている。   Granular fertilizer containing nitrogen fertilizer component and magnesium fertilizer component is known as fertilizer to apply fertilizer to enhance crop leaf growth, with ammonium sulfate as the main component and magnesium sulfate as the main component for magnesium fertilizer . Since it contains a nitrogen fertilizer component and a magnesium fertilizer component, it is useful in the cultivation of soil and tea that lack them. In addition, granular fertilizers are known in various shapes such as spheres and pellets, depending on the application method, but mechanical application using broadcasters etc. is the mainstream especially in fertilization on vast agricultural land. For this reason, spherical fertilizers are required because they have a long reach distance and are easy to apply uniformly.

その一方で、一般的に、窒素肥料成分とマグネシウム肥料成分を含む肥料組成物は粒状化が困難であり、かつ粒状化後の粒硬度が低くて保管時に粉化し易いため、水や蒸気を使用して肥料成分どうしを結合させて粒状肥料を製造することが検討されている(特許文献1〜4)。例えば、特許文献1では、窒素肥料と硫酸マグネシウムと充分量の水との混合物を調整し、該混合物をプレス成形する粒状肥料の製造方法が提案されている。また、特許文献2では、硫酸アンモニウムや硫酸マグネシウム等の水溶性無機塩と水とを混合し、得られた混合物を押出成形して製造した造粒物が提案されている。また、特許文献3では、窒素、リン酸、カリの肥料要素の少なくとも1種を主成分とした肥料に対して、結晶性物質の1種もしくは2種以上を過飽和の状態で含むスラリー液を配合して造粒する湿式の顆粒製造法が提案されている。さらに、特許文献4では、高温条件下で窒素肥料成分とリン肥料成分とカリウム肥料成分から選ばれる少なくとも2種とマグネシウム肥料を配合し、該配合物の一部を高温蒸気によって溶解しながら造粒機にて粒状化する複合肥料顆粒の製造方法が提案されている。   On the other hand, in general, fertilizer compositions containing nitrogen fertilizer components and magnesium fertilizer components are difficult to granulate and have low grain hardness after granulation and are easy to powder during storage. Thus, it has been studied to produce a granular fertilizer by combining fertilizer components (Patent Documents 1 to 4). For example, Patent Document 1 proposes a method for producing granular fertilizer in which a mixture of nitrogen fertilizer, magnesium sulfate, and a sufficient amount of water is prepared, and the mixture is press-molded. Patent Document 2 proposes a granulated product produced by mixing a water-soluble inorganic salt such as ammonium sulfate or magnesium sulfate with water and extrusion-molding the resulting mixture. In Patent Document 3, a slurry liquid containing one or more crystalline substances in a supersaturated state is blended with a fertilizer mainly composed of at least one of nitrogen, phosphoric acid, and potash fertilizer elements. Thus, a wet granule production method for granulation has been proposed. Furthermore, in Patent Document 4, at least two kinds selected from a nitrogen fertilizer component, a phosphorus fertilizer component, and a potassium fertilizer component and a magnesium fertilizer are blended under high temperature conditions, and granulation is performed while dissolving a part of the blend with high temperature steam. A method for producing a composite fertilizer granule that is granulated by a machine has been proposed.

特開平5−97560号公報JP-A-5-97560 特開平11−181485号公報Japanese Patent Laid-Open No. 11-181485 特開昭61−40890号公報JP-A-61-40890 特表2002−519290号公報JP-T-2002-519290

機械散布に適した粒状肥料に求められる特性としては、散布の際に発塵や機械内の流路での詰まりを発生させないよう粒状物の圧壊強度が高くて粉化しにくく、肥料の保管中に固結が発生しないことが求められる。また、散布の際に到達飛距離にばらつきが少なく、かつ水田等において着水後すぐに沈降して土壌に着地するよう密度が高いことも求められている。さらには、土壌への肥料成分の溶出速度を均一にするため、粒状肥料に含まれる肥料成分の粒径が均一であることが要求される。   The characteristics required of granular fertilizers suitable for machine spraying are that the granular material has high crushing strength and is not easily pulverized so that dust generation and clogging in the flow path in the machine do not occur during spraying. It is required that no consolidation occurs. In addition, there is also a demand for a high density so that there is little variation in the flight distance during spraying, and the soil settles immediately after landing in a paddy field or the like and lands on the soil. Furthermore, in order to make the elution rate of the fertilizer component to soil uniform, it is required that the particle size of the fertilizer component contained in the granular fertilizer is uniform.

しかしながら、特許文献1〜4に記載される粒状肥料では多量の水や蒸気を使用して肥料成分を溶解しながら造粒するため、粒状肥料に含まれる肥料成分の粒径は不均一となる問題があった。また、粒硬度を上げたり、固結を防止するために水分率を下げようとすれば乾燥工程が必要となって経済性が悪化するし、必ずしも十分な性能が得られない。   However, in the granular fertilizers described in Patent Documents 1 to 4, granulation is performed while dissolving the fertilizer components using a large amount of water and steam, so that the particle size of the fertilizer components contained in the granular fertilizer becomes uneven. was there. Further, if it is attempted to increase the grain hardness or reduce the moisture content in order to prevent caking, a drying process is required and the economic efficiency deteriorates, so that sufficient performance cannot always be obtained.

以上のように、公知の技術では機械散布に有利で肥料成分の溶出速度が均一な粒状肥料としては十分なものでは無かった。   As described above, the known technique is not sufficient as a granular fertilizer that is advantageous for machine spraying and has a uniform elution rate of fertilizer components.

本発明者らは、前記課題を解決するために鋭意検討した結果、窒素肥料成分から実質的になる粒子(粒子A)と、マグネシウム肥料成分から実質的になる粒子(粒子B)とが一体化して二次粒子を形成した粒状肥料であって、粒子Aは粒径が0.1mmを超え、2mm以下の粒子が粒子A中50重量%以上を占め、粒子Bは粒径が0.1mmを超え、2mm以下の粒子が粒子B中50重量%以上を占め、かつ、該肥料中に窒素肥料成分が50〜80重量%、マグネシウム肥料成分が50〜20重量%含まれている粒状肥料とすることで、二次粒子形成後の粒硬度が高くて製造後の肥料収率が高く、肥料成分の溶出速度が均一な粒状肥料を得ることができることを見出した。   As a result of intensive studies to solve the above problems, the inventors of the present invention integrated particles (particles A) substantially composed of nitrogen fertilizer components and particles (particles B) substantially composed of magnesium fertilizer components. In the granular fertilizer in which secondary particles are formed, the particle A has a particle size of more than 0.1 mm, the particles of 2 mm or less account for 50% by weight or more in the particle A, and the particle B has a particle size of 0.1 mm. More than 2 mm or less particles occupy 50% by weight or more in the particle B, and the fertilizer contains 50 to 80% by weight of nitrogen fertilizer component and 50 to 20% by weight of magnesium fertilizer component. Thus, it was found that a granular fertilizer having a high grain hardness after forming secondary particles, a high fertilizer yield after production, and a uniform elution rate of fertilizer components can be obtained.

また加えて、好ましく肥料保管中にも粉化が生じにくく、かつ固結が発生しないといった種々の改良がされた粒状肥料の発明を創出するに到った。   In addition, it has led to the creation of an invention of a granular fertilizer that has been improved in various ways such that it is difficult to cause pulverization even during storage of fertilizer and does not cause caking.

また、本発明の粒状肥料の製造方法は、窒素肥料成分から実質的になる粒子(粒子A)と、マグネシウム肥料成分から実質的になる粒子(粒子B)とを一体化せしめて二次粒子を形成する粒状肥料の製造方法であって、粒子Aはその粒径が0.25mmを超え、2mm以下である粒子が粒子A中70重量%以上を占め、粒子Bはその粒径が0.25mmを超え、2mm以下である粒子が粒子B中50重量%以上を占めており、粒状肥料の全体重量に対して、粒子Aを50〜80重量%と、粒子Bを20〜50重量%とを水分の存在下に混合して混合物を得る工程、該混合物を成型して二次粒子を形成する工程を含む粒状肥料の製造方法であることを本旨とし、また、その種々の改良された方法が本発明者らによって創出された。   Moreover, the manufacturing method of the granular fertilizer of this invention integrates the particle (particle A) which consists essentially of a nitrogen fertilizer component, and the particle (particle B) which consists essentially of a magnesium fertilizer component, and makes a secondary particle. In the method for producing granular fertilizer to be formed, the particle A has a particle size of more than 0.25 mm, and particles of 2 mm or less occupy 70% by weight or more in the particle A, and the particle B has a particle size of 0.25 mm. And particles that are 2 mm or less account for 50% by weight or more in the particle B, and the particle A is 50 to 80% by weight and the particle B is 20 to 50% by weight with respect to the total weight of the granular fertilizer. The present invention is intended to be a method for producing a granular fertilizer including a step of mixing in the presence of moisture to obtain a mixture, and a step of forming the mixture to form secondary particles. Created by the inventors.

本発明によれば、窒素肥料成分とマグネシウム肥料成分の溶出速度が均一で、二次粒子形成後の粒硬度が高くて製造後の肥料収率が高く、好ましく肥料保管中にも粉化が生じにくく、かつ固結が発生しにくい粒状肥料を得ることができる。   According to the present invention, the elution rates of the nitrogen fertilizer component and the magnesium fertilizer component are uniform, the particle hardness after secondary particle formation is high, the fertilizer yield after production is high, and pulverization occurs preferably during fertilizer storage It is possible to obtain a granular fertilizer that is difficult to cause consolidation.

<窒素肥料成分>
本発明に用いる窒素肥料成分には特に制限が無く、公知のものも含めて植物の窒素分の栄養素として作用するものを用いることができる。窒素肥料成分の具体例としては、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、リン酸アンモニウム、尿素等が挙げられる。このうち硫酸アンモニウムは、粒状肥料としたときの溶出性や粒硬度の点で優れるので特に好ましい。硫酸アンモニウムは、例えば、コークス炉廃ガスを硫酸と接触させて得られる硫酸アンモニウム水溶液や、カプロラクタムの製造において、カプロラクタム硫酸塩にアンモニアを添加して得られるカプロラクタムと硫酸アンモニウム混液を得た後に、カプロラクタム水溶液と硫酸アンモニウム水溶液を分離して得られる硫酸アンモニウム水溶液から、晶析により硫酸アンモニウムを結晶化した細粒結晶硫安として使用できる。結晶と母液の分離については、公知の方式で行うことができる。例えば、遠心分離によって液体から分離した後、乾燥することで得られる。細粒結晶硫安は、晶析時に過飽和度が高すぎると結晶が急激に凝集して母液を取り込み、粒径が大きく、水分が高く、不純物が多くなるため、圧力10.1kPaABS以上の圧力として晶析することで、結晶配向した、結晶性の高い細粒結晶硫安を得ることができる。結晶性の高さは、二次元X線回折を行うことで測定することができ、測定結果から求められる配向度が0.995以上であることが好ましい。さらに好ましくは配向度が0.997以上であり、配向度が1.0であれば、結晶性が最も高い場合であり、最も好ましい。また細粒結晶硫安が硫酸アンモニウムを含む割合は、好ましくは95重量%以上であり、98重量%以上であれば、結晶性の高い細粒結晶硫酸アンモニウムとなり、最も好ましい。なお、配向度とは、結晶の揃い具合を示す指標であり、二次元X線回折において、あおり角χ(°)に応じて得られた配向性ピークの半値幅(°)より下記式(1)で示される。
<Nitrogen fertilizer component>
There is no restriction | limiting in particular in the nitrogen fertilizer component used for this invention, The thing which acts as a nutrient for nitrogen content of a plant including a well-known thing can be used. Specific examples of the nitrogen fertilizer component include ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphate, urea, and the like. Of these, ammonium sulfate is particularly preferable because it is excellent in terms of elution and grain hardness when used as a granular fertilizer. For example, ammonium sulfate aqueous solution obtained by bringing coke oven waste gas into contact with sulfuric acid or caprolactam sulfate in the production of caprolactam is obtained by adding caprolactam sulfate and ammonium sulfate to obtain a mixture of caprolactam and ammonium sulfate. From the aqueous ammonium sulfate solution obtained by separating the aqueous solution, it can be used as fine-grain ammonium sulfate obtained by crystallizing ammonium sulfate by crystallization. The separation of the crystal and the mother liquor can be performed by a known method. For example, it is obtained by separating from a liquid by centrifugation and then drying. Fine crystal ammonium sulfate has a crystal structure with a pressure of 10.1 kPa ABS or more because the crystal is rapidly agglomerated and the mother liquor is taken in if the supersaturation degree is too high at the time of crystallization, and the particle size is large, moisture is high, and impurities are increased. By performing the analysis, it is possible to obtain crystal-oriented fine crystal ammonium sulfate. The height of crystallinity can be measured by performing two-dimensional X-ray diffraction, and the degree of orientation obtained from the measurement result is preferably 0.995 or more. More preferably, the degree of orientation is 0.997 or more, and if the degree of orientation is 1.0, the crystallinity is the highest and the most preferable. Further, the proportion of the fine crystal ammonium sulfate containing ammonium sulfate is preferably 95% by weight or more, and if it is 98% by weight or more, it becomes the fine crystal ammonium sulfate having high crystallinity, and is most preferable. The degree of orientation is an index indicating the degree of alignment of crystals. In two-dimensional X-ray diffraction, the following formula (1) is obtained from the half-value width (°) of the orientation peak obtained according to the tilt angle χ (°). ).

配向度=(180−配向性ピーク半値幅)/180 ・・・(1) 。     Degree of orientation = (180−full width at half maximum of orientation) / 180 (1)

こうして得られる細粒結晶硫安はそのまま本発明の粒状肥料の構成要素の1つである粒子Aの用に供しうる。この場合、硫酸アンモニウム水溶液母液由来の硫酸アンモニウム以外の成分は該細粒結晶硫安中、好ましく0.3重量%未満、更に好ましく0.2重量%未満である。   The finely-crystallized ammonium sulfate obtained in this way can be used as it is for the particle A which is one of the components of the granular fertilizer of the present invention. In this case, the components other than ammonium sulfate derived from the ammonium sulfate aqueous solution mother liquor are preferably less than 0.3% by weight, more preferably less than 0.2% by weight in the fine-grained crystal ammonium sulfate.

また細粒結晶硫安の粒径は、結晶同士が凝集して母液を取り込んでいない小さい粒径ほど固結性の改善につながるため、1.7mm以下が好ましい。より好ましくは、1.4mm以下であり、さらに好ましくは1.18mm以下である。細粒結晶硫安の粒径は、篩(目開き10メッシュ=1.7mm、12メッシュ=1.4mm、14メッシュ=1.18mm)で分級して求めることができる。   In addition, the particle size of the fine crystal ammonium sulfate is preferably 1.7 mm or less because the smaller the particle size in which the crystals are aggregated and the mother liquor is not taken in, the better the consolidation is. More preferably, it is 1.4 mm or less, More preferably, it is 1.18 mm or less. The particle size of the fine crystal ammonium sulfate can be determined by classification with a sieve (aperture 10 mesh = 1.7 mm, 12 mesh = 1.4 mm, 14 mesh = 1.18 mm).

細粒結晶硫安中のアンモニア性窒素の含有率は、単位重量あたりの窒素源としての肥料効果の面から、20.5%以上が好ましく、21.0%以上がさらに好ましい。なお、細粒結晶硫安中のアンモニア性窒素の含有率は、公定肥料分析法に従いホルムアルデヒド法で測定した値である。   The content of ammoniacal nitrogen in the fine crystal ammonium sulfate is preferably 20.5% or more, and more preferably 21.0% or more from the viewpoint of fertilizer effect as a nitrogen source per unit weight. The content of ammoniacal nitrogen in the fine-grained ammonium sulfate is a value measured by the formaldehyde method according to the official fertilizer analysis method.

窒素肥料成分の水分率は、5重量%以下であることが好ましい。より好ましくは4重量%以下であり、さらに好ましくは3重量%以下である。窒素肥料成分が細粒結晶硫安の場合の水分率は、0.3重量%以下であることが好ましい。より好ましくは0.2重量%以下であり、さらに好ましくは0.1重量%以下であり、完全に水分を乾燥させた0%であれば最も好ましい。なお、窒素肥料成分の水分率は、公定肥料分析法に従い加熱減量法で測定した値である。   The moisture content of the nitrogen fertilizer component is preferably 5% by weight or less. More preferably, it is 4 weight% or less, More preferably, it is 3 weight% or less. When the nitrogen fertilizer component is a fine crystal ammonium sulfate, the moisture content is preferably 0.3% by weight or less. More preferably, it is 0.2% by weight or less, further preferably 0.1% by weight or less, and most preferably 0% when the moisture is completely dried. The moisture content of the nitrogen fertilizer component is a value measured by the heat loss method according to the official fertilizer analysis method.

<粒子A>
本発明の粒状肥料は、後述するとおり、窒素肥料成分から実質的になる粒子(かかる粒子を「粒子A」ということがある)とマグネシウム肥料成分から実質的になる粒子(かかる粒子を「粒子B」ということがある)とが一体化して二次粒子を形成する。
<Particle A>
As will be described later, the granular fertilizer of the present invention is substantially composed of particles composed of nitrogen fertilizer components (sometimes referred to as “particles A”) and particles composed substantially of magnesium fertilizer components (such particles are referred to as “particles B”). To form secondary particles.

粒子Aは、窒素肥料成分から実質的になる粒子である。ここで、「実質的になる」とは、粒子A中の窒素肥料成分含有量が粒子A重量に対して平均して90重量%以上であることをいう。粒子Aが窒素肥料成分を含む割合は、95重量%以上が好ましく、さらに好ましくは98重量%以上であり、100重量%であれば最も好ましい。この粒子Aは、晶析により結晶化させて得ることができる。   Particle A is a particle substantially composed of a nitrogen fertilizer component. Here, “substantially” means that the nitrogen fertilizer component content in the particles A is 90% by weight or more on average with respect to the weight of the particles A. The ratio of the particles A containing the nitrogen fertilizer component is preferably 95% by weight or more, more preferably 98% by weight or more, and most preferably 100% by weight. The particles A can be obtained by crystallization by crystallization.

本発明の粒状肥料の製造に用いる粒子Aは、その粒径が0.25mmを超え2mm以下の粒子が粒子A全体の70重量%以上であることが好ましい。より好ましくはその粒径が0.25mmを超え1.7mm以下の粒子が粒子A全体の70重量%以上であり、さらに好ましくはその粒径が0.25mmを超え1.4mm以下の粒子が粒子A全体の70重量%以上であることである。粒径が2mmを超えるものが多く含まれる場合は、造粒する際に粒子同士の接触面積が小さく造粒しにくくて造粒物中に占める硫酸アンモニウム成分の割合が少なくなるため粒硬度の低下を生じる。粒径が0.25mm以下のものが多く含まれる場合は、粒子Aのかさ密度が低下して造粒しにくく、原料の利用効率が低下する。ここでの粒子Aの粒径および量は、篩(例えば、目開き9メッシュ=2.0mm、目開き10メッシュ=1.7mm、12メッシュ=1.4mm、目開き60メッシュ=0.25mm)で分級して求めることができる。   The particles A used in the production of the granular fertilizer of the present invention preferably have 70% by weight or more of the particles A having a particle size of more than 0.25 mm and 2 mm or less. More preferably, particles having a particle size of more than 0.25 mm and 1.7 mm or less are 70% by weight or more of the whole particle A, and more preferably particles having a particle size of more than 0.25 mm and 1.4 mm or less are particles. It is 70 weight% or more of the whole A. When many particles with a particle size exceeding 2 mm are included, the contact area between the particles is small when granulating, and it is difficult to granulate. Arise. When many particles having a particle size of 0.25 mm or less are contained, the bulk density of the particles A is lowered, making it difficult to granulate, and the utilization efficiency of the raw material is lowered. The particle size and the amount of the particles A here are sieves (for example, openings 9 mesh = 2.0 mm, openings 10 mesh = 1.7 mm, 12 mesh = 1.4 mm, openings 60 mesh = 0.25 mm) You can classify by.

本発明の粒状肥料の製造に用いる粒子Aのかさ密度は、好ましくは0.90g/ml以上1.1g/ml以下である。搬送時の飛散を防止したり、造粒時の造粒収率を高くするために、かさ密度は0.93g/ml以上1.1g/ml以下であることがより好ましく、0.96g/ml以上1.1g/ml以下であることがさらに好ましい。なお、粒子Aのかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。   The bulk density of the particles A used for producing the granular fertilizer of the present invention is preferably 0.90 g / ml or more and 1.1 g / ml or less. In order to prevent scattering during transportation or to increase the granulation yield during granulation, the bulk density is more preferably 0.93 g / ml to 1.1 g / ml, more preferably 0.96 g / ml. More preferably, it is 1.1 g / ml or less. The bulk density of the particles A is measured according to “JIS R 1628: 1997 Method for measuring bulk density of fine ceramic powder”.

<マグネシウム肥料成分>
本発明に用いるマグネシウム肥料成分には特に制限が無く、公知のものも含めて植物のマグネシウム分の栄養素として作用するものを用いることができる。マグネシウム肥料成分の具体例としては、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム等が挙げられる。このうち硫酸マグネシウムは、粒状肥料としたときの溶出性や粒硬度の点で優れるので特に好ましい。好ましい硫酸マグネシウムの例として、硫酸マグネシウム無水物、硫酸マグネシウム1水和物、硫酸マグネシウム3水和物、および硫酸マグネシウム7水和物からなる群から選ばれる少なくとも1種であることが好ましく、また、粉化し難い点において有利であるので、硫酸マグネシウム無水物、硫酸マグネシウム1水和物および硫酸マグネシウム3水和物からなる群から選ばれる少なくとも1種を用いることが好ましい。そして、硫酸マグネシウム1水和物(例えば、キーゼライト(住友商事株式会社))を用いることがさらに好ましい。硫酸マグネシウムは、例えば、鉱山から採掘した原鉱石を粉砕し、電気分解によって塩化カリ等と分離することで得られたり、軽焼マグネシウムを原料として硫酸で中和分解して得られ、硫酸マグネシウムのMgO換算でのマグネシウム含有率は、単位重量あたりのマグネシウム源としての肥料効果の面から、15%以上含むことが好ましく、20%以上含むことがより好ましく、25%以上含むことがさらに好ましい。なお、硫酸マグネシウムのMgO換算でのマグネシウム含有率は、公定肥料分析法に従い原子吸光測定法で測定した値である。マグネシウム肥料成分は通常粒状の成分として得られるが、その粒径としては、2mm以下であるものが好ましい。より好ましくは1.7mm以下であり、さらに好ましくは1.4mm以下である。マグネシウム肥料成分の粒径および量は、篩(目開き10メッシュ=1.7mm、12メッシュ=1.4mm、14メッシュ=1.18mm)で分級して求めることができる。マグネシウム肥料成分の水分率は、5重量%以下であることが好ましい。より好ましくは4重量%以下であり、さらに好ましくは3重量%以下である。マグネシウム肥料成分が硫酸マグネシウムの場合の水分率は、0.3重量%以下であることが好ましい。より好ましくは0.2重量%以下であり、さらに好ましくは0.1重量%以下である。なお、マグネシウム肥料成分の水分率は、公定肥料分析法に従い加熱減量法で測定した値である。
<Magnesium fertilizer component>
There is no restriction | limiting in particular in the magnesium fertilizer component used for this invention, The thing which acts as a nutrient for a magnesium content of a plant including a well-known thing can be used. Specific examples of the magnesium fertilizer component include magnesium sulfate, magnesium chloride, magnesium nitrate, magnesium hydroxide, magnesium carbonate and the like. Of these, magnesium sulfate is particularly preferable because it is excellent in terms of elution and grain hardness when used as a granular fertilizer. Preferred examples of magnesium sulfate are preferably at least one selected from the group consisting of magnesium sulfate anhydride, magnesium sulfate monohydrate, magnesium sulfate trihydrate, and magnesium sulfate heptahydrate. Since it is advantageous in that it is difficult to powder, it is preferable to use at least one selected from the group consisting of magnesium sulfate anhydride, magnesium sulfate monohydrate and magnesium sulfate trihydrate. It is more preferable to use magnesium sulfate monohydrate (for example, Kiselite (Sumitomo Corporation)). Magnesium sulfate is obtained, for example, by pulverizing raw ore mined from a mine and separating it from potassium chloride or the like by electrolysis, or obtained by neutralization and decomposition with sulfuric acid using lightly burned magnesium as a raw material. The magnesium content in terms of MgO is preferably 15% or more, more preferably 20% or more, and even more preferably 25% or more from the viewpoint of fertilizer effect as a magnesium source per unit weight. The magnesium content of magnesium sulfate in terms of MgO is a value measured by an atomic absorption measurement method according to an official fertilizer analysis method. The magnesium fertilizer component is usually obtained as a granular component, but the particle size is preferably 2 mm or less. More preferably, it is 1.7 mm or less, More preferably, it is 1.4 mm or less. The particle size and amount of the magnesium fertilizer component can be determined by classification with a sieve (aperture 10 mesh = 1.7 mm, 12 mesh = 1.4 mm, 14 mesh = 1.18 mm). The moisture content of the magnesium fertilizer component is preferably 5% by weight or less. More preferably, it is 4 weight% or less, More preferably, it is 3 weight% or less. When the magnesium fertilizer component is magnesium sulfate, the moisture content is preferably 0.3% by weight or less. More preferably, it is 0.2 weight% or less, More preferably, it is 0.1 weight% or less. In addition, the moisture content of a magnesium fertilizer component is the value measured by the heat loss method according to the official fertilizer analysis method.

<粒子B>
粒子Bは、マグネシウム肥料成分から実質的になる粒子である。ここで、「実質的になる」とは、粒子B中のマグネシウム肥料成分含有量が粒子B重量に対して平均して90重量%以上であることをいう。粒子Bがマグネシウム肥料成分を含む割合は、95重量%以上が好ましく、さらに好ましくは98重量%以上であり、100重量%であれば最も好ましい。この粒子Bは、鉱山から採掘した原鉱石を粉砕し、電気分解によって塩化カリ等と分離することで得ることができる。
<Particle B>
Particle B is a particle substantially composed of a magnesium fertilizer component. Here, “being substantially” means that the magnesium fertilizer component content in the particles B is 90% by weight or more on average with respect to the weight of the particles B. The proportion of the particles B containing the magnesium fertilizer component is preferably 95% by weight or more, more preferably 98% by weight or more, and most preferably 100% by weight. The particles B can be obtained by pulverizing raw ore mined from a mine and separating it from potassium chloride or the like by electrolysis.

本発明の粒状肥料の製造に用いる粒子Bは、その粒径が0.25mmを超え2mm以下の粒子が粒子B全体の50重量%以上であることが好ましい。より好ましくはその粒径が0.25mmを超え1.7mm以下の粒子が粒子B全体の50重量%以上であり、さらに好ましくはその粒径が0.25mmを超え1.4mm以下の粒子が粒子B全体の50重量%以上であることである。粒径が2mmを超えるものが多く含まれる場合は、造粒する際に粒子同士の接触面積が小さく造粒しにくくて粒硬度の低下を生じる。粒子Bの粒径が0.25mm以下のものが多く含まれる場合は、粒子Bのかさ密度が低下して造粒しにくく、原料の利用効率が低下する。ここでの粒子Bの粒径および量は、篩(例えば、目開き9メッシュ=2.0mm、目開き10メッシュ=1.7mm、12メッシュ=1.4mm、目開き60メッシュ=0.25mm)で分級して求めることができる。   The particle B used for producing the granular fertilizer of the present invention preferably has a particle size of more than 0.25 mm and 2 mm or less of 50% by weight or more of the whole particle B. More preferably, the particles having a particle size of more than 0.25 mm and not more than 1.7 mm are 50% by weight or more of the whole particle B, and more preferably, the particles having a particle size of more than 0.25 mm and not more than 1.4 mm are particles. It is that it is 50 weight% or more of the whole B. When many particles having a particle size exceeding 2 mm are contained, the contact area between the particles is small when granulating, and it is difficult to granulate, resulting in a decrease in grain hardness. When the particle B contains a large number of particles having a particle size of 0.25 mm or less, the bulk density of the particle B is reduced, making it difficult to granulate, and the utilization efficiency of the raw material is reduced. The particle size and amount of the particles B here are sieves (for example, an opening of 9 mesh = 2.0 mm, an opening of 10 mesh = 1.7 mm, 12 mesh = 1.4 mm, an opening of 60 mesh = 0.25 mm) You can classify by.

本発明の粒状肥料の製造に用いる粒子Bのかさ密度は、0.95g/ml以上1.10g/ml以下である。搬送時の飛散を防止したり、造粒時の造粒収率を高くするために、かさ密度は0.97g/ml以上1.10g/ml以下であることがより好ましく、0.99g/ml以上1.10g/ml以下であることがさらに好ましい。なお、粒子Bのかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。   The bulk density of the particles B used for producing the granular fertilizer of the present invention is 0.95 g / ml or more and 1.10 g / ml or less. In order to prevent scattering during transportation or to increase the granulation yield during granulation, the bulk density is more preferably 0.97 g / ml or more and 1.10 g / ml or less, and 0.99 g / ml. More preferably, it is 1.10 g / ml or less. The bulk density of the particles B is measured according to “JIS R 1628: 1997 Method for measuring bulk density of fine ceramic powder”.

<粒状肥料>
本発明の粒状肥料は、窒素肥料成分から実質的になる粒子(粒子A)と、マグネシウム肥料成分から実質的になる粒子(粒子B)とが一体化して二次粒子を形成した粒状肥料である。すなわち、粒状肥料中には粒子Aの部分と粒子Bの部分とを顕微鏡を用いて観察することができる。このような粒状肥料を得るには、原料としての粒子Aと粒子Bとを水分の存在下に混合し、該混合物を、成型(造粒ともいう)することで得られる。
<Granular fertilizer>
The granular fertilizer of the present invention is a granular fertilizer in which particles substantially composed of a nitrogen fertilizer component (particle A) and particles substantially composed of a magnesium fertilizer component (particle B) are integrated to form secondary particles. . That is, in the granular fertilizer, the part of particle A and the part of particle B can be observed using a microscope. In order to obtain such a granular fertilizer, particles A and B as raw materials are mixed in the presence of moisture, and the mixture is molded (also referred to as granulation).

水分の存在下に混合機で粒子Aと粒子Bとを混合し、造粒、解砕、整粒、分級を順次行うことで肥料として好ましい硬度、かさ密度、および形状を有する粒状肥料を得ることができる。   Mixing particles A and B with a mixer in the presence of moisture, and sequentially performing granulation, pulverization, sizing, and classification to obtain a granular fertilizer having hardness, bulk density, and shape preferable as a fertilizer Can do.

なお、本発明の要旨を逸脱せず、また、目的を阻害しない限りにおいて、粒子Aおよび粒子B以外の成分を用いることは差し支えない。たとえば、他の栄養素において肥効を持つ物質、結着剤などの保型性を改良する物質、無機フィラーや有機フィラーなどの添加剤が挙げられる。   It should be noted that components other than the particles A and the particles B may be used as long as they do not depart from the gist of the present invention and do not impair the purpose. For example, substances having fertilizing effects on other nutrients, substances that improve shape retention such as binders, and additives such as inorganic fillers and organic fillers can be mentioned.

粒子Aと粒子Bとの混合方法は、均一に混合できれば混合機の種類に特に制限はなく、水平円筒型、∨型、ダブルコーン型等の容器回転型混合機や、リボン型、スクリュー型、パドル型等の容器固定型の混合機を使用することができるが、連続処理が可能であることからパドル型混合機が好ましく用いられる。混合時間は、2分以上15分以下が好ましく、さらに好ましくは5分以上10分以下である。混合時間が2分より短くなると、混合物中で粒子Aと粒子Bが均一に分散せず、粒状化した際に各粒子の偏りが生じる。混合時間が15分を超えて長くなると、肥料の連続製造においては混合機容量を大きくすることとなるため経済的に不利である。   The mixing method of the particles A and the particles B is not particularly limited as long as they can be mixed uniformly, and can be a horizontal cylindrical type, vertical type, double cone type or other container rotating type mixer, ribbon type, screw type, Although a container-fixed type mixer such as a paddle type can be used, a paddle type mixer is preferably used because continuous processing is possible. The mixing time is preferably from 2 minutes to 15 minutes, more preferably from 5 minutes to 10 minutes. When the mixing time is shorter than 2 minutes, the particles A and B are not uniformly dispersed in the mixture, and each particle is biased when granulated. If the mixing time is longer than 15 minutes, the mixer capacity is increased in continuous production of fertilizer, which is economically disadvantageous.

粒子Aと粒子Bとを混合する際に存在せしめる水の量は、粒子Aと粒子Bの重量の総和を100重量部としたとき、0.1〜1.9重量部とすることが好ましい。より好ましくは0.3〜1.7重量部であり、さらに好ましくは0.5〜1.5重量部である。存在せしめる水の量が0.3重量部より低くなると、造粒時に粒子Aと粒子Bの結合力が不足して造粒収率の低下を招き、保管時に硬度が不足して粒状肥料が粉化しやすくなる。存在せしめる水の量が1.7重量部を超えて高くなると、混合物を混合機から排出して造粒機へ搬送する際に機器への付着量が多くなって収量が低下したり、粒状肥料の保管時に固結性が悪化する。   The amount of water that is present when mixing the particles A and the particles B is preferably 0.1 to 1.9 parts by weight when the total weight of the particles A and B is 100 parts by weight. More preferably, it is 0.3-1.7 weight part, More preferably, it is 0.5-1.5 weight part. When the amount of water to be present is lower than 0.3 parts by weight, the binding force between the particles A and B is insufficient during granulation, resulting in a decrease in granulation yield, and the granular fertilizer becomes insufficient due to insufficient hardness during storage. It becomes easy to become. If the amount of water present exceeds 1.7 parts by weight, the amount of water adhering to the equipment increases when the mixture is discharged from the mixer and transported to the granulator, resulting in a decrease in yield or granular fertilizer. The caking property deteriorates during storage.

成型方法としては、公知の方法が取り得るが、圧縮造粒が好ましく、圧縮造粒装置は、タブレット方式、板状方式、ブリケット方式の何れを用いても問題ないが、タブレット方式では生産効率が低く粒状肥料の大量生産が困難であり、また板状方式では球形でバリの少ない粒状肥料を生産することが困難であるため、ブリケット方式を用いることが好ましい。ブリケット方式の圧縮造粒装置としては、例えばブリケッタ(登録商標)BSS型(新東工業製)などを好ましく用いることができる。   As a molding method, a known method can be used, but compression granulation is preferable, and the compression granulation apparatus may be any of a tablet method, a plate-like method, and a briquette method, but the tablet method has a production efficiency. It is preferable to use a briquette system because it is difficult to produce a low-volume granular fertilizer with a low level, and it is difficult to produce a granular fertilizer with a spherical shape and few burrs. As a briquette type compression granulator, for example, a Briquetta (registered trademark) BSS type (manufactured by Shinto Kogyo) or the like can be preferably used.

水分の存在下に粒子Aと粒子Bとが混合された混合物(造粒原料ともいう)を圧縮造粒装置に供給する方法に特に制限はないが、例えば該混合物をホッパーに貯蔵し、ホッパーに付帯した搬送コンベアより造粒装置に直接供給、またはホッパー搬送コンベアからベルトコンベアやバケットコンベア等を経由して造粒装置へ供給することができる。   There is no particular limitation on the method of supplying a mixture (also referred to as a granulation raw material) in which particles A and particles B are mixed in the presence of moisture to a compression granulator. For example, the mixture is stored in a hopper, It can be directly supplied to the granulator from the accompanying conveyor, or can be supplied from the hopper conveyor to the granulator via a belt conveyor or a bucket conveyor.

造粒圧力とは、造粒原料に加わる総荷重を有効幅で割った値(線圧)を示し、有効幅とは、造粒原料に荷重が加わる部分における、圧縮機側の長径を示す。例えば、タブレット方式であれば有効幅はタブレット部分の長径であり、ローラーを用いたブリケット方式であれば、有効幅はローラーにて造粒原料が圧縮されている部分の長さである。造粒圧力は、6.0kN/cm以上30.0kN/cm以下の範囲内にあることが好ましい。より好ましくは7.0kN/cm以上30.0kN/cm以下であり、さらに好ましくは8.0kN/cm以上30.0kN/cm以下である。造粒圧力が6.0kN/cm未満の場合、圧力不足のため、造粒原料の造粒自体が起こらない。造粒圧力が30.0kN/cmを超えて高くなると、過剰な圧力により得られた造粒物に亀裂が生じたり、圧縮造粒機に必要以上の荷重がかかるため、装置寿命が著しく低下する。   The granulation pressure indicates a value (linear pressure) obtained by dividing the total load applied to the granulated raw material by the effective width, and the effective width indicates the major axis on the compressor side in the portion where the load is applied to the granulated raw material. For example, in the case of the tablet method, the effective width is the long diameter of the tablet portion, and in the case of the briquette method using a roller, the effective width is the length of the portion where the granulated raw material is compressed by the roller. The granulation pressure is preferably in the range of 6.0 kN / cm to 30.0 kN / cm. More preferably, it is 7.0 kN / cm or more and 30.0 kN / cm or less, More preferably, it is 8.0 kN / cm or more and 30.0 kN / cm or less. When the granulation pressure is less than 6.0 kN / cm, granulation of the granulation raw material itself does not occur due to insufficient pressure. If the granulation pressure is higher than 30.0 kN / cm, the granulated material obtained by excessive pressure will crack, or the compression granulator will be loaded more than necessary, so the device life will be significantly reduced. .

造粒ローラー回転数とは、ローラーを用いて圧縮造粒するブリケット方式および板状方式におけるローラーの回転速度であり、40rpm以上が好ましい。より好ましくは50rpm以上であり、さらに好ましくは60rpm以上である。造粒ローラー回転数が40rpm未満の場合、原料への造粒圧力が高くなって造粒物に亀裂が生じたり、生産量が低下する。   The number of rotations of the granulation roller is the rotation speed of the rollers in the briquette method and the plate method in which compression granulation is performed using a roller, and 40 rpm or more is preferable. More preferably, it is 50 rpm or more, More preferably, it is 60 rpm or more. When the number of rotations of the granulation roller is less than 40 rpm, the granulation pressure on the raw material is increased, and the granulated material is cracked or the production amount is decreased.

圧縮造粒機のバリ厚みとは、造粒原料に荷重が加わる部分における造粒原料の最短径を示す。例えばタブレット方式であれば、バリ厚みはタブレット部分の短径であり、ローラーを用いたブリケット方式であれば、バリ厚みは造粒して得た造粒物の板状部分の厚みの長さである。バリ厚みは、1.0mm以上2.5mm以下の範囲内にあることが好ましく、1.2mm以上2.0mm以下の範囲内にあることがより好ましい。バリ厚みが1.2mm未満であると、粒状肥料の圧壊強度・収量ともに低下する傾向にある。バリ厚みが2.0mmを超えて厚くなると、粒状肥料の形状が肥料散布に不適となることや、造粒した粒状肥料を、例えば解砕ボールを用いた振動篩で解砕し粒径を揃える場合、篩の目詰まりの原因となるため好ましくない。   The burr thickness of the compression granulator indicates the shortest diameter of the granulated raw material at a portion where a load is applied to the granulated raw material. For example, if it is a tablet system, the burr thickness is the short diameter of the tablet part, and if it is a briquette system using a roller, the burr thickness is the length of the plate-like part of the granulated product obtained by granulation. is there. The burr thickness is preferably in the range of 1.0 mm to 2.5 mm, and more preferably in the range of 1.2 mm to 2.0 mm. If the burr thickness is less than 1.2 mm, both the crushing strength and yield of the granular fertilizer tend to decrease. When the burr thickness exceeds 2.0 mm, the shape of the granular fertilizer becomes unsuitable for fertilizer application, and the granulated granular fertilizer is crushed with, for example, a vibrating sieve using a pulverized ball to make the particle size uniform. In this case, it is not preferable because it causes clogging of the sieve.

バリが少なく、圧壊強度が強く、粉塵の発生も少なく、固結が起こりにくい粒状肥料を得るために、圧縮造粒機を用いて原料を造粒し、解砕機を用いて圧縮造粒後の造粒物を解砕し、球形整粒機を用いて造粒物を整粒し、分級機を用いて整粒の粒状肥料を分級することが好ましい。各工程における粒状肥料の輸送方法に制限はないが、自然落下・コンベア輸送・風送などを用いることが可能であり、コンベア輸送で造粒原料を造粒機に輸送した後、自然落下で解砕機・球形整粒機・分級機へ輸送する方法が好ましい。これら輸送機器を含めた機器の接粉部分については、粒状肥料に耐食性を持つ材質を用いることが好ましく、SUS316Lまたは樹脂を用いることが好ましい。   In order to obtain a granular fertilizer with few burrs, strong crushing strength, less dust generation, and hardly caking, the raw material is granulated using a compression granulator, and after compression granulation using a pulverizer It is preferable that the granulated material is crushed, the granulated product is sized using a spherical granulator, and the sized granular fertilizer is classified using a classifier. There are no restrictions on the method of transporting granular fertilizer in each process, but it is possible to use natural fall, conveyor transport, air transport, etc., and after the granulated raw material is transported to the granulator by conveyor transport, it is solved by natural fall. A method of transporting to a crusher, a spherical granulator or a classifier is preferred. For the contact parts of equipment including these transportation equipment, it is preferable to use a material having corrosion resistance for the granular fertilizer, and it is preferable to use SUS316L or resin.

圧縮造粒機で造粒した粒状肥料は、解砕、整粒、分級を行うことで肥料として好ましい硬度、かさ密度、および形状を有する粒状肥料を得ることができる。   The granular fertilizer granulated by the compression granulator can be obtained by obtaining a granular fertilizer having hardness, bulk density and shape preferable as a fertilizer by performing crushing, sizing and classification.

粒径の揃った粒状肥料を得るために、解砕機を用いて圧縮造粒後の粒状肥料を解砕することが好ましい。解砕機の種類に特に制限は無く、例えば、ジョークラッシャー・ロールクラッシャーなどの各種クラッシャーや、ローラーミル・カッティングミルなどの各種ミル、解砕メディアを添加した振動篩などが好ましく用いられる。また、これらの解砕機を組み合わせ用いることも可能である。   In order to obtain a granular fertilizer having a uniform particle size, it is preferable to crush the granular fertilizer after compression granulation using a crusher. There are no particular limitations on the type of crusher, and various crushers such as a jaw crusher and a roll crusher, various mills such as a roller mill and a cutting mill, and a vibration sieve to which crushing media are added are preferably used. It is also possible to use a combination of these crushers.

球形でバリの少ない粒状肥料を得るために、整粒機を用いて整粒することが好ましい。整粒機の種類に特に制限はなく、例えば高速転動方法、オシレータ式、架砕方式、遠心回転方式などが好ましく用いられ、高速転動方式の球形整粒機であるマルメライザー(登録商標:ダルトン製)を用いて粒状肥料を整粒することがより好ましい。   In order to obtain a spherical fertilizer with little burr, it is preferable to use a granulator to regulate the size. There is no particular limitation on the type of the granulator, for example, a high-speed rolling method, an oscillator type, a crushing method, a centrifugal rotating method, or the like is preferably used, and Malmerizer (registered trademark: a high-speed rolling type spherical granulator). It is more preferable to size the granular fertilizer using Dalton).

整粒機の処理時間は、0.2〜5.0分の範囲内にあることが好ましく、0.3〜3.0分の範囲内であることがより好ましい。整粒機の処理時間が上記を超えて低くなると、粒状肥料のバリ除去が不十分となる。整粒機の処理時間が上記を超えて高くなると、バリ以外の部分が切削される量が増加し、粒状肥料の収量が低下する。さらに整粒処理に必要な時間が多くなるため、単位時間あたりの粒状肥料収量も低下する。   The processing time of the granulator is preferably in the range of 0.2 to 5.0 minutes, and more preferably in the range of 0.3 to 3.0 minutes. When the processing time of the granulator becomes lower than the above, the removal of burrs from the granular fertilizer becomes insufficient. When the processing time of the granulator becomes higher than the above, the amount of parts other than burrs that are cut increases, and the yield of granular fertilizer decreases. Furthermore, since the time required for the sizing treatment is increased, the yield of granular fertilizer per unit time is also reduced.

整粒機の回転速度は、50〜2000回転/分の範囲内にあることが好ましく、100〜1500回転/分の範囲内にあることがより好ましい。整粒機の回転速度が上記の範囲より低くなると、粒状肥料のバリ除去が不十分となり、さらに整粒処理に必要な時間が多くなるため、単位時間あたりの粒状肥料収量も低下する。整粒機の回転速度が上記の範囲を超えて高くなると、騒音増加および機器寿命の低下といった問題が生ずる。   The rotational speed of the granulator is preferably in the range of 50 to 2000 revolutions / minute, and more preferably in the range of 100 to 1500 revolutions / minute. When the rotational speed of the granulator becomes lower than the above range, the burr removal of the granular fertilizer becomes insufficient, and further the time required for the granulation treatment increases, so that the granular fertilizer yield per unit time also decreases. When the rotational speed of the granulator becomes higher than the above range, problems such as an increase in noise and a decrease in equipment life occur.

所定の粒径以上の粒状肥料を得るために、分級機を用いて粒状肥料を分級することが望ましい。乾式分級が可能なものであれば、分級機の種類に特に制限はないが、振動篩を用いることが好ましい。篩の目開きは、所定の粒径を得られる大きさであれば特に制限はないが、1.8〜2.2mm、および3.8〜4.2mmの目開きであることが好ましく、これら目開きを有する篩を組み合わせて粒径2.0〜4.0mmの粒状肥料を得る分級方法が好ましい。   In order to obtain a granular fertilizer having a predetermined particle size or more, it is desirable to classify the granular fertilizer using a classifier. The type of classifier is not particularly limited as long as dry classification is possible, but it is preferable to use a vibration sieve. The opening of the sieve is not particularly limited as long as a predetermined particle size can be obtained, but preferably 1.8 to 2.2 mm and 3.8 to 4.2 mm. A classification method for obtaining a granular fertilizer having a particle size of 2.0 to 4.0 mm by combining sieves having openings is preferable.

本発明の粒状肥料は、該粒状肥料中、粒子Aは粒径が0.1mmを超え、2mm以下の粒子が粒子A中50重量%以上を占め、粒子Bは粒径が0.1mmを超え、2mm以下の粒子が粒子B中50重量%以上を占め、かつ、該粒状肥料中に窒素肥料成分が50〜80重量%、マグネシウム肥料成分が50〜20重量%含まれている。   In the granular fertilizer of the present invention, in the granular fertilizer, the particle A has a particle size of more than 0.1 mm, and the particles of 2 mm or less account for 50% by weight or more in the particle A, and the particle B has a particle size of more than 0.1 mm. Particles of 2 mm or less occupy 50% by weight or more in the particle B, and the granular fertilizer contains 50 to 80% by weight of nitrogen fertilizer component and 50 to 20% by weight of magnesium fertilizer component.

この粒状肥料に含まれる窒素肥料成分とマグネシウム肥料成分の量としては、窒素肥料成分が55〜78重量%、マグネシウム肥料成分が45〜22重量%が含まれていることがより好ましく、窒素肥料成分が60〜75重量%、マグネシウム肥料成分40〜25重量%が含まれていることがさらに好ましい。窒素肥料成分が50重量%未満、マグネシウム肥料成分が50重量%超含まれている場合は、マグネシウム肥料成分の比率が多くて粒硬度が低下し、粉化しやすくなる。窒素肥料成分が80重量%超、マグネシウム肥料成分が20重量%未満含まれている場合は、粒状肥料中の窒素肥料成分とマグネシウム肥料成分の比率に偏りが生じ、作物の生育に支障が出る。粒状肥料中に含まれる窒素肥料成分とマグネシウム肥料成分の量は粒子Aおよび粒子Bの配合量を調整することによって所望の範囲とすることができる。   The amount of nitrogen fertilizer component and magnesium fertilizer component contained in this granular fertilizer is more preferably 55 to 78% by weight of nitrogen fertilizer component and 45 to 22% by weight of magnesium fertilizer component. Is more preferably 60 to 75% by weight and magnesium fertilizer component 40 to 25% by weight. When the nitrogen fertilizer component is less than 50% by weight and the magnesium fertilizer component exceeds 50% by weight, the ratio of the magnesium fertilizer component is large, the grain hardness is lowered, and the powder is easily pulverized. When the nitrogen fertilizer component exceeds 80% by weight and the magnesium fertilizer component is less than 20% by weight, the ratio of the nitrogen fertilizer component and the magnesium fertilizer component in the granular fertilizer is biased, which hinders the growth of the crop. The amount of the nitrogen fertilizer component and the magnesium fertilizer component contained in the granular fertilizer can be set to a desired range by adjusting the blending amount of the particles A and the particles B.

また、本発明の粒状肥料において粒子Aの粒径は、0.1mmを超え2.0mm以下のものが粒子A中50重量%以上であり、さらに好ましくは0.1mmを超え1.0mm以下のものが粒子A中50重量%以上である。粒子Aの粒径が2mmを超えるものが多い場合は、粒状肥料中に占める原料の割合が少ないため粒硬度の低下を生じる。粒子Aの粒径が0.1mm以下のものが多い場合は、保管時に粉化して粒状肥料どうしの固結性が悪化する。粒子Aの粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、窒素肥料成分を含む粒子を識別して粒径を求めることができる。   In the granular fertilizer of the present invention, the particle size of the particles A is more than 0.1 mm and not more than 2.0 mm is 50% by weight or more in the particles A, more preferably more than 0.1 mm and not more than 1.0 mm. The amount is 50% by weight or more in the particle A. When there are many particles A having a particle size exceeding 2 mm, the proportion of the raw material in the granular fertilizer is small, resulting in a decrease in the particle hardness. When there are many particles A having a particle size of 0.1 mm or less, the solidification of the granular fertilizers deteriorates due to pulverization during storage. The particle size of the particle A can be determined by analyzing the cross section of the granular fertilizer by scanning electron microscope observation-energy dispersive X-ray analysis, and identifying particles containing a nitrogen fertilizer component.

本発明の粒状肥料において粒子Bの粒径は、0.1mmを超え2mm以下のものが粒子B中50重量%以上であり、好ましくは0.1mmを超え1.0mm以下のものが粒子B中50重量%以上である。粒子Bの粒径が2mmを超えるものが多い場合は、粒状肥料中に占める原料の割合が少ないため粒硬度の低下を生じる。粒子Bの粒径が0.1mm以下のものが多い場合は、保管時に粉化して粒状肥料どうしの固結性が悪化する。粒子Bの粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、マグネシウム肥料成分を含む粒子を識別して粒径を求めることができる。   In the granular fertilizer of the present invention, the particle size of the particle B is more than 0.1 mm and 2 mm or less is 50% by weight or more in the particle B, preferably more than 0.1 mm and 1.0 mm or less in the particle B. It is 50% by weight or more. When there are many particles B having a particle size exceeding 2 mm, the ratio of the raw material in the granular fertilizer is small, resulting in a decrease in particle hardness. When there are many particles B having a particle size of 0.1 mm or less, the solidification property between the granular fertilizers deteriorates due to pulverization during storage. The particle size of the particle B can be determined by analyzing the cross section of the granular fertilizer by scanning electron microscope observation-energy dispersive X-ray analysis and identifying particles containing the magnesium fertilizer component.

係る粒子Aおよび粒子Bの粒径の範囲および量の調整方法としては、成型前の粒子Aまたは粒子Bにおいて篩い分けを行って調整することにより所望の範囲とすることができる。従って、本発明の粒状肥料を得るにおいては、粒径が0.25mmを超え、2mm以下の粒子が粒子A中70重量%以上を占める粒子Aと、粒径が0.25mmを超え、2mm以下の粒子が粒子B中50重量%以上を占める粒子Bの混合物を成型することが好ましく採用できる。   As a method for adjusting the range and amount of the particle diameters of the particles A and the particles B, the particle A or the particle B before molding can be adjusted to a desired range by performing sieving. Therefore, in obtaining the granular fertilizer of the present invention, the particle size is over 0.25 mm, and the particles A having a particle size of 2 mm or less account for 70% by weight or more in the particle A, and the particle size is over 0.25 mm and 2 mm or less. It is possible to preferably employ a mixture of particles B in which the particles occupy 50% by weight or more of the particles B.

粒状肥料の二次粒子形成後の粒硬度は、二次粒子形成から時間経過すると若干変動しうるが、使用時および運搬時を想定しての製品として流通される際の本発明の粒状肥料の粒硬度としては、2kgf以上であることが好ましい。粒硬度が2kgf未満であると、粒状肥料の保管中や運搬中にも粉化が発生しやすく、粉体を介しての粒状物どうしの固結の原因となる。また散布時には粒が崩壊して均一な施肥が困難となる。一方、上限としては特に制限が無いが、5kgf以下であることが好ましく、5kgfを越える場合は、土壌中での粒状肥料の溶解性が悪く、肥効が低下することがある。より好ましくは3kgf以上5kgf以下であり、さらに好ましくは3.5kgf以上4.5kgf以下である。なお、粒状肥料の粒硬度は木屋式硬度計で粒状肥料20粒の粒硬度を測定し、これら粒硬度の平均値を粒硬度とする。   The granular hardness of the granular fertilizer after the formation of secondary particles may vary slightly over time from the formation of the secondary particles, but the granular fertilizer of the present invention when distributed as a product assuming use and transportation. The grain hardness is preferably 2 kgf or more. When the grain hardness is less than 2 kgf, pulverization is likely to occur during storage and transportation of the granular fertilizer, which causes solidification of the granular materials via the powder. Also, when spraying, the grains collapse and uniform fertilization becomes difficult. On the other hand, the upper limit is not particularly limited, but is preferably 5 kgf or less, and if it exceeds 5 kgf, the solubility of the granular fertilizer in the soil is poor, and the fertilization effect may be reduced. More preferably, they are 3 kgf or more and 5 kgf or less, More preferably, they are 3.5 kgf or more and 4.5 kgf or less. In addition, the grain hardness of granular fertilizer measures the grain hardness of 20 granular fertilizers with a Kiyama-type hardness meter, and makes the average value of these grain hardness the grain hardness.

粒状肥料からの窒素肥料成分とマグネシウム肥料成分の溶出速度は、設計とおりの肥効を作物に与える目的から同じ減衰率であることが望ましく、窒素肥料成分とマグネシウム肥料成分の粒状肥料からの初期の量でもって規格化された溶出速度の比として0.8〜1.2であることが好ましい。より好ましくは0.9〜1.1であり、減衰率が一致することを表す1.0が最も好ましい。なお、粒状肥料からの窒素肥料成分とマグネシウム肥料成分の前記溶出速度の比は、100mlの栓付きガラス管に粒状肥料5gを入れ、水100mlを添加して浸漬し、栓をして25℃の恒温槽に静置し、5時間経過後にガラス管を取り出し、溶液を化学濾紙で濾過して水中に溶出した肥料成分を定量分析し、また、初期の量を測定し、下記式(3)、式(4)および式(5)から求められる。   It is desirable that the elution rate of nitrogen fertilizer and magnesium fertilizer components from granular fertilizer should be the same attenuation rate for the purpose of giving crops the desired fertilization effect, and the initial rate of nitrogen fertilizer and magnesium fertilizer components from granular fertilizer The ratio of the dissolution rate normalized by the amount is preferably 0.8 to 1.2. More preferably, it is 0.9 to 1.1, and 1.0 representing the matching of the attenuation factors is most preferable. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component from the granular fertilizer is as follows: 5 g of granular fertilizer is placed in a 100 ml stoppered glass tube, and 100 ml of water is added and immersed, plugged and sealed at 25 ° C. Leave in a thermostatic bath, remove the glass tube after 5 hours, filter the solution with chemical filter paper and quantitatively analyze the fertilizer components eluted in the water, measure the initial amount, the following formula (3), It is obtained from the equations (4) and (5).

窒素肥料成分の溶出割合=
(水中に溶出したN分の量)/(粒状肥料5gに含まれるN分の量) ・・・(3) 。
Elution ratio of nitrogen fertilizer component =
(Amount of N component eluted in water) / (Amount of N component contained in 5 g of granular fertilizer) (3)

マグネシウム肥料成分の溶出割合=
(水中に溶出したMgO換算でのマグネシウム分の量)/(粒状肥料5gに含まれるMgO換算でのマグネシウム分の量) ・・・(4) 。
Elution ratio of magnesium fertilizer component =
(Amount of magnesium in terms of MgO eluted in water) / (Amount of magnesium in terms of MgO contained in 5 g of granular fertilizer) (4)

窒素肥料成分とマグネシウム肥料成分の溶出速度の比=
窒素肥料成分の溶出割合/マグネシウム肥料成分の溶出割合 ・・・(5) 。
Ratio of elution rate of nitrogen fertilizer component and magnesium fertilizer component =
Elution ratio of nitrogen fertilizer component / elution ratio of magnesium fertilizer component (5)

圧縮造粒機を用いて原料を造粒し、解砕機を用いて圧縮造粒後の造粒物を解砕し、また球形整粒機を用いて造粒物を整粒し、分級機を用いて整粒後の粒状肥料を分級した際に得られる篩下の微粉は、原料中にリサイクルして混合し、原料として使用することができる。粒状肥料の収率は、造粒時および整粒時の粒状肥料の廃棄量をできるだけ削減するため、あるいは廃棄せずに造粒工程へリサイクルするためには60%以上であることが好ましい。より好ましくは65%以上であり、さらに好ましくは70%以上であり、完全に回収できた場合100%が最も好ましい。なお、収率とは、造粒機に投入する造粒原料の重量に対する造粒および整粒して得られた粒状肥料の重量割合であって、下記式(6)で示される。   The raw material is granulated using a compression granulator, the granulated product after compression granulation is crushed using a pulverizer, the granulated product is sized using a spherical granulator, and the classifier is The fine powder under the sieve obtained when classifying the granular fertilizer after sizing is recycled and mixed into the raw material and can be used as the raw material. The yield of granular fertilizer is preferably 60% or more in order to reduce the amount of granular fertilizer discarded during granulation and sizing as much as possible, or to recycle to the granulation step without discarding. More preferably, it is 65% or more, further preferably 70% or more, and 100% is most preferable when it can be completely recovered. In addition, a yield is a weight ratio of the granular fertilizer obtained by granulation and sizing with respect to the weight of the granulation raw material thrown into a granulator, and is shown by following formula (6).

収率=(粒状肥料の重量)/(造粒機に投入する造粒原料の重量)
×100(%) ・・・(6) 。
Yield = (Weight of granular fertilizer) / (Weight of granulation raw material put into granulator)
× 100 (%) (6)

粒状肥料の形状は、機械施肥をした場合に作物の葉などに付着せず土壌に落下するよう、粒状肥料の長軸径と短軸径の比(長軸径/短軸径)が1.0以上1.4以下であることが好ましく、1.0以上1.3以下であることがより好ましく、1.0以上1.2以下であることがさらに好ましい。球形状ではない、例えば平らな形状の圧片肥料であると、葉に付着して落下せず葉やけを生じたり、土への栄養分供給が乏しくなることがある。   The shape of the granular fertilizer is such that the ratio of the major axis diameter to the minor axis diameter (major axis diameter / minor axis diameter) of the granular fertilizer is 1. It is preferably 0 or more and 1.4 or less, more preferably 1.0 or more and 1.3 or less, and further preferably 1.0 or more and 1.2 or less. If the pressed fertilizer has a flat shape, for example, a flat shape, it may adhere to the leaf and will not fall off, resulting in leaf or burn, and the supply of nutrients to the soil may be poor.

粒状肥料の粒径は、機械施肥において、肥料を均一に散布するため、2mm以上4mm以下のものが全肥料の90重量%以上を占めることが好ましい。より好ましくは2.5mm以上3.5mm以下のものが90重量%以上を占めることである。所定の粒径の粒状肥料は、分級機を用いて分級することで得ることができ、乾式分級が好ましく採用できる。乾式分級機の種類には特に制限はないが、振動篩を用いることが好ましい。篩の目開きは、所定の粒径を得られる大きさであれば特に制限はないが、1.8〜2.2mm、および3.8〜4.2mmの目開きであることが好ましく、これら目開きを有する篩を組み合わせて粒径2.0〜4.0mmの粒状肥料を得る分級方法が好ましい。篩(目開き5メッシュ=4.0mm、6メッシュ=3.5mm、8メッシュ=2.5mm、9メッシュ=2.0mm)で分級して求めることができる。   The particle size of the granular fertilizer is preferably 2 mm or more and 4 mm or less occupying 90% by weight or more of the total fertilizer in order to uniformly disperse the fertilizer in mechanical fertilization. More preferably, 2.5 to 3.5 mm occupy 90% by weight or more. The granular fertilizer having a predetermined particle diameter can be obtained by classification using a classifier, and dry classification can be preferably employed. Although there is no restriction | limiting in particular in the kind of dry classifier, It is preferable to use a vibration sieve. The opening of the sieve is not particularly limited as long as a predetermined particle size can be obtained, but preferably 1.8 to 2.2 mm and 3.8 to 4.2 mm. A classification method for obtaining a granular fertilizer having a particle size of 2.0 to 4.0 mm by combining sieves having openings is preferable. It can be determined by classification with a sieve (aperture 5 mesh = 4.0 mm, 6 mesh = 3.5 mm, 8 mesh = 2.5 mm, 9 mesh = 2.0 mm).

粒状肥料のかさ密度は、機械施肥において均一散布できかつ水田等において着水後すぐに沈降して土壌に着地するよう0.90g/ml以上1.1g/ml以下であることが好ましく、0.92g/ml以上0.98g/ml以下であることがより好ましく、0.94g/ml以上0.96g/ml以下であることがさらに好ましい。なお、粒状肥料のかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。   The bulk density of the granular fertilizer is preferably 0.90 g / ml or more and 1.1 g / ml or less so that it can be uniformly sprayed by mechanical fertilization and settles immediately after landing in a paddy field or the like and lands on the soil. More preferably, it is 92 g / ml or more and 0.98 g / ml or less, and further preferably 0.94 g / ml or more and 0.96 g / ml or less. The bulk density of the granular fertilizer is measured according to “JIS R 1628: 1997 Method for measuring bulk density of fine ceramic powder”.

粒状肥料の水分率は、長期保管中の粒状肥料どうしの固結を防止する観点で2.0重量%以下であることが好ましい。より好ましくは1.8重量%以下であり、さらに好ましくは1.5重量%以下である。また、下限としては0.3重量%以上であることが好ましい。粒状肥料の水分率が2.0重量%を超える場合は、粒状肥料の保管時に、粒状肥料どうしの接触部分で肥料成分が溶出・固化して粒同士が架橋し、凝集して取扱い性が悪化することがある。水分率が0.3重量%未満となる場合は、粒状肥料中に含まれる窒素肥料成分とマグネシウム肥料成分の結合力が低下して粒状肥料の硬度の低下に繋がることがある。粒状肥料の水分率は、公定肥料分析法に従い加熱減量法で測定した値である。   The moisture content of the granular fertilizer is preferably 2.0% by weight or less from the viewpoint of preventing solidification of the granular fertilizers during long-term storage. More preferably, it is 1.8 weight% or less, More preferably, it is 1.5 weight% or less. Moreover, it is preferable that it is 0.3 weight% or more as a minimum. If the moisture content of the granular fertilizer exceeds 2.0% by weight, the fertilizer components are eluted and solidified at the contact parts of the granular fertilizer when the granular fertilizer is stored. There are things to do. When the moisture content is less than 0.3% by weight, the binding force between the nitrogen fertilizer component and the magnesium fertilizer component contained in the granular fertilizer may decrease, leading to a decrease in the hardness of the granular fertilizer. The moisture content of granular fertilizer is a value measured by the heat loss method according to the official fertilizer analysis method.

固結とは、粒どうしが接触部分で架橋して塊になる現象であり、機械散布する際に塊により散布がしにくかったり、できなかったりして施肥効率が低下するだけでなく、均一に散布できなかった場合には作物の生育にも悪影響を与える。粒状肥料の固結率は、取り扱いを容易にするため20%以下であることが好ましい。固結率が20%を超えるとホッパーからの流動性が低下し、機械施肥が困難になることがある。より好ましくは15%以下であり、さらに好ましくは10%以下であり、全く固結がない0%が最も好ましい。なお、固結率はポリ製小袋に充填した粒状肥料750gを上部と下部にダミーの肥料袋1袋(1袋あたり750g)ずつ置き、その上部に木製板を置いて堆積し、60kgの錘で一ヶ月荷重後の粒状肥料のうち固結部分重量(g)の割合(%)であり、下記式(7)で示される。   Consolidation is a phenomenon in which the grains cross-link at the contact area and become a lump.When machine spraying, it is difficult or impossible to spread due to the lump. If it cannot be applied, it will adversely affect crop growth. The solidification rate of the granular fertilizer is preferably 20% or less in order to facilitate handling. If the consolidation rate exceeds 20%, fluidity from the hopper may be reduced, and mechanical fertilization may be difficult. More preferably, it is 15% or less, more preferably 10% or less, and most preferably 0% which does not cause any solidification. The solidification rate is determined by placing 750 g of granular fertilizer filled in a plastic sachet at the top and bottom of each dummy fertilizer bag (750 g per bag), placing a wooden board on top of it and depositing it with a 60 kg weight. It is the ratio (%) of the consolidated part weight (g) in the granular fertilizer after one month load, and is represented by the following formula (7).

固結率(%)=(一ヶ月間荷重後の固結部分重量)/750×100 ・・・(7) 。   Consolidation rate (%) = (weight of consolidated part after loading for one month) / 750 × 100 (7)

粒状肥料の固結強度は、1kg/cm以下であることが好ましい。1kg/cm以上であると、例えば固結部分がフレコンから流れ出にくいため、ホッパーに投入することが容易ではない、あるいは機械施肥において生育させる植物まで粒状肥料を均一に散布できないなど、取り扱い性に劣る。より好ましくは固結強度が0.5kg/cm以下であり、さらに好ましくは0.2kg/cm以下である。最も好ましく、かつ理想的には、0kg/cmである。なお、固結強度は、山中式土壌硬度計を使用して針部を肥料上面に対して垂直に圧入して測定した値である。 The consolidation strength of the granular fertilizer is preferably 1 kg / cm 2 or less. When it is 1 kg / cm 2 or more, for example, the consolidated portion is difficult to flow out of the flexible container, so that it is not easy to put into the hopper, or the granular fertilizer cannot be uniformly sprayed up to the plant grown in mechanical fertilization. Inferior. More preferably consolidation strength is 0.5 kg / cm 2 or less, more preferably 0.2 kg / cm 2 or less. Most preferred and ideally 0 kg / cm 2 . The consolidation strength is a value measured by pressing the needle portion perpendicularly to the upper surface of the fertilizer using a Yamanaka type soil hardness meter.

粒状肥料の粉化率は、保管時の固結を防ぐため1.0%以下であることが好ましい。粉化率が1.0%を越えると粉化した粉体を介して保管時に固結しやすく、さらには機械施肥において生育させる植物まで粒状肥料をまくことができないなど、取り扱い性に劣る。より好ましくは0.5%以下であり、さらに好ましくは0.3%以下であり、全く粉化がない0%が最も好ましい。なお、粉化率は粒状肥料750gに対して60kgの錘で一ヶ月荷重後の粒状肥料のうち、目開き2mmの篩いを使用して得た粒径が2mm以下のものの割合(%)であり、下記式(8)で示される。   The powdering rate of the granular fertilizer is preferably 1.0% or less in order to prevent caking during storage. If the pulverization rate exceeds 1.0%, it is easy to consolidate during storage through the pulverized powder, and further, the granular fertilizer cannot be sowed up to the plant grown by mechanical fertilization, resulting in poor handling. More preferably, it is 0.5% or less, further preferably 0.3% or less, and most preferably 0% without any powdering. The pulverization rate is the ratio (%) of the granular fertilizer with a weight of 60 kg to 750 g of the granular fertilizer and having a particle diameter of 2 mm or less obtained using a sieve having a mesh opening of 2 mm. Is represented by the following formula (8).

粉化率(%)=(粒径2mm以下のものの重量(g))/750×100 ・・・(8) 。   Powdering rate (%) = (weight (g) of a particle size of 2 mm or less) / 750 × 100 (8)

造粒、解砕、整粒、および分級して粒状肥料を製造した後、粒状肥料に、固結防止材としてタルク、クレー、カオリン、ベントナイト、ポリエチレングリコール、ステアリン酸金属塩、ラウリル硫酸金属塩、炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、酸化アルミニウム、酸化チタン、リン酸カルシウム、およびフッ化リチウムから選ばれる少なくとも一種を粒状肥料表面に被覆して粒状肥料とすることができる。被覆する方法としては、造粒原料を造粒および整粒し、分級機で分級した後に均一に被覆されていれば、分級機出口で添加してもよいし、ミキサーを用いて混合し被覆してもよいし、ベルトコンベア上で吹き付けを行って被覆してもよい。   After granulating, pulverizing, sizing and classifying to produce a granular fertilizer, talc, clay, kaolin, bentonite, polyethylene glycol, stearic acid metal salt, lauryl sulfate metal salt, The granular fertilizer surface can be coated with at least one selected from calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, and lithium fluoride. As a coating method, the granulated raw material is granulated and sized, and after being classified by a classifier, if it is uniformly coated, it may be added at the outlet of the classifier, or mixed and coated using a mixer. Alternatively, it may be coated by spraying on a belt conveyor.

粒状肥料に対する固結防止材の添加量は、粒状肥料100重量%に対して0.05〜3.0重量%が好ましく、装置への付着によるロスや、単位重量当たりの肥料成分含有量への影響がなく、肥料として溶解性がよい肥料を得るためには粒状肥料組成物100重量%に対して0.1〜0.3重量%がより好ましい。装置への付着ロスをより少なくするためには、粒状肥料100重量%に対して0.15〜0.25重量%がさらに好ましい。   The addition amount of the anti-caking material to the granular fertilizer is preferably 0.05 to 3.0% by weight with respect to 100% by weight of the granular fertilizer, and the loss due to adhesion to the device or the fertilizer component content per unit weight In order to obtain a fertilizer having no influence and good solubility as a fertilizer, 0.1 to 0.3% by weight is more preferable with respect to 100% by weight of the granular fertilizer composition. In order to reduce the adhesion loss to the apparatus, 0.15 to 0.25% by weight is more preferable with respect to 100% by weight of the granular fertilizer.

本発明の粒状肥料を用いるにおいては、単肥、あるいは他の粒状肥料をドライブレンドして得られるバルクブレンド肥料のいずれとしても良い。この混合肥料は任意の割合でブレンドできるため、作物毎に対応したブレンドを行うことができる。   In using the granular fertilizer of this invention, it is good also as any of the bulk blend fertilizer obtained by dry blending a simple fertilizer or another granular fertilizer. Since this mixed fertilizer can be blended at an arbitrary ratio, blending corresponding to each crop can be performed.

本発明の態様を更に具体的に実施例を用いて以下に説明するが、本発明は以下の実施例に限定して解釈されるものではない。   The embodiment of the present invention will be described more specifically with reference to the following examples. However, the present invention should not be construed as being limited to the following examples.

物性等の測定方法は以下のとおりである。また、特に断らない限り10サンプルについて測定し、算術平均として求めた。   Measuring methods for physical properties and the like are as follows. Moreover, unless otherwise indicated, it measured about 10 samples and calculated | required as arithmetic average.

(1)粒子Aと粒子Bの成型前での粒径
粒子Aと粒子Bの成型前段階での粒径は、目開き9メッシュ=2.0mm、および目開き60メッシュ=0.25mmの篩を使用して、下記式により0.25mmを超え2mm以下の粒径の割合を算出した。
0.25mmを超え2mm以下の粒子の割合(重量%)=(粒径0.25mmを超え2mm以下の粒子の重量)/(篩分け前の粒子の重量)×100 。
(1) Particle size before molding of particle A and particle B The particle size of the particle A and particle B at the stage before molding is a sieve having an opening of 9 mesh = 2.0 mm and an opening of 60 mesh = 0.25 mm. Was used to calculate the ratio of particle diameters exceeding 0.25 mm and not more than 2 mm according to the following formula.
Ratio of particles exceeding 0.25 mm and not more than 2 mm (% by weight) = (weight of particles exceeding 0.25 mm and not more than 2 mm) / (weight of particles before sieving) × 100.

(2)粒子Aと粒子Bの粒状肥料成型後の粒径
粒子Aと粒子Bの粒状肥料内での粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、窒素肥料成分を含む粒子とマグネシウム肥料成分を含む粒子を識別してランダムに100粒の粒径を測定した。
(2) Particle size of particles A and B after molding of granular fertilizer Particle size of particles A and particle B in the granular fertilizer is determined by scanning electron microscope observation-energy dispersive X-ray analysis of the cross section of the granular fertilizer. Analysis was performed, and particles containing a nitrogenous fertilizer component and particles containing a magnesium fertilizer component were identified, and 100 particle sizes were measured at random.

(3)粒子Aと粒子Bの成形前での水分率
粒子Aと粒子Bの成形前での水分率は、加熱前の粒子Aまたは粒子Bを130℃で3時間加熱後に重量測定を行った際の加熱減量により求めた値であり、下記式で算出した。
粒子Aの水分率(重量%)=((加熱前の粒子A重量)−(加熱後の粒子A重量))/(加熱前の粒子A重量)×100
粒子Bの水分率(重量%)=((加熱前の粒子B重量)−(加熱後の粒子B重量))/(加熱前の粒子B重量)×100 。
(3) Moisture content before molding of particles A and B The moisture content before molding of particles A and B was measured by heating the particles A or B before heating at 130 ° C. for 3 hours. It was a value obtained by heating loss at the time, and was calculated by the following formula.
Moisture content (% by weight) of particles A = ((weight of particles A before heating) − (weight of particles A after heating)) / (weight of particles A before heating) × 100
Moisture content of particles B (% by weight) = ((weight of particles B before heating) − (weight of particles B after heating)) / (weight of particles B before heating) × 100.

(4)粒状肥料の二次粒子形成後の粒硬度
粒状肥料の二次粒子形成後(成型後)の粒硬度は、木屋式硬度計で造粒物20粒の粒硬度を測定し、これら粒硬度の平均を求めたものである。
(4) Grain hardness after formation of secondary particles of granular fertilizer Grain hardness after formation of secondary particles of granular fertilizer (after molding) is measured by measuring the particle hardness of 20 granules with a Kiyama-type hardness meter. The average hardness is obtained.

(5)粒状肥料の収率
粒状肥料の収率は、造粒機に投入する造粒原料の重量に対する造粒および整粒して得られた粒状肥料の重量であって、下記式により算出した。
粒状肥料の収率(%)=(粒状肥料の重量)/(造粒原料の重量)×100 。
(5) Yield of granular fertilizer The yield of granular fertilizer is the weight of the granular fertilizer obtained by granulation and sizing with respect to the weight of the granulation raw material put into the granulator, and was calculated by the following formula .
Yield (%) of granular fertilizer = (weight of granular fertilizer) / (weight of granulated raw material) × 100.

(6)粒状肥料の粒径
粒状肥料の粒径は、目開き9メッシュ=2.0mmおよび5メッシュ=4.0mmの篩を使用して、下記式により2mm以上4mm以下の粒径のものの割合を算出した。
粒状肥料の2mm以上4mm以下のものの割合(重量%)=(粒径2mm以上4mm以下の粒径のものの重量)/(篩分け前の粒状肥料の重量)×100 。
(6) Particle size of granular fertilizer The particle size of the granular fertilizer is a ratio of particles having a particle size of 2 mm or more and 4 mm or less according to the following formula using a sieve having an opening of 9 mesh = 2.0 mm and 5 mesh = 4.0 mm. Was calculated.
Ratio (% by weight) of granular fertilizer having a particle size of 2 mm or more and 4 mm or less = (weight of particle size of particle size of 2 mm or more and 4 mm or less) / (weight of granular fertilizer before sieving) × 100.

(7)窒素肥料成分とマグネシウム肥料成分の粒状肥料成形後の含有量
窒素肥料成分とマグネシウム肥料成分の粒状肥料内での含有量は、成型前の粒子A、成型前の粒子B、および粒状肥料を公定肥料分析法により成分分析して、燃焼法によりN分の含有量を、原子吸光法によりMgO換算でのマグネシウム含有量を測定し、下記式により窒素肥料成分とマグネシウム肥料成分の粒状肥料内での含有量を算出した。
窒素肥料成分の粒状肥料成形後の含有量(重量%)=(粒状肥料のN分の含有量)/(粒子Aの成型前のN分の含有量)×100 。
マグネシウム肥料成分の粒状肥料成形後の含有量(重量%)=(粒状肥料のMgOの含有量)/(粒子Bの成型前のMgOの含有量)×100 。
(7) Content of nitrogen fertilizer component and magnesium fertilizer component after molding of granular fertilizer The content of nitrogen fertilizer component and magnesium fertilizer component in the granular fertilizer is as follows: Particle A before molding, Particle B before molding, and granular fertilizer Is analyzed by the official fertilizer analysis method, the N content is measured by the combustion method, the magnesium content in terms of MgO is measured by the atomic absorption method, and the nitrogen fertilizer component and the magnesium fertilizer component in the granular fertilizer are expressed by the following formulas The content at was calculated.
Content of nitrogen fertilizer component after granulated fertilizer molding (% by weight) = (content of N content of granular fertilizer) / (content of N content before molding of particle A) × 100.
Content of magnesium fertilizer component after molding of granular fertilizer (% by weight) = (content of MgO in granular fertilizer) / (content of MgO before molding of particle B) × 100.

(8)粒状肥料からの窒素肥料成分とマグネシウム肥料成分の溶出速度の比(減衰率の比)
窒素肥料成分とマグネシウム肥料成分の粒状肥料からの初期の量でもって規格化された溶出速度の比は、100mlの栓付きガラス管に粒状肥料5gを入れ、水100mlを添加して浸漬し、栓をして25℃の恒温槽に静置し、5時間経過後にガラス管を取り出し、溶液を化学濾紙で濾過して水中に溶出した肥料成分を定量分析し、窒素肥料成分とマグネシウム肥料成分それぞれの溶出量を算出し、また、初期の量を測定し、下式に従って算出した。
窒素肥料成分の溶出割合=(水中に溶出したN分の量)/(粒状肥料5gに含まれるN分の量)
マグネシウム肥料成分の溶出割合=(水中に溶出したMgO換算でのマグネシウム分の量)/(粒状肥料5gに含まれるMgO換算でのマグネシウム分の量)
窒素肥料成分とマグネシウム肥料成分の溶出速度の比=窒素肥料成分の溶出割合/マグネシウム肥料成分の溶出割合 。
(8) Ratio of elution rate of nitrogen fertilizer component and magnesium fertilizer component from granular fertilizer (ratio of decay rate)
The ratio of the elution rate normalized with the initial amount of nitrogen fertilizer component and magnesium fertilizer component from granular fertilizer is as follows: 5 g of granular fertilizer is put into a 100 ml stoppered glass tube, 100 ml of water is added and immersed. And leave it in a constant temperature bath at 25 ° C., take out the glass tube after 5 hours, filter the solution with chemical filter paper and quantitatively analyze the fertilizer components eluted in the water, and each of the nitrogen fertilizer components and magnesium fertilizer components The elution amount was calculated, and the initial amount was measured and calculated according to the following formula.
Elution ratio of nitrogen fertilizer component = (amount of N component eluted in water) / (amount of N component contained in 5 g of granular fertilizer)
Elution ratio of magnesium fertilizer component = (amount of magnesium in terms of MgO eluted in water) / (amount of magnesium in terms of MgO contained in 5 g of granular fertilizer)
Ratio of elution rate of nitrogen fertilizer component and magnesium fertilizer component = elution ratio of nitrogen fertilizer component / elution ratio of magnesium fertilizer component.

(9)粒状肥料の長軸径と短軸径の比(長軸径/短軸径)
粒状肥料の長軸径と短軸径の比は、粒状肥料の写真撮影画像を使用して画像解析式の粒径測定装置により長軸径と短軸径を測定し、長軸径を短軸径で割ることで算出した。
(9) Ratio of major axis diameter and minor axis diameter of granular fertilizer (major axis diameter / minor axis diameter)
The ratio of the major axis diameter to the minor axis diameter of the granular fertilizer is determined by measuring the major axis diameter and minor axis diameter with an image analysis type particle size measuring device using a photographed image of the granular fertilizer, and converting the major axis diameter to the minor axis. Calculated by dividing by diameter.

(10)粒状肥料のかさ密度
粒状肥料のかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定した。
(10) Bulk density of granular fertilizer The bulk density of granular fertilizer was measured according to “JIS R 1628: 1997 Method for measuring bulk density of fine ceramic powder”.

(11)粒状肥料の水分率
粒状肥料の水分率は、加熱前の粒状肥料を130℃で3時間加熱後に重量測定を行った際の加熱減量により求めた値であり、下記式で算出した。
粒状肥料の水分率(重量%)=((加熱前の粒状肥料重量)−(加熱後の粒状肥料重量))/(加熱前の粒状肥料重量)×100 。
(11) Moisture content of granular fertilizer The moisture content of granular fertilizer is a value obtained by weight loss after heating the granular fertilizer before heating at 130 ° C. for 3 hours, and was calculated by the following formula.
Moisture content (% by weight) of granular fertilizer = ((weight of granular fertilizer before heating) − (weight of granular fertilizer after heating)) / (weight of granular fertilizer before heating) × 100.

(12)粒状肥料の固結率
粒状肥料の固結率は、ポリ製小袋に充填した粒状肥料750gを上部と下部にダミーの肥料袋1袋ずつ置き、その上部に木製板を置いて堆積し、60kgの錘で一ヶ月間荷重後の粒状肥料のうち固結部分重量(g)の割合であり、下記式で算出した。
粒状肥料の固結率(%)= (一ヶ月間荷重後の固結部分重量)/750×100 。
(12) Solidification rate of granular fertilizer The solidification rate of granular fertilizer is determined by placing 750 g of granular fertilizer filled in a plastic sachet one dummy fertilizer bag at the top and bottom and placing a wooden board on top of it. The ratio of the solidified part weight (g) of the granular fertilizer after being loaded with a 60 kg weight for one month, and calculated by the following formula.
Solidification rate of granular fertilizer (%) = (weight of consolidated part after one month load) / 750 × 100

(13)粒状肥料の固結強度
粒状肥料の固結強度は、山中式土壌硬度計を使用して針部を肥料上面に対して垂直に圧入して測定した値である。
(13) Consolidation strength of granular fertilizer The solidification strength of granular fertilizer is a value measured by pressing the needle portion perpendicularly to the upper surface of the fertilizer using a Yamanaka soil hardness meter.

(14)粒状肥料の粉化率
粒状肥料の粉化率は、粒状肥料750gに対して60kgの錘で一ヶ月間荷重後の粒状肥料組成物のうち、目開き2mmの篩を使用して得た粒径が2mm以下のものの割合であり、下記式で算出した。
(14) Pulverization rate of granular fertilizer The pulverization rate of granular fertilizer is obtained by using a sieve having a mesh opening of 2 mm among the granular fertilizer composition after being loaded with a weight of 60 kg for one month with respect to 750 g of granular fertilizer. The particle diameter is a ratio of 2 mm or less, and was calculated by the following formula.

粒状肥料の粉化率(%)= (粒径2mm以下のものの重量(g))/750×100 。   Pulverization rate of granular fertilizer (%) = (weight (g) of particle size of 2 mm or less) / 750 × 100.

実施例1〜10、比較例1〜6においては、表1に示す窒素肥料成分から実質的になる粒子(表中では粒子Aと表記)とマグネシウム肥料成分から実質的になる粒子(表中では粒子Bと表記)を成形して粒状肥料を製造した。   In Examples 1 to 10 and Comparative Examples 1 to 6, particles substantially composed of nitrogen fertilizer components shown in Table 1 (indicated in the table as particle A) and particles substantially composed of magnesium fertilizer components (in the table) A granular fertilizer was produced by molding particles B).

(実施例1)
粒径0.25mmを超え2mm以下の粒子が77重量%の硫酸アンモニウム粒子(粒子A)80重量部と粒径0.25mmを超え2mm以下の粒子が69重量%の硫酸マグネシウム1水和物粒子(粒子B)20重量部と水0.7重量部とを、混合機としてダウ・ミキサー(株式会社新日南製)に供給して10分間混合した。次いで、該混合物を造粒機としてブリケッタ(登録商標)BSS−IV型(新東工業製)に供給し、ロール有効幅を185mm、ロール圧力を8.3kN/cm、バリ厚みを1.70mm、ポケットサイズをΦ3.9mm×0.94mm、ローラー回転数50rpmで造粒を行い、粗砕機にて破砕した後、目開き6.7mm、5.2mm、2.2mmの篩いを有する3段解砕篩機(興和工業所製)に投入し、解砕メディア(ナイロン硬球ボール上段200個、下段200個)で解砕した。続いて、該造粒物をマルメライザー(ダルトン製)に篩上解砕品を投入し、回転数225rpmで20秒間整粒処理を行った後に、目開き2mmの篩を有する円形振動篩機(ダルトン製)に供給して分級を行い、目開き2mmの篩上品を粒状肥料として回収した。粒状肥料の収率は80%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.55mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.10、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは61重量%、粒径0.1mmを超え2mm以下の粒子Bは60重量%、硫酸アンモニウム含有量は79重量%、硫酸マグネシウム含有量は20重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.18であって、粒状肥料の粒硬度は3.3kgf、かさ密度は0.96g/ml、水分率は1.0重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.2%であった。
Example 1
80 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 77% by weight and magnesium sulfate monohydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 69% by weight ( Particle B) 20 parts by weight and 0.7 part by weight of water were supplied to a Dow mixer (manufactured by Shin Nichinan Co., Ltd.) as a mixer and mixed for 10 minutes. Next, the mixture is supplied as a granulator to Briquetta (registered trademark) BSS-IV type (manufactured by Shinto Kogyo), the effective roll width is 185 mm, the roll pressure is 8.3 kN / cm, the burr thickness is 1.70 mm, After granulating at a pocket size of Φ3.9 mm × 0.94 mm and a roller rotation speed of 50 rpm, and crushing with a crusher, three-stage crushing with sieves with openings of 6.7 mm, 5.2 mm, and 2.2 mm The mixture was put into a sieve (manufactured by Kowa Kogyo) and crushed with a crushing media (200 nylon hard ball balls, 200 lower balls). Subsequently, the granulated product was put into a marumerizer (Dalton), and the pulverized product on a sieve was put in, and after granulating for 20 seconds at a rotation speed of 225 rpm, a circular vibrating sieve having a sieve with an opening of 2 mm (Dalton) ) And classified, and a sieved product having a mesh opening of 2 mm was recovered as a granular fertilizer. The yield of granular fertilizer is 80%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.55 mm, and the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.10, particle A in the granular fertilizer having a particle size of more than 0.1 mm and less than 2 mm is 61% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 60% by weight. %, Ammonium sulfate content was 79% by weight, and magnesium sulfate content was 20% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.18, the granular fertilizer has a grain hardness of 3.3 kgf, a bulk density of 0.96 g / ml, a moisture content of 1.0% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.2%.

(実施例2)
粒径0.25mmを超え2mm以下の粒子が71重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が65重量%の硫酸マグネシウム1水和物粒子(粒子B)30重量部と水を0.9重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は79%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.55mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.10、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは54重量%、粒径0.1mmを超え2mm以下の粒子Bは58重量%、硫酸アンモニウム含有量は69重量%、硫酸マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.12であって、粒状肥料の粒硬度は2.7kgf、かさ密度は0.95g/ml、水分率は1.2重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.3%であった。
(Example 2)
70 parts by weight of ammonium sulfate particles (Particle A) having a particle diameter of more than 0.25 mm and 2 mm or less are 71 wt% and magnesium sulfate monohydrate particles having a particle diameter of more than 0.25 mm and 2 mm or less are 65 wt% ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing, and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.9 part by weight of water were used. The yield of granular fertilizer is 79%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.55 mm, and the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.10, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 54% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 58% by weight. %, The ammonium sulfate content was 69% by weight, and the magnesium sulfate content was 30% by weight. Further, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.12, the granular hardness of the granular fertilizer is 2.7 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.2% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.3%.

(実施例3)
粒径0.25mmを超え2mm以下の粒子が75重量%の硫酸アンモニウム粒子(粒子A)60重量部と粒径0.25mmを超え2mm以下の粒子が72重量%の硫酸マグネシウム1水和物粒子(粒子B)40重量部と水を1.2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は74%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.55mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.10、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは58重量%、粒径0.1mmを超え2mm以下の粒子Bは68重量%、硫酸アンモニウム含有量は59重量%、硫酸マグネシウム含有量は39重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.14であって、粒状肥料の粒硬度は2.4kgf、かさ密度は0.95g/ml、水分率は1.5重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.3%であった。
(Example 3)
60 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 75% by weight and magnesium sulfate monohydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 72% by weight ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 40 parts by weight and 1.2 parts by weight of water were used. The yield of granular fertilizer is 74%, the ratio of particle diameter is 2% or more and 4mm or less is 95%, the major axis diameter is 3.9mm, the minor axis diameter is 3.55mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.10, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 58% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 68% by weight. %, Ammonium sulfate content was 59% by weight, and magnesium sulfate content was 39% by weight. Moreover, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.14, the granular hardness of the granular fertilizer is 2.4 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.5% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.3%.

(実施例4)
粒径0.25mmを超え2mm以下の粒子が73重量%の硫酸アンモニウム粒子(粒子A)50重量部と粒径0.25mmを超え2mm以下の粒子が67重量%の硫酸マグネシウム1水和物粒子(粒子B)50重量部と水を1.5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は72%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.50mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは55重量%、粒径0.1mmを超え2mm以下の粒子Bは59重量%、硫酸アンモニウム含有量は49重量%、硫酸マグネシウム含有量は49重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.09であって、粒状肥料の粒硬度は2.1kgf、かさ密度は0.95g/ml、水分率は1.8重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.6%であった。
(Example 4)
50 parts by weight of ammonium sulfate particles (particle A) having a particle diameter of more than 0.25 mm and not more than 2 mm are 73 wt% and magnesium sulfate monohydrate particles having a particle diameter of more than 0.25 mm and not more than 2 mm are 67 wt% ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 50 parts by weight and 1.5 parts by weight of water were used. The yield of granular fertilizer is 72%, the ratio of the particle size of 2mm to 4mm is 95%, the major axis diameter is 3.9mm, the minor axis diameter is 3.50mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.11, the particle A in the granular fertilizer having a particle size exceeding 0.1 mm and 2 mm or less is 55% by weight, and the particle B having a particle size exceeding 0.1 mm and 2 mm or less is 59% by weight. %, Ammonium sulfate content was 49% by weight, and magnesium sulfate content was 49% by weight. Further, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.09, the granular hardness of the fertilizer is 2.1 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.8% by weight, The consolidation rate after 1 month of the consolidation test was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.6%.

(実施例5)
粒径0.25mmを超え2mm以下の粒子が75重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が55重量%の水酸化マグネシウム粒子(粒子B)30重量部と水0.9重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は74%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.50mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは60重量%、粒径0.1mmを超え2mm以下の粒子Bは54重量%、硫酸アンモニウム含有量は69重量%、水酸化マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は0.95であって、粒状肥料の粒硬度は2.3kgf、かさ密度は0.94g/ml、水分率は1.3重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.4%であった。
(Example 5)
70 parts by weight of ammonium sulfate particles (particle A) having a particle diameter of more than 0.25 mm and not more than 2 mm are 75% by weight and magnesium hydroxide particles having a particle diameter of more than 0.25 mm and not more than 2 mm are 55% by weight (particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing, and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.9 parts by weight of water were used. The yield of granular fertilizer is 74%, the ratio of the particle size of 2mm to 4mm is 95%, the major axis diameter is 3.9mm, the minor axis diameter is 3.50mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.11, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 60% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 54% by weight. %, Ammonium sulfate content was 69% by weight, and magnesium hydroxide content was 30% by weight. Further, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 0.95, the granular hardness of the granular fertilizer is 2.3 kgf, the bulk density is 0.94 g / ml, the moisture content is 1.3% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.4%.

(実施例6)
粒径0.25mmを超え2mm以下の粒子が71重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が61重量%の塩化マグネシウム粒子(粒子B)30重量部と水0.9重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は71%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.40mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.12、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは53重量%、粒径0.1mmを超え2mm以下の粒子Bは57重量%、硫酸アンモニウム含有量は69重量%、塩化マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.06であって、粒状肥料の粒硬度は2.2kgf、かさ密度は0.94g/ml、水分率は1.2重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.5%であった。
(Example 6)
70 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and 2 mm or less are 71 wt% and magnesium chloride particles (particle B) 30 having a particle size of more than 0.25 mm and 2 mm or less are 61 wt% A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that the amount was 0.9 parts by weight and water. The yield of granular fertilizer is 71%, the ratio of particle size of 2mm to 4mm is 95%, the major axis diameter is 3.8mm, the minor axis diameter is 3.40mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.12, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 53% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 57% by weight. %, Ammonium sulfate content was 69% by weight, and magnesium chloride content was 30% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.06, the granular hardness of the fertilizer is 2.2 kgf, the bulk density is 0.94 g / ml, the moisture content is 1.2% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.5%.

(実施例7)
粒径0.25mmを超え2mm以下の粒子が86重量%の尿素粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が70重量%の硫酸マグネシウム1水和物粒子(粒子B)30重量部と水0.5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は70%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.40mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.12、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは73重量%、粒径0.1mmを超え2mm以下の粒子B65重量%、尿素含有量は70重量%、硫酸マグネシウム含有量は29重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.11であって、粒状肥料の粒硬度は2.1kgf、かさ密度は0.92g/ml、水分率は1.2重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.9%であった。
(Example 7)
70 parts by weight of urea particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 86 wt% and magnesium sulfate monohydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 70 wt% ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.5 part by weight of water were used. The yield of granular fertilizer is 70%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.8 mm, the minor axis diameter is 3.40 mm, and the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.12, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 73% by weight, particle B having a particle size of more than 0.1 mm and less than 2 mm is 65% by weight, The urea content was 70% by weight and the magnesium sulfate content was 29% by weight. Moreover, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.11, the grain hardness of the granular fertilizer is 2.1 kgf, the bulk density is 0.92 g / ml, the moisture content is 1.2% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.9%.

(実施例8)
粒径0.25mmを超え2mm以下の粒子が73重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が62重量%の硫酸マグネシウム無水物粒子(粒子B)30重量部と水を1.5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は65%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.50mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは60重量%、粒径0.1mmを超え2mm以下の粒子Bは59重量%、硫酸アンモニウム含有量は69重量%、硫酸マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.04であって、粒状肥料の粒硬度は2.5kgf、かさ密度は0.95g/ml、水分率は1.7重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.5%であった。
(Example 8)
70 parts by weight of ammonium sulfate particles (particle A) having a particle diameter of more than 0.25 mm and 2 mm or less are 73% by weight and anhydrous magnesium sulfate particles (particle B having a particle diameter of more than 0.25 mm and 2 mm or less are 62% by weight) ) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 1.5 parts by weight of water were used. The yield of granular fertilizer is 65%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.50 mm, and the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.11, particle A having a particle size of more than 0.1 mm and not more than 2 mm in the granular fertilizer is 60% by weight, and particle B having a particle size of more than 0.1 mm and not more than 2 mm is 59% by weight. %, The ammonium sulfate content was 69% by weight, and the magnesium sulfate content was 30% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.04, the granular hardness of the granular fertilizer is 2.5 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.7% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.5%.

(実施例9)
粒径0.25mmを超え2mm以下の粒子が71重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が64重量%の硫酸マグネシウム3水和物粒子(粒子B)30重量部と水を0.5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は62%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.40mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.12、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは54重量%、粒径0.1mmを超え2mm以下の粒子Bは52重量%、硫酸アンモニウム含有量は67重量%、硫酸マグネシウム含有量は29重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.13であって、粒状肥料の粒硬度は2.1kgf、かさ密度は0.95g/ml、水分率は2.1重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.7%であった。
Example 9
70 parts by weight of ammonium sulfate particles (particle A) having a particle diameter of more than 0.25 mm and not more than 2 mm are 71 wt% and magnesium sulfate trihydrate particles having a particle diameter of more than 0.25 mm and not more than 2 mm are 64 wt% ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.5 parts by weight of water were used. The yield of granular fertilizer is 62%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.8 mm, the minor axis diameter is 3.40 mm, and the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.12, particle A in the granular fertilizer having a particle size of more than 0.1 mm and less than 2 mm is 54% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 52% by weight. %, Ammonium sulfate content was 67% by weight, and magnesium sulfate content was 29% by weight. Moreover, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.13, the grain hardness of the granular fertilizer is 2.1 kgf, the bulk density is 0.95 g / ml, the moisture content is 2.1% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.7%.

(実施例10)
粒径0.25mmを超え2mm以下の粒子が72重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が69重量%の硫酸マグネシウム7水和物粒子(粒子B)30重量部と水を0.2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は60%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.40mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.12、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは52重量%、粒径0.1mmを超え2mm以下の粒子Bは50重量%、硫酸アンモニウム含有量は66重量%、硫酸マグネシウム含有量は26重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.19であって、粒状肥料の粒硬度は2.0kgf、かさ密度は0.95g/ml、水分率は2.7重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.9%であった。
(Example 10)
70 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 72% by weight and magnesium sulfate heptahydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 69% by weight ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.2 parts by weight of water were used. The yield of granular fertilizer is 60%, the ratio of particle size of 2mm to 4mm is 95%, the major axis diameter is 3.8mm, the minor axis diameter is 3.40mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.12, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 52% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 50% by weight. %, The ammonium sulfate content was 66% by weight, and the magnesium sulfate content was 26% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.19, the granular hardness of the fertilizer is 2.0 kgf, the bulk density is 0.95 g / ml, the moisture content is 2.7% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.9%.

(比較例1)
粒径0.25mmを超え2mm以下の粒子が77重量%の硫酸アンモニウム粒子(粒子A)40重量部と粒径0.25mmを超え2mm以下の粒子が69重量%の硫酸マグネシウム1水和物粒子(粒子B)60重量部と水を0.7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は51%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.30mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは63重量%、粒径0.1mmを超え2mm以下の粒子Bは61重量%、硫酸アンモニウム含有量は39重量%、硫酸マグネシウム含有量は60重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.18であって、粒状肥料の粒硬度は0.9kgf、かさ密度は0.95g/ml、水分率は0.9重量%、固結テスト1ヶ月後の固結率は8.1%、固結強度は1.8kg/cm、粉化率は11.3%であった。
(Comparative Example 1)
40 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 77% by weight and magnesium sulfate monohydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 69% by weight ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 60 parts by weight and 0.7 parts by weight of water were used. The yield of granular fertilizer is 51%, the ratio of particle size between 2mm and 4mm is 95%, the major axis diameter is 3.8mm, the minor axis diameter is 3.30mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.15, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 63% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 61% by weight. %, The ammonium sulfate content was 39% by weight, and the magnesium sulfate content was 60% by weight. Moreover, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.18, the grain hardness of the granular fertilizer is 0.9 kgf, the bulk density is 0.95 g / ml, the moisture content is 0.9% by weight, The consolidation rate after one month of the consolidation test was 8.1%, the consolidation strength was 1.8 kg / cm 2 , and the powdering rate was 11.3%.

(比較例2)
粒径0.25mmを超え2mm以下の粒子が41重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が45重量%の硫酸マグネシウム1水和物粒子(粒子B)30重量部と水を0.9重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は59%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.50mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.09、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは35重量%、粒径0.1mmを超え2mm以下の粒子Bは40重量%、硫酸アンモニウム含有量は69重量%、硫酸マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.19であって、粒状肥料の粒硬度は1.5kgf、かさ密度は0.95g/ml、水分率は1.2重量%、固結テスト1ヶ月後の固結率は4.8%、固結強度は1.5kg/cm、粉化率は1.8%であった。
(Comparative Example 2)
70 parts by weight of ammonium sulfate particles (particle A) having a particle diameter of more than 0.25 mm and 2 mm or less are 41 wt% and magnesium sulfate monohydrate particles having a particle diameter of more than 0.25 mm and 2 mm or less are 45 wt% ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing, and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.9 part by weight of water were used. The yield of granular fertilizer is 59%, the ratio of the particle size of 2mm to 4mm is 95%, the major axis diameter is 3.8mm, the minor axis diameter is 3.50mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.09, the particle A in the granular fertilizer having a particle size of more than 0.1 mm and less than 2 mm is 35% by weight, and the particle B having a particle size of more than 0.1 mm and less than 2 mm is 40% by weight. %, The ammonium sulfate content was 69% by weight, and the magnesium sulfate content was 30% by weight. Moreover, the ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.19, the grain hardness of the granular fertilizer is 1.5 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.2% by weight, The consolidation rate after one month of the consolidation test was 4.8%, the consolidation strength was 1.5 kg / cm 2 , and the powdering rate was 1.8%.

(比較例3)
粒径0.25mmを超え2mm以下の粒子が77重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が11重量%の硫酸マグネシウム1水和物粒子(粒子B)30重量部と水を0.7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は45%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.8mm、短軸径は3.55mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.07、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは65重量%、粒径0.1mmを超え2mm以下の粒子Bは15重量%、硫酸アンモニウム含有量は70重量%、硫酸マグネシウム含有量は29重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は0.67であって、粒状肥料の粒硬度は1.7kgf、かさ密度は0.95g/ml、水分率は1.0重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は0.8%であった。
(Comparative Example 3)
70 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 77% by weight and magnesium sulfate monohydrate particles having a particle size of more than 0.25 mm and not more than 2 mm are 11% by weight ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.7 parts by weight of water were used. The yield of granular fertilizer is 45%, the ratio of particle size of 2mm to 4mm is 95%, the major axis diameter is 3.8mm, the minor axis diameter is 3.55mm, the ratio of major axis diameter to minor axis diameter (Major axis diameter / minor axis diameter) is 1.07, particle A having a particle size of more than 0.1 mm and less than 2 mm in the granular fertilizer is 65% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 15% by weight. %, Ammonium sulfate content was 70% by weight, and magnesium sulfate content was 29% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 0.67, the granular hardness of the fertilizer is 1.7 kgf, the bulk density is 0.95 g / ml, the moisture content is 1.0% by weight, One month after the consolidation test, the consolidation rate was 0%, the consolidation strength was 0 kg / cm 2 , and the powdering rate was 0.8%.

(比較例4)
粒径0.25mmを超え2mm以下の粒子が9重量%の硫酸アンモニウム粒子(粒子A)70重量部と粒径0.25mmを超え2mm以下の粒子が66重量%の硫酸マグネシウム粒子1水和物(粒子B)30重量部と水を0.7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は31%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.6mm、短軸径は3.3mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.09、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは25重量%、粒径0.1mmを超え2mm以下の粒子Bは57重量%、硫酸アンモニウム含有量は69重量%、硫酸マグネシウム含有量は30重量%であった。また、窒素肥料成分とマグネシウム肥料成分の溶出速度の比は1.64であって、粒状肥料の粒硬度は1.0kgf、かさ密度は0.94g/ml、水分率は1.0重量%、固結テスト1ヶ月後の固結率は2.4%、固結強度は1.2kg/cm、粉化率は5.4%であった。
(Comparative Example 4)
70 parts by weight of ammonium sulfate particles (particle A) having a particle size of more than 0.25 mm and not more than 2 mm are 9% by weight and magnesium sulfate particles monohydrate having a particle size of more than 0.25 mm and not more than 2 mm is 66% by weight ( Particle B) A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying in the same manner as in Example 1 except that 30 parts by weight and 0.7 parts by weight of water were used. The yield of granular fertilizer is 31%, the ratio of the particle size of 2 mm to 4 mm is 95%, the major axis diameter is 3.6 mm, the minor axis diameter is 3.3 mm, and the ratio of the major axis diameter to the minor axis diameter (Major axis diameter / minor axis diameter) is 1.09, particle A in the granular fertilizer having a particle size of more than 0.1 mm and less than 2 mm is 25% by weight, and particle B having a particle size of more than 0.1 mm and less than 2 mm is 57% by weight. %, The ammonium sulfate content was 69% by weight, and the magnesium sulfate content was 30% by weight. The ratio of the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is 1.64, the granular hardness of the fertilizer is 1.0 kgf, the bulk density is 0.94 g / ml, the moisture content is 1.0% by weight, The consolidation rate after one month of the consolidation test was 2.4%, the consolidation strength was 1.2 kg / cm 2 , and the powdering rate was 5.4%.

(比較例5)
粒径0.25mmを超え2mm以下の粒子が74重量%の硫酸アンモニウム粒子(粒子A)100重量部と水を0.7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は65%、2mm以上4mm以下粒径の割合は96%で、長軸径は3.9mm、短軸径は3.55mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.10、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Aは62重量%であった。また、粒状肥料の粒硬度は2.8kgf、かさ密度は0.96g/ml、水分率は1.0重量%、固結テスト1ヶ月後の固結率は3.8%、固結強度は0.5kg/cm、粉化率は0.2%であった。
(Comparative Example 5)
Mixing and granulating in the same manner as in Example 1 except that 100 parts by weight of ammonium sulfate particles (Particle A) having a particle diameter of more than 0.25 mm and 2 mm or less were 74 parts by weight and water was 0.7 parts by weight. Granular fertilizer was produced by crushing, sizing and classification. The yield of granular fertilizer is 65%, the ratio of the particle size of 2mm to 4mm is 96%, the major axis diameter is 3.9mm, the minor axis diameter is 3.55mm, the ratio of major axis diameter to minor axis diameter The (major axis diameter / minor axis diameter) was 1.10, and the particle A having a particle diameter of more than 0.1 mm and not more than 2 mm in the granular fertilizer was 62% by weight. The granular fertilizer has a grain hardness of 2.8 kgf, a bulk density of 0.96 g / ml, a moisture content of 1.0% by weight, a consolidation rate after one month of consolidation test of 3.8%, and a consolidation strength of The powdering rate was 0.5% at 0.5 kg / cm 2 .

(比較例6)
粒径0.25mmを超え2mm以下の粒子が63重量%の硫酸マグネシウム1水和物粒子(粒子B)100重量部と水を0.7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は41%、2mm以上4mm以下粒径の割合は94%で、長軸径は3.6mm、短軸径は3.0mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.20、粒状肥料中の粒径0.1mmを超え2mm以下の粒子Bは60重量%であった。また、粒状肥料の粒硬度は0.8kgf、かさ密度は0.95g/ml、水分率は0.9重量%、固結テスト1ヶ月後の固結率は0%、固結強度は0kg/cm、粉化率は27.6%であった。
(Comparative Example 6)
The same method as in Example 1, except that 100 parts by weight of magnesium sulfate monohydrate particles (particles B) having a particle size of more than 0.25 mm and 2 mm or less were 0.7% by weight and water was 0.7 parts by weight. A granular fertilizer was produced by mixing, granulating, crushing, sizing and classifying. The yield of granular fertilizer is 41%, the ratio of the particle size of 2 mm to 4 mm is 94%, the major axis diameter is 3.6 mm, the minor axis diameter is 3.0 mm, and the ratio of the major axis diameter to the minor axis diameter The (major axis diameter / minor axis diameter) was 1.20, and the particle B having a particle diameter exceeding 0.1 mm and not more than 2 mm in the granular fertilizer was 60% by weight. The granular fertilizer has a grain hardness of 0.8 kgf, a bulk density of 0.95 g / ml, a moisture content of 0.9 wt%, a consolidation rate after 1 month of consolidation test of 0%, and a consolidation strength of 0 kg / cm 2 , and the powdering rate was 27.6%.

結果を表1に示す。   The results are shown in Table 1.

Figure 2019172561
Figure 2019172561

Figure 2019172561
Figure 2019172561

以上に説明されるとおり、原料である窒素肥料成分から実質的なる粒子(粒子A)とマグネシウム肥料成分から実質的なる粒子(粒子B)の粒径分布と、粒子Aと粒子Bの量的割合を所定の範囲とすることで、窒素肥料成分とマグネシウム肥料成分の溶出速度が均一で、二次粒子形成後の粒硬度が高くて製造後の肥料収率が高く、また、球状であって肥料保管中にも粉化が生じにくく、かつ固結が発生しない粒状肥料を得ることができることが判る。   As explained above, the particle size distribution of particles (particle A) substantially composed of nitrogen fertilizer components as raw materials and particles (particle B) substantially composed of magnesium fertilizer components, and the quantitative ratio of particles A and particles B In a predetermined range, the elution rate of the nitrogen fertilizer component and the magnesium fertilizer component is uniform, the particle hardness after secondary particle formation is high, the fertilizer yield after production is high, and the fertilizer is spherical and fertilizer It can be seen that it is possible to obtain a granular fertilizer that is not easily pulverized during storage and does not cause consolidation.

本発明による粒状肥料は、保管時に粉化し固結して流動性が低下することがなく、小規模農場での人の手による施肥のみならず、大規模農場での機械散布を行うことができる。また、用途・目的に応じて粒状肥料を他の粒状肥料と任意の割合でドライブレンドしたバルクブレンド肥料にできるため、米、野菜、果物等の生育に使用することができる。
The granular fertilizer according to the present invention is not pulverized and solidified during storage and does not deteriorate in fluidity, and can be applied not only to fertilization by humans on a small farm but also to machine spraying on a large farm. . Moreover, since it can be made into the bulk blend fertilizer which dry blended granular fertilizer with other granular fertilizers in arbitrary ratios according to a use and the objective, it can be used for growth of rice, vegetables, fruits, etc.

Claims (16)

窒素肥料成分から実質的になる粒子(粒子A)と、マグネシウム肥料成分から実質的になる粒子(粒子B)が一体化して二次粒子を形成した粒状肥料であって、粒子Aは粒径が0.1mmを超え、2mm以下の粒子が粒子A中50重量%以上を占め、粒子Bは粒径が0.1mmを超え、2mm以下の粒子が粒子B中50重量%以上を占め、かつ、該粒状肥料中に窒素肥料成分が50〜80重量%、マグネシウム肥料成分が20〜50重量%含まれていることを特徴とする粒状肥料。 A granular fertilizer in which particles substantially composed of a nitrogen fertilizer component (particle A) and particles substantially composed of a magnesium fertilizer component (particle B) are integrated to form secondary particles, and the particle A has a particle size Particles greater than 0.1 mm and less than or equal to 2 mm occupy 50% by weight or more in particle A, particle B has a particle size greater than 0.1 mm and particles less than or equal to 2 mm account for greater than 50% by weight in particle B, and A granular fertilizer comprising 50 to 80% by weight of a nitrogen fertilizer component and 20 to 50% by weight of a magnesium fertilizer component in the granular fertilizer. 前記粒状肥料中に水が0.3〜2.0重量%含まれていることを特徴とする請求項1に記載の粒状肥料。 The granular fertilizer according to claim 1, wherein 0.3 to 2.0% by weight of water is contained in the granular fertilizer. 前記粒状肥料の二次粒子形成後の粒硬度が2kgf以上であることを特徴とする請求項1または2に記載の粒状肥料。 The granular fertilizer according to claim 1, wherein the granular fertilizer has a grain hardness of 2 kgf or more after forming secondary particles. 前記粒状肥料の長軸径と短軸径の比(長軸径/短軸径)が1.0以上1.4以下であることを特徴とする請求項1〜3のいずれかに記載の粒状肥料。 The granule according to any one of claims 1 to 3, wherein a ratio of a major axis diameter to a minor axis diameter (major axis diameter / minor axis diameter) of the granular fertilizer is 1.0 or more and 1.4 or less. fertilizer. 前記粒状肥料のかさ密度が0.9g/ml以上1.1g/ml以下であることを特徴とする請求項1〜4のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 4, wherein a bulk density of the granular fertilizer is 0.9 g / ml or more and 1.1 g / ml or less. 前記窒素肥料成分が硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、リン酸アンモニウム、尿素から選ばれる少なくとも一種であることを特徴とする請求項1〜5のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 5, wherein the nitrogen fertilizer component is at least one selected from ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphate, and urea. 前記マグネシウム肥料成分が硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、水酸化マグネシウム、炭酸マグネシウムから選ばれる少なくとも一種であることを特徴とする請求項1〜6のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 6, wherein the magnesium fertilizer component is at least one selected from magnesium sulfate, magnesium chloride, magnesium nitrate, magnesium hydroxide, and magnesium carbonate. 前記硫酸マグネシウムは、硫酸マグネシウム無水物、硫酸マグネシウム1水和物、硫酸マグネシウム3水和物および硫酸マグネシウム7水和物からなる群から選ばれる少なくとも1種であることを特徴とする請求項7に記載の粒状肥料。 The magnesium sulfate is at least one selected from the group consisting of magnesium sulfate anhydride, magnesium sulfate monohydrate, magnesium sulfate trihydrate, and magnesium sulfate heptahydrate. The described granular fertilizer. 窒素肥料成分から実質的になる粒子(粒子A)と、マグネシウム肥料成分から実質的になる粒子(粒子B)とを一体化せしめて二次粒子を形成する粒状肥料の製造方法であって、粒子Aはその粒径が0.25mmを超え、2mm以下であるものが粒子A中70重量%以上を占め、粒子Bはその粒径が0.25mmを超え、2mm以下であるものが粒子B中50重量%以上を占めており、粒状肥料の全体重量に対して、粒子Aを50〜80重量%と、粒子Bを20〜50重量%とを水分の存在下に混合して混合物を得る工程、該混合物を成型して二次粒子を形成する工程を含むことを特徴とする粒状肥料の製造方法。 A method for producing a granular fertilizer in which particles (particle A) substantially composed of a nitrogenous fertilizer component and particles (particle B) substantially composed of a magnesium fertilizer component are integrated to form secondary particles. A having a particle size of more than 0.25 mm and not more than 2 mm accounts for 70% by weight or more in particle A, and particle B has a particle size of more than 0.25 mm and not more than 2 mm in particle B The process which occupies 50 weight% or more and mixes particle | grain A with 50-80 weight% and particle | grain B with 20-50 weight% in presence of a water | moisture content with respect to the whole weight of a granular fertilizer, and obtains a mixture A method for producing granular fertilizer, comprising a step of forming the mixture to form secondary particles. 前記粒状肥料の長軸径と短軸径の比が1.0以上1.4以下となるように成型することを特徴とする請求項9に記載の粒状肥料の製造方法。 The method for producing granular fertilizer according to claim 9, wherein the granular fertilizer is molded so that a ratio of a major axis diameter to a minor axis diameter of the granular fertilizer is 1.0 or more and 1.4 or less. 前記粒状肥料のかさ密度が0.9g/ml以上1.1g/ml以下となるように成型することを特徴とする請求項9または10に記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to claim 9 or 10, wherein the granular fertilizer is molded so that a bulk density is 0.9 g / ml or more and 1.1 g / ml or less. 前記二次粒子を形成する成型の方法が圧縮造粒であることを特徴とする請求項9〜11のいずれかに記載の粒状肥料の製造方法。 The method for producing granular fertilizer according to any one of claims 9 to 11, wherein a molding method for forming the secondary particles is compression granulation. 前記圧縮造粒は、一対のローラーを用いたブリケット方式で圧縮することを特徴とする請求項12に記載の粒状肥料の製造方法。 The method for producing granular fertilizer according to claim 12, wherein the compression granulation is performed by a briquette method using a pair of rollers. 前記圧縮造粒は、造粒圧力が6.0kN/cm以上30.0kN/cm以下であることを特徴とする請求項12または13に記載の粒状肥料の製造方法。 The method for producing granular fertilizer according to claim 12 or 13, wherein the compression granulation has a granulation pressure of 6.0 kN / cm or more and 30.0 kN / cm or less. 前記成型工程として圧縮造粒を行って造粒物を得て、次いで整粒することを特徴とする請求項9〜14のいずれかに記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to any one of claims 9 to 14, wherein as the molding step, compression granulation is performed to obtain a granulated product, and then granulated. 前記整粒は、回転式整粒方式であることを特徴とする請求項15に記載の粒状肥料の製造方法。
The method for producing a granular fertilizer according to claim 15, wherein the sizing is a rotary sizing method.
JP2019041297A 2018-03-28 2019-03-07 Granular fertilizer and method for producing granular fertilizer Active JP7107253B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061431 2018-03-28
JP2018061431 2018-03-28

Publications (2)

Publication Number Publication Date
JP2019172561A true JP2019172561A (en) 2019-10-10
JP7107253B2 JP7107253B2 (en) 2022-07-27

Family

ID=68170431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041297A Active JP7107253B2 (en) 2018-03-28 2019-03-07 Granular fertilizer and method for producing granular fertilizer

Country Status (1)

Country Link
JP (1) JP7107253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138556A (en) * 2020-03-02 2021-09-16 東レ株式会社 Granular fertilizer and method of producing granular fertilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151671A (en) * 1974-05-27 1975-12-05
JPS537473A (en) * 1976-07-01 1978-01-23 Mitsui Toatsu Chemicals Process for producing granular chemical fertilizer
JPH05319966A (en) * 1992-05-15 1993-12-03 Nippon Godo Hiryo Kk Production of fertilizer having slow acting property
JP2009286654A (en) * 2008-05-29 2009-12-10 Hokuren Hiryo Kk Collapsible granular magnesia manure and method for producing the same
JP2017149626A (en) * 2016-02-26 2017-08-31 東レ株式会社 Production method of granular fertilizer composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319966B2 (en) 2007-06-25 2013-10-16 富士フイルム株式会社 Liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151671A (en) * 1974-05-27 1975-12-05
JPS537473A (en) * 1976-07-01 1978-01-23 Mitsui Toatsu Chemicals Process for producing granular chemical fertilizer
JPH05319966A (en) * 1992-05-15 1993-12-03 Nippon Godo Hiryo Kk Production of fertilizer having slow acting property
JP2009286654A (en) * 2008-05-29 2009-12-10 Hokuren Hiryo Kk Collapsible granular magnesia manure and method for producing the same
JP2017149626A (en) * 2016-02-26 2017-08-31 東レ株式会社 Production method of granular fertilizer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138556A (en) * 2020-03-02 2021-09-16 東レ株式会社 Granular fertilizer and method of producing granular fertilizer
JP7200960B2 (en) 2020-03-02 2023-01-10 東レ株式会社 Granular fertilizer and method for producing granular fertilizer

Also Published As

Publication number Publication date
JP7107253B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
EP3148309B1 (en) Polyhalite-coated seed and -fertiliser pellet preparations
EP3148685B1 (en) Pelletising a polyhalite mineral
CN106495811B (en) Round particle mineral fertilizer granulation process and device
AU2015327467B2 (en) Method for the production of sulphate of potash granulates, sulphate of potash granulate obtained thereby, and use thereof
CN113548922A (en) Fertilizer granules with micronized sulphur
JP6740636B2 (en) Method for producing granular fertilizer composition
BR102018003628A2 (en) granular fertilizers comprising macronutrients and micronutrients, and processes for their manufacture
BR112020008580A2 (en) process for production of fertilizer granules containing polyhalite
JP6540094B2 (en) Granular fertilizer composition and method for producing granular fertilizer composition
JP5971071B2 (en) Method for granulating nitrogen fertilizer and method for producing nitrogen fertilizer of granular product
JP7107253B2 (en) Granular fertilizer and method for producing granular fertilizer
JP6642046B2 (en) Granular nitrogen fertilizer and method for producing granular nitrogen fertilizer
JP6290642B2 (en) Powdered steelmaking slag fertilizer
JP7013733B2 (en) Manufacturing method of granular NK chemical fertilizer and granular NK chemical fertilizer
CN111875448A (en) Production method of instant fertilizer
JP7180444B2 (en) Method for producing granular ammonium sulfate and method for producing granular nitrogen fertilizer
JP6977466B2 (en) Coarse grain livestock manure combustion ash manufacturing method, granular fertilizer manufacturing method and mixed fertilizer manufacturing method
JP7200960B2 (en) Granular fertilizer and method for producing granular fertilizer
US20220380272A1 (en) Composite fertiliser systems
JP7331408B2 (en) Method for producing granular fertilizer
KR100608444B1 (en) The method of granular a soil conditioner making from the by-product of slag and a gypsum
JP2022083121A (en) Granular ammonium sulfate composition, mixed fertilizer composition, and method of manufacturing granular ammonium sulfate composition
JP2023097386A (en) Granular fertilizer using burned ash and nitrogen fertilizer composition, and method for producing the same
JP2023097379A (en) Manufacturing method of granular fertilizer
JP5057541B2 (en) Production method of granular salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7107253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151