JP7200960B2 - Granular fertilizer and method for producing granular fertilizer - Google Patents

Granular fertilizer and method for producing granular fertilizer Download PDF

Info

Publication number
JP7200960B2
JP7200960B2 JP2020034933A JP2020034933A JP7200960B2 JP 7200960 B2 JP7200960 B2 JP 7200960B2 JP 2020034933 A JP2020034933 A JP 2020034933A JP 2020034933 A JP2020034933 A JP 2020034933A JP 7200960 B2 JP7200960 B2 JP 7200960B2
Authority
JP
Japan
Prior art keywords
particles
granular fertilizer
fertilizer
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034933A
Other languages
Japanese (ja)
Other versions
JP2021138556A (en
Inventor
平 足立
佳丈 高橋
哲郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020034933A priority Critical patent/JP7200960B2/en
Publication of JP2021138556A publication Critical patent/JP2021138556A/en
Application granted granted Critical
Publication of JP7200960B2 publication Critical patent/JP7200960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主原料として窒素肥料成分と硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケル等の微量肥料成分で構成される粒状肥料およびその製造方法に関する。 The present invention relates to a granular fertilizer composed of nitrogenous fertilizer components and trace fertilizer components such as copper sulfate, zinc sulfate, manganese sulfate, iron sulfate and nickel sulfate as main raw materials, and a method for producing the same.

作物の正常な生育のためには、肥料として窒素、リン、カリの多量元素の他に、マグネシウム等の中量元素や銅、亜鉛、マンガン、鉄、ニッケル等の微量元素が必要である。かかる肥料元素を土壌に適量施肥する必要がある。 For the normal growth of crops, in addition to the major elements such as nitrogen, phosphorus and potassium, medium abundance elements such as magnesium and trace elements such as copper, zinc, manganese, iron and nickel are required as fertilizers. It is necessary to fertilize the soil with an appropriate amount of such fertilizer elements.

中でも、土壌中の微量元素は欠乏しやすいが、単に微量元素を単独で追加し施肥するだけでは過剰となりやすく、問題を解決することができないのが実情である。
そこで、微量元素を含んだ液状の肥料を与える葉面散布が行われている。しかし、大規模化した農地での葉面散布は手間がかかるため効率が悪く、機械散布が可能となる微量元素を粒中に適量含んだ粒状肥料が求められている。
In particular, trace elements in the soil tend to be deficient, but simply adding trace elements alone and fertilizing tends to be excessive, and the actual situation is that the problem cannot be solved.
Therefore, foliar application is carried out to provide liquid fertilizer containing trace elements. However, foliar spraying in large-scale farmland is labor intensive and inefficient, and there is a need for a granular fertilizer containing an appropriate amount of trace elements in grains that can be applied mechanically.

その一方で、一般的に、微量元素を粒中に適量含んだ粒状肥料は粒硬度が低くなりやすく粒状化が困難である。また、低い粒硬度である場合、保管時に粉化しやすい問題があることから、窒素肥料元素以外の物質を添加することによる粒状化が検討されている。 On the other hand, in general, granular fertilizer containing an appropriate amount of trace elements tends to have low grain hardness and is difficult to granulate. In addition, when the grain hardness is low, there is a problem that the grain tends to be pulverized during storage, so granulation by adding substances other than nitrogen fertilizer elements is being studied.

例えば、非特許文献1では、硫酸マンガン0.6重量%をはじめとした微量肥料成分の他に、硫酸アンモニウムと硫酸マグネシウムを含む複合肥料が提案されている。また、特許文献1では、リン酸塩の粒子をベースとし、その粒子を尿素や硫酸アンモニウム等の窒素肥料成分でコーティングし、さらにそのコーティングを覆う形で微量肥料成分をコーティングした多層構造の粒状肥料組成物が提案されている。 For example, Non-Patent Document 1 proposes a compound fertilizer containing ammonium sulfate and magnesium sulfate in addition to trace fertilizer components such as 0.6% by weight of manganese sulfate. In addition, in Patent Document 1, a granular fertilizer composition having a multi-layer structure in which phosphate particles are used as a base, the particles are coated with a nitrogen fertilizer component such as urea or ammonium sulfate, and the coating is further coated with a trace fertilizer component to cover the coating. things are proposed.

安全データシート onodakagaku-14Safety data sheet onodakagaku-14

特表2013-521213号公報Japanese Patent Publication No. 2013-521213

微量肥料成分を粒中に適量含んだ粒状肥料は、土壌において微量肥料成分の栄養素が欠乏することなく、かつ、散布後の微量肥料成分の溶出性が良好であることが求められる。
さらに、散布の際に発塵や機械内の流路での詰まりを発生させないよう粒状肥料の硬度が高くて粉化しにくく、保管中に固結が発生しないことが求められる。さらには、散布の際に到達飛距離にばらつきが少なく、かつ水田等において着水後すぐに沈降して土壌に着地するよう、粒径が均一で、かさ密度が高いことも求められている。
Granular fertilizer containing an appropriate amount of trace fertilizer components in grains is required not to cause deficiency of nutrients of the trace fertilizer components in the soil and to have good dissolution properties of the trace fertilizer components after spraying.
Furthermore, in order to prevent the generation of dust and clogging of the flow path in the machine during spraying, the granular fertilizer is required to have a high hardness and be difficult to pulverize, and not to cause caking during storage. Furthermore, it is also required that the particle size is uniform and the bulk density is high so that there is little variation in the flight distance when sprayed, and that it settles and lands on the soil immediately after landing on the water in paddy fields or the like.

しかしながら、非特許文献1に記載される粒状肥料では、肥料成分以外のその他成分が粒状肥料全重量に対して20~25重量%含まれており、かつ製造において多量の液体バインダーを使用して肥料成分を溶解しながら造粒しているため、粒状肥料に含まれる肥料成分の重量割合が不均一となったり、土壌中で微量肥料成分の溶け残りが発生する問題があった。 However, the granular fertilizer described in Non-Patent Document 1 contains 20 to 25% by weight of other components other than the fertilizer component with respect to the total weight of the granular fertilizer, and the fertilizer is manufactured using a large amount of liquid binder. Since the granules are granulated while dissolving the ingredients, there are problems that the weight ratio of the fertilizer ingredients contained in the granular fertilizer becomes uneven, and trace amounts of fertilizer ingredients remain undissolved in the soil.

また、特許文献1に記載される粒状肥料組成物では、リン酸塩とともに散布されるため作物に吸収される前に土壌中で固定化される問題があった。 In addition, the granular fertilizer composition described in Patent Document 1 has a problem of being immobilized in the soil before being absorbed by crops because it is applied together with phosphate.

そこで、本発明は、これら従来技術の課題に鑑み、土壌において微量肥料成分の栄養素が欠乏することなく、かつ微量肥料成分を均一に散布することができ、散布後の溶出性が良好である粒状肥料を提供することを課題とする。また、高い粒硬度を有することから、製造後の肥料収率が向上でき、さらに肥料保管中にも粉化が生じにくく、かつ固結が発生しにくい粒状肥料を提供することを課題とする。 Therefore, in view of these problems of the prior art, the present invention provides a granular fertilizer that can be uniformly sprayed with trace fertilizer components without depleting the nutrients of the trace fertilizer components in the soil, and has good dissolution after spraying. The task is to provide fertilizer. Another object of the present invention is to provide a granular fertilizer that can improve the fertilizer yield after production because of its high grain hardness, and that is less likely to be pulverized and less likely to caking during storage of the fertilizer.

すなわち、本発明は、主として以下の構成を有する。 That is, the present invention mainly has the following configurations.

窒素肥料成分から実質的になる粒子(粒子A)と、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B)が一体化して二次粒子を形成した粒状肥料であって、粒状肥料における窒素肥料成分から実質的になる粒子(粒子A’)はその粒径が0.1mmを超え、1mm以下の粒子割合が粒状肥料における粒子A’中50%以上を占め、粒状肥料における粒子B’はその粒径が0.1mmを超え、1mm以下の粒子割合が粒状肥料における硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B’)中60%以上を占め、かつ、燃焼法で測定した粒状肥料における窒素含有率が13.5~45.0%、原子吸光法で測定した粒状肥料における銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が0.3~5.0%であることを特徴とする、粒状肥料。 Particles (particles A) substantially composed of a nitrogen fertilizer component and particles (particles B) substantially composed of at least one trace fertilizer component selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate are integrated. The granular fertilizer that is formed into secondary particles by liquefaction, and the particles (particles A') that are substantially composed of the nitrogen fertilizer component in the granular fertilizer have a particle size of more than 0.1 mm and the proportion of particles of 1 mm or less is the granular fertilizer occupies 50% or more of the particles A' in the granular fertilizer, and the particle B' in the granular fertilizer has a particle size of more than 0.1 mm, and the proportion of particles of 1 mm or less is copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, sulfuric acid At least 60% of the particles (particles B′) substantially composed of at least one trace fertilizer component selected from nickel, and the nitrogen content in the granular fertilizer measured by the combustion method is 13.5 to 45.0% A granular fertilizer, characterized in that the content of at least one metal selected from copper, zinc, manganese, iron and nickel in the granular fertilizer measured by an atomic absorption method is 0.3 to 5.0%.

窒素肥料成分から実質的になる粒子(粒子A)と、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B)とを一体化せしめて二次粒子を形成する粒状肥料の製造方法であって、粒子Aはその粒径が1mmを超え、2mm以下であるものが粒子A中10重量%以上90重量%以下を占め、粒子Bはその粒径が1mmを超え、2mm以下であるものが粒子B中10重量%以上40重量%以下を占めており、粒状肥料の全体重量に対して、粒子Aを85.0~98.8重量部と、粒子Bを1.2~15.0重量部と、水を0~4.0重量部とを混合して混合物を得る工程、該混合物を成型して二次粒子を形成する工程を含むことを特徴とする、粒状肥料の製造方法。 Particles (particles A) substantially composed of a nitrogen fertilizer component and particles (particles B) substantially composed of at least one trace fertilizer component selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate A method for producing a granular fertilizer that integrates to form secondary particles, wherein particles A having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 90% by weight or less of particles A, Particles B having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 40% by weight or less of particles B, and the amount of particles A is 85.0 to 98% with respect to the total weight of the granular fertilizer. A step of mixing 8 parts by weight, 1.2 to 15.0 parts by weight of particles B, and 0 to 4.0 parts by weight of water to obtain a mixture, and molding the mixture to form secondary particles. A method for producing a granular fertilizer, comprising a step of

本発明によれば、土壌にて微量肥料成分の栄養素が欠乏することなく、かつ微量肥料成分を均一に散布することができ、散布後の溶出性が良好である粒状肥料を得ることができる。また、高い粒硬度を有することから、製造後の肥料収率が向上できる。さらに肥料保管中にも粉化が生じにくく、かつ固結が発生しにくい粒状肥料を得ることができる。 EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a granular fertilizer in which the nutrients of the trace fertilizer components are not deficient in the soil, and the trace fertilizer components can be uniformly sprayed, and the elution property after spraying is good. Moreover, since it has a high grain hardness, the fertilizer yield after production can be improved. Furthermore, it is possible to obtain a granular fertilizer that is less likely to be pulverized and less likely to caking during storage of the fertilizer.

以下、本発明について、実施形態とともに詳細に説明する。 Hereinafter, the present invention will be described in detail together with embodiments.

<窒素肥料成分から実質的になる粒子(粒子A)>
粒子Aは、窒素肥料成分から実質的になる粒子である。ここで、「実質的になる」とは、粒子A中の窒素肥料成分含有率が粒子A重量に対して平均して90重量%以上であることをいう。粒子Aが窒素肥料成分を含む割合は、95重量%以上が好ましく、さらに好ましくは98重量%以上であり、100重量%であれば最も好ましい。
<Particles (particles A) consisting essentially of nitrogen fertilizer components>
Particles A are particles consisting essentially of nitrogenous fertilizer components. Here, "substantially" means that the nitrogen fertilizer component content in the particles A is 90% by weight or more on average with respect to the weight of the particles A. The proportion of the particles A containing the nitrogen fertilizer component is preferably 95% by weight or more, more preferably 98% by weight or more, and most preferably 100% by weight.

本発明に用いる窒素肥料成分には特に制限が無く、公知のものも含めて植物の窒素含有率の栄養素として作用するものを用いることができる。かかる窒素肥料成分の具体例としては、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、リン酸二アンモニウム、尿素等が挙げられる。このうち硫酸アンモニウムは、粒状肥料としたときの溶出性や粒硬度の点で優れるので特に好ましい。 The nitrogen fertilizer component used in the present invention is not particularly limited, and any component, including known ones, that acts as a nutrient for the nitrogen content of plants can be used. Specific examples of such nitrogenous fertilizer components include ammonium sulfate, ammonium chloride, ammonium nitrate, diammonium phosphate, and urea. Among these, ammonium sulfate is particularly preferable because it is excellent in dissolution and grain hardness when made into a granular fertilizer.

この粒子Aは、例えば晶析により結晶化させて得ることができる。粒子A中の窒素肥料成分が硫酸アンモニウムである場合は、粒子Aは、例えば、コークス炉廃ガスを硫酸と接触させて得られる硫酸アンモニウム水溶液や、カプロラクタムの製造において、カプロラクタム硫酸塩にアンモニアを添加して得られるカプロラクタムと硫酸アンモニウム混液を得た後に、カプロラクタム水溶液と硫酸アンモニウム水溶液を分離して得られる硫酸アンモニウム水溶液から、晶析により硫酸アンモニウムを結晶化した細粒結晶硫安として使用できる。結晶と母液の分離については、公知の方式で行うことができる。例えば、遠心分離によって液体から分離した後、乾燥することで得られる。細粒結晶硫安は、晶析時に過飽和度が高すぎると結晶が急激に凝集して母液を取り込み、粒径が大きく、水分が高く、不純物が多くなるため、圧力10.1kPaABS以上の圧力として晶析することで、結晶配向した、結晶性の高い細粒結晶硫安を得ることができる。結晶性の高さは、二次元X線回折を行うことで測定することができ、測定結果から求められる配向度が0.995以上であることが好ましい。さらに好ましくは配向度が0.997以上であり、配向度が1.0であれば、結晶性が最も高い場合であり、最も好ましい。また、細粒結晶硫安が硫酸アンモニウムを含む割合は、好ましくは95重量%以上であり、98重量%以上であれば、結晶性の高い細粒結晶硫酸アンモニウムとなり、最も好ましい。なお、配向度とは、結晶の揃い具合を示す指標であり、二次元X線回折において、あおり角χ(°)に応じて得られた配向性ピークの半値幅(°)より下記式(1)で示される。
配向度=(180-配向性ピーク半値幅)/180 ・・・(1)
The particles A can be obtained by, for example, crystallization by crystallization. When the nitrogen fertilizer component in the particles A is ammonium sulfate, the particles A are, for example, an ammonium sulfate aqueous solution obtained by contacting coke oven waste gas with sulfuric acid, or in the production of caprolactam, by adding ammonia to caprolactam sulfate. After obtaining the resulting caprolactam and ammonium sulfate mixed solution, ammonium sulfate can be crystallized from the ammonium sulfate aqueous solution obtained by separating the caprolactam aqueous solution and the ammonium sulfate aqueous solution, which can be used as fine crystalline ammonium sulfate. Separation of crystals and mother liquor can be carried out by a known method. For example, it is obtained by drying after separating from the liquid by centrifugation. If the degree of supersaturation is too high during crystallization, the crystals of the fine-grain ammonium sulfate agglomerate abruptly and take in the mother liquor, resulting in a large particle size, a high water content, and a large amount of impurities. By precipitating, it is possible to obtain fine-grained crystalline ammonium sulfate having crystal orientation and high crystallinity. The degree of crystallinity can be measured by performing two-dimensional X-ray diffraction, and the degree of orientation obtained from the measurement results is preferably 0.995 or more. More preferably, the degree of orientation is 0.997 or more, and the degree of orientation of 1.0 is the highest crystallinity, and is most preferred. The proportion of fine-grain crystalline ammonium sulfate containing ammonium sulfate is preferably 95% by weight or more, and when it is 98% by weight or more, the fine-grain crystalline ammonium sulfate has high crystallinity, which is most preferable. The degree of orientation is an index that indicates the degree of alignment of crystals. ).
Degree of orientation = (180-orientation peak half width)/180 (1)

細粒結晶硫安中のアンモニア性窒素の含有率は、単位重量あたりの窒素源としての肥料効果の面から、20.5%以上が好ましく、21.0%以上がさらに好ましい。なお、細粒結晶硫安中のアンモニア性窒素の含有率は、肥料等試験法(2019)に従い燃焼法で測定した値である。 The content of ammoniacal nitrogen in the fine crystal ammonium sulfate is preferably 20.5% or more, more preferably 21.0% or more, from the viewpoint of the fertilizer effect as a nitrogen source per unit weight. The content of ammoniacal nitrogen in fine-grained ammonium sulfate is a value measured by a combustion method according to the Test Methods for Fertilizers (2019).

粒子A中の窒素肥料成分が尿素である場合は、粒子Aは、例えば、アンモニアと二酸化炭素を原料として、高温高圧条件で反応させて尿素含有溶液とし、該尿素含有溶液を精留、乾燥することによって得られるプリル尿素を使用することができる。プリル尿素中の窒素含有率は、単位重量あたりの窒素源としての肥料効果の面から、45%以上含むことが好ましく、46%以上含むことがさらに好ましい。なお、プリル尿素中の窒素含有率は、肥料等試験法(2019)に従い、燃焼法で測定した値である。 When the nitrogen fertilizer component in the particles A is urea, the particles A are prepared by, for example, reacting ammonia and carbon dioxide as raw materials under high-temperature and high-pressure conditions to form a urea-containing solution, and rectifying and drying the urea-containing solution. A prilled urea obtained by The nitrogen content in the prilled urea is preferably 45% or more, more preferably 46% or more, from the viewpoint of the fertilizer effect as a nitrogen source per unit weight. The nitrogen content in prilled urea is a value measured by a combustion method according to the Test Methods for Fertilizers (2019).

本発明の粒状肥料の製造に用いる粒子Aは、その粒径が1mmを超え2mm以下の粒子が粒子A全体の10重量%以上90重量%以下である。好ましくはその粒径が1mmを超え2mm以下の粒子が粒子A全体の20重量%以上90重量%以下であり、より好ましくはその粒径が1mmを超え2mm以下の粒子が粒子A全体の30重量%以上90重量%以下であることである。粒径が2mmを超える場合は、混合する際に分級が生じて成分均一性の低下を招き、造粒する際に粒子同士の接触面積が小さく造粒しにくくて造粒物中に占める窒素肥料成分の割合が少なくなるため粒硬度の低下を生じる。粒径が1mm以下のものが多く含まれる場合は、粒子Aのかさ密度が低下して造粒しにくく、原料の利用効率が低下する。ここでの粒子Aの粒径および量は、篩(例えば、目開き9メッシュ=2.0mm、目開き16メッシュ=1.0mm)で分級して求めることができる。 In the particles A used for producing the granular fertilizer of the present invention, particles having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 90% by weight or less of the entire particles A. Preferably, particles with a particle size of more than 1 mm and 2 mm or less account for 20% by weight or more and 90% by weight or less of the total particles A, and more preferably particles with a particle size of more than 1 mm and 2 mm or less account for 30% by weight of the total particles A. % or more and 90% by weight or less. If the particle size exceeds 2 mm, classification occurs during mixing, leading to a decrease in component uniformity, and the contact area between the particles is small during granulation, making it difficult to granulate. A decrease in grain hardness occurs due to a decrease in the proportion of the component. When particles having a particle size of 1 mm or less are contained in a large amount, the bulk density of the particles A is lowered, making it difficult to granulate, and the utilization efficiency of raw materials is lowered. The particle size and amount of the particles A can be obtained by classifying them with a sieve (for example, 9-mesh mesh = 2.0 mm, 16-mesh mesh = 1.0 mm).

本発明の粒状肥料の製造に用いる粒子Aのかさ密度は、好ましくは0.90g/ml以上1.1g/ml以下である。搬送時の飛散を防止したり、造粒時の造粒収率を高くするために、かさ密度は0.93g/ml以上1.1g/ml以下であることがより好ましく、0.96g/ml以上1.1g/ml以下であることがさらに好ましい。なお、粒子Aのかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。 The bulk density of the particles A used for producing the granular fertilizer of the present invention is preferably 0.90 g/ml or more and 1.1 g/ml or less. In order to prevent scattering during transportation and increase the granulation yield during granulation, the bulk density is more preferably 0.93 g/ml or more and 1.1 g/ml or less, more preferably 0.96 g/ml. It is more preferable that it is more than or equal to 1.1 g/ml or less. The bulk density of the particles A is measured according to "JIS R 1628:1997 Method for measuring bulk density of fine ceramic powder".

本発明の粒状肥料の製造に用いる粒子Aの水分率は、5重量%以下であることが好ましい。より好ましくは4重量%以下であり、さらに好ましくは3重量%以下である。粒子Aが細粒結晶硫安の場合の水分率は、0.5重量%以下であることが好ましい。より好ましくは0.4重量%以下であり、さらに好ましくは0.3重量%以下である。なお、窒素肥料成分の水分率は、肥料等試験法(2019)に従い乾燥減量法で測定した値である。 The moisture content of the particles A used for producing the granular fertilizer of the present invention is preferably 5% by weight or less. It is more preferably 4% by weight or less, still more preferably 3% by weight or less. When the particles A are fine crystalline ammonium sulfate, the moisture content is preferably 0.5% by weight or less. It is more preferably 0.4% by weight or less, still more preferably 0.3% by weight or less. In addition, the moisture content of the nitrogen fertilizer component is a value measured by the loss on drying method according to the Test Methods for Fertilizers (2019).

<微量肥料成分から実質的になる粒子(粒子B)>
粒子Bは、微量肥料成分から実質的になる粒子である。ここで、「実質的になる」とは、粒子B中の微量肥料成分含有率が粒子B重量に対して平均して90重量%以上であることをいう。粒子Bが微量肥料成分を含む割合は、95重量%以上が好ましく、さらに好ましくは98重量%以上であり、100重量%であれば最も好ましい。かかる微量肥料成分は、粒状肥料の原料として使用する際の取り扱い性や、製造後の粒状肥料の収率や、さらには粒状肥料としたときの溶出性や粒硬度の点で優れることから、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種である。
<Particles (Particles B) Substantially Consisting of Trace Fertilizer Components>
Particles B are particles consisting essentially of microfertilizer ingredients. Here, "substantially" means that the content of trace fertilizer components in the particles B is 90% by weight or more on the average with respect to the weight of the particles B. The proportion of the particles B containing the trace fertilizer component is preferably 95% by weight or more, more preferably 98% by weight or more, and most preferably 100% by weight. Such a trace fertilizer component is excellent in terms of handleability when used as a raw material for granular fertilizer, yield of granular fertilizer after production, and elution and grain hardness when made into granular fertilizer. It is at least one selected from copper, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate.

この粒子Bは、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種を含む溶液から微量肥料成分を含む溶質を粒子化して母液と分離することで得ることができる。 The particles B can be obtained by granulating a solute containing trace fertilizer components from a solution containing at least one selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate, and separating it from the mother liquor.

粒子B中の微量肥料成分が硫酸銅である場合は、粒子Bは、例えば、自然鉱物の精製や、銅を焼成した酸化銅と希硫酸を反応させる硫酸反応法によって得られ、硫酸銅の銅含有率は、単位重量あたりの銅源としての肥料効果の面から、15%以上含むことが好ましく、20%以上含むことがより好ましく、25%以上含むことがさらに好ましい。なお、硫酸銅の銅含有率は、肥料等試験法(2019)に従い、フレーム原子吸光法で測定した値である。 When the trace fertilizer component in the particles B is copper sulfate, the particles B are obtained, for example, by refining natural minerals or by a sulfuric acid reaction method in which copper oxide obtained by calcining copper is reacted with dilute sulfuric acid. The content is preferably 15% or more, more preferably 20% or more, and even more preferably 25% or more, from the viewpoint of fertilizer effect as a copper source per unit weight. The copper content of copper sulfate is a value measured by flame atomic absorption spectrometry in accordance with the Test Methods for Fertilizers (2019).

粒子B中の微量肥料成分が硫酸亜鉛である場合は、粒子Bは、例えば、亜鉛や酸化亜鉛等の亜鉛原料に希硫酸を添加して反応させる硫酸分解法によって得られ、硫酸亜鉛の亜鉛含有率は、単位重量あたりの亜鉛源としての肥料効果の面から、20%以上含むことが好ましく、30%以上含むことがより好ましく、35%以上含むことがさらに好ましい。なお、硫酸亜鉛の亜鉛含有率は、肥料等試験法(2019)に従い、フレーム原子吸光法で測定した値である。 When the trace fertilizer component in the particles B is zinc sulfate, the particles B are obtained, for example, by a sulfuric acid decomposition method in which dilute sulfuric acid is added to a zinc raw material such as zinc or zinc oxide to cause a reaction, and zinc sulfate contains zinc. The ratio is preferably 20% or more, more preferably 30% or more, even more preferably 35% or more, from the viewpoint of fertilizer effect as a zinc source per unit weight. The zinc content of zinc sulfate is a value measured by flame atomic absorption spectrometry in accordance with the Test Methods for Fertilizers (2019).

粒子B中の微量肥料成分が硫酸マンガンである場合は、粒子Bは、例えば、軟マンガン鉱を石灰粉またはコークスと混合し800℃程度で焙焼して得た一酸化マンガンに希硫酸を加えて反応させる焙焼還元法や菱マンガン鉱と硫酸を反応させる硫酸含侵法によって得られ、硫酸マンガンのマンガン含有率は、単位重量あたりのマンガン源としての肥料効果の面から、20%以上含むことが好ましく、25%以上含むことがより好ましく、30%以上含むことがさらに好ましい。なお、硫酸マンガンのマンガン含有率は、肥料等試験法(2019)に従い、フレーム原子吸光法で測定した値である。 When the trace fertilizer component in the particles B is manganese sulfate, the particles B are prepared by, for example, mixing pyrolus ore with lime powder or coke and roasting at about 800° C. to obtain manganese monoxide and adding dilute sulfuric acid. The manganese content of manganese sulfate is 20% or more from the viewpoint of the fertilizer effect as a manganese source per unit weight. preferably 25% or more, more preferably 30% or more. The manganese content of manganese sulfate is a value measured by flame atomic absorption spectrometry in accordance with Fertilizer Test Methods (2019).

粒子B中の微量肥料成分が硫酸鉄である場合は、粒子Bは、例えば、イルメナイトと濃硫酸を用いて酸化チタンを製造する際に副生する硫酸鉄を回収することによって得られ、硫酸鉄の鉄含有率は、単位重量あたりの鉄源としての肥料効果の面から、15%以上含むことが好ましく、20%以上含むことがより好ましく、25%以上含むことがさらに好ましい。なお、硫酸鉄の鉄含有率は、肥料等試験法(2019)に従い、フレーム原子吸光法で測定した値である。 When the trace fertilizer component in the particles B is iron sulfate, the particles B are obtained, for example, by recovering iron sulfate by-produced when titanium oxide is produced using ilmenite and concentrated sulfuric acid. The iron content of is preferably 15% or more, more preferably 20% or more, even more preferably 25% or more, from the viewpoint of the fertilizer effect as an iron source per unit weight. The iron content of iron sulfate is a value measured by flame atomic absorption spectrometry in accordance with the Test Methods for Fertilizers (2019).

粒子B中の微量肥料成分が硫酸ニッケルである場合は、粒子Bは、例えば、電気ニッケルを製造する際に副生する硫酸ニッケルを回収することによって得られ、硫酸ニッケルのニッケル含有率は、単位重量あたりのニッケル源としての肥料効果の面から、15%以上含むことが好ましく、20%以上含むことがより好ましく、25%以上含むことがさらに好ましい。なお、硫酸ニッケルのニッケル含有率は、肥料等試験法(2019)に従い、フレーム原子吸光法で測定した値である。 When the minor fertilizer component in the particles B is nickel sulfate, the particles B are obtained, for example, by recovering nickel sulfate that is a by-product of the production of electrolytic nickel, and the nickel content of nickel sulfate is expressed in the unit From the viewpoint of the fertilizer effect as a nickel source per weight, the content is preferably 15% or more, more preferably 20% or more, and even more preferably 25% or more. The nickel content of nickel sulfate is a value measured by flame atomic absorption spectrometry in accordance with the Test Methods for Fertilizers (2019).

なお、かかる微量肥料成分は、原料として取り扱う際の安定性や粒状肥料とした際に粉化を抑制できるという観点から、含水塩であることが好ましい。具体的には、硫酸銅水和物、硫酸亜鉛水和物、硫酸マンガン水和物、硫酸鉄水和物などがあげられる。中でも、硫酸銅5水和物、硫酸亜鉛1水和物、硫酸マンガン1水和物、硫酸第一鉄7水和物、硫酸ニッケル6水和物が好ましく用いられる。 It should be noted that such a trace fertilizer component is preferably a hydrous salt from the viewpoint of stability when handled as a raw material and suppression of pulverization when made into a granular fertilizer. Specific examples include copper sulfate hydrate, zinc sulfate hydrate, manganese sulfate hydrate, and iron sulfate hydrate. Among them, copper sulfate pentahydrate, zinc sulfate monohydrate, manganese sulfate monohydrate, ferrous sulfate heptahydrate, and nickel sulfate hexahydrate are preferably used.

本発明の粒状肥料の製造に用いる粒子Bは、その粒径が1mmを超え2mm以下の粒子が粒子B全体の10重量%以上40重量%以下である。好ましくはその粒径が1mmを超え2mm以下の粒子が粒子B全体の15重量%以上40重量%以下であり、さらに好ましくはその粒径が1mmを超え2mm以下の粒子が粒子B全体の20重量%以上40重量%以下である。粒径が2mmを超える場合は、混合する際に分級が生じて成分均一性の低下を招き、造粒する際に粒子同士の接触面積が小さく造粒しにくくて粒硬度の低下を生じる。粒子Bの粒径が1mm以下の場合は、粒子Bのかさ密度が低下して造粒しにくく、原料の利用効率が低下する。ここでの粒子Bの粒径および量は、篩(例えば、目開き9メッシュ=2.0mm、目開き16メッシュ=1.0mm)で分級して求めることができる。 In the particles B used for producing the granular fertilizer of the present invention, particles having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 40% by weight or less of the entire particles B. Preferably, particles with a particle size of more than 1 mm and 2 mm or less account for 15% by weight or more and 40% by weight or less of the total particles B, and more preferably particles with a particle size of more than 1 mm and 2 mm or less account for 20% by weight of the total particles B. % or more and 40% by weight or less. If the particle size exceeds 2 mm, classification occurs during mixing, resulting in a decrease in component uniformity, and the contact area between the particles is small during granulation, making it difficult to granulate, resulting in a decrease in grain hardness. When the particle diameter of the particles B is 1 mm or less, the bulk density of the particles B is lowered, making it difficult to granulate, and the utilization efficiency of the raw material is lowered. The particle size and amount of the particles B can be obtained by classifying them with a sieve (for example, 9-mesh mesh = 2.0 mm, 16-mesh mesh = 1.0 mm).

本発明の粒状肥料の製造に用いる粒子Bのかさ密度は、0.90g/ml以上1.10g/ml以下である。搬送時の飛散を防止したり、造粒時の造粒収率を高くするために、かさ密度は0.93g/ml以上1.10g/ml以下であることがより好ましく、0.96g/ml以上1.10g/ml以下であることがさらに好ましい。なお、粒子Bのかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。 The bulk density of the particles B used for producing the granular fertilizer of the present invention is 0.90 g/ml or more and 1.10 g/ml or less. In order to prevent scattering during transportation and increase the granulation yield during granulation, the bulk density is more preferably 0.93 g/ml or more and 1.10 g/ml or less, more preferably 0.96 g/ml. More preferably, it is 1.10 g/ml or less. The bulk density of the particles B is measured according to "JIS R 1628:1997 Method for measuring bulk density of fine ceramic powder".

<粒状肥料>
本発明の粒状肥料は、窒素肥料成分から実質的になる粒子(粒子A)と、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B)とが一体化して二次粒子を形成した粒状肥料である。このような粒状肥料を得るには、原料としての粒子Aと粒子Bとを混合するか、あるいは粒子Aと粒子Bとを水の存在下に混合し、該混合物を、成型(造粒ともいう)することで得られる。すなわち、粒子A’および粒子B’は、粒状肥料の原料である粒子Aおよび粒子Bをそれぞれ由来とし、粒状肥料の形成前後で粒径分布や形状が変化したものである。この粒状肥料中の粒子A’と粒子B’は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析を用いることにより判別することができる。
<Granular Fertilizer>
The granular fertilizer of the present invention consists essentially of particles (particles A) consisting essentially of nitrogenous fertilizer ingredients and at least one trace fertilizer ingredient selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate and nickel sulfate. It is a granular fertilizer in which particles (particles B) are integrated to form secondary particles. In order to obtain such a granular fertilizer, the particles A and B as raw materials are mixed, or the particles A and B are mixed in the presence of water, and the mixture is molded (also called granulation). ). That is, the particles A' and B' are derived from the particles A and B, which are the raw materials of the granular fertilizer, respectively, and the particle size distribution and shape have changed before and after the formation of the granular fertilizer. Particles A' and B' in this granular fertilizer can be discriminated by scanning electron microscope observation-energy dispersive X-ray analysis of the cross section of the granular fertilizer.

原料としての粒子Aと粒子B、および粒状肥料内の粒子A’と粒子B’を好ましい粒径とするために、原料の混合前に粉砕機で粉砕してもよい。粉砕機の種類に特に制限はなく、ピンミル、ハンマーミル、ボールミル等の粉砕機を使用することができるが、粉砕粒度の制御がしやすいピンミルが好ましく用いられる。 Particles A and B as raw materials, and particles A' and B' in the granular fertilizer may be pulverized with a pulverizer before mixing to obtain preferred particle sizes. The type of pulverizer is not particularly limited, and pulverizers such as pin mills, hammer mills, and ball mills can be used, but pin mills are preferably used because the grain size of the pulverized particles can be easily controlled.

粒子Aと粒子Bを必要に応じて粉砕機で粉砕して好ましい粒径とした後、混合機で粒子Aと粒子Bとを混合するか、あるいは粒子Aと粒子Bとを水の存在下に混合し、造粒、解砕、整粒、分級を順次行うことで肥料として好ましい硬度、かさ密度、および形状を有する粒状肥料を得ることができる。 Particles A and B are pulverized with a pulverizer as necessary to obtain a preferred particle size, and then mixed with particles A and B with a mixer, or the particles A and B are mixed in the presence of water. By sequentially performing mixing, granulation, pulverization, sizing, and classification, it is possible to obtain a granular fertilizer having a hardness, bulk density, and shape suitable for a fertilizer.

なお、本発明の要旨を逸脱せず、また、目的を阻害しない限りにおいて、粒子Aおよび粒子B以外の成分を用いることは差し支えない。たとえば、他の栄養素において肥効を持つ物質、結着剤などの保型性を改良する物質、無機フィラーや有機フィラーなどの添加剤が挙げられる。 Components other than the particles A and B may be used as long as they do not deviate from the gist of the present invention or impair the purpose. For example, there are other nutrients that have a fertilizing effect, substances that improve shape retention such as binders, and additives such as inorganic fillers and organic fillers.

粒子Aと粒子Bとの混合方法は、均一に混合できれば混合機の種類に特に制限はなく、水平円筒型、V型、ダブルコーン型等の容器回転型混合機や、リボン型、スクリュー型、パドル型等の容器固定型の混合機を使用することができるが、連続処理が可能であることからパドル型混合機が好ましく用いられる。混合時間は、2分以上15分以下が好ましく、さらに好ましくは5分以上10分以下である。混合時間が2分より短くなると、混合物中で粒子Aと粒子Bが均一に分散せず、粒状化した際に各粒子の偏りが生じる。混合時間が15分を超えて長くなると、肥料の連続製造においては混合機容量を大きくすることとなるため経済的に不利である。 The method of mixing particles A and particles B is not particularly limited to the type of mixer as long as it can be uniformly mixed, and may be a horizontal cylinder type, V type, double cone type, etc. container rotation type mixer, ribbon type, screw type, Although a fixed container type mixer such as a paddle type can be used, a paddle type mixer is preferably used because continuous processing is possible. The mixing time is preferably 2 minutes or more and 15 minutes or less, more preferably 5 minutes or more and 10 minutes or less. If the mixing time is shorter than 2 minutes, the particles A and B will not be uniformly dispersed in the mixture, and the particles will be uneven when granulated. If the mixing time exceeds 15 minutes, it is economically disadvantageous because the capacity of the mixer is increased in the continuous production of fertilizer.

粒子Aと粒子Bとを混合する際に、水を存在させてもよい。水の量は、粒子Aと粒子Bの重量の総和を100重量部としたとき、0~4.0重量部とすることが好ましい。より好ましくは0~3.0重量部であり、さらに好ましくは0~2.0重量部である。存在せしめる水の量が4.0重量部を超えて高くなると、混合物を混合機から排出して造粒機へ搬送する際に機器への付着量が多くなって収量が低下したり、粒状肥料の保管時に固結性が悪化する場合がある。 Water may be present when the particles A and B are mixed. The amount of water is preferably 0 to 4.0 parts by weight when the total weight of the particles A and B is 100 parts by weight. More preferably 0 to 3.0 parts by weight, still more preferably 0 to 2.0 parts by weight. If the amount of water to be present exceeds 4.0 parts by weight and is high, when the mixture is discharged from the mixer and conveyed to the granulator, the amount of adhesion to the equipment increases and the yield decreases, and the granular fertilizer The caking property may deteriorate during storage.

成型方法としては、公知の方法が取り得るが、圧縮造粒が好ましく、圧縮造粒装置は、タブレット方式、板状方式、ブリケット方式の何れを用いても問題ないが、タブレット方式では生産効率が低く粒状肥料の大量生産が困難であり、また板状方式では球形でバリの少ない粒状肥料を生産することが困難であるため、ブリケット方式を用いることが好ましい。ブリケット方式の圧縮造粒装置としては、例えばブリケッタ(登録商標)BSS型(新東工業製)などを好ましく用いることができる。 As a molding method, a known method can be used, but compression granulation is preferable, and the compression granulation apparatus may be any of a tablet method, a plate-like method, and a briquette method, but the tablet method has low production efficiency. The briquette method is preferable because it is difficult to mass-produce granular fertilizer due to its low density, and it is difficult to produce spherical granular fertilizer with less burrs using the plate method. As a briquette-type compression granulator, for example, Briquette (registered trademark) BSS type (manufactured by Shinto Kogyo Co., Ltd.) can be preferably used.

粒子Aと粒子Bとが混合された混合物、あるいは水の存在下で粒子Aと粒子Bとが混合された混合物(これらを造粒原料ともいう)を圧縮造粒装置に供給する方法に特に制限はないが、例えば該混合物をホッパーに貯蔵し、ホッパーに付帯した搬送コンベアより造粒装置に直接供給、または、ホッパー搬送コンベアからベルトコンベアやバケットコンベア等を経由して造粒装置へ供給することができる。 There are particular restrictions on the method of supplying a mixture of particles A and B or a mixture of particles A and B in the presence of water (these are also referred to as granulation raw materials) to a compression granulator. However, for example, the mixture is stored in a hopper and supplied directly to the granulator from a conveyor attached to the hopper, or supplied from the hopper conveyor to the granulator via a belt conveyor, bucket conveyor, etc. can be done.

造粒圧力とは、造粒原料に加わる総荷重を有効幅で割った値(線圧)を示し、有効幅とは、造粒原料に荷重が加わる部分における、圧縮機側の長径を示す。例えば、タブレット方式であれば有効幅はタブレット部分の長径であり、ローラーを用いたブリケット方式であれば、有効幅はローラーにて造粒原料が圧縮されている部分の長さである。造粒圧力は、6.0kN/cm以上30.0kN/cm以下の範囲内にあることが好ましい。より好ましくは7.0kN/cm以上30.0kN/cm以下であり、さらに好ましくは8.0kN/cm以上30.0kN/cm以下である。造粒圧力が6.0kN/cm未満の場合、圧力不足のため、造粒原料の造粒自体が起こらない傾向にある。造粒圧力が30.0kN/cmを超えて高くなると、過剰な圧力により得られた造粒物に亀裂が生じたり、圧縮造粒機に必要以上の荷重がかかるため、装置寿命が著しく低下する傾向にある。 The granulation pressure indicates a value (linear pressure) obtained by dividing the total load applied to the granulated raw material by the effective width, and the effective width indicates the major diameter on the compressor side of the portion where the load is applied to the granulated raw material. For example, in the tablet method, the effective width is the major diameter of the tablet portion, and in the briquette method using rollers, the effective width is the length of the portion where the granulated raw material is compressed by the rollers. Granulation pressure is preferably in the range of 6.0 kN/cm or more and 30.0 kN/cm or less. It is more preferably 7.0 kN/cm or more and 30.0 kN/cm or less, and still more preferably 8.0 kN/cm or more and 30.0 kN/cm or less. When the granulation pressure is less than 6.0 kN/cm, granulation itself of the granulation raw material tends not to occur due to insufficient pressure. If the granulation pressure exceeds 30.0 kN/cm, cracks may occur in the granules obtained due to the excessive pressure, or an excessive load is applied to the compression granulator, resulting in a significant reduction in the life of the device. There is a tendency.

造粒ローラー回転数とは、ローラーを用いて圧縮造粒するブリケット方式および板状方式におけるローラーの回転速度であり、40rpm以上が好ましい。より好ましくは50rpm以上であり、さらに好ましくは60rpm以上である。造粒ローラー回転数が40rpm未満の場合、原料への造粒圧力が高くなって造粒物に亀裂が生じたり、生産量が低下する恐れがある。 The rotation speed of the granulation roller is the rotation speed of the roller in the briquette method and the plate-like method in which compression granulation is performed using a roller, and is preferably 40 rpm or more. It is more preferably 50 rpm or more, and still more preferably 60 rpm or more. If the rotation speed of the granulation roller is less than 40 rpm, the granulation pressure on the raw material increases, which may cause cracks in the granules and decrease the production amount.

圧縮造粒機のバリ厚みとは、造粒原料に荷重が加わる部分における造粒原料の最短径を示す。例えばタブレット方式であれば、バリ厚みはタブレット部分の短径であり、ローラーを用いたブリケット方式であれば、バリ厚みは造粒して得た造粒物の板状部分の厚みの長さである。バリ厚みは、1.0mm以上2.5mm以下の範囲内にあることが好ましく、1.2mm以上2.0mm以下の範囲内にあることがより好ましい。バリ厚みが1.2mm未満であると、粒状肥料の圧壊強度・収量ともに低下する傾向にある。バリ厚みが2.0mmを超えて厚くなると、粒状肥料の形状が肥料散布に不適となることや、造粒した粒状肥料を、例えば解砕ボールを用いた振動篩で解砕し粒径を揃える場合、篩の目詰まりの原因となるため好ましくない。 The burr thickness of the compression granulator indicates the shortest diameter of the granulated raw material at the portion where the load is applied to the granulated raw material. For example, in the tablet method, the burr thickness is the short diameter of the tablet portion, and in the briquette method using a roller, the burr thickness is the length of the plate-like portion of the granulated product obtained by granulation. be. The burr thickness is preferably in the range of 1.0 mm or more and 2.5 mm or less, and more preferably in the range of 1.2 mm or more and 2.0 mm or less. When the burr thickness is less than 1.2 mm, both the crushing strength and the yield of the granular fertilizer tend to decrease. If the burr thickness exceeds 2.0 mm, the shape of the granular fertilizer becomes unsuitable for fertilizer application, and the granulated granular fertilizer is crushed, for example, by a vibration sieve using a crushing ball to make the particle size uniform. In that case, it is not preferable because it causes clogging of the sieve.

バリが少なく、圧壊強度が強く、粉塵の発生も少なく、固結が起こりにくい粒状肥料を得るために、圧縮造粒機を用いて原料を造粒し、解砕機を用いて圧縮造粒後の造粒物を解砕し、球形整粒機を用いて造粒物を整粒し、分級機を用いて整粒の粒状肥料を分級することが好ましい。各工程における粒状肥料の輸送方法に制限はないが、自然落下・コンベア輸送・風送などを用いることが可能であり、コンベア輸送で造粒原料を造粒機に輸送した後、自然落下で解砕機・球形整粒機・分級機へ輸送する方法が好ましい。これら輸送機器を含めた機器の接粉部分については、粒状肥料に耐食性を持つ材質を用いることが好ましく、SUS316Lまたは樹脂を用いることが好ましい。 In order to obtain a granular fertilizer with less burrs, high crushing strength, less dust generation, and less caking, the raw material is granulated using a compression granulator, and after compression granulation using a crusher, Preferably, the granules are pulverized, the granules are sized using a spheroidizer, and the sized granular fertilizer is classified using a classifier. There are no restrictions on the method of transporting the granular fertilizer in each process, but it is possible to use gravity, conveyer, or air blowing. A method of transporting to a crusher/spheroidizer/classifier is preferred. It is preferable to use a material having corrosion resistance to granular fertilizers, such as SUS316L or resin, for the powder-contacting parts of equipment including these transportation equipment.

圧縮造粒機で造粒した粒状肥料は、解砕、整粒、分級を行うことで肥料として好ましい硬度、かさ密度、および形状を有する粒状肥料を得ることができる。 A granular fertilizer granulated by a compression granulator can be crushed, sized and classified to obtain a granular fertilizer having hardness, bulk density and shape suitable for fertilizer.

粒径の揃った粒状肥料を得るために、解砕機を用いて圧縮造粒後の粒状肥料を解砕することが好ましい。解砕機の種類に特に制限は無く、例えば、ジョークラッシャー・ロールクラッシャーなどの各種クラッシャーや、ローラーミル・カッティングミルなどの各種ミル、解砕メディアを添加した振動篩などが好ましく用いられる。また、これらの解砕機を組み合わせ用いることも可能である。 In order to obtain a granular fertilizer with a uniform particle size, it is preferable to crush the compressed granulated granular fertilizer using a crusher. The type of crusher is not particularly limited, and for example, various crushers such as jaw crushers and roll crushers, various mills such as roller mills and cutting mills, and vibrating sieves containing crushing media are preferably used. It is also possible to use these crushers in combination.

球形でバリの少ない粒状肥料を得るために、整粒機を用いて整粒することが好ましい。整粒機の種類に特に制限はなく、例えば高速転動方法、オシレータ式、架砕方式、遠心回転方式などが好ましく用いられ、高速転動方式の球形整粒機であるマルメライザー(登録商標:ダルトン製)を用いて粒状肥料を整粒することがより好ましい。 In order to obtain a granular fertilizer with a spherical shape and less burrs, it is preferable to use a granule regulating machine. There are no particular restrictions on the type of grain sizer, and for example, a high-speed rolling method, an oscillator type, a crushing method, a centrifugal rotation method, etc. are preferably used. Dalton) is more preferable for sizing the granular fertilizer.

整粒機の処理時間は、0.2~5.0分の範囲内にあることが好ましく、0.3~3.0分の範囲内であることがより好ましい。整粒機の処理時間が上記を超えて低くなると、粒状肥料のバリ除去が不十分となる。整粒機の処理時間が上記を超えて高くなると、バリ以外の部分が切削される量が増加し、粒状肥料の収量が低下する。さらに整粒処理に必要な時間が多くなるため、単位時間あたりの粒状肥料収量も低下する。 The treatment time of the grain sizer is preferably in the range of 0.2 to 5.0 minutes, more preferably in the range of 0.3 to 3.0 minutes. If the processing time of the granule sizing machine becomes shorter than the above, burr removal from the granular fertilizer becomes insufficient. If the processing time of the granule regulating machine is longer than the above, the amount of parts other than burrs that are cut increases, and the yield of granular fertilizer decreases. Furthermore, since the time required for sizing treatment increases, the yield of granular fertilizer per unit time also decreases.

整粒機の回転速度は、50~2000回転/分の範囲内にあることが好ましく、100~1500回転/分の範囲内にあることがより好ましい。整粒機の回転速度が上記の範囲より低くなると、粒状肥料のバリ除去が不十分となり、さらに整粒処理に必要な時間が多くなるため、単位時間あたりの粒状肥料収量も低下する。整粒機の回転速度が上記の範囲を超えて高くなると、騒音増加および機器寿命の低下といった問題が生ずる。 The rotation speed of the grain size regulator is preferably in the range of 50 to 2000 rpm, more preferably in the range of 100 to 1500 rpm. If the rotational speed of the granule regulating machine is lower than the above range, burr removal from the granular fertilizer becomes insufficient, and more time is required for the granulation treatment, resulting in a decrease in the yield of granular fertilizer per unit time. If the rotation speed of the grain sizer exceeds the above range, problems such as an increase in noise and a reduction in equipment life will occur.

所定の粒径以上の粒状肥料を得るために、分級機を用いて粒状肥料を分級することが望ましい。乾式分級が可能なものであれば、分級機の種類に特に制限はないが、振動篩を用いることが好ましい。篩の目開きは、所定の粒径を得られる大きさであれば特に制限はないが、1.8~2.2mm、および3.8~4.2mmの目開きであることが好ましく、これら目開きを有する篩を組み合わせて粒径2.0~4.0mmの粒状肥料を得る分級方法が好ましい。 In order to obtain granular fertilizer having a predetermined particle size or larger, it is desirable to classify the granular fertilizer using a classifier. The type of classifier is not particularly limited as long as dry classification is possible, but it is preferable to use a vibrating sieve. The mesh size of the sieve is not particularly limited as long as it is a size that allows a predetermined particle size to be obtained. A classification method in which sieves having mesh openings are combined to obtain granular fertilizer having a particle size of 2.0 to 4.0 mm is preferred.

本発明の粒状肥料は、該粒状肥料中、粒子A’は粒径が0.1mmを超え、1mm以下の粒子が粒子A’中50%以上を占め、粒子B’は粒径が0.1mmを超え、1mm以下の粒子が粒子B’中60%以上を占め、かつ、燃焼法で測定した窒素含有率が13.5~45.0%、原子吸光法で測定した銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が0.3~5.0%である。好ましくは、該粒状肥料中に燃焼法で測定した窒素含有率が16.0~25.0%、原子吸光法で測定した銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が0.7~4.0%であることであり、より好ましくは燃焼法で測定した窒素含有率が18.0~20.0%、原子吸光法で測定した銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が1.0~3.0%であることである。燃焼法で測定した窒素含有率が13.5%未満、原子吸光法で測定した銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が5.0%超である場合は、微量肥料成分の比率が多いため、散布後の土壌において局所的な濃度の高まりを招きやすくなる。また、粒硬度が低下し、粉化しやすくなる。燃焼法で測定した窒素含有率が45%超、原子吸光法で測定した銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が0.3%未満である場合は、粒状肥料中の窒素肥料成分と微量肥料成分の比率に偏りが生じ、作物の生育に支障が出る。粒状肥料内の窒素含有率、および銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率は、肥料等試験法(2019)に従い燃焼法、およびJIS K 0121に規定する原子吸光法(フレーム原子吸光法)に準拠して測定した。粒状肥料中に含まれる窒素肥料成分と微量肥料成分の量は粒子Aおよび粒子Bの配合量を調整することによって所望の範囲とすることができる。 In the granular fertilizer of the present invention, particles A' have a particle size of more than 0.1 mm, particles of 1 mm or less account for 50% or more of the particles A', and particles B' have a particle size of 0.1 mm. and particles of 1 mm or less account for 60% or more of the particles B', and the nitrogen content measured by the combustion method is 13.5 to 45.0%, the copper, zinc, manganese measured by the atomic absorption method, The content of at least one metal selected from iron and nickel is 0.3 to 5.0%. Preferably, the granular fertilizer has a nitrogen content measured by a combustion method of 16.0 to 25.0%, and a metal content of at least one selected from copper, zinc, manganese, iron and nickel measured by an atomic absorption method. is 0.7 to 4.0%, more preferably nitrogen content measured by combustion method is 18.0 to 20.0%, copper, zinc, manganese, iron measured by atomic absorption method, The content of at least one metal selected from nickel is 1.0 to 3.0%. When the nitrogen content measured by the combustion method is less than 13.5% and the content of at least one metal selected from copper, zinc, manganese, iron and nickel measured by the atomic absorption method is more than 5.0%, Since the ratio of trace fertilizer components is large, it is likely to cause a local increase in concentration in the soil after application. In addition, the grain hardness decreases, making it easier to pulverize. If the nitrogen content measured by the combustion method exceeds 45% and the content of at least one metal selected from copper, zinc, manganese, iron and nickel measured by the atomic absorption method is less than 0.3%, granular fertilizer An imbalance occurs in the ratio of the nitrogen fertilizer component and the micro-fertilizer component in the soil, which hinders the growth of crops. The nitrogen content in the granular fertilizer and the content of at least one metal selected from copper, zinc, manganese, iron, and nickel are determined by the combustion method according to the Fertilizer Test Method (2019) and the atomic absorption method specified in JIS K 0121. (flame atomic absorption method). The amounts of the nitrogen fertilizer component and the trace fertilizer component contained in the granular fertilizer can be adjusted to a desired range by adjusting the blending amounts of the particles A and B.

また、本発明の粒状肥料において粒子A’の粒径は、0.1mmを超え1.0mm以下のものが粒子A’中50%以上であり、さらに好ましくは0.1mmを超え1.0mm以下のものが粒子A’中60%以上である。粒子A’の粒径が1mmを超えるものが多い場合は、製造時に原料内で自然分級が生じて粒状肥料とした後の粒ごとの成分含有率のばらつきを招いたり、粒状肥料中に占める原料の接触面積が小さいため粒硬度の低下を生じる。粒子A’の粒径が0.1mm以下のものが多い場合は、保管時に粉化して粒状肥料どうしの固結性が悪化する。粒子A’の粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、窒素肥料成分を含む粒子を識別し、画像解析ソフトを用いてランダムに100粒の粒径をそれぞれ測定し、下記式(2)により0.1mmを超え1mm以下の粒径の割合を求めることができる。
0.1mmを超え1mm以下の粒子の割合(%)=(粒径0.1mmを超え1mm以下の粒子の粒数)/100粒×100 ・・・(2)
In addition, in the granular fertilizer of the present invention, particles A' having a particle size of more than 0.1 mm and 1.0 mm or less account for 50% or more of the particles A', more preferably more than 0.1 mm and 1.0 mm or less. accounts for 60% or more of the particles A'. If many of the particles A' have a particle size of more than 1 mm, natural classification occurs in the raw material during production, causing variations in the content of ingredients in each grain after being made into granular fertilizer. Since the contact area of If many of the particles A' have a particle size of 0.1 mm or less, they are pulverized during storage, and the cohesiveness of the granular fertilizer deteriorates. The particle size of particle A' is determined by analyzing the cross section of the granular fertilizer by scanning electron microscope observation-energy dispersive X-ray analysis, identifying particles containing nitrogen fertilizer components, and randomly selecting 100 particles using image analysis software. are measured, and the ratio of particle diameters exceeding 0.1 mm to 1 mm or less can be obtained by the following formula (2).
Percentage (%) of particles with a particle size of more than 0.1 mm and 1 mm or less = (number of particles with a particle size of more than 0.1 mm and 1 mm or less) / 100 grains × 100 (2)

本発明の粒状肥料において粒子B’の粒径は、0.1mmを超え1mm以下のものが粒子B’中60%以上であり、好ましくは0.1mmを超え1.0mm以下のものが粒子B’中70%以上である。粒子B’の粒径が1mmを超えるものが多い場合は、製造時に原料内で自然分級が生じて粒状肥料とした後の粒ごとの成分含有率のばらつきを招いたり、粒状肥料中に占める原料の接触面積が小さいため粒硬度の低下を生じる。粒子B’の粒径が0.1mm以下のものが多い場合は、保管時に粉化して粒状肥料どうしの固結性が悪化する。粒子B’の粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、微量肥料成分を含む粒子を識別し、画像解析ソフトを用いてランダムに100粒の粒径をそれぞれ測定し、下記式(3)により0.1mmを超え1mm以下の粒径の割合を求めることができる。
0.1mmを超え1mm以下の粒子の割合(%)=(粒径0.1mmを超え1mm以下の粒子の粒数)/100粒×100 ・・・(3)
In the granular fertilizer of the present invention, the particle size of the particles B' is more than 0.1 mm and 1 mm or less, and 60% or more of the particles B' are preferably more than 0.1 mm and 1.0 mm or less. 70% or more in '. If many of the particles B' have a particle size of more than 1 mm, natural classification occurs in the raw material during production, causing variations in the content of ingredients in each grain after being made into granular fertilizer. Since the contact area of If many of the particles B' have a particle size of 0.1 mm or less, they are pulverized during storage, and the cohesiveness of the granular fertilizer deteriorates. The particle size of particle B' is determined by analyzing the cross section of the granular fertilizer by scanning electron microscope observation-energy dispersive X-ray analysis, identifying particles containing trace fertilizer components, and randomly selecting 100 particles using image analysis software. are measured, and the ratio of particle sizes exceeding 0.1 mm to 1 mm or less can be obtained by the following formula (3).
Percentage (%) of particles with a particle size of more than 0.1 mm and 1 mm or less = (number of particles with a particle size of more than 0.1 mm and 1 mm or less) / 100 grains × 100 (3)

粒状肥料の二次粒子形成後の粒硬度は、二次粒子形成から時間経過すると若干変動しうるが、使用時および運搬時を想定しての製品として流通される際の本発明の粒状肥料の粒硬度としては、2kgf以上であることが好ましい。粒硬度が2kgf未満であると、粒状肥料の保管中や運搬中にも粉化が発生しやすく、粉体を介しての粒状物どうしの固結の原因となる。また散布時には粒が崩壊して均一な施肥が困難となる。一方、上限としては特に制限が無いが、5kgf以下であることが好ましく、5kgfを越える場合は、土壌中での粒状肥料の溶解性が悪く、肥効が低下することがある。より好ましくは3kgf以上5kgf以下であり、さらに好ましくは3.5kgf以上4.5kgf以下である。なお、粒状肥料の粒硬度は木屋式硬度計で粒状肥料20粒の粒硬度を測定し、これら粒硬度の平均値を粒硬度とする。 The grain hardness of the granular fertilizer after the formation of secondary particles may vary slightly over time from the formation of the secondary particles, but the granular fertilizer of the present invention when distributed as a product assuming the time of use and transportation. Grain hardness is preferably 2 kgf or more. If the grain hardness is less than 2 kgf, powdering is likely to occur during storage or transportation of the granular fertilizer, which causes solidification of the granular materials through the powder. In addition, the granules collapse during spraying, making uniform fertilization difficult. On the other hand, the upper limit is not particularly limited, but it is preferably 5 kgf or less. If it exceeds 5 kgf, the granular fertilizer may have poor solubility in soil, resulting in reduced fertilizer efficacy. It is more preferably 3 kgf or more and 5 kgf or less, and still more preferably 3.5 kgf or more and 4.5 kgf or less. The grain hardness of the granular fertilizer is obtained by measuring the grain hardness of 20 grains of the granular fertilizer with a Kiya type hardness meter, and taking the average value of these grain hardnesses as the grain hardness.

粒状肥料からの微量肥料成分の溶出率は、設計どおりの肥効を作物に与える目的から大きいことが望ましく、銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属分の粒状肥料からの初期の量でもって規格化された溶出率として90%以上であることが好ましい。より好ましくは92%であり、全量が溶出したことを表す100%が最も好ましい。なお、粒状肥料からの微量肥料成分の前記溶出率は、下記の方法に従って求められる。まず、溶出試験として、100mlの植木鉢に園芸土50mlを入れ、園芸土の上に粒状肥料約10gを天秤で計量後に載せ、25℃、70%RHの恒温恒湿槽に静置し、1日1回10mlの水を霧吹きで満遍なく添加した。30日後に園芸土の上に残留した粒状肥料をピンセットで取り出して乳鉢上ですり潰しながら混合してひと検体とした。該検体から分析サンプルを取り出し、銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属分を肥料等試験法(2019)に従って原子吸光法で定量分析し、分析サンプル重量で割ることで金属分率を算出した。また、試験前の粒状肥料に含まれる銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属分も同様に、試験前の粒状肥料をピンセットで取り出して乳鉢上ですり潰しながら混合してひと検体とした後、該検体から分析サンプルを取り出し、肥料等試験法(2019)に従って原子吸光法で定量分析し、分析サンプル重量で割ることで金属分率を算出した。粒状肥料からの微量肥料成分の溶出率は、上記の測定値を用いた下記式(4)から求められる。
微量肥料成分の溶出率(%)=
(1-((試験後の粒状肥料残留物の重量)×(試験後の粒状肥料残留物に含まれる金属含有率))/((試験前の粒状肥料の重量)×(試験前の粒状肥料に含まれる金属含有率)))×100 ・・・(4)
It is desirable that the elution rate of trace fertilizer components from the granular fertilizer is large for the purpose of imparting the fertilizing effect to crops as designed. The dissolution rate normalized by the initial amount is preferably 90% or more. It is more preferably 92%, and most preferably 100%, which indicates that the entire amount has been eluted. The elution rate of trace fertilizer components from granular fertilizer is determined according to the following method. First, as an elution test, put 50 ml of horticultural soil in a 100 ml flowerpot, place about 10 g of granular fertilizer on the horticultural soil after weighing it with a balance, and leave it in a constant temperature and humidity bath at 25 ° C. and 70% RH for 1 day. One 10 ml portion of water was added evenly with an atomizer. After 30 days, the granular fertilizer remaining on the horticultural soil was taken out with tweezers and ground and mixed in a mortar to obtain a sample. An analysis sample is taken from the specimen, and at least one metal content selected from copper, zinc, manganese, iron, and nickel is quantitatively analyzed by atomic absorption spectrometry according to the Fertilizer Test Method (2019), and the metal is divided by the weight of the analysis sample. Fractions were calculated. Similarly, at least one metal selected from copper, zinc, manganese, iron, and nickel contained in the granular fertilizer before the test was taken out with tweezers and mixed while grinding in a mortar. After being used as a specimen, an analysis sample was taken out from the specimen, quantitatively analyzed by atomic absorption spectrometry according to the Fertilizer Test Method (2019), and the metal fraction was calculated by dividing by the weight of the analysis sample. The elution rate of trace fertilizer components from granular fertilizer can be obtained from the following formula (4) using the above measured values.
Elution rate of trace fertilizer components (%) =
(1-((weight of granular fertilizer residue after test) x (metal content in granular fertilizer residue after test))/((weight of granular fertilizer before test) x (granular fertilizer before test) Metal content in))) × 100 (4)

前記粒状肥料からの微量肥料成分の溶出率の算出に用いた試験方法の場合に、窒素肥料成分、微量肥料成分、および粒状肥料の構成成分が全て土壌に溶出して溶出率が100%となるのに要する日数は10日以上30日以下が好ましく、10日以上~25日以下がより好ましく、10日以上20日以下がさらに好ましい。溶出率が30日を超える場合は、微量肥料成分の土壌への溶出速度が遅くて作物の根からの吸収が遅くなり、欠乏症に陥る可能性がある。溶出率が10日未満となる場合は、微量肥料成分の土壌への溶出速度が速すぎて局所的に濃度が高まり、過剰症に陥る可能性がある。 In the case of the test method used for calculating the elution rate of the trace fertilizer components from the granular fertilizer, the nitrogen fertilizer component, the trace fertilizer component, and the constituent components of the granular fertilizer are all eluted into the soil and the elution rate is 100%. is preferably 10 to 30 days, more preferably 10 to 25 days, even more preferably 10 to 20 days. When the elution rate exceeds 30 days, the elution rate of the trace fertilizer component into the soil is slow, and the absorption from the roots of crops becomes slow, which may lead to deficiency. If the elution rate is less than 10 days, the rate of elution of the trace fertilizer component into the soil is too fast, and the local concentration may increase, leading to overdose.

圧縮造粒機を用いて原料を造粒し、解砕機を用いて圧縮造粒後の造粒物を解砕し、また球形整粒機を用いて造粒物を整粒し、分級機を用いて整粒後の粒状肥料を分級した際に得られる篩下の微粉は、原料中にリサイクルして混合し、原料として使用することができる。粒状肥料の収率は、造粒時および整粒時の粒状肥料の廃棄量をできるだけ削減するため、あるいは廃棄せずに造粒工程へリサイクルするためには50%以上であることが好ましい。より好ましくは55%以上であり、さらに好ましくは60%以上である。なお、収率とは、造粒機に投入する造粒原料の重量に対する造粒および整粒して得られた粒状肥料の重量割合であって、下記式(5)で示される。
収率(%)=(粒状肥料の重量)/(造粒機に投入する造粒原料の重量)×100 ・・・(5)
The raw material is granulated using a compression granulator, the granules after compression granulation are crushed using a crusher, the granules are sized using a spherical granulator, and a classifier is used. The fine powder under sieves obtained when the granular fertilizer after sieving is classified using the sieving method can be recycled and mixed into the raw material and used as the raw material. The yield of the granular fertilizer is preferably 50% or more in order to reduce the amount of granular fertilizer discarded during granulation and sizing as much as possible, or to recycle it to the granulation process without discarding it. It is more preferably 55% or more, and still more preferably 60% or more. The yield is the weight ratio of the granular fertilizer obtained by granulation and sizing with respect to the weight of the granulated raw material put into the granulator, and is expressed by the following formula (5).
Yield (%) = (weight of granular fertilizer)/(weight of granulated raw material to be fed into granulator) x 100 (5)

粒状肥料の形状は、機械施肥をした場合に作物の葉などに付着せず土壌に落下するよう、粒状肥料の長軸径と短軸径の比(長軸径/短軸径)が1.0以上1.4以下であることが好ましく、1.0以上1.3以下であることがより好ましく、1.0以上1.2以下であることがさらに好ましい。球形状ではない、例えば平らな形状の圧片肥料であると、葉に付着して落下せず葉やけを生じたり、土への栄養分供給が乏しくなることがある。 The shape of the granular fertilizer is such that the ratio of the diameter of the major axis to the diameter of the minor axis (diameter of the major axis/diameter of the minor axis) of the granular fertilizer is 1.0 so that when fertilizer is applied mechanically, it does not adhere to the leaves of crops and falls into the soil. It is preferably 0 or more and 1.4 or less, more preferably 1.0 or more and 1.3 or less, and even more preferably 1.0 or more and 1.2 or less. If the leaf fertilizer is not spherical, for example flat, it may stick to the leaves and not fall off, resulting in leaf scorch and insufficient supply of nutrients to the soil.

粒状肥料の粒径は、機械施肥において、肥料を均一に散布するため、2mm以上4mm以下のものが全肥料の90重量%以上を占めることが好ましい。より好ましくは2.5mm以上3.5mm以下のものが90重量%以上を占めることである。所定の粒径の粒状肥料は、分級機を用いて分級することで得ることができ、乾式分級が好ましく採用できる。乾式分級機の種類には特に制限はないが、振動篩を用いることが好ましい。篩の目開きは、所定の粒径を得られる大きさであれば特に制限はないが、1.8~2.2mm、および3.8~4.2mmの目開きであることが好ましく、これら目開きを有する篩を組み合わせて粒径2.0~4.0mmの粒状肥料を得る分級方法が好ましい。篩(目開き5メッシュ=4.0mm、6メッシュ=3.5mm、8メッシュ=2.5mm、9メッシュ=2.0mm)で分級して求めることができる。 In mechanical fertilization, the grain size of the granular fertilizer is preferably 2 mm or more and 4 mm or less, and accounts for 90% by weight or more of the total fertilizer in order to spread the fertilizer uniformly. More preferably, those having a thickness of 2.5 mm or more and 3.5 mm or less account for 90% by weight or more. A granular fertilizer having a predetermined particle size can be obtained by classification using a classifier, and dry classification can be preferably employed. Although the type of dry classifier is not particularly limited, it is preferable to use a vibrating sieve. The mesh size of the sieve is not particularly limited as long as it is a size that allows a predetermined particle size to be obtained. A classification method in which sieves having mesh openings are combined to obtain granular fertilizer having a particle size of 2.0 to 4.0 mm is preferred. It can be obtained by classifying with a sieve (5 meshes = 4.0 mm, 6 meshes = 3.5 mm, 8 meshes = 2.5 mm, 9 meshes = 2.0 mm).

粒状肥料のかさ密度は、機械施肥において均一散布できかつ水田等において着水後すぐに沈降して土壌に着地するよう0.90g/ml以上1.1g/ml以下であることが好ましく、0.92g/ml以上0.98g/ml以下であることがより好ましく、0.94g/ml以上0.96g/ml以下であることがさらに好ましい。なお、粒状肥料のかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定する。 The granular fertilizer preferably has a bulk density of 0.90 g/ml or more and 1.1 g/ml or less so that it can be uniformly applied in mechanical fertilization and settles on the soil immediately after it reaches water in a paddy field or the like. It is more preferably 92 g/ml or more and 0.98 g/ml or less, and further preferably 0.94 g/ml or more and 0.96 g/ml or less. The bulk density of granular fertilizer is measured according to "JIS R 1628:1997 Method for measuring bulk density of fine ceramics powder".

粒状肥料の水分率は、長期保管中の粒状肥料どうしの固結を防止する観点で5.0重量%以下であることが好ましい。より好ましくは4.0重量%以下であり、さらに好ましくは3.0重量%以下である。また、下限としては1.0重量%以上であることが好ましい。粒状肥料の水分率が5.0重量%を超える場合は、粒状肥料の保管時に、粒状肥料どうしの接触部分で肥料成分が溶出・固化して粒同士が架橋し、凝集して取扱い性が悪化することがある。水分率が1.0重量%未満となる場合は、粒状肥料中に含まれる窒素肥料成分と微量肥料成分の結合力が低下して粒状肥料の硬度の低下に繋がることがある。粒状肥料の水分率は、肥料等試験法(2019)に従い乾燥減量法で測定した値である。 The moisture content of the granular fertilizer is preferably 5.0% by weight or less from the viewpoint of preventing solidification of the granular fertilizer during long-term storage. It is more preferably 4.0% by weight or less, still more preferably 3.0% by weight or less. Also, the lower limit is preferably 1.0% by weight or more. If the moisture content of the granular fertilizer exceeds 5.0% by weight, during storage of the granular fertilizer, the fertilizer components are eluted and solidified at the contact points between the granular fertilizers, causing the grains to cross-link and agglomerate, resulting in poor handling. I have something to do. If the moisture content is less than 1.0% by weight, the bonding strength between the nitrogen fertilizer component and the trace fertilizer component contained in the granular fertilizer may be reduced, leading to a reduction in the hardness of the granular fertilizer. The moisture content of the granular fertilizer is a value measured by the loss-on-drying method according to the Test Methods for Fertilizers (2019).

固結とは、粒どうしが接触部分で架橋して塊になる現象であり、機械散布する際に塊により散布がしにくかったり、できなかったりして施肥効率が低下するだけでなく、均一に散布できなかった場合には作物の生育にも悪影響を与える。粒状肥料の固結率は、取り扱いを容易にするため20%以下であることが好ましい。固結率が20%を超えるとホッパーからの流動性が低下し、機械施肥が困難になることがある。より好ましくは15%以下であり、さらに好ましくは10%以下であり、全く固結がない0%が最も好ましい。なお、固結率はポリ製小袋に充填した粒状肥料750gを上部と下部にダミーの肥料袋1袋(1袋あたり750g)ずつ置き、その上部に木製板を置いて堆積し、60kgの錘で一ヶ月荷重後の粒状肥料のうち固結部分重量(g)の割合(%)であり、下記式(6)で示される。
固結率(%)=(一ヶ月間荷重後の固結部分重量)/750×100 ・・・(6)
Caking is a phenomenon in which granules are bridging at their contact points to form clumps. Failure to spray will adversely affect the growth of crops. The solidification rate of the granular fertilizer is preferably 20% or less for easy handling. When the solidification rate exceeds 20%, the fluidity from the hopper is lowered, and mechanical fertilization may become difficult. It is more preferably 15% or less, still more preferably 10% or less, and most preferably 0% where there is no caking. The solidification rate was determined by placing 750 g of granular fertilizer filled in a small plastic bag on the top and bottom of each dummy fertilizer bag (750 g per bag), placing a wooden board on top of it, and accumulating with a weight of 60 kg. It is the ratio (%) of the solidified portion weight (g) in the granular fertilizer after loading for one month, and is shown by the following formula (6).
Solidification rate (%) = (weight of solidified portion after loading for one month)/750 x 100 (6)

粒状肥料の固結強度は、1kg/cm以下であることが好ましい。1kg/cm以上であると、例えば固結部分がフレコンから流れ出にくいため、ホッパーに投入することが容易ではない、あるいは機械施肥において生育させる植物まで粒状肥料を均一に散布できないなど、取り扱い性に劣る。より好ましくは固結強度が0.5kg/cm以下であり、さらに好ましくは0.2kg/cm以下である。最も好ましく、かつ理想的には、0kg/cmである。なお、固結強度は、山中式土壌硬度計を使用して針部を肥料上面に対して垂直に圧入して測定した値である。 The compaction strength of the granular fertilizer is preferably 1 kg/cm 2 or less. If it is 1 kg/cm 2 or more, for example, since the solidified portion is difficult to flow out of the flexible container, it is not easy to put it into a hopper, or in mechanical fertilization, the granular fertilizer cannot be uniformly spread to the growing plants. Inferior. More preferably, the consolidation strength is 0.5 kg/cm 2 or less, and still more preferably 0.2 kg/cm 2 or less. Most preferably and ideally, it is 0 kg/cm 2 . The caking strength is a value measured by pressing the needle vertically into the upper surface of the fertilizer using a Yamanaka soil hardness tester.

粒状肥料の粉化率は、保管時の固結を防ぐため1.0%以下であることが好ましい。粉化率が1.0%を越えると粉化した粉体を介して保管時に固結しやすく、さらには機械施肥において生育させる植物まで粒状肥料をまくことができないなど、取り扱い性に劣る。より好ましくは0.5%以下であり、さらに好ましくは0.3%以下であり、全く粉化がない0%が最も好ましい。なお、粉化率は粒状肥料750gに対して60kgの錘で一ヶ月荷重後の粒状肥料のうち、目開き2mmの篩いを使用して得た粒径が2mm以下のものの割合(%)であり、下記式(7)で示される。
粉化率(%)=(粒径2mm以下のものの重量(g))/750×100
・・・(7)
The pulverization rate of the granular fertilizer is preferably 1.0% or less to prevent caking during storage. If the pulverization rate exceeds 1.0%, the pulverized powder is likely to be caking during storage, and the granular fertilizer cannot be spread to the plants to be grown in mechanical fertilization, resulting in poor handleability. It is more preferably 0.5% or less, still more preferably 0.3% or less, and most preferably 0% where there is no dusting. The pulverization rate is the ratio (%) of particles having a particle size of 2 mm or less obtained by using a sieve with an opening of 2 mm among the granular fertilizers after loading for one month with a weight of 60 kg for 750 g of the granular fertilizer. , is represented by the following formula (7).
Pulverization rate (%) = (weight (g) of particles with a particle size of 2 mm or less) / 750 x 100
... (7)

粉砕、混合、造粒、解砕、整粒、および分級して粒状肥料を製造した後、粒状肥料に、固結防止材としてタルク、クレー、カオリン、ベントナイト、ポリエチレングリコール、ステアリン酸金属塩、ラウリル硫酸金属塩、炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、酸化アルミニウム、酸化チタン、リン酸カルシウム、およびフッ化リチウムから選ばれる少なくとも一種を粒状肥料表面に被覆して粒状肥料とすることができる。被覆する方法としては、造粒原料を造粒および整粒し、分級機で分級した後に均一に被覆されていれば、分級機出口で添加してもよいし、ミキサーを用いて混合し被覆してもよいし、ベルトコンベア上で吹き付けを行って被覆してもよい。 After pulverizing, mixing, granulating, pulverizing, sizing, and classifying to produce a granular fertilizer, talc, clay, kaolin, bentonite, polyethylene glycol, metal stearate, and lauryl are added to the granular fertilizer as anti-caking agents. At least one selected from metal sulfate, calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, and lithium fluoride can be coated on the surface of the granular fertilizer to obtain a granular fertilizer. As a method of coating, the granulated raw material is granulated and sized, and after classifying with a classifier, if it is uniformly coated, it may be added at the exit of the classifier, or mixed and coated using a mixer. Alternatively, the coating may be carried out by spraying on a belt conveyor.

粒状肥料に対する固結防止材の添加量は、粒状肥料100重量部に対して0.05~3.0重量部が好ましく、装置への付着によるロスや、単位重量当たりの肥料成分含有率への影響がなく、肥料として溶解性がよい肥料を得るためには粒状肥料組成物100重量部に対して0.1~0.3重量部がより好ましい。装置への付着ロスをより少なくするためには、粒状肥料100重量部に対して0.15~0.25重量部がさらに好ましい。 The amount of the anti-caking material added to the granular fertilizer is preferably 0.05 to 3.0 parts by weight per 100 parts by weight of the granular fertilizer. 0.1 to 0.3 parts by weight per 100 parts by weight of the granular fertilizer composition is more preferable in order to obtain a fertilizer with no adverse effects and good solubility as a fertilizer. 0.15 to 0.25 parts by weight per 100 parts by weight of the granular fertilizer is more preferable in order to reduce adhesion loss to the apparatus.

本発明の粒状肥料を用いるにおいては、単肥、あるいは他の粒状肥料をドライブレンドして得られるバルクブレンド肥料のいずれとしても良い。この混合肥料は任意の割合でブレンドできるため、作物毎に対応したブレンドを行うことができる。 When using the granular fertilizer of the present invention, it may be either a single fertilizer or a bulk blend fertilizer obtained by dry-blending other granular fertilizers. Since this mixed fertilizer can be blended at any ratio, blending corresponding to each crop can be performed.

本発明の態様を更に具体的に実施例を用いて以下に説明するが、本発明は以下の実施例に限定して解釈されるものではない。 The aspects of the present invention will be described more specifically below using examples, but the present invention should not be construed as being limited to the following examples.

物性等の測定方法は以下のとおりである。また、特に断らない限り10サンプルについて測定し、算術平均として求めた。 The methods for measuring physical properties and the like are as follows. In addition, unless otherwise specified, 10 samples were measured, and the arithmetic average was obtained.

(1)粒子Aと粒子Bの成型前での粒径の割合
粒子Aと粒子Bの成型前段階での粒径の割合は、目開き9メッシュ=2.0mm、および目開き16メッシュ=1.0mmの篩を使用して、下記式により1.0mmを超え2mm以下の粒径の割合を算出した。
1mmを超え2mm以下の粒子の割合(重量%)=(粒径1mmを超え2mm以下の粒子の重量)/(篩分け前の粒子の重量)×100
(1) Particle Size Ratio of Particle A and Particle B before Molding The particle size ratio of Particle A and Particle B before molding is 9 mesh = 2.0 mm and 16 mesh = 1 Using a 0.0 mm sieve, the ratio of particle sizes exceeding 1.0 mm to 2 mm or less was calculated according to the following formula.
Percentage of particles with a particle size of more than 1 mm and 2 mm or less (% by weight) = (weight of particles with a particle size of more than 1 mm and 2 mm or less) / (weight of particles before sieving) x 100

(2)粒子A’と粒子B’の粒状肥料成型後の粒径の割合
粒子A’と粒子B’の粒状肥料内での粒径は、粒状肥料の断面を走査型電子顕微鏡観察―エネルギー分散型X線分析にて解析し、窒素肥料成分を含む粒子と微量肥料成分を含む粒子を識別して、画像解析ソフトを用いてランダムに100粒の粒径をそれぞれ測定し、下記式により0.1mmを超え1mm以下の粒径の割合を算出した。
0.1mmを超え1mm以下の粒子の割合(%)=(粒径0.1mmを超え1mm以下の粒子の粒数)/100粒×100
(2) Particle A' and Particle B' Grain Size Ratio after Granular Fertilizer Molding Analyzed by type X-ray analysis, particles containing nitrogen fertilizer components and particles containing trace fertilizer components were distinguished, and the particle sizes of 100 grains were measured at random using image analysis software. The ratio of particle diameters exceeding 1 mm to 1 mm or less was calculated.
Percentage (%) of particles with a particle size of more than 0.1 mm and less than or equal to 1 mm = (number of particles with a particle size of more than 0.1 mm and less than or equal to 1 mm) / 100 grains × 100

(3)粒子Aと粒子Bの成形前での水分率
粒子Aと粒子Bの成形前での水分率は、乾燥前の粒子Aまたは粒子Bを130℃で3時間乾燥後に重量測定を行った際の乾燥減量により求めた値であり、下記式で算出した。
粒子Aの水分率(重量%)=((乾燥前の粒子A重量)-(乾燥後の粒子A重量))/(乾燥前の粒子A重量)×100
粒子Bの水分率(重量%)=((乾燥前の粒子B重量)-(乾燥後の粒子B重量))/(乾燥前の粒子B重量)×100
(3) Moisture Content of Particle A and Particle B Before Molding The moisture content of Particle A and Particle B before molding was measured by weight measurement after drying Particle A or Particle B at 130° C. for 3 hours before drying. It is a value obtained from the loss on drying at the time of drying, and was calculated by the following formula.
Moisture content of particles A (% by weight) = ((weight of particles A before drying) - (weight of particles A after drying)) / (weight of particles A before drying) x 100
Moisture content of particles B (% by weight) = ((weight of particles B before drying) - (weight of particles B after drying))/(weight of particles B before drying) x 100

(4)粒状肥料の二次粒子形成後の粒硬度
粒状肥料の二次粒子形成後(成型後)の粒硬度は、木屋式硬度計で造粒物20粒の粒硬度を測定し、これら粒硬度の平均を求めたものである。
粒硬度が高い値を示すほど、高い硬度を有する粒状肥料を得ることを示す。
(4) Grain hardness after secondary particle formation of granular fertilizer Grain hardness after secondary particle formation (after molding) of granular fertilizer is measured by measuring the grain hardness of 20 granules with a Kiya hardness meter. It is the average hardness.
A higher grain hardness indicates that a granular fertilizer with higher hardness is obtained.

(5)粒状肥料の収率
粒状肥料の収率は、造粒機に投入する造粒原料の重量に対する造粒および整粒して得られた粒状肥料の重量であって、下記式により算出した。
粒状肥料の収率(%)=(粒状肥料の重量)/(造粒原料の重量)×100
(5) Yield of Granular Fertilizer The yield of granular fertilizer is the weight of granular fertilizer obtained by granulation and sizing with respect to the weight of granulated raw material put into the granulator, and was calculated by the following formula. .
Yield (%) of granular fertilizer = (weight of granular fertilizer) / (weight of granulated raw material) x 100

(6)粒状肥料の粒径
粒状肥料の粒径は、目開き9メッシュ=2.0mmおよび5メッシュ=4.0mmの篩を使用して、下記式により2mm以上4mm以下の粒径のものの割合を算出した。
粒状肥料の2mm以上4mm以下のものの割合(重量%)=(粒径2mm以上4mm以下の粒径のものの重量)/(篩分け前の粒状肥料の重量)×100
(6) Particle size of granular fertilizer The particle size of granular fertilizer is calculated using sieves with openings of 9 mesh = 2.0 mm and 5 mesh = 4.0 mm, and the ratio of particles with a particle size of 2 mm or more and 4 mm or less according to the following formula. was calculated.
Percentage (% by weight) of granular fertilizer with a particle size of 2 mm or more and 4 mm or less = (weight of particles with a particle size of 2 mm or more and 4 mm or less) / (weight of granular fertilizer before sieving) x 100

(7)粒状肥料中の窒素含有率
粒状肥料中の窒素含有率は、肥料等試験法(2019)に従い、燃焼法の原理に基づいて構成された全窒素測定装置(ゲルハルトジャパン(株)製 デュマサーム)を用いて測定した。まず、検量線用標準品としてエチレンジアミン四酢酸(純度99重量%以上)を用いた試験及び空試験を実施し、全窒素測定装置の指示値と窒素量とをプロットして検量線を作成した。続いて、粒状肥料サンプルを0.5mm以下の粒径になるまで粉砕して粉砕物を得、該粉砕物から約100mgを0.1mgの桁まで測り取って分析サンプルとし、燃焼用容器に入れて燃焼法全窒素測定装置に挿入して測定を実施した。測定後の指示値を読み取り、検量線を用いて窒素の重量を算出した。算出した窒素の重量を分析サンプルの重量で割ることで粒状肥料中の窒素含有率の含有率を算出した。
(7) Nitrogen content in granular fertilizer The nitrogen content in granular fertilizer is measured by a total nitrogen measuring device (Gerhardt Japan Co., Ltd. Dumaserm ) was used. First, a test and a blank test were performed using ethylenediaminetetraacetic acid (purity of 99% by weight or more) as a standard for a calibration curve, and a calibration curve was created by plotting the indicated value of the total nitrogen measuring device and the amount of nitrogen. Subsequently, the granular fertilizer sample is pulverized to a particle size of 0.5 mm or less to obtain a pulverized material, and about 100 mg is measured from the pulverized material to the order of 0.1 mg to obtain an analysis sample, which is placed in a combustion vessel. The measurement was carried out by inserting it into the combustion method total nitrogen measuring device. The indicated value after the measurement was read, and the weight of nitrogen was calculated using the calibration curve. The nitrogen content in the granular fertilizer was calculated by dividing the calculated weight of nitrogen by the weight of the analysis sample.

(8)粒状肥料中の銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率
粒状肥料中の銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率は、肥料等試験法(2019)に従い、JIS K 0121に規定する原子吸光法(フレーム原子吸光法)に準拠して測定した。
(8) Content of at least one metal selected from copper, zinc, manganese, iron and nickel in granular fertilizer The content of at least one metal selected from copper, zinc, manganese, iron and nickel in granular fertilizer is It was measured according to the atomic absorption method (frame atomic absorption method) defined in JIS K 0121 according to Equal Test Methods (2019).

(9)粒状肥料からの微量肥料成分の溶出率
微量肥料成分の粒状肥料からの初期の量でもって規格化された溶出率は、下記の方法に従って求められる。まず、溶出試験として、100mlの植木鉢に園芸土50mlを入れ、園芸土の上に粒状肥料約10gを天秤で計量後に載せ、25℃、70%RHの恒温恒湿槽に静置し、1日1回10mlの水を霧吹きで満遍なく添加した。30日後に園芸土の上に残留した粒状肥料をピンセットで取り出して乳鉢上ですり潰しながら混合してひと検体とした。該検体から分析サンプルを取り出し、銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属分を肥料等試験法(2019)に従って原子吸光法で定量分析し、分析サンプル重量で割ることで金属分率を算出した。また、試験前の粒状肥料に含まれる銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属分も同様に、試験前の粒状肥料をピンセットで取り出して乳鉢上ですり潰しながら混合してひと検体とした後、該検体から分析サンプルを取り出し、肥料等試験法(2019)に従って原子吸光法で定量分析し、分析サンプル重量で割ることで金属分率を算出した。粒状肥料からの微量肥料成分の溶出率は、上記の測定値を用いた下式に従って算出した。
微量肥料成分の溶出率(%)=
(1-((試験後の粒状肥料残留物の重量)×(試験後の粒状肥料残留物に含まれる金属分率))/((試験前の粒状肥料の重量)×(試験前の粒状肥料に含まれる金属分率)))×100 ・・・(4)
溶出率が高い値を示すほど、散布後の溶出性が良好である粒状肥料を得ることを示す。
(9) Elution Rate of Trace Fertilizer Components from Granular Fertilizer The elution rate of trace fertilizer components from granular fertilizer normalized by the initial amount is obtained according to the following method. First, as an elution test, put 50 ml of horticultural soil in a 100 ml flowerpot, place about 10 g of granular fertilizer on the horticultural soil after weighing it with a balance, and leave it in a constant temperature and humidity bath at 25 ° C. and 70% RH for 1 day. One 10 ml portion of water was added evenly with an atomizer. After 30 days, the granular fertilizer remaining on the horticultural soil was taken out with tweezers and ground and mixed in a mortar to obtain a sample. An analysis sample is taken from the specimen, and at least one metal content selected from copper, zinc, manganese, iron, and nickel is quantitatively analyzed by atomic absorption spectrometry according to the Fertilizer Test Method (2019), and the metal is divided by the weight of the analysis sample. Fractions were calculated. Similarly, at least one metal selected from copper, zinc, manganese, iron, and nickel contained in the granular fertilizer before the test was taken out with tweezers and mixed while grinding in a mortar. After being used as a specimen, an analysis sample was taken out from the specimen, quantitatively analyzed by atomic absorption spectrometry according to the Fertilizer Test Method (2019), and the metal fraction was calculated by dividing by the weight of the analysis sample. The elution rate of trace fertilizer components from granular fertilizer was calculated according to the following formula using the above measured values.
Elution rate of trace fertilizer components (%) =
(1-((weight of granular fertilizer residue after test) x (metal fraction contained in granular fertilizer residue after test))/((weight of granular fertilizer before test) x (granular fertilizer before test) Metal fraction contained in))) × 100 (4)
A higher dissolution rate indicates that a granular fertilizer with better dissolution after spraying is obtained.

(10)粒状肥料からの窒素肥料成分と微量肥料成分の溶出率100%に要する日数
粒状肥料からの窒素肥料成分と微量肥料成分の溶出率100%に要する日数は、100mlの植木鉢に園芸土50mlを入れ、園芸土の上に粒状肥料10gを載せ、25℃、70%RHの恒温恒湿槽に静置し、1日1回10mlの水を霧吹きで満遍なく添加し、園芸土の上に残留した粒状肥料が確認されなくなった時点の試験開始日からの経過日数とした。
(10) Number of days required for 100% elution rate of nitrogen fertilizer components and trace fertilizer components from granular fertilizer Put 10 g of granular fertilizer on top of the gardening soil, place it in a constant temperature and humidity tank at 25 ° C and 70% RH, add 10 ml of water evenly with a sprayer once a day, and remain on the gardening soil. It was defined as the number of days elapsed from the start of the test when no more granular fertilizer was found.

(11)粒状肥料の長軸径と短軸径の比(長軸径/短軸径)
粒状肥料の長軸径と短軸径の比は、粒状肥料の写真撮影画像を使用して画像解析式の粒径測定装置により長軸径と短軸径を測定し、長軸径を短軸径で割ることで算出した。
(11) Ratio of major axis diameter to minor axis diameter of granular fertilizer (major axis diameter/minor axis diameter)
The ratio of the major axis diameter to the minor axis diameter of the granular fertilizer is obtained by measuring the major axis diameter and the minor axis diameter with an image analysis type particle size measuring device using a photographed image of the granular fertilizer. Calculated by dividing by the diameter.

(12)粒状肥料のかさ密度
粒状肥料のかさ密度は、「JIS R 1628:1997 ファインセラミックス粉末のかさ密度測定方法」に準じて測定した。
(12) Bulk Density of Granular Fertilizer The bulk density of granular fertilizer was measured according to "JIS R 1628:1997 Method for measuring bulk density of fine ceramics powder".

(13)粒状肥料の水分率
粒状肥料の水分率は、乾燥前の粒状肥料を130℃で3時間乾燥後に重量測定を行った際の乾燥減量により求めた値であり、下記式で算出した。
粒状肥料の水分率(重量%)=((乾燥前の粒状肥料重量)-(乾燥後の粒状肥料重量))/(乾燥前の粒状肥料重量)×100
(13) Moisture Percentage of Granular Fertilizer The moisture percentage of the granular fertilizer is a value obtained from the weight loss on drying after drying the granular fertilizer before drying at 130° C. for 3 hours, and was calculated by the following formula.
Moisture content of granular fertilizer (% by weight) = ((weight of granular fertilizer before drying) - (weight of granular fertilizer after drying)) / (weight of granular fertilizer before drying) x 100

(14)粒状肥料の固結率
粒状肥料の固結率は、ポリ製小袋に充填した粒状肥料750gを上部と下部にダミーの肥料袋1袋ずつ置き、その上部に木製板を置いて堆積し、60kgの錘で一ヶ月間荷重後の粒状肥料のうち固結部分重量(g)の割合であり、下記式で算出した。
粒状肥料の固結率(%)= (一ヶ月間荷重後の固結部分重量)/750×100
固結率が低い値を示すほど、固結が発生しにくい粒状肥料を得ることを示す。
(14) Solidification rate of granular fertilizer The solidification rate of granular fertilizer was measured by placing 750g of granular fertilizer in plastic bags, placing dummy fertilizer bags at the top and bottom, and placing a wooden board on top of each bag. , is the ratio of the solidified portion weight (g) in the granular fertilizer after being loaded with a weight of 60 kg for one month, and was calculated by the following formula.
Solidification rate of granular fertilizer (%) = (weight of solidified portion after loading for one month)/750 x 100
A lower caking ratio indicates that a granular fertilizer with less caking is obtained.

(15)粒状肥料の固結強度
粒状肥料の固結強度は、山中式土壌硬度計を使用して針部を肥料上面に対して垂直に圧入して測定した値である。
固結強度が低い値を示すほど、固結が発生しにくい粒状肥料を得ることを示す。
(15) Cohesion Strength of Granular Fertilizer The cohesion strength of granular fertilizer is a value measured by pressing the needle into the upper surface of the fertilizer perpendicularly using a Yamanaka soil hardness tester.
A lower value of caking strength indicates that a granular fertilizer with less caking is obtained.

(16)粒状肥料の粉化率
粒状肥料の粉化率は、粒状肥料750gに対して60kgの錘で一ヶ月間荷重後の粒状肥料組成物のうち、目開き2mmの篩を使用して得た粒径が2mm以下のものの割合であり、下記式で算出した。
粒状肥料の粉化率(%)= (粒径2mm以下のものの重量(g))/750×100
粉化率が低い値を示すほど、粉化しにくい粒状肥料を得ることを示す。
(16) Powderization rate of granular fertilizer The powderization rate of granular fertilizer is obtained by using a sieve with an opening of 2 mm among the granular fertilizer compositions after loading with a weight of 60 kg for 750 g of granular fertilizer for one month. It is the ratio of particles having a grain size of 2 mm or less, and was calculated by the following formula.
Pulverization rate (%) of granular fertilizer = (weight (g) of particles with a particle size of 2 mm or less)/750 x 100
A lower pulverization rate indicates that a granular fertilizer that is less pulverized can be obtained.

実施例1~19、比較例1~7においては、表1~3に示す窒素肥料成分から実質的になる粒子(表中では粒子Aと表記)と微量肥料成分から実質的になる粒子(表中では粒子Bと表記)を成形して粒状肥料を製造した。 In Examples 1 to 19 and Comparative Examples 1 to 7, particles substantially composed of the nitrogen fertilizer components shown in Tables 1 to 3 (denoted as particles A in the tables) and particles substantially composed of trace fertilizer components (table A granular fertilizer was produced by molding the powder (denoted as particle B in the drawings).

(実施例1)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)98重量部と粒径1mmを超え2mm以下の粒子が33重量%の硫酸銅5水和物粒子(粒子B)2重量部とを、混合機としてダウ・ミキサー(株式会社新日南製)に供給して10分間混合した。次いで、該混合物を造粒機としてブリケッタ(登録商標)BSS-IV型(新東工業製)に供給し、ロール有効幅を185mm、ロール圧力を8.3kN/cm、バリ厚みを1.70mm、ポケットサイズをΦ3.9mm×0.94mm、ローラー回転数を50rpmとして造粒を行い、粗砕機にて破砕した後、目開き6.7mm、5.2mm、2.2mmの篩いを有する3段解砕篩機(興和工業所製)に投入し、解砕メディア(ナイロン硬球ボール上段200個、下段200個)で解砕した。続いて、該造粒物をマルメライザー(ダルトン製)に篩上解砕品を投入し、回転数225rpmで20秒間整粒処理を行った後に、目開き2mmの篩を有する円形振動篩機(ダルトン製)に供給して分級を行い、目開き2mmの篩上品を粒状肥料として回収した。粒状肥料の収率は55%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は65%、粒径0.1mmを超え1mm以下の粒子B’は87%、窒素含有率は20.7%、銅分は0.5%、水分率は0.9重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は10日であった。また、粒状肥料の粒硬度は3.4kgf、かさ密度は0.96g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 1)
98 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. Parts by weight were supplied to a Dow Mixer (manufactured by Shin-Nichinan Co., Ltd.) as a mixer and mixed for 10 minutes. Next, the mixture was supplied to a Briquette (registered trademark) BSS-IV type (manufactured by Shinto Kogyo Co., Ltd.) as a granulator. Granulation was performed with a pocket size of Φ3.9 mm × 0.94 mm and a roller rotation speed of 50 rpm, and after crushing with a coarse crusher, three-stage sieving with sieves with openings of 6.7 mm, 5.2 mm, and 2.2 mm. The mixture was placed in a sieving machine (manufactured by Kowa Kogyosho) and crushed with crushing media (200 nylon hard balls in the upper stage and 200 in the lower stage). Subsequently, the granulated product was put into a Marumerizer (manufactured by Dalton) and subjected to sieving treatment for 20 seconds at a rotation speed of 225 rpm. ) and classified, and a sieve with an opening of 2 mm was collected as granular fertilizer. The yield of granular fertilizer is 55%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 65% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 87% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 20.7%, the copper content was 0.5%, and the moisture content was 0.9% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 10 days. The granular fertilizer had a grain hardness of 3.4 kgf, a bulk density of 0.96 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例2)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅5水和物粒子(粒子B)5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は59%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は61%、粒径0.1mmを超え1mm以下の粒子B’は81%、窒素含有率は20.0%、銅分は1.2%、水分率は2.1重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は12日であった。また、粒状肥料の粒硬度は3.2kgf、かさ密度は0.96g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 2)
95 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 59%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 61% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 81% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 20.0%, the copper content was 1.2%, and the moisture content was 2.1% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 12 days. The granular fertilizer had a grain hardness of 3.2 kgf, a bulk density of 0.96 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例3)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)90重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅5水和物粒子(粒子B)10重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は57%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は69%、粒径0.1mmを超え1mm以下の粒子B’は83%、窒素含有率は19.0%、銅分は2.5%、水分率は3.2重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は19日であった。また、粒状肥料の粒硬度は2.6kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 3)
90 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 57%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 69% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 83% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 19.0%, the copper content was 2.5%, and the moisture content was 3.2% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 19 days. The granular fertilizer had a grain hardness of 2.6 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例4)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)86重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅5水和物粒子(粒子B)14重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は54%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は73%、粒径0.1mmを超え1mm以下の粒子B’は89%、窒素含有率は18.2%、銅分は3.5%、水分率は4.2重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は25日であった。また、粒状肥料の粒硬度は2.1kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は5%であった。
(Example 4)
86 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 54%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.11, 73% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 89% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 18.2%, the copper content was 3.5%, and the moisture content was 4.2% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 25 days. The granular fertilizer had a grain hardness of 2.1 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 5%.

(実施例5)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅無水物粒子(粒子B)5重量部と水を3重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は50%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は52%、粒径0.1mmを超え1mm以下の粒子B’は88%、窒素含有率は19.5%、銅分は1.9%、水分率は3.4重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は11日であった。また、粒状肥料の粒硬度は1.3kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は13%であった。
(Example 5)
95 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 5 parts by weight of copper sulfate anhydride particles (particles B) containing 37% by weight of particles having a particle size of more than 1 mm to 2 mm A granular fertilizer was produced by mixing, granulating, pulverizing, sizing and classifying in the same manner as in Example 1, except that 3 parts by weight of and water were used. The yield of granular fertilizer is 50%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 52% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 88% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 19.5%, the copper content was 1.9%, and the moisture content was 3.4% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 11 days. The granular fertilizer had a grain hardness of 1.3 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 13%.

(実施例6)
粒径1mmを超え2mm以下の粒子が57重量%の尿素粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅5水和物粒子(粒子B)5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は55%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は87%、粒径0.1mmを超え1mm以下の粒子B’は81%、窒素含有率は44.3%、銅分は1.2%、水分率は2.3重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は20日であった。また、粒状肥料の粒硬度は2.2kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は2%であった。
(Example 6)
95 parts by weight of urea particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 5 copper sulfate pentahydrate particles (particles B) containing 37% by weight of particles having a particle size of more than 1 mm and 2 mm or less A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 55%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.11, 87% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 81% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 44.3%, the copper content was 1.2%, and the moisture content was 2.3% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 20 days. The granular fertilizer had a grain hardness of 2.2 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 2%.

(実施例7)
粒径1mmを超え2mm以下の粒子が57重量%の尿素粒子(粒子A)85重量部と粒径1mmを超え2mm以下の粒子が37重量%の硫酸銅5水和物粒子(粒子B)15重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は51%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は78%、粒径0.1mmを超え1mm以下の粒子B’は83%、窒素含有率は39.6%、銅分は3.8%、水分率は4.9重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は28日であった。また、粒状肥料の粒硬度は1.4kgf、かさ密度は0.94g/ml、固結率は9%、固結強度は3kg/cm、粉化率は9%であった。
(Example 7)
85 parts by weight of urea particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 15 copper sulfate pentahydrate particles (particles B) containing 37% by weight of particles having a particle size of more than 1 mm and 2 mm or less A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 51%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 78% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 83% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 39.6%, the copper content was 3.8%, and the moisture content was 4.9% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 28 days. The granular fertilizer had a grain hardness of 1.4 kgf, a bulk density of 0.94 g/ml, a caking rate of 9%, a caking strength of 3 kg/cm 2 and a pulverization rate of 9%.

(実施例8)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)8重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は51%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は69%、粒径0.1mmを超え1mm以下の粒子B’は85%、窒素含有率は19.4%、亜鉛分は2.9%、水分率は0.9重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は18日であった。また、粒状肥料の粒硬度は1.5kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は5%であった。
(Example 8)
92 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 51%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 69% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 85% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 19.4%, the zinc content was 2.9%, and the moisture content was 0.9% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 18 days. The granular fertilizer had a grain hardness of 1.5 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 5%.

(実施例9)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)96重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)4重量部と水を2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は59%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は66%、粒径0.1mmを超え1mm以下の粒子B’は86%、19.9%、亜鉛分は1.4%、水分率は2.1重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は12日であった。また、粒状肥料の粒硬度は2.8kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 9)
96 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight and water were changed to 2 parts by weight. The yield of granular fertilizer is 59%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 66% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 86% of particles B' having a particle size of more than 0.1 mm and 1 mm or less %, 19.9%, the zinc content was 1.4%, and the moisture content was 2.1% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 12 days. The granular fertilizer had a grain hardness of 2.8 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例10)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)8重量部と水を2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は64%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は72%、粒径0.1mmを超え1mm以下の粒子B’は83%、窒素含有率は19.1%、亜鉛分は2.8%、水分率は2.6重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は17日であった。また、粒状肥料の粒硬度は2.3kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 10)
92 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight and water were changed to 2 parts by weight. The yield of granular fertilizer is 64%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 72% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 83% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 19.1%, the zinc content was 2.8%, and the moisture content was 2.6% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 17 days. The granular fertilizer had a grain hardness of 2.3 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例11)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)88重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)12重量部と水を2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率55%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は74%、粒径0.1mmを超え1mm以下の粒子B’は81%、窒素含有率は18.2%、亜鉛分は4.2%、水分率は3.4重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は23日であった。また、粒状肥料の粒硬度は2.1kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 11)
88 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight and water were changed to 2 parts by weight. The yield of granular fertilizer is 55%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter ( Long axis diameter / short axis diameter) is 1.08, particles A' with a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer are 74%, and particles B' with a particle size of more than 0.1 mm and 1 mm or less are 81%. , the nitrogen content was 18.2%, the zinc content was 4.2%, and the moisture content was 3.4% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 23 days. The granular fertilizer had a grain hardness of 2.1 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例12)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)8重量部と水を5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は43%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は65%、粒径0.1mmを超え1mm以下の粒子B’は78%、窒素含有率は18.5%、亜鉛分は2.7%、水分率は5.9重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は15日であった。また、粒状肥料の粒硬度は2.4kgf、かさ密度は0.95g/ml、固結率は12%、固結強度は2kg/cm、粉化率は0%であった。
(Example 12)
92 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing and classifying in the same manner as in Example 1, except that the parts by weight and water were changed to 5 parts by weight. The yield of granular fertilizer is 43%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 65% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 78% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 18.5%, the zinc content was 2.7%, and the moisture content was 5.9% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 15 days. The granular fertilizer had a grain hardness of 2.4 kgf, a bulk density of 0.95 g/ml, a caking rate of 12%, a caking strength of 2 kg/cm 2 and a pulverization rate of 0%.

(実施例13)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が24重量%の硫酸亜鉛1水和物粒子(粒子B)8重量部と50重量%糖蜜水溶液を3重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は56%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は68%、粒径0.1mmを超え1mm以下の粒子B’は79%、窒素含有率は19.2%、亜鉛分は2.8%、水分率は2.9重量%であった。また、微量肥料成分の溶出率は81%であって、溶出率100%に要する日数は34日であった。また、粒状肥料の粒硬度は2.9kgf、かさ密度は0.96g/ml、固結率は9%、固結強度は2kg/cm、粉化率は0%であった。
(Example 13)
92 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing and classifying in the same manner as in Example 1, except that the parts by weight and the 50% by weight aqueous molasses solution were changed to 3 parts by weight. The yield of granular fertilizer is 56%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.11, 68% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 79% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 19.2%, the zinc content was 2.8%, and the moisture content was 2.9% by weight. Further, the elution rate of trace fertilizer components was 81%, and the number of days required for 100% elution rate was 34 days. The granular fertilizer had a grain hardness of 2.9 kgf, a bulk density of 0.96 g/ml, a caking rate of 9%, a caking strength of 2 kg/cm 2 and a pulverization rate of 0%.

(実施例14)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が41重量%の硫酸亜鉛無水物粒子(粒子B)8重量部と水を3重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は51%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は54%、粒径0.1mmを超え1mm以下の粒子B’は81%、窒素含有率は18.9%、亜鉛分は3.1%、水分率は3.1重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は18日であった。また、粒状肥料の粒硬度は1.1kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は16%であった。
(Example 14)
92 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 8 parts by weight of anhydrous zinc sulfate particles (particles B) containing 41% by weight of particles having a particle size of more than 1 mm to 2 mm A granular fertilizer was produced by mixing, granulating, pulverizing, sizing and classifying in the same manner as in Example 1, except that 3 parts by weight of and water were used. The yield of granular fertilizer is 51%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 54% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 81% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 18.9%, the zinc content was 3.1%, and the moisture content was 3.1% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 18 days. The granular fertilizer had a grain hardness of 1.1 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 16%.

(実施例15)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が21重量%の硫酸亜鉛7水和物粒子(粒子B)8重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は55%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は65%、粒径0.1mmを超え1mm以下の粒子B’は88%、窒素含有率は19.4%、亜鉛分は1.8%、水分率は3.2重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は17日であった。また、粒状肥料の粒硬度は2.4kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 15)
92 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 55%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.11, 65% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 88% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 19.4%, the zinc content was 1.8%, and the moisture content was 3.2% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 17 days. The granular fertilizer had a grain hardness of 2.4 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例16)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)93重量部と粒径1mmを超え2mm以下の粒子が35重量%の硫酸マンガン1水和物粒子(粒子B)7重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は52%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は68%、粒径0.1mmを超え1mm以下の粒子B’は87%、窒素含有率は19.7%、マンガン分は2.2%、水分率は0.8重量%であった。また、窒素肥料成分の溶出率は100%、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は15日であった。また、粒状肥料の粒硬度は1.3kgf、かさ密度は0.94g/ml、固結率は0%、固結強度は0kg/cm、粉化率は7%であった。
(Example 16)
93 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and manganese sulfate monohydrate particles (particles B) containing 35% by weight of particles having a particle size of more than 1 mm and 2 mm or less (7) A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 52%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 68% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 87% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 19.7%, the manganese content was 2.2%, and the moisture content was 0.8% by weight. Further, the elution rate of the nitrogen fertilizer component was 100%, the elution rate of the trace fertilizer component was 100%, and the number of days required for the elution rate of 100% was 15 days. The granular fertilizer had a grain hardness of 1.3 kgf, a bulk density of 0.94 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 7%.

(実施例17)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)93重量部と粒径1mmを超え2mm以下の粒子が35重量%の硫酸マンガン1水和物粒子(粒子B)7重量部と水を2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は62%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は74%、粒径0.1mmを超え1mm以下の粒子B’は83%、窒素含有率は19.3%、マンガン分は2.2%、水分率は2.3重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は15日であった。また、粒状肥料の粒硬度は2.1kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 17)
93 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and manganese sulfate monohydrate particles (particles B) containing 35% by weight of particles having a particle size of more than 1 mm and 2 mm or less (7) A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight and water were changed to 2 parts by weight. The yield of granular fertilizer is 62%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 74% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 83% of particles B' having a particle size of more than 0.1 mm and 1 mm or less %, the nitrogen content was 19.3%, the manganese content was 2.2%, and the moisture content was 2.3% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 15 days. The granular fertilizer had a grain hardness of 2.1 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例18)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)90重量部と粒径1mmを超え2mm以下の粒子が27重量%の硫酸第一鉄7水和物粒子(粒子B)10重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は63%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は55%、粒径0.1mmを超え1mm以下の粒子B’は72%、窒素含有率は19.5%、鉄分は1.9%、水分率は2.8重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は11日であった。また、粒状肥料の粒硬度は2.9kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 18)
90 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and ferrous sulfate heptahydrate particles (particles B) containing 27% by weight of particles having a particle size of more than 1 mm and 2 mm or less ) A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that the content was 10 parts by weight. The yield of granular fertilizer is 63%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.11, 55% of particles A 'with a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 72% of particles B 'with a particle size of 0.1 mm and 1 mm or less %, the nitrogen content was 19.5%, the iron content was 1.9%, and the moisture content was 2.8% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 11 days. The granular fertilizer had a grain hardness of 2.9 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(実施例19)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)97重量部と粒径1mmを超え2mm以下の粒子が23重量%の硫酸ニッケル6水和物粒子(粒子B)3重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は60%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.5mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.11、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は63%、粒径0.1mmを超え1mm以下の粒子B’は75%、窒素含有率は19.9%、ニッケル分は0.6%、水分率は2.2重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は13日であった。また、粒状肥料の粒硬度は2.4kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Example 19)
97 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 60%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.5 mm, and the ratio of the major axis diameter to the minor axis diameter is (long axis diameter / short axis diameter) is 1.11, 63% of particles A 'with a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 75% of particles B 'with a particle size of 0.1 mm and 1 mm or less %, the nitrogen content was 19.9%, the nickel content was 0.6%, and the moisture content was 2.2% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 13 days. The granular fertilizer had a grain hardness of 2.4 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(比較例1)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)80重量部と粒径1mmを超え2mm以下の粒子が33重量%の硫酸銅5水和物粒子(粒子B)20重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は35%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.4mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.15、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は63%、粒径0.1mmを超え1mm以下の粒子B’は79%、窒素含有率は16.9%、銅分は5.1%、水分率は5.9重量%であった。また、微量肥料成分の溶出率は85%であって、溶出率100%に要する日数は32日であった。また、粒状肥料の粒硬度は1.8kgf、かさ密度は0.95g/ml、固結率は15%、固結強度は3kg/cm、粉化率は4%であった。
(Comparative example 1)
80 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 35%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.4 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.15, 63% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 79% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 16.9%, the copper content was 5.1%, and the moisture content was 5.9% by weight. Further, the elution rate of trace fertilizer components was 85%, and the number of days required for 100% elution rate was 32 days. The granular fertilizer had a grain hardness of 1.8 kgf, a bulk density of 0.95 g/ml, a caking rate of 15%, a caking strength of 3 kg/cm 2 and a pulverization rate of 4%.

(比較例2)
粒径1mmを超え2mm以下の粒子が8重量%の硫酸アンモニウム粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が43重量%の硫酸銅5水和物粒子(粒子B)5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は41%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.3mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.18、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は37%、粒径0.1mmを超え1mm以下の粒子B’は55%、窒素含有率は20.0%、銅分は1.2%、水分率は1.6重量%であった。また、微量肥料成分の溶出率は63%であって、溶出率100%に要する日数は43日であった。また、粒状肥料の粒硬度は0.8kgf、かさ密度は0.94g/ml、固結率は17%、固結強度は2kg/cm、粉化率は13%であった。
(Comparative example 2)
95 parts by weight of ammonium sulfate particles (particles A) containing 8 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 41%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.3 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.18, 37% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 55% of particles B' having a particle size of more than 0.1 mm and 1 mm or less. %, the nitrogen content was 20.0%, the copper content was 1.2%, and the moisture content was 1.6% by weight. Further, the elution rate of trace fertilizer components was 63%, and the number of days required for 100% elution rate was 43 days. The granular fertilizer had a grain hardness of 0.8 kgf, a bulk density of 0.94 g/ml, a caking rate of 17%, a caking strength of 2 kg/cm 2 and a pulverization rate of 13%.

(比較例3)
粒径1mmを超え2mm以下の粒子が13重量%の尿素粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が43重量%の硫酸銅5水和物粒子(粒子B)5重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は36%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.2mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.22、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は42%、粒径0.1mmを超え1mm以下の粒子B’は48%、窒素含有率は44.3%、銅分は1.2%、水分率は2.3重量%であった。また、微量肥料成分の溶出率は59%であって、溶出率100%に要する日数は45日であった。また、粒状肥料の粒硬度は0.6kgf、かさ密度は0.93g/ml、固結率は45%、固結強度は5kg/cm、粉化率は21%であった。
(Comparative Example 3)
95 parts by weight of urea particles (particles A) containing 13 wt. A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight were used. The yield of granular fertilizer is 36%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.2 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.22, 42% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 48% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 44.3%, the copper content was 1.2%, and the moisture content was 2.3% by weight. Further, the elution rate of trace fertilizer components was 59%, and the number of days required for 100% elution rate was 45 days. The granular fertilizer had a grain hardness of 0.6 kgf, a bulk density of 0.93 g/ml, a caking rate of 45%, a caking strength of 5 kg/cm 2 and a pulverization rate of 21%.

(比較例4)
粒径1mmを超え2mm以下の粒子が8重量%の硫酸アンモニウム粒子(粒子A)92重量部と粒径1mmを超え2mm以下の粒子が3重量%の硫酸亜鉛1水和物粒子(粒子B)8重量部と水を2重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は38%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.2mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.22、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は33%、粒径0.1mmを超え1mm以下の粒子B’は36%、窒素含有率は19.1%、亜鉛分は2.8%、水分率は2.6重量%であった。また、微量肥料成分の溶出率は100%であって、溶出率100%に要する日数は8日であった。また、粒状肥料の粒硬度は0.5kgf、かさ密度は0.92g/ml、固結率は5%、固結強度は1kg/cm、粉化率は8%であった。
(Comparative Example 4)
92 parts by weight of ammonium sulfate particles (particles A) containing 8% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 8 zinc sulfate monohydrate particles (particles B) containing 3% by weight of particles having a particle size of more than 1 mm and 2 mm or less A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that parts by weight and water were changed to 2 parts by weight. The yield of granular fertilizer is 38%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.2 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.22, 33% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 36% of particles B' having a particle size of 0.1 mm or more and 1 mm or less. %, the nitrogen content was 19.1%, the zinc content was 2.8%, and the moisture content was 2.6% by weight. Further, the elution rate of trace fertilizer components was 100%, and the number of days required for 100% elution rate was 8 days. The granular fertilizer had a grain hardness of 0.5 kgf, a bulk density of 0.92 g/ml, a caking rate of 5%, a caking strength of 1 kg/cm 2 and a pulverization rate of 8%.

(比較例5)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が27重量%の硫酸マグネシウム1水和物粒子(粒子B)5重量部と水を1重量部とした以外は実施例1と同様の方法で混合、造粒、解砕、整粒、分級して粒状肥料を製造した。粒状肥料の収率は55%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.6mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.08、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は73%、粒径0.1mmを超え1mm以下の粒子B’は81%、窒素含有率は19.2%、マグネシウム分は2.1%、水分率は1.7重量%であった。また、微量肥料成分の溶出はなく、溶出率100%に要する日数は8日であった。また、粒状肥料の粒硬度は2.8kgf、かさ密度は0.95g/ml、固結率は0%、固結強度は0kg/cm、粉化率は0%であった。
(Comparative Example 5)
95 parts by weight of ammonium sulfate particles (particles A) containing 57% by weight of particles having a particle size of more than 1 mm and 2 mm or less and 5 magnesium sulfate monohydrate particles (particles B) containing 27% by weight of particles having a particle size of more than 1 mm and 2 mm or less A granular fertilizer was produced by mixing, granulating, pulverizing, sizing, and classifying in the same manner as in Example 1, except that the parts by weight and water were 1 part by weight. The yield of granular fertilizer is 55%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.6 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.08, 73% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 81% of particles B' having a particle size of more than 0.1 mm and 1 mm or less %, the nitrogen content was 19.2%, the magnesium content was 2.1%, and the moisture content was 1.7% by weight. Further, there was no elution of trace fertilizer components, and the number of days required for the elution rate of 100% was 8 days. The granular fertilizer had a grain hardness of 2.8 kgf, a bulk density of 0.95 g/ml, a caking rate of 0%, a caking strength of 0 kg/cm 2 and a pulverization rate of 0%.

(比較例6)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)95重量部と粒径1mmを超え2mm以下の粒子が33重量%の硫酸銅5水和物粒子(粒子B)5重量部と50重量%糖蜜水溶液を20重量部とを、混合機としてダウ・ミキサー(株式会社新日南製)に供給して10分間混合した。次いで、該混合物を造粒機としてパン型造粒機に供給して、パン直径30cm、パン回転数20rpmで5分間造粒を行った後に、目開き2mmの篩を有する円形振動篩機(ダルトン製)に供給して分級を行い、目開き2mmの篩上品を粒状肥料として回収した。得られた粒状肥料は棚段乾燥機を用いて200℃で1時間乾燥した。粒状肥料の収率は46%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.8mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.03、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は14%、粒径0.1mmを超え1mm以下の粒子B’は3%、窒素含有率は18.5%、銅分は1.0%、水分率は2.2重量%であった。また、微量肥料成分の溶出率は51%であって、溶出率100%に要する日数は59日であった。また、粒状肥料の粒硬度は2.2kgf、かさ密度は0.96g/ml、固結率は3%、固結強度は1kg/cm、粉化率は0%であった。
(Comparative Example 6)
95 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. Parts by weight and 20 parts by weight of a 50% by weight molasses aqueous solution were supplied to a Dow Mixer (manufactured by Shin Nichinan Co., Ltd.) as a mixer and mixed for 10 minutes. Next, the mixture is supplied to a pan-type granulator as a granulator, and granulated at a pan diameter of 30 cm and a pan rotation speed of 20 rpm for 5 minutes. (manufacturer) and classified, and a sieve with an opening of 2 mm was collected as granular fertilizer. The obtained granular fertilizer was dried at 200° C. for 1 hour using a tray dryer. The yield of granular fertilizer is 46%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.8 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.03, 14% of particles A' having a particle size of more than 0.1 mm and 1 mm or less in the granular fertilizer, and 3 particles B' having a particle size of more than 0.1 mm and 1 mm or less %, the nitrogen content was 18.5%, the copper content was 1.0%, and the moisture content was 2.2% by weight. Further, the elution rate of trace fertilizer components was 51%, and the number of days required for 100% elution rate was 59 days. The granular fertilizer had a grain hardness of 2.2 kgf, a bulk density of 0.96 g/ml, a caking rate of 3%, a caking strength of 1 kg/cm 2 and a pulverization rate of 0%.

(比較例7)
粒径1mmを超え2mm以下の粒子が57重量%の硫酸アンモニウム粒子(粒子A)99重量部と粒径1mmを超え2mm以下の粒子が33重量%の硫酸銅5水和物粒子(粒子B)1重量部と50重量%糖蜜水溶液を20重量部とした以外は比較例6と同様の方法で混合、造粒、分級、乾燥して粒状肥料を製造した。粒状肥料の収率は43%、2mm以上4mm以下粒径の割合は95%で、長軸径は3.9mm、短軸径は3.8mmであって、長軸径と短軸径の比(長軸径/短軸径)は1.03、粒状肥料中の粒径0.1mmを超え1mm以下の粒子A’は21%、粒径0.1mmを超え1mm以下の粒子B’は5%、窒素含有率は19.2%、銅分は0.2%、水分率は2.4重量%であった。また、微量肥料成分の溶出率は79%であって、溶出率100%に要する日数は38日であった。また、粒状肥料の粒硬度は2.6kgf、かさ密度は0.96g/ml、固結率は5%、固結強度は2kg/cm、粉化率は0%であった。
(Comparative Example 7)
99 parts by weight of ammonium sulfate particles (particles A) containing 57 wt. A granular fertilizer was produced by mixing, granulating, classifying and drying in the same manner as in Comparative Example 6, except that the parts by weight and the 50% by weight molasses aqueous solution were changed to 20 parts by weight. The yield of granular fertilizer is 43%, the ratio of particle size between 2 mm and 4 mm is 95%, the major axis diameter is 3.9 mm, the minor axis diameter is 3.8 mm, and the ratio of the major axis diameter to the minor axis diameter is (major axis diameter / minor axis diameter) is 1.03, 21% of particles A' having a particle size of 0.1 mm or more and 1 mm or less in the granular fertilizer, and 5 particles B' having a particle size of 0.1 mm or more and 1 mm or less %, the nitrogen content was 19.2%, the copper content was 0.2%, and the moisture content was 2.4% by weight. Further, the elution rate of trace fertilizer components was 79%, and the number of days required for 100% elution rate was 38 days. The granular fertilizer had a grain hardness of 2.6 kgf, a bulk density of 0.96 g/ml, a caking rate of 5%, a caking strength of 2 kg/cm 2 and a pulverization rate of 0%.

結果を表1~3に示す。 The results are shown in Tables 1-3.

Figure 0007200960000001
Figure 0007200960000001

Figure 0007200960000002
Figure 0007200960000002

Figure 0007200960000003
Figure 0007200960000003

以上に説明されるとおり、原料である窒素肥料成分から実質的なる粒子(粒子A)と微量肥料成分から実質的なる粒子(粒子B)の粒径分布と、粒子Aと粒子Bの量的割合を所定の範囲とすることで、微量肥料成分の濃度を局所的に高めることがないため過剰症を抑制でき、溶出性が良好であるため土壌内で残留することなく、窒素肥料成分とともに均一に散布でき、二次粒子形成後の粒硬度が高くて製造後の肥料収率が高く、また、球状であって肥料保管中にも粉化が生じにくく、かつ固結が発生しない粒状肥料を得ることができることが判る。 As described above, the particle size distribution of the particles (particles A) substantially from the raw material nitrogen fertilizer component and the particles (particles B) substantially from the trace fertilizer component, and the quantitative ratio of the particles A and the particles B is within a predetermined range, it is possible to suppress excess symptoms because the concentration of the trace fertilizer component is not locally increased, and because it has good elution properties, it does not remain in the soil, and is evenly distributed with the nitrogen fertilizer component. To obtain a granular fertilizer that can be sprayed, has a high grain hardness after secondary particle formation and a high yield of fertilizer after production, and is spherical to prevent pulverization and caking during storage of the fertilizer. It turns out that it is possible.

本発明による粒状肥料は、土壌にて微量肥料成分の栄養素が欠乏することなく、かつ微量肥料成分の濃度を均一に散布することができ、散布後の溶出性が良好である粒状肥料を得ることができる。また、保管時に粉化し固結して流動性が低下することがなく、小規模農場での人の手による施肥のみならず、大規模農場での機械散布を行うことができる。また、用途・目的に応じて粒状肥料を他の粒状肥料と任意の割合でドライブレンドしたバルクブレンド肥料にできるため、米、野菜、果物等の生育に使用することができる。 The granular fertilizer according to the present invention does not cause the soil to become deficient in the nutrients of the micro-fertilizer components, allows uniform application of the micro-fertilizer components in concentration, and provides a granular fertilizer with good dissolution properties after application. can be done. In addition, it does not become pulverized and hardened during storage to reduce fluidity, and can be used not only for manual fertilization in small-scale farms but also for mechanical spraying in large-scale farms. In addition, since the bulk blended fertilizer can be prepared by dry-blending the granular fertilizer with other granular fertilizers in an arbitrary ratio according to the application and purpose, it can be used for growing rice, vegetables, fruits, and the like.

Claims (15)

窒素肥料成分から実質的になる粒子(粒子A)と、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B)が一体化して二次粒子を形成した粒状肥料であって、粒状肥料における窒素肥料成分から実質的になる粒子(粒子A’)はその粒径が0.1mmを超え、1mm以下の粒子割合が粒状肥料における粒子A’中50%以上を占め、粒状肥料における粒子B’はその粒径が0.1mmを超え、1mm以下の粒子割合が粒状肥料における硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B’)中60%以上を占め、かつ、燃焼法で測定した粒状肥料における窒素含有率が13.5~45.0%、原子吸光法で測定した粒状肥料における銅、亜鉛、マンガン、鉄、ニッケルから選ばれる少なくとも一種の金属含有率が0.3~5.0%であることを特徴とする、粒状肥料。 Particles (particles A) substantially composed of a nitrogen fertilizer component and particles (particles B) substantially composed of at least one trace fertilizer component selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate are integrated. The granular fertilizer that is formed into secondary particles by liquefaction, and the particles (particles A') that are substantially composed of the nitrogen fertilizer component in the granular fertilizer have a particle size of more than 0.1 mm and the proportion of particles of 1 mm or less is the granular fertilizer occupies 50% or more of the particles A' in the granular fertilizer, and the particle B' in the granular fertilizer has a particle size of more than 0.1 mm, and the proportion of particles of 1 mm or less is copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, sulfuric acid At least 60% of the particles (particles B′) substantially composed of at least one trace fertilizer component selected from nickel, and the nitrogen content in the granular fertilizer measured by the combustion method is 13.5 to 45.0% A granular fertilizer, characterized in that the content of at least one metal selected from copper, zinc, manganese, iron and nickel in the granular fertilizer measured by an atomic absorption method is 0.3 to 5.0%. 前記粒状肥料中の水分率が1.0~5.0重量%であることを特徴とする、請求項1に記載の粒状肥料。 The granular fertilizer according to claim 1, characterized in that the moisture content in said granular fertilizer is 1.0-5.0% by weight. 前記粒状肥料の二次粒子形成後の粒硬度が2kgf以上であることを特徴とする、請求項1または2に記載の粒状肥料。 The granular fertilizer according to claim 1 or 2, wherein the granular fertilizer has a grain hardness of 2 kgf or more after forming secondary particles. 前記粒状肥料の長軸径と短軸径の比(長軸径/短軸径)が1.0以上1.4以下であることを特徴とする、請求項1~3のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 3, characterized in that the ratio of major axis diameter to minor axis diameter (major axis diameter/minor axis diameter) is 1.0 or more and 1.4 or less. granular fertilizer. 前記粒状肥料のかさ密度が0.9g/ml以上1.1g/ml以下であることを特徴とする、請求項1~4のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 4, characterized in that said granular fertilizer has a bulk density of 0.9 g/ml or more and 1.1 g/ml or less. 前記窒素肥料成分が硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、リン酸二アンモニウム、尿素から選ばれる少なくとも一種であることを特徴とする、請求項1~5のいずれかに記載の粒状肥料。 The granular fertilizer according to any one of claims 1 to 5, wherein said nitrogen fertilizer component is at least one selected from ammonium sulfate, ammonium chloride, ammonium nitrate, diammonium phosphate and urea. 前記微量肥料成分が含水塩であることを特徴とする、請求項1に記載の粒状肥料。 2. A granular fertilizer according to claim 1, characterized in that said trace fertilizer component is a hydrous salt. 窒素肥料成分から実質的になる粒子(粒子A)と、硫酸銅、硫酸亜鉛、硫酸マンガン、硫酸鉄、硫酸ニッケルから選ばれる少なくとも一種の微量肥料成分から実質的になる粒子(粒子B)とを一体化せしめて二次粒子を形成する粒状肥料の製造方法であって、粒子Aはその粒径が1mmを超え、2mm以下であるものが粒子A中10重量%以上90重量%以下を占め、粒子Bはその粒径が1mmを超え、2mm以下であるものが粒子B中10重量%以上40重量%以下を占めており、粒状肥料の全体重量に対して、粒子Aを85.0~98.8重量部と、粒子Bを1.2~15.0重量部と、水を0~4.0重量部とを混合して混合物を得る工程、該混合物を成型して二次粒子を形成する工程を含むことを特徴とする、粒状肥料の製造方法。 Particles (particles A) substantially composed of a nitrogen fertilizer component and particles (particles B) substantially composed of at least one trace fertilizer component selected from copper sulfate, zinc sulfate, manganese sulfate, iron sulfate, and nickel sulfate A method for producing a granular fertilizer that integrates to form secondary particles, wherein particles A having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 90% by weight or less of particles A, Particles B having a particle size of more than 1 mm and 2 mm or less account for 10% by weight or more and 40% by weight or less of particles B, and the amount of particles A is 85.0 to 98% with respect to the total weight of the granular fertilizer. A step of mixing 8 parts by weight, 1.2 to 15.0 parts by weight of particles B, and 0 to 4.0 parts by weight of water to obtain a mixture, and molding the mixture to form secondary particles. A method for producing a granular fertilizer, comprising a step of 前記粒状肥料の長軸径と短軸径の比が1.0以上1.4以下となるように成型することを特徴とする、請求項8に記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to claim 8, wherein the granular fertilizer is molded so that the ratio of the major axis diameter to the minor axis diameter is 1.0 or more and 1.4 or less. 前記粒状肥料のかさ密度が0.9g/ml以上1.1g/ml以下となるように成型することを特徴とする、請求項8または9に記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to claim 8 or 9, wherein the granular fertilizer is molded so that the bulk density of the granular fertilizer is 0.9 g/ml or more and 1.1 g/ml or less. 前記二次粒子を形成する成型の方法が圧縮造粒であることを特徴とする、請求項8~10のいずれかに記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to any one of claims 8 to 10, wherein the molding method for forming the secondary particles is compression granulation. 前記圧縮造粒は、一対のローラーを用いたブリケット方式で圧縮することを特徴とする、請求項11に記載の粒状肥料の製造方法。 12. The method for producing granular fertilizer according to claim 11, wherein the compression granulation is performed by a briquetting method using a pair of rollers. 前記圧縮造粒は、造粒圧力が6.0kN/cm以上30.0kN/cm以下であることを特徴とする、請求項11または12に記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to claim 11 or 12, wherein the compression granulation is performed at a granulation pressure of 6.0 kN/cm or more and 30.0 kN/cm or less. 前記成型工程として圧縮造粒を行って造粒物を得て、次いで整粒することを特徴とする、請求項8~13のいずれかに記載の粒状肥料の製造方法。 The method for producing a granular fertilizer according to any one of claims 8 to 13, characterized in that compression granulation is performed as said molding step to obtain granules, and then granules are regulated. 前記整粒は、回転式整粒方式であることを特徴とする、請求項14に記載の粒状肥料の製造方法。 15. The method for producing a granular fertilizer according to claim 14, wherein the sizing is a rotary sizing method.
JP2020034933A 2020-03-02 2020-03-02 Granular fertilizer and method for producing granular fertilizer Active JP7200960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034933A JP7200960B2 (en) 2020-03-02 2020-03-02 Granular fertilizer and method for producing granular fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034933A JP7200960B2 (en) 2020-03-02 2020-03-02 Granular fertilizer and method for producing granular fertilizer

Publications (2)

Publication Number Publication Date
JP2021138556A JP2021138556A (en) 2021-09-16
JP7200960B2 true JP7200960B2 (en) 2023-01-10

Family

ID=77667685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034933A Active JP7200960B2 (en) 2020-03-02 2020-03-02 Granular fertilizer and method for producing granular fertilizer

Country Status (1)

Country Link
JP (1) JP7200960B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106031A1 (en) 2011-04-06 2013-07-18 Thompson Harold E Multi-purpose lignin-carbohydrate binding system
JP2019043797A (en) 2017-08-31 2019-03-22 東レ株式会社 Granular nk compound fertilizer and method of producing granular nk compound fertilizer
JP2019172561A (en) 2018-03-28 2019-10-10 東レ株式会社 Granular fertilizer and method of producing granular fertilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106031A1 (en) 2011-04-06 2013-07-18 Thompson Harold E Multi-purpose lignin-carbohydrate binding system
JP2015501332A (en) 2011-04-06 2015-01-15 オーエムエス・インヴェストメンツ・インコーポレイティッド Multipurpose lignin-carbohydrate binding system
JP2019043797A (en) 2017-08-31 2019-03-22 東レ株式会社 Granular nk compound fertilizer and method of producing granular nk compound fertilizer
JP2019172561A (en) 2018-03-28 2019-10-10 東レ株式会社 Granular fertilizer and method of producing granular fertilizer

Also Published As

Publication number Publication date
JP2021138556A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN113548922A (en) Fertilizer granules with micronized sulphur
WO2007071175A1 (en) Granulation of sulfate of potash (sop)
JP6740636B2 (en) Method for producing granular fertilizer composition
BR102018003628A2 (en) granular fertilizers comprising macronutrients and micronutrients, and processes for their manufacture
US20170225960A1 (en) Method for the production of sulphate of potash granulates, sulphate of potash granulate obtained thereby, and use thereof
JP5971071B2 (en) Method for granulating nitrogen fertilizer and method for producing nitrogen fertilizer of granular product
KR20010042784A (en) Wet granulation method for generating granules
JP6540094B2 (en) Granular fertilizer composition and method for producing granular fertilizer composition
JP7107253B2 (en) Granular fertilizer and method for producing granular fertilizer
JP6290642B2 (en) Powdered steelmaking slag fertilizer
JP7200960B2 (en) Granular fertilizer and method for producing granular fertilizer
JP7180444B2 (en) Method for producing granular ammonium sulfate and method for producing granular nitrogen fertilizer
JP6642046B2 (en) Granular nitrogen fertilizer and method for producing granular nitrogen fertilizer
JP7013733B2 (en) Manufacturing method of granular NK chemical fertilizer and granular NK chemical fertilizer
CN111875448A (en) Production method of instant fertilizer
JP6977466B2 (en) Coarse grain livestock manure combustion ash manufacturing method, granular fertilizer manufacturing method and mixed fertilizer manufacturing method
JP7331408B2 (en) Method for producing granular fertilizer
JP2022083121A (en) Granular ammonium sulfate composition, mixed fertilizer composition, and method of manufacturing granular ammonium sulfate composition
JPS61122179A (en) Granulation of ammonium sulfate
JP2023097386A (en) Granular fertilizer using burned ash and nitrogen fertilizer composition, and method for producing the same
US20220380272A1 (en) Composite fertiliser systems
JP5057541B2 (en) Production method of granular salt
JP2023097379A (en) Manufacturing method of granular fertilizer
JP2024501044A (en) Manufacture of composite fertilizer pellets
GB2616186A (en) Composite fertiliser systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R151 Written notification of patent or utility model registration

Ref document number: 7200960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151