JP2019169507A - Alloy for rare earth magnet - Google Patents

Alloy for rare earth magnet Download PDF

Info

Publication number
JP2019169507A
JP2019169507A JP2018054054A JP2018054054A JP2019169507A JP 2019169507 A JP2019169507 A JP 2019169507A JP 2018054054 A JP2018054054 A JP 2018054054A JP 2018054054 A JP2018054054 A JP 2018054054A JP 2019169507 A JP2019169507 A JP 2019169507A
Authority
JP
Japan
Prior art keywords
phase
rare earth
alloy
subphase
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054054A
Other languages
Japanese (ja)
Other versions
JP7187791B2 (en
Inventor
啓幸 鈴木
Hiroyuki Suzuki
啓幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018054054A priority Critical patent/JP7187791B2/en
Publication of JP2019169507A publication Critical patent/JP2019169507A/en
Application granted granted Critical
Publication of JP7187791B2 publication Critical patent/JP7187791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide anisotropic magnetic powder with improved magnetic properties and thermal stability with high efficiency.SOLUTION: An alloy for a rare earth magnet according to the present disclosure has a main phase and one or more subphases, and the composition of the entire alloy is represented by the following composition formula (1). R(Fe,Co)TiCuSn(1). R is at least one rare earth element, and w, z, and α respectively satisfy 8≤w≤13, 0.42≤z<0.70, 0.35≤α≤0.82, and 0<β≤0.10.SELECTED DRAWING: Figure 1

Description

本発明は、希土類磁石用合金に関する。   The present invention relates to an alloy for rare earth magnets.

近年、希土類元素の含有量を低減した磁石の開発が求められている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタン(La)からルテチウム(Lu)までの15の元素の総称である。含有する希土類元素の組成比率が相対的に小さい強磁性合金として、体心正方晶のThMn12型結晶構造を有するRT12(Rは希土類元素の少なくとも1種、TはFe、CoまたはNi)が知られている。RT12は高い磁化を有するが、結晶構造が熱的に不安定であるという問題がある。 In recent years, there has been a demand for the development of a magnet with a reduced content of rare earth elements. In this specification, the rare earth element refers to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoid. Here, the lanthanoid is a generic name of 15 elements from lanthanum (La) to lutetium (Lu). As a ferromagnetic alloy in which the composition ratio of the rare earth element is relatively small, RT 12 having a body-centered tetragonal ThMn 12 type crystal structure (where R is at least one rare earth element and T is Fe, Co or Ni) is Are known. RT 12 has high magnetization, but has a problem that its crystal structure is thermally unstable.

特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。   Patent Document 1 discloses a rare earth permanent magnet in which part of Fe as a T element is partially replaced by Ti as a structure stabilizing element, and the thermal stability is improved in exchange for high magnetization. Yes.

特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の置換元素M1により部分的に置換することで、遷移金属元素を置換するTi等の置換元素M2の量を減らして飽和磁化を保ったまま、ThMn12構造を安定化した希土類永久磁石が開示されている。 In Patent Document 2, the R element of the RFe 12- based compound is partially substituted with a substitution element M1 such as Zr or Hf, so that the amount of substitution element M2 such as Ti that substitutes the transition metal element is reduced and saturated. A rare earth permanent magnet is disclosed in which the ThMn 12 structure is stabilized while maintaining the magnetization.

また、特許文献3には、RFe12のR元素の一部としてYまたはGdを選択した、R´−Fe−Co系強磁性合金が開示されており、このR´−Fe−Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。 Patent Document 3 discloses an R′—Fe—Co based ferromagnetic alloy in which Y or Gd is selected as part of the R element of RFe 12 , and this R′—Fe—Co based ferromagnetic alloy is disclosed. It is described that the alloy exhibits a high magnetic property because it has a ThMn 12 type crystal structure formed by a rapid quenching method.

また、特許文献4には、Cuを添加することで非磁性かつ低融点の1−4組成(SmCu相)の相が生成し、焼結と高保磁力化が可能なことが記載されている。 Patent Document 4 describes that addition of Cu produces a non-magnetic and low melting point 1-4 composition (SmCu 4 phase), which enables sintering and high coercivity. .

また、特許文献5には、ThMn12型の主相に対し副相としてSmFe17系相、SmCo系相、Sm系相、およびSmCu系相の少なくともいずれかを含むことで、高保磁力化が可能なことが記載されている。 Patent Document 5 discloses at least one of an Sm 5 Fe 17 phase, an SmCo 5 phase, an Sm 2 O 3 phase, and an Sm 7 Cu 3 phase as a subphase with respect to a ThMn 12 type main phase. It is described that inclusion thereof can increase the coercive force.

また、特許文献6には、Cuを添加することで液相が生成し緻密なバルク体が形成可能なことが記載されている。   Patent Document 6 describes that by adding Cu, a liquid phase is generated and a dense bulk body can be formed.

特開昭64−76703号公報JP-A 64-76703 特開平4−322406号公報JP-A-4-322406 特開2015−156436号公報Japanese Patent Laying-Open No. 2015-156436 特開2001−189206号公報JP 2001-189206 A 特開2017−112300号公報JP 2017-112300 A 国際公開第2016/162990号International Publication No. 2016/162990

高性能磁石として多用されている異方性磁石に用いられる、単結晶ライクの主相粒子は、微粉砕時に原料合金(被粉砕物)が単結晶単位まで高効率に粉砕されることにより得られる。さらに焼結工程の際の一般的な処理温度を考慮すると、主相化合物は、少なくとも900℃以上、好ましくは1000℃以上で安定に存在することも求められる。   Single-crystal-like main phase particles used in anisotropic magnets that are widely used as high-performance magnets are obtained by high-efficiency pulverization of raw material alloys (substances to be crushed) to single-crystal units. . Furthermore, in consideration of a general processing temperature in the sintering step, the main phase compound is also required to be stably present at least 900 ° C. or more, preferably 1000 ° C. or more.

特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。   Although the rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to elemental substitution of Fe by Ti, since the amount of Fe substitution by Ti is large, magnetization is reduced by that amount, and sufficient magnetic properties are obtained. I can't get it.

一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、その効果は必ずしも十分でない。 On the other hand, in the rare earth permanent magnet described in Patent Document 2, although the ThMn 12 structure is stabilized by substituting the transition metal element with Ti or the like, the effect is not necessarily sufficient.

特許文献3に記載のR´−Fe−Co系強磁性合金は、Fe元素を構造安定化元素M(Ti等)で置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。   Since the R′-Fe—Co based ferromagnetic alloy described in Patent Document 3 does not substitute the Fe element with the structural stabilizing element M (Ti or the like), it has high magnetization, large magnetic anisotropy, and high Curie temperature. Although it is obtained, since it is a non-equilibrium phase, the main phase compound may decompose in a densification process at a high temperature such as sintering.

特許文献4に記載の希土類磁石では、Ti添加量が多いために磁気物性値が高くないことがある。さらに主相へCuが固溶するため飽和磁化や磁気異方性が低下することが懸念される。   In the rare earth magnet described in Patent Document 4, the magnetic property value may not be high due to the large amount of Ti added. Furthermore, since Cu dissolves in the main phase, there is a concern that saturation magnetization and magnetic anisotropy will decrease.

特許文献5に記載の希土類磁石では、希土類リッチな副相SmCuを使用した場合、熱処理時に主相よりも希土類リッチな組成へと平衡状態が移動し主相比率が低下することが懸念される。 In the rare earth magnet described in Patent Document 5, when the rare-earth-rich subphase Sm 7 Cu 3 is used, there is a concern that the equilibrium state shifts to a rare-earth-rich composition rather than the main phase during heat treatment, and the main phase ratio decreases. Is done.

特許文献6に記載の希土類磁石では、Fe元素を構造安定化元素Mで置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られ、かつバルク体としての密度が高いが、非平衡相であるために、1000℃以上の焼結等の高温でのプロセスにおいて主相化合物が分解することがある。さらに異方性焼結磁粉を得難い。   In the rare earth magnet described in Patent Document 6, since the Fe element is not substituted with the structural stabilizing element M, high magnetization, large magnetic anisotropy and high Curie temperature can be obtained, and the density as a bulk body is high. Because of the non-equilibrium phase, the main phase compound may decompose in a process at a high temperature such as sintering at 1000 ° C. or higher. Furthermore, it is difficult to obtain anisotropic sintered magnetic powder.

そこで、本開示の目的は、異方性焼結磁粉を得るのに適した希土類磁石合金を提供することにある。   Accordingly, an object of the present disclosure is to provide a rare earth magnet alloy suitable for obtaining anisotropic sintered magnetic powder.

本開示の希土類磁石用合金は、主相および1種以上の副相を有する希土類磁石用合金であって、合金全体の組成が下記の組成式(1)によって表され、
R(Fe,Co)w-zTizCuα Snβ (1)
Rは希土類元素の少なくとも1種であり、w、z、およびαは、それぞれ8≦w≦13、0.42≦z<0.70、0.35≦α≦0.82、および0<β≦0.10を満足する。
The rare earth magnet alloy of the present disclosure is an alloy for a rare earth magnet having a main phase and one or more subphases, and the composition of the entire alloy is represented by the following composition formula (1):
R (Fe, Co) w- z Ti z Cu α Sn β (1)
R is at least one rare earth element, and w, z, and α are 8 ≦ w ≦ 13, 0.42 ≦ z <0.70, 0.35 ≦ α ≦ 0.82, and 0 <β, respectively. ≦ 0.10 is satisfied.

ある実施形態において、前記RはR1およびR2から構成され、
全体の組成が下記の組成式(2)で表わされ、
R11-xR2(Fe1−yCow−zTiCuαSnβ (2)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、xおよびyは、それぞれ、0.5≦x≦1.0、0≦y≦0.4、を満足する。
In one embodiment, R is composed of R1 and R2.
The overall composition is represented by the following composition formula (2):
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α Sn β (2)
R1 is Y or Y and Gd, Y is 50 mol% or more of R1 as a whole, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd, and Pr, and necessarily includes Sm, Sm is 50 mol% or more of the entire R2, and x and y satisfy 0.5 ≦ x ≦ 1.0 and 0 ≦ y ≦ 0.4, respectively.

ある実施形態において、前記主相は、ThMn12型の結晶構造を有し、
前記主相の組成は下記の組成式(3)で表わされ、
R11-x’R2x’(Fe1−y’Coy’12−z’−α’Tiz’Cuα’ (3)
x’、y’、z’、およびα’は、それぞれ、0.5≦x’≦1.0、0≦y’≦0.4、0.48≦z’<0.91、および、0.15≦α’≦0.30を満足する。
ある実施形態において、 z’、は、0.48≦z’<0.74を満足する。
In one embodiment, the main phase has a crystal structure of ThMn 12 type,
The composition of the main phase is represented by the following composition formula (3):
R1 1-x ′ R2 x ′ (Fe 1-y ′ Co y ′ ) 12-z′-α ′ Tiz Cu α ′ (3)
x ′, y ′, z ′, and α ′ are 0.5 ≦ x ′ ≦ 1.0, 0 ≦ y ′ ≦ 0.4, 0.48 ≦ z ′ <0.91, and 0, respectively. .15 ≦ α ′ ≦ 0.30 is satisfied.
In some embodiments, z ′ satisfies 0.48 ≦ z ′ <0.74.

ある実施形態において、前記主相はThMn12型の結晶構造を有する相であり、前記副相は主に副相全体の50mol%以上がCu組成の結晶相とSn基の結晶相である。 In one embodiment, the main phase is a phase having a ThMn 12 type crystal structure, and the subphase is mainly composed of a crystal phase having a Cu composition and an Sn group crystal phase of 50 mol% or more of the total subphase.

ある実施形態において、前記副相は、少なくともCu基のKHg型の結晶構造の相またはCu基で希土類元素と3d遷移元素の組成がモル比で1:4の相を含み、かつ、少なくともSn基のNdPtSb型の結晶構造の相を含んでいる。 In one embodiment, the subphase includes at least a Cu-based KHg 2 type crystal structure phase or a Cu-based phase of a rare earth element and a 3d transition element in a molar ratio of 1: 4, and at least Sn. It includes a phase of the basic NdPtSb type crystal structure.

ある実施形態において、KHg型の結晶構造の相が体積比率で前記副相の50%以上である。 In one embodiment, the phase of KHg type 2 crystal structure is 50% or more of the subphase by volume ratio.

ある実施形態において、前記副相はR原子を含み、副相中に存在するR原子は[R2]/([R1]+[R2])のモル比が合金全体の組成よりも高い。   In one embodiment, the subphase includes R atoms, and the R atoms present in the subphase have a [R2] / ([R1] + [R2]) molar ratio higher than the composition of the entire alloy.

ある実施形態において、Cu基の副相の組成式比率が、9mol%以上27mol%以下であり、かつSn基の相はCu基の相よりも少ない   In an embodiment, the composition formula ratio of the Cu-based subphase is 9 mol% or more and 27 mol% or less, and the Sn-based phase is less than the Cu-based phase.

本発明の実施形態によれば、磁気特性および熱安定性が向上した異方性磁粉を高効率に得ることができる。   According to the embodiment of the present invention, anisotropic magnetic powder having improved magnetic properties and thermal stability can be obtained with high efficiency.

本開示の実施形態における実施例1の希土類磁石合金について、1050℃20分間の熱処理後における偏光顕微鏡断面組織の観察結果と組成分析結果を示す図である。It is a figure which shows the observation result and composition analysis result of a polarization microscope cross-sectional structure | tissue after heat processing for 20 minutes at 1050 degreeC about the rare earth magnet alloy of Example 1 in embodiment of this indication. 本開示の実施形態における実施例1の希土類磁石合金について、1050℃20分間の熱処理後における走査電子顕微鏡(SEM)で得られた反射電子(BSE)像を示す図である。It is a figure which shows the backscattered electron (BSE) image obtained with the scanning electron microscope (SEM) after the heat processing for 20 minutes at 1050 degreeC about the rare earth magnet alloy of Example 1 in embodiment of this indication.

[希土類磁石用合金の組成]
本開示の希土類磁石用合金は、例示的で限定的ではない実施形態において、主相および副相を有し、全体の組成が下記の組成式(1)によって表される。
R(Fe,Co)w-zTizCuαSnβ (1)
ここで、Rは希土類元素の少なくとも1種である。また、w、z、およびαは、それぞれ、8≦w≦13、0.42≦z<0.70、0.35≦α≦0.82、0<β≦0.10を満足する。
[Composition of rare earth magnet alloy]
In an exemplary and non-limiting embodiment, the rare earth magnet alloy of the present disclosure has a main phase and a subphase, and the overall composition is represented by the following composition formula (1).
R (Fe, Co) w- z Ti z Cu α Sn β (1)
Here, R is at least one rare earth element. Further, w, z, and α satisfy 8 ≦ w ≦ 13, 0.42 ≦ z <0.70, 0.35 ≦ α ≦ 0.82, and 0 <β ≦ 0.10, respectively.

ある実施形態においては、全体の組成が下記の組成式(2)で表わされる。
R11-xR2(Fe1−yCow−zTiCuαSnβ (2)
ここで、RはR1およびR2から構成される。R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上である。R1は、Yのみ(不可避的不純物は除く)であることが好ましく、R2は、Smのみ(不可避的不純物は除く)であることが好ましい。x、y、z、wは、それぞれ、0.5≦x≦1.0、0≦y≦0.4、8≦w≦12、0.42≦z<0.70、0.35≦α≦0.82、0<β≦0.10を満足する。
In an embodiment, the entire composition is represented by the following composition formula (2).
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α Sn β (2)
Here, R is composed of R1 and R2. R1 is Y or Y and Gd, Y is 50 mol% or more of R1 as a whole, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd, and Pr, and necessarily includes Sm, Sm is 50 mol% or more of the entire R2. R1 is preferably only Y (excluding inevitable impurities), and R2 is preferably only Sm (excluding inevitable impurities). x, y, z, and w are 0.5 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.4, 8 ≦ w ≦ 12, 0.42 ≦ z <0.70, and 0.35 ≦ α, respectively. ≦ 0.82 and 0 <β ≦ 0.10 are satisfied.

希土類元素RにSmを含ませることにより、高保磁力化に重要となる主相の磁気異方性を向上させることができる。   By including Sm in the rare earth element R, the magnetic anisotropy of the main phase, which is important for increasing the coercive force, can be improved.

本発明者らが鋭意研究した結果、上記の組成式(1)および(2)に示されるように、原料合金にCuを添加することにより、原料合金の溶湯を急冷して凝固した合金中に主相(高い磁化と磁気異方性を有する硬磁性相)と共存する希土類リッチな相(副相)が生成することを見出した。この主相より希土類リッチな副相の生成により、急冷凝固合金に対して行う熱処理による主相の結晶成長が容易に可能になることがわかった。また、この熱処理により、原料合金の溶解・凝固時の異相を低減することも容易に可能になる。さらに、希土類リッチな副相が水素を吸収・放出することにより、主相と副相との間又は副相中にクラックが生じ、単結晶単位に効率よく粉砕が可能である。これらのことは、異方性焼結磁粉を得るうえで極めて有益であり、高配向可能な異方性焼結磁粉の量産を可能にし得る。   As a result of intensive studies by the present inventors, as shown in the above composition formulas (1) and (2), by adding Cu to the raw material alloy, the molten alloy of the raw material alloy is rapidly cooled and solidified in the alloy. It was found that a rare earth-rich phase (subphase) coexisting with the main phase (hard magnetic phase having high magnetization and magnetic anisotropy) was formed. It has been found that the generation of a sub-phase rich in rare earth than the main phase makes it possible to easily grow the main phase by heat treatment performed on the rapidly solidified alloy. In addition, this heat treatment makes it possible to easily reduce foreign phases during melting and solidification of the raw material alloy. Furthermore, when the rare earth-rich subphase absorbs and releases hydrogen, cracks occur between the main phase and the subphase or in the subphase, and the single crystal unit can be efficiently pulverized. These are extremely useful in obtaining anisotropic sintered magnetic powder, and can enable mass production of highly sintered anisotropic sintered magnetic powder.

R1、R2およびTiの量は、主相の磁気物性値と高温安定性に影響を与える。磁気異方性の観点からR2はR1よりも半分以上(R全体の半分以上)であることが望ましく、xの好ましい範囲は、0.5≦x≦1.0である。また、Tiは飽和磁化の観点からできるだけ少ない方が望ましいが、高温安定性の観点からは多い方が望ましい。0.42≦z<0.70の範囲が適切である。特にzが0.70以上であると、飽和磁化、磁気異方性磁場及びキュリー温度がいずれも低下する。なお、Tiの50モル%以下をタングステン(W)、バナジウム(V)などで置換してもよい。   The amounts of R1, R2 and Ti affect the magnetic properties and high temperature stability of the main phase. From the viewpoint of magnetic anisotropy, R2 is desirably half or more than R1 (half or more of the entire R), and a preferable range of x is 0.5 ≦ x ≦ 1.0. Further, Ti is preferably as small as possible from the viewpoint of saturation magnetization, but more is desirable from the viewpoint of high-temperature stability. A range of 0.42 ≦ z <0.70 is appropriate. In particular, when z is 0.70 or more, the saturation magnetization, the magnetic anisotropy magnetic field, and the Curie temperature all decrease. Note that 50 mol% or less of Ti may be substituted with tungsten (W), vanadium (V), or the like.

また、磁気モーメントの増大およびキュリー温度向上に伴う実用温度での磁化向上と磁気異方性向上の観点から、Feの一部をCoで置換することは好ましい。しかし、Coによる置換量が多すぎる場合は、却って磁化や磁気異方性の低下をもたらす。具体的には、Co置換量yは0≦y≦0.4が望ましく、0.1≦y≦0.3がより望ましい。   Moreover, it is preferable to replace a part of Fe with Co from the viewpoints of an increase in magnetic moment and an increase in magnetization at a practical temperature accompanying an increase in Curie temperature and an improvement in magnetic anisotropy. However, if the amount of substitution by Co is too large, the magnetization and magnetic anisotropy are reduced. Specifically, the Co substitution amount y is preferably 0 ≦ y ≦ 0.4, and more preferably 0.1 ≦ y ≦ 0.3.

Cuの量は、生成する副相の量が適切な値となるように設定する。副相の量が少ないと、原料合金の溶解・凝固時の異相が消失できないばかりでなく、異方性焼結磁粉を得るのに十分な大きさまで結晶成長させるのが容易ではない。また、副相の量が多いと、主相の比率が低下するため、磁石体としての磁化が低下する。発明者の実験によると、Cuの量は、0.35≦α≦0.82の範囲が適切である。   The amount of Cu is set so that the amount of the subphase to be generated becomes an appropriate value. When the amount of the subphase is small, not only the heterogeneous phase at the time of melting and solidifying the raw material alloy cannot be lost, but also it is not easy to grow the crystal to a size sufficient to obtain anisotropic sintered magnetic powder. Moreover, since the ratio of a main phase will fall when there is much quantity of a subphase, the magnetization as a magnet body will fall. According to the inventor's experiment, the appropriate amount of Cu is in the range of 0.35 ≦ α ≦ 0.82.

Snの量は、生成する主相に固溶するCu量を決めるので重要である。Snの添加により少なくともNdPtSb型の結晶構造を有する相(1−1−1相)が生成し、Cuの分配に変化が生じる。Snの添加量が少ないと主相へのCu固溶量が多く飽和磁化と磁気異方性の点で好ましくなく、Snの添加量が多いと主相を溶解しない1−1−1相が多量に生成して結晶成長の阻害や異相低減が容易ではない。よって、0<β≦0.10の範囲が適切である。   The amount of Sn is important because it determines the amount of Cu dissolved in the main phase to be generated. Addition of Sn generates a phase having a crystal structure of at least NdPtSb type (1-1-1 phase), and changes in Cu distribution. If the added amount of Sn is small, the amount of Cu solid solution in the main phase is large, which is not preferable in terms of saturation magnetization and magnetic anisotropy, and if the added amount of Sn is large, the 1-1-1 phase that does not dissolve the main phase is large. It is not easy to inhibit crystal growth and reduce heterogeneous phases. Therefore, the range of 0 <β ≦ 0.10 is appropriate.

生成される副相は副相全体の50mol%以上がCu組成の結晶相(すなわち、主相よりもRリッチなCu基)とSn基である。ある実施形態において、副相Cu基の相は、主にKHg型の結晶構造の相(以下、1−2相)である。副相は、他に「R」と「Cu、Fe、および/またはCo」の比が1:4の組成(以下、1−4組成)の相も含む場合がある。一方、Sn基の相は主にNdPtSb型の結晶構造の相を含む。副相を構成するR元素については、両相ともに、[R2]/([R1]+[R2])のモル比が合金全体の組成よりも高くなる。また、副相には、FeとCoが若干固溶していてもよい。TiはSn基の相に極微量に固溶する。 The subphases generated are 50 mol% or more of the total subphase being a crystalline phase having a Cu composition (that is, a Cu group that is R richer than the main phase) and a Sn group. In an embodiment, the phase of the subphase Cu group is mainly a phase having a crystal structure of KHg 2 type (hereinafter referred to as 1-2 phase). The subphase may also include a phase having a composition (hereinafter referred to as a 1-4 composition) in which the ratio of “R” to “Cu, Fe, and / or Co” is 1: 4. On the other hand, the phase of the Sn group mainly includes a phase having a crystal structure of NdPtSb type. Regarding the R element constituting the subphase, in both phases, the molar ratio [R2] / ([R1] + [R2]) is higher than the composition of the entire alloy. In the subphase, Fe and Co may be slightly dissolved. Ti dissolves in a very small amount in the Sn group phase.

wの適正な量は、原料合金に添加するCu量に応じて変化するが、8≦w≦13である。wが大きすぎると、軟磁性のα-(Fe、Co、Ti)相が生成する。またwが小さすぎると、2−17相や3−29相が生成する。これらいずれの相も高い磁気特性の磁石を得るには好ましくない。   The appropriate amount of w varies depending on the amount of Cu added to the raw material alloy, but 8 ≦ w ≦ 13. If w is too large, a soft magnetic α- (Fe, Co, Ti) phase is generated. If w is too small, a 2-17 phase or a 3-29 phase is generated. Neither of these phases is preferred for obtaining a magnet with high magnetic properties.

このようにして得られるRTTizCuαSnβの希土類磁石用合金の主相は、実施形態において、ThMn12型結晶構造を有する。本開示における合金中のTnMn12型化合物相は、典型的には1000℃以上でも安定に存在することができる。このため、本開示の合金の実施形態は、焼結法などの高性能磁石作製プロセスを採用するのに好適に用いることができる。 Thus the main phase of the RT w Ti z Cu α Sn β of the rare earth magnet alloy obtained, in embodiments, has a ThMn 12 type crystal structure. The TnMn 12 type compound phase in the alloy in the present disclosure can typically exist stably even at 1000 ° C. or higher. For this reason, the embodiments of the alloy of the present disclosure can be suitably used to adopt a high-performance magnet manufacturing process such as a sintering method.

なお、一般的に「ThMn12型結晶構造」は正方晶であるが、本発明では、正方晶の結晶格子がわずかに歪んで斜方晶の対称性を有する場合や、および、結晶中の原子の周期性がわずかに乱れた場合でも、「ThMn12型結晶構造」とみなす。 In general, the “ThMn 12 type crystal structure” is a tetragonal crystal. However, in the present invention, the tetragonal crystal lattice is slightly distorted to have orthorhombic symmetry, and the atoms in the crystal. Even when the periodicity is slightly disturbed, it is regarded as a “ThMn 12- type crystal structure”.

生成される主相には、Cuが含有されるために、Cuを含有しない主相と比較した場合に同じTi置換量でも磁気物性値は異なる。しかし、溶解時にSnを添加することで主相へのCu固溶量を抑えることができる。まず、飽和磁化は、少なくともCuとTiの固溶した分だけ低下する。磁気異方性磁場は、CuとTiの共置換となって複雑な挙動を示す。具体的には、Cuが置換されていないThMn12型結晶構造の化合物の一般的な特徴とは逆にTi添加に伴って磁気異方性磁場が低下する傾向にある。そのため、CuとTiは、両方の元素ともに、磁気物性値の観点からは、できるだけ少ない方が好ましい。しかし、高温安定性の観点からはTiは多い方が望ましい。具体的には、組成式R11-x’R2x’(Fe1−y’Coy’12−z’−α’Tiz’Cuα’で主相を表記した場合、0.5≦x’≦1.0、0≦y’≦0.4、0.48≦z’<0.91、0.15≦α’≦0.30が適切であり、CuとTiの置換量は、より好ましくは0.48≦z’<0.74、0.15≦α’≦0.30である。 Since the main phase to be produced contains Cu, the magnetic property values are different even with the same Ti substitution amount when compared with the main phase not containing Cu. However, the amount of Cu solid solution in the main phase can be suppressed by adding Sn during dissolution. First, the saturation magnetization is lowered by at least a solid solution of Cu and Ti. The magnetic anisotropy magnetic field exhibits complicated behavior as co-substitution of Cu and Ti. Specifically, contrary to the general characteristics of a compound of ThMn 12 type crystal structure in which Cu is not substituted, the magnetic anisotropic magnetic field tends to decrease with the addition of Ti. Therefore, both Cu and Ti are preferably as small as possible from the viewpoint of magnetic property values for both elements. However, from the viewpoint of high temperature stability, a larger amount of Ti is desirable. Specifically, when the main phase is expressed by the composition formula R1 1-x ′ R2 x ′ (Fe 1−y ′ Co y ′ ) 12−z′−α ′ Tiz Cu α ′ , 0.5 ≦ x ′ ≦ 1.0, 0 ≦ y ′ ≦ 0.4, 0.48 ≦ z ′ <0.91, 0.15 ≦ α ′ ≦ 0.30 are appropriate, and the substitution amount of Cu and Ti is More preferably, 0.48 ≦ z ′ <0.74 and 0.15 ≦ α ′ ≦ 0.30.

[希土類磁石用合金の作製方法]
<工程A>溶解・凝固する工程
R−Fe−Co−Ti−Cu系希土類磁石用合金の作製方法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法などの公知の方法を採用できる。これらの方法は、合金の溶湯を作製した後、この溶湯を冷却して凝固させる。合金溶湯の凝固時にα−(Fe、Co、Ti)相など、特に磁石用原料合金として好ましくない相(異相)の生成を極力抑えることが望ましい。比較的冷却速度の高い、ストリップキャスト法または液体超急冷法など、回転ロール上に溶湯を供給して凝固させ、薄帯又薄片状の合金を作製する方法を採用することにより、このような異相の生成を抑制することができる。凝固時の冷却速度が低いと、析出する異相の粒サイズが大きくなる。合金中に含まれる異相の粒サイズが大きくなると、次に行う工程Bの熱処理工程で異相を消失し難い。
[Production method of rare earth magnet alloy]
<Step A> Step of melting and solidifying Known methods such as a die casting method, a centrifugal casting method, a strip casting method, and a liquid ultra-quenching method as a method for producing an R-Fe-Co-Ti-Cu rare earth magnet alloy The method can be adopted. In these methods, after preparing a molten alloy, the molten metal is cooled and solidified. It is desirable to suppress as much as possible the generation of an unfavorable phase (heterophase) as a raw material alloy for magnets such as an α- (Fe, Co, Ti) phase during solidification of the molten alloy. By adopting a method of producing a ribbon or flake-like alloy by supplying molten metal onto a rotating roll and solidifying it, such as a strip casting method or a liquid ultra-quenching method, which has a relatively high cooling rate. Generation can be suppressed. When the cooling rate at the time of solidification is low, the grain size of the different phase that precipitates increases. When the grain size of the heterogeneous phase contained in the alloy becomes large, it is difficult for the heterogeneous phase to disappear in the heat treatment step of the next step B.

液体超急冷法のように高い冷却速度で合金溶湯を急冷して凝固させると、凝固後の合金中にはサイズがナノメートルオーダの「ナノ結晶」が生成される。「ナノ結晶」のままでは、凝固後の合金を粉砕しても異方性磁粉を得ることはできない。しかし、ナノ結晶でも、その後に行う工程Bの熱処理工程を経ることにより、異方性磁粉を得るのに好適な10μm以上の結晶粒に容易に成長できる。   When the molten alloy is rapidly cooled and solidified at a high cooling rate as in the liquid superquenching method, “nanocrystals” having a size on the order of nanometers are formed in the alloy after solidification. In the “nanocrystal” state, anisotropic magnetic powder cannot be obtained even when the solidified alloy is pulverized. However, even nanocrystals can be easily grown into crystal grains having a size of 10 μm or more suitable for obtaining anisotropic magnetic powder by performing the heat treatment step of the subsequent step B.

<工程B>熱処理工程
本発明の合金に熱処理を適用することにより、以下のことを実現できる。
(1)凝固過程で生成された異相の量を低減する。
(2)結晶粒を粗大化する。これは、異方性焼結磁石用原料として有用な単結晶ライクの粒子からなる粉末を粉砕法で容易に得るための有効である。
<Step B> Heat treatment step By applying a heat treatment to the alloy of the present invention, the following can be realized.
(1) Reduce the amount of heterogeneous phase generated during the solidification process.
(2) The crystal grains are coarsened. This is effective for easily obtaining a powder composed of single crystal-like particles useful as a raw material for an anisotropic sintered magnet by a pulverization method.

合金の組成に応じて変わるが、1−2相の融点は860℃付近、1−4組成の相の融点は880℃付近にある。Sn基の1−1−1相の融点は1000℃以上である。なお、Sn基の相は主相をほとんど溶解しないため、主相の結晶成長には寄与しない。そのため、熱処理温度は900℃以上1250℃以下が好ましく、1000℃以上1100℃以下がより好ましい。   Although it depends on the composition of the alloy, the melting point of the 1-2 phase is around 860 ° C., and the melting point of the phase of the 1-4 composition is around 880 ° C. The melting point of the 1-1-phase of the Sn group is 1000 ° C. or higher. In addition, since the phase of Sn group hardly dissolves the main phase, it does not contribute to the crystal growth of the main phase. Therefore, the heat treatment temperature is preferably 900 ° C. or higher and 1250 ° C. or lower, and more preferably 1000 ° C. or higher and 1100 ° C. or lower.

熱処理時間は、熱処理温度によるが、5分以上50時間以下が望ましい。時間が短すぎると、異相を消失させるのに十分な反応が生じなかったり、粒成長が不十分だったりする。時間が長すぎると、希土類元素の蒸発および酸化が生じ、かつ操業上の効率も悪い。この熱処理温度では、副相の少なくとも一部は液相となって主相の一部を溶解・再析出させる。このため、主相は液相が生成しない場合と比較して飛躍的に結晶粒が成長する。また合金溶湯の急冷凝固時に生成された異相も、その粒サイズが大きくない場合には容易に消失させることができる。   The heat treatment time is preferably from 5 minutes to 50 hours, depending on the heat treatment temperature. If the time is too short, the reaction may not be sufficient to eliminate the heterogeneous phase, or the grain growth may be insufficient. If the time is too long, evaporation and oxidation of rare earth elements occur, and the operational efficiency is poor. At this heat treatment temperature, at least a part of the subphase becomes a liquid phase and a part of the main phase is dissolved and reprecipitated. For this reason, crystal grains grow dramatically in the main phase compared to the case where no liquid phase is generated. Also, the heterogeneous phase generated during the rapid solidification of the molten alloy can be easily eliminated if the grain size is not large.

工程Bを行う前における合金中の副相の量は、9mol%以上、27mol%以下が望ましい。副相の量が少ないと、工程Bの熱処理によっても、合金中の異相が消失できないばかりでなく、異方性焼結磁粉を得るのに十分な大きさまで結晶成長させるのが容易ではない。また、副相の量が多いと、主相の比率が低下するため、磁石体としての磁化が低下する。このようにして得られた合金は、水素脆化で単結晶単位に効率よく粉砕可能な希土類磁石用合金として供し得る。   The amount of the subphase in the alloy before performing Step B is desirably 9 mol% or more and 27 mol% or less. If the amount of the subphase is small, not only the heterogeneous phase in the alloy cannot be lost even by the heat treatment in Step B, but it is not easy to grow the crystal to a size sufficient to obtain anisotropic sintered magnetic powder. Moreover, since the ratio of a main phase will fall when there is much quantity of a subphase, the magnetization as a magnet body will fall. The alloy thus obtained can be used as a rare earth magnet alloy that can be efficiently pulverized into single crystal units by hydrogen embrittlement.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

[実施例1]
<工程A>
純度が99.9%以上のY、Sm、Fe、Co、Ti、Cu、Snの原料金属を、溶解時の希土類元素の蒸発を加味して、歩増しで秤量した。これらの原料金属を液体超急冷装置(メルトスピニング装置)の出湯管内で十分に溶解して合金の溶湯を形成した後、15m/sのロール周速度で回転するCu製のロール上に溶湯を出湯した。溶湯は高速で回転するロールの表面に接触して急速に抜熱され、リボン状に延びて凝固した。実施例1及び比較例2は、15m/sで回転するCu製のロール上に溶湯を出湯し、比較例1は40m/sで回転するCu製のロール上に溶湯を出湯した。こうして、表1に記載の組成の超急冷薄帯を作製した。
[Example 1]
<Process A>
Y, Sm, Fe, Co, Ti, Cu, and Sn raw metals having a purity of 99.9% or more were weighed in steps, taking into account the evaporation of rare earth elements during melting. These raw metals are sufficiently melted in a tapping pipe of a liquid ultra-quenching device (melt spinning device) to form a molten alloy, and then the molten metal is tapped onto a Cu roll rotating at a roll peripheral speed of 15 m / s. did. The molten metal contacted the surface of the roll rotating at a high speed and was quickly removed from the heat, and extended into a ribbon shape and solidified. In Example 1 and Comparative Example 2, the molten metal was discharged on a Cu roll rotating at 15 m / s, and in Comparative Example 1, the molten metal was discharged on a Cu roll rotating at 40 m / s. Thus, ultra-quenched ribbons having the compositions shown in Table 1 were produced.

<工程B>
工程Aで作製した超急冷薄帯をNb箔に包含して、Ar流気中で1050℃20分間の熱処理を実施した。
<Process B>
The ultra-quenched ribbon produced in step A was included in the Nb foil, and heat treatment was performed at 1050 ° C. for 20 minutes in an Ar flow.

表1および表2は、合金の組成、SEM−EDX分析で同定した主相の組成、および室温での飽和磁化Ms(T)と磁気異方性磁場Ha(T)とキュリー温度Tc(℃)を示す。ただし、10Tまで磁場印加可能な振動試料型磁力計を使用して、飽和磁化と磁気異方性磁場を評価した。磁粉は等方性であるため、飽和磁化は2乗則の飽和漸近則、また磁気異方性磁場は特異点検出法を使用して同定した。キュリー温度は熱磁気天秤を使用し、磁化の温度変化の変曲点で定義した。   Tables 1 and 2 show the composition of the alloy, the composition of the main phase identified by SEM-EDX analysis, and the saturation magnetization Ms (T), magnetic anisotropy field Ha (T), and Curie temperature Tc (° C.) at room temperature. Indicates. However, the saturation magnetization and the magnetic anisotropic magnetic field were evaluated using a vibrating sample magnetometer capable of applying a magnetic field up to 10T. Since the magnetic powder is isotropic, the saturation magnetization was identified using the square law saturation asymptotic law, and the magnetic anisotropy field was identified using the singular point detection method. The Curie temperature was defined as the inflection point of the temperature change of magnetization using a thermomagnetic balance.

表2に示すように比較例1の主相は高い飽和磁化、磁気異方性磁場が得られている。しかし、上述したようにCuを添加していないため、主相と共存する希土類リッチな相が生成されず、熱処理による主相の結晶成長が困難となる。さらに、主相と副相との間にクラックを生じることができず、単結晶単位に効率よく粉砕することができない。そのため、高配向可能な異方性焼結磁石粉を作製することができない。また、Cuを加えることによって高配向可能な異方性焼結磁石粉を作製することができるが、表2の比較例2に示すように主相の飽和磁化、磁気異方性磁場が低下してしまう。これに対し、本発明の実施例1は、Sn未添加の比較例1と比較して、Snを添加することで主相のCu固溶量が低下し、主相は高い飽和磁化と高い磁気異方性磁場を有することが可能になる。   As shown in Table 2, the main phase of Comparative Example 1 has a high saturation magnetization and a magnetic anisotropic magnetic field. However, since Cu is not added as described above, a rare earth-rich phase that coexists with the main phase is not generated, and crystal growth of the main phase by heat treatment becomes difficult. Furthermore, cracks cannot be generated between the main phase and the subphase, and the single crystal unit cannot be efficiently pulverized. Therefore, it is not possible to produce anisotropically sintered magnet powder that can be highly oriented. Further, by adding Cu, an anisotropic sintered magnet powder that can be highly oriented can be produced. However, as shown in Comparative Example 2 of Table 2, the saturation magnetization and the magnetic anisotropic magnetic field of the main phase are reduced. End up. On the other hand, in Example 1 of the present invention, the amount of Cu solid solution in the main phase is reduced by adding Sn as compared with Comparative Example 1 in which Sn is not added, and the main phase has high saturation magnetization and high magnetic properties. It becomes possible to have an anisotropic magnetic field.

図1は、実施例1の希土類磁石合金について、1050℃20分間の熱処理後における偏光顕微鏡断面組織の観察結果を示している。図2は、実施例1の希土類磁石合金について、1050℃20分間の熱処理後における走査電子顕微鏡(SEM)で得られた反射電子(BSE)像を示している。また、表3は、SEM―EDXによる組成分析結果を示している。   FIG. 1 shows the observation result of the cross-sectional structure of the polarizing microscope after the heat treatment at 1050 ° C. for 20 minutes for the rare earth magnet alloy of Example 1. FIG. 2 shows a backscattered electron (BSE) image obtained by a scanning electron microscope (SEM) after the heat treatment at 1050 ° C. for 20 minutes for the rare earth magnet alloy of Example 1. Table 3 shows the result of composition analysis by SEM-EDX.

この結果から、熱処理により、数百nmオーダの微結晶は10μm以上の粗大な結晶粒に成長することがわかる。また、副相はCu基の1−2相と1−4組成の相とSn基の1−1−1相が含有されていることもわかる。少なくとも上記の3つの副相は、合金全体のY/Sm比よりもSmリッチな組成である。粉末X線回折から、この1−1−1相はNdPtSb型の相であることを確認した。   From this result, it can be seen that by heat treatment, microcrystals on the order of several hundred nm grow into coarse crystal grains of 10 μm or more. Moreover, it turns out that the subphase contains the 1-2 phase of Cu group, the phase of 1-4 composition, and the 1-1-1 phase of Sn group. At least the three subphases described above have a composition richer in Sm than the Y / Sm ratio of the entire alloy. From powder X-ray diffraction, it was confirmed that the 1-1-1 phase was an NdPtSb type phase.

[実施例2から5]
<工程A>
99.9%以上の純度のY、Sm、Fe、Co、Ti、Cu、Snの原料金属を比較例3〜5、実施例2〜5に示す組成となるように溶解時の希土類元素の蒸発を加味して歩増しで秤量した。出湯管内で十分に溶解した後、15m/sで回転するCu製のロール上に溶湯を出湯し、それぞれ超急冷薄帯を作製した。
[Examples 2 to 5]
<Process A>
Evaporation of rare earth elements during melting so that the raw materials of Y, Sm, Fe, Co, Ti, Cu and Sn having a purity of 99.9% or more have the compositions shown in Comparative Examples 3 to 5 and Examples 2 to 5 And weighed in increments. After sufficiently dissolving in the tapping pipe, the molten metal was poured out on a Cu roll rotating at 15 m / s, and ultra-quenched ribbons were respectively produced.

<工程B>
工程Aで作製した超急冷薄帯をNb箔に包含して、Ar流気中で1050℃20分間の熱処理を実施した。
<Process B>
The ultra-quenched ribbon produced in step A was included in the Nb foil, and heat treatment was performed at 1050 ° C. for 20 minutes in an Ar flow.

表4は、熱処理後の主相量、副相量及び合金組成、並びに、熱処理後における主相のCu固有量、並びに、熱処理後の異相の有無を示している。本発明の実施例2〜5はいずれも比較例3〜5比べて主相のCu固有量が少ない。比較例3〜5は主相のCu固溶量が多いために体積磁化や磁気異方性磁場が高くはないことがわかる。実施例2と実施例3を比較すると、いずれも主相のCu固溶量が少なく体積磁化や磁気異方性磁場が大きいが、実施例2はSn基の相がCu基の相の半分以上あるため異相を消失できない。これは、副相量の多い実施例4と実施例5を比較してもわかる。そのため、Sn基の相はCu基の相の半分未満であることが好ましい。   Table 4 shows the amount of the main phase, the amount of the secondary phase and the alloy composition after the heat treatment, the Cu intrinsic amount of the main phase after the heat treatment, and the presence / absence of a different phase after the heat treatment. In each of Examples 2 to 5 of the present invention, the Cu intrinsic amount of the main phase is smaller than those of Comparative Examples 3 to 5. In Comparative Examples 3 to 5, it can be seen that the volume magnetization and the magnetic anisotropic magnetic field are not high because the amount of Cu solid solution in the main phase is large. When Example 2 and Example 3 are compared with each other, the amount of Cu solid solution in the main phase is small and the volume magnetization and magnetic anisotropy field are large. In Example 2, the Sn-based phase is more than half of the Cu-based phase. Therefore, the foreign phase cannot be lost. This can also be seen by comparing Example 4 and Example 5 with a large amount of subphase. Therefore, the Sn group phase is preferably less than half of the Cu group phase.

本開示の希土類磁石用合金は、磁気特性および熱安定性を向上した主相と、希土類リッチな副相とを含むため、異方性焼結磁粉の作製に好適に利用され得る。異方性焼結磁粉は、焼結磁石の作製に好適に用いられ得る。焼結磁石は、各種モータおよびアクチュエータなどに使用され、産業上の様々な用途を持つ。   The rare earth magnet alloy of the present disclosure includes a main phase with improved magnetic properties and thermal stability and a rare earth-rich subphase, and therefore can be suitably used for the production of anisotropic sintered magnetic powder. The anisotropic sintered magnetic powder can be suitably used for producing a sintered magnet. Sintered magnets are used in various motors and actuators and have various industrial applications.

Claims (9)

主相および1種以上の副相を有する希土類磁石用合金であって、合金全体の組成が下記の組成式(1)によって表され、
R(Fe,Co)w-zTizCuα Snβ (1)
Rは希土類元素の少なくとも1種であり、
w、z、およびαは、それぞれ
8≦w≦13、
0.42≦z<0.70、
0.35≦α≦0.82、および
0<β≦0.10
を満足する、希土類磁石用合金。
An alloy for a rare earth magnet having a main phase and one or more subphases, wherein the composition of the entire alloy is represented by the following composition formula (1):
R (Fe, Co) w- z Ti z Cu α Sn β (1)
R is at least one rare earth element,
w, z, and α are respectively 8 ≦ w ≦ 13,
0.42 ≦ z <0.70,
0.35 ≦ α ≦ 0.82, and 0 <β ≦ 0.10
Satisfying rare earth magnet alloys.
前記RはR1およびR2から構成され、
全体の組成が下記の組成式(2)で表わされ、
R11-xR2(Fe1−yCow−zTiCuαSnβ (2)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、
R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、
xおよびyは、それぞれ、
0.5≦x≦1.0、
0≦y≦0.4、
を満足する、請求項1に記載の希土類磁石用合金。
R is composed of R1 and R2,
The overall composition is represented by the following composition formula (2):
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α Sn β (2)
R1 is Y or Y and Gd, Y is 50 mol% or more of the entire R1,
R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, Sm is necessarily included, and Sm is 50 mol% or more of the entire R2,
x and y are respectively
0.5 ≦ x ≦ 1.0,
0 ≦ y ≦ 0.4,
The alloy for rare earth magnets according to claim 1, wherein
前記主相は、ThMn12型の結晶構造を有し、
前記主相の組成は下記の組成式(3)で表わされ、
R11-x’R2x’(Fe1−y’Coy’12−z’−α’Tiz’Cuα’ (3)
x’、y’、z’、およびα’は、それぞれ、
0.5≦x’≦1.0、
0≦y’≦0.4、
0.48≦z’<0.91、および、
0.15≦α’≦0.30を満足する、請求項1または2に記載の希土類磁石用合金。
The main phase has a ThMn 12 type crystal structure,
The composition of the main phase is represented by the following composition formula (3):
R1 1-x ′ R2 x ′ (Fe 1-y ′ Co y ′ ) 12-z′-α ′ Tiz Cu α ′ (3)
x ′, y ′, z ′, and α ′ are respectively
0.5 ≦ x ′ ≦ 1.0,
0 ≦ y ′ ≦ 0.4,
0.48 ≦ z ′ <0.91, and
The alloy for rare earth magnets according to claim 1 or 2, satisfying 0.15≤α'≤0.30.
z’、は、0.48≦z’<0.74
を満足する、請求項3に記載の希土類磁石用合金。
z ′ is 0.48 ≦ z ′ <0.74.
The alloy for rare earth magnets according to claim 3, wherein:
前記主相はThMn12型の結晶構造を有する相であり、
前記副相は主に副相全体の50mol%以上がCu組成の結晶相とSn基の結晶相である、請求項1から4のいずれかに記載の希土類磁石用合金。
The main phase is a phase having a ThMn 12 type crystal structure,
5. The rare earth magnet alloy according to claim 1, wherein the subphase is mainly composed of a Cu-composition crystal phase and a Sn-based crystal phase at 50 mol% or more of the total subphase.
前記副相は、少なくともCu基のKHg型の結晶構造の相またはCu基で希土類元素と3d遷移元素の組成がモル比で1:4の相を含み、かつ、少なくともSn基のNdPtSb型の結晶構造の相を含んでいる、請求項5に記載の希土類磁石用合金。 The subphase includes at least a Cu-based KHg 2 type crystal structure phase or a Cu-based phase in which the composition of a rare earth element and a 3d transition element is 1: 4 in a molar ratio, and at least a Sn-based NdPtSb type. The rare earth magnet alloy according to claim 5, comprising a phase having a crystal structure. KHg型の結晶構造の相が体積比率で前記副相の50%以上である、請求項6に記載の希土類磁石用合金。 The rare earth magnet alloy according to claim 6, wherein the phase of the KHg 2 type crystal structure is 50% or more of the subphase by volume ratio. 前記副相はR原子を含み、副相中に存在するR原子は[R2]/([R1]+[R2])のモル比が合金全体の組成よりも高い、請求項5から7のいずれかに記載の希土類磁石用合金。   The subphase includes R atoms, and the R atoms present in the subphase have a molar ratio [R2] / ([R1] + [R2]) higher than the composition of the entire alloy. The alloy for rare earth magnets according to claim 1. Cu基の副相の組成式比率が、9mol%以上27mol%以下であり、かつSn基の相はCu基の相よりも少ない、請求項5から8のいずれかに記載の希土類磁石用合金。   9. The rare earth magnet alloy according to claim 5, wherein the composition formula ratio of the Cu-based subphase is 9 mol% or more and 27 mol% or less, and the Sn-based phase is smaller than the Cu-based phase.
JP2018054054A 2018-03-22 2018-03-22 Alloys for rare earth magnets Active JP7187791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054054A JP7187791B2 (en) 2018-03-22 2018-03-22 Alloys for rare earth magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054054A JP7187791B2 (en) 2018-03-22 2018-03-22 Alloys for rare earth magnets

Publications (2)

Publication Number Publication Date
JP2019169507A true JP2019169507A (en) 2019-10-03
JP7187791B2 JP7187791B2 (en) 2022-12-13

Family

ID=68107544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054054A Active JP7187791B2 (en) 2018-03-22 2018-03-22 Alloys for rare earth magnets

Country Status (1)

Country Link
JP (1) JP7187791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047628A (en) * 2018-09-14 2020-03-26 株式会社東芝 Magnet material, permanent magnet, rotary electric machine and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713138A (en) * 1980-06-30 1982-01-23 Daido Steel Co Ltd Permanent magent material
JP2010123722A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet, permanent magnet motor using the same, and power generator
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
JP2020502776A (en) * 2017-09-20 2020-01-23 株式会社東芝 Magnet materials, permanent magnets, rotating electric machines, and vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713138A (en) * 1980-06-30 1982-01-23 Daido Steel Co Ltd Permanent magent material
JP2010123722A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet, permanent magnet motor using the same, and power generator
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
JP2020502776A (en) * 2017-09-20 2020-01-23 株式会社東芝 Magnet materials, permanent magnets, rotating electric machines, and vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047628A (en) * 2018-09-14 2020-03-26 株式会社東芝 Magnet material, permanent magnet, rotary electric machine and vehicle
US11404187B2 (en) 2018-09-14 2022-08-02 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electric machine, and vehicle
JP7150537B2 (en) 2018-09-14 2022-10-11 株式会社東芝 Magnetic materials, permanent magnets, rotating electric machines, and vehicles

Also Published As

Publication number Publication date
JP7187791B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
Pei et al. Effects of Ce-substitution on magnetic properties and microstructure of Nd–Pr–Fe–B melt-spun powders
Hirosawa et al. Unusual effects of Ti and C additions on structural and magnetic properties of Nd–Fe–B nanocomposite magnets in a B-rich and Nd-poor composition range
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6238444B2 (en) R-T-B rare earth sintered magnet, R-T-B rare earth sintered magnet alloy and method for producing the same
JP6319808B2 (en) Magnetic compound and method for producing the same
JP7263696B2 (en) Alloys for rare earth magnets
US9190196B2 (en) Rare earth magnet and manufacturing method therefor
CN109427456B (en) Magnetic compound and method for producing same
JP4687662B2 (en) Iron-based rare earth alloy magnet
JP2016184735A (en) Rare earth magnet
JP2008248369A (en) Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
JP7187791B2 (en) Alloys for rare earth magnets
JP7287220B2 (en) Rare earth magnet and manufacturing method thereof
JP5299737B2 (en) Quenched alloy for RTB-based sintered permanent magnet and RTB-based sintered permanent magnet using the same
JP2019167555A (en) Alloy for rare earth magnet
JP2019160946A (en) Rare earth permanent magnet
JP2012164764A (en) Magnetic material and method for manufacturing the same
JP2016184737A (en) Rare earth magnet
JP6541132B2 (en) Magnetic compound, method for producing the same, and magnetic powder
JP7238504B2 (en) Bulk body for rare earth magnet
JP2019040926A (en) Magnetic compound and method for manufacturing the same
JP3773484B2 (en) Nano composite magnet
Tao et al. Magnetic and microstructural properties of Nd7Fe67B22Mo3Zr0. 5Ti0. 5 nanocomposite magnets produced by injection casting
JP2007201102A (en) Iron group rare-earth permanent magnet and manufacturing method therefor
JP2017179396A (en) Manufacturing method of ferromagnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7187791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350