JP2019163624A - 情報処理装置、情報処理方法および表示装置 - Google Patents

情報処理装置、情報処理方法および表示装置 Download PDF

Info

Publication number
JP2019163624A
JP2019163624A JP2018051797A JP2018051797A JP2019163624A JP 2019163624 A JP2019163624 A JP 2019163624A JP 2018051797 A JP2018051797 A JP 2018051797A JP 2018051797 A JP2018051797 A JP 2018051797A JP 2019163624 A JP2019163624 A JP 2019163624A
Authority
JP
Japan
Prior art keywords
characteristic value
unit
state characteristic
display
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018051797A
Other languages
English (en)
Other versions
JP7163601B2 (ja
Inventor
伊藤 泉
Izumi Ito
泉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018051797A priority Critical patent/JP7163601B2/ja
Publication of JP2019163624A publication Critical patent/JP2019163624A/ja
Application granted granted Critical
Publication of JP7163601B2 publication Critical patent/JP7163601B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Road Repair (AREA)

Abstract

【課題】膨大な量の撮像データおよび計測データから、局所的な情報を容易に抽出可能とする。【解決手段】実施形態に係る情報処理装置は、路面の状態の、路面の車両進行方向に従った計測データを取得する取得部と、計測データに基づき、路面の車両進行方向に対する所定の距離単位で路面の状態を示す状態特性値に変換する変換部と、状態特性値に基づく調書を作成する作成部と、状態特性値に基づく画面を表示部に表示させる表示制御部と、を備える。変換部は、計測データに基づき、路面の車両進行方向に対する、規定された第1の距離単位に応じた状態特性値である第1の状態特性値と、第1の距離単位より距離が短い第2の距離単位に応じた状態特性値である第2の状態特性値と、に変換する。【選択図】図14

Description

本発明は、情報処理装置、情報処理方法および表示装置に関する。
舗装道路は、車両の通行や天候などの影響により損傷するため、道路性状を定期的に検査する必要があり、従来から様々な検査方式が提案されている。道路性状の検査項目として、ひび割れの本数、わだち掘れ(道路幅方向の凹凸)の深さ、および、平坦性(車両進行方向の凹凸)の3つの指標が定められている。これらの指標に対し、ひび割れについては、目視またはカメラ画像を用いて計測を行う。また、わだち掘れおよび平坦性については、3次元形状計測データの取得が必要となる。そのため、一般的には、ひび割れ撮像用のカメラ機材と、わだち掘れを計測するための光切断計測機材と、平坦性を計測するための、車両の前後2箇所以上に設置した路面高さセンサと、の3機材を併用して検査を実施する。
特許文献1には、道路を走行しながら路面を繰り返し撮影し、撮影された原画像を繋ぎ合わせて路面画像を記述し、路面画像に基づき道路のクラックの位置や進展形状を特定するようにした技術が開示されている。特許文献1では、路面画像を縮小した縮小路面画像を記述し、この縮小路面画像に対してクラックの位置および進展形状を識別可能に重ね合わせたクラック識別画像を出力可能としている。
従来の構成では、より多くの路線において検査が可能となっている一方で、収集される撮像データおよび計測データが膨大となる。そのため、局所的な損傷情報を抽出する作業に労力を要するという問題点があった。
本発明は、上記に鑑みてなされたものであって、膨大な量の撮像データおよび計測データから、局所的な情報を容易に抽出可能とすることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、路面の状態の、路面の車両進行方向に従った計測データを取得する取得部と、計測データに基づき、路面の車両進行方向に対する所定の距離単位で路面の状態を示す状態特性値に変換する変換部と、状態特性値に基づく調書を作成する作成部と、状態特性値に基づく画面を表示部に表示させる表示制御部と、を備え、変換部は、計測データに基づき、路面の車両進行方向に対する、規定された第1の距離単位に応じた状態特性値である第1の状態特性値と、第1の距離単位より距離が短い第2の距離単位に応じた状態特性値である第2の状態特性値と、に変換する。
本発明によれば、道路性状の検査における3つの指標に係る計測を、簡易な構成で実行可能となるという効果を奏する。
図1は、わだち掘れ量の計測を説明するための図である。 図2は、平坦性の計測を説明するための図である。 図3は、既存の調書の例を示す図である。 図4は、既存の調書の例を示す図である。 図5は、実施形態に係る撮像システムの構成例を示す図である。 図6は、実施形態に適用可能な、ステレオカメラによる、車両の進行方向の撮像範囲を説明するための図である。 図7は、実施形態に適用可能な、ステレオカメラによる、車両の道路幅方向の撮像範囲を説明するための図である。 図8は、実施形態に適用可能な、ステレオカメラによるステレオ撮像範囲の、車両の進行方向における重複を示す図である。 図9は、実施形態に係る、3台のステレオカメラを備える撮像システムの例を示す図である。 図10は、実施形態に係る撮像システムの概略的な構成の例を示すブロック図である。 図11は、実施形態に係る撮像システムのハードウェア構成の例を示すブロック図である。 図12は、実施形態に係るステレオカメラの一例の構成を示すブロック図である。 図13は、実施形態に適用可能な情報処理装置の一例の構成を示すブロック図である。 図14は、実施形態に適用可能な情報処理装置の機能を説明するための一例の機能ブロック図である。 図15は、実施形態に係る平坦性の算出処理を示す一例のフローチャートである。 図16は、実施形態に適用可能なデプスマップの生成処理を示す一例のフローチャートである。 図17は、実施形態に適用可能な三角法を説明するための図である。 図18は、実施形態に適用可能な、カメラ位置および向きの推定処理を示す一例のフローチャートである。 図19は、実施形態に適用可能な、カメラ位置および向きの推定処理を説明するための図である。 図20は、実施形態に係る調書作成処理を示す一例のフローチャートである。 図21は、第1の実施形態に係る、所調書データによる調書の例を示す図である。 図22は、実施形態の第1の変形例に係る調書作成処理を示す一例のフローチャートである。 図23は、実施形態の第1の変形例に係る地図データ出力の例を示す図である。 図24は、実施形態の第2の変形例に係る調書作成処理を示す一例のフローチャートである。 図25は、実施形態の第2の変形例に係る調書データに対する検索処理を示す一例のフローチャートである。 図26は、実施形態の第2の変形例に係る検索結果の表示例を示す図である。 図27は、実施形態の第2の変形例に係る検索結果の表示例を示す図である。
以下に添付図面を参照して、情報処理装置、情報処理方法および表示装置の実施形態を詳細に説明する。
[既存の道路性状の検査方法の概略]
実施形態の説明に先んじて、既存の道路性状の検査方法について、概略的に説明する。道路性状を評価するための指標として、舗装の維持管理指数(MCI:Maintenance Control Index)が定められている。MCIは、舗装の供用性を、「ひび割れ率」、「わだち掘れ量」および「平坦性」という3種類の路面性状値によって定量的に評価するものである。
これらのうち、「ひび割れ率」は、路面を50cmのメッシュに分割した各領域において、ひび割れの本数およびパッチング面積に応じて、下記の通り、ひび割れ面積を算出し、算出結果を式(1)に適用して、ひび割れ率を求める。
ひび割れ1本⇒0.15m2のひび
ひび割れ2本⇒0.25m2のひび
パッチング面積0〜25%⇒ひび割れ0m2
パッチング面積25〜75%⇒ひび割れ0.125m2
パッチング面積75%以上⇒ひび割れ0.25m2
「わだち掘れ量」は、図1(a)および図1(b)に例示されるように、1車線について2本発生する「わだち」の深さD1およびD2を計測し、計測された深さD1およびD2のうち大きい値を採用する。「わだち」の掘れ方には、幾つかのパターンがあるので、それぞれのパターンに合わせた計測方法が規定される。図1(a)は、2本の「わだち」の間が、2本の「わだち」の両端より高い場合、図1(b)は、2本の「わだち」の間が、2本の「わだち」の両端より低い場合の計測方法の例を示している。
平坦性は、路面の車両の進行方向に沿って、基準面からの高さを1.5m間隔で3箇所、計測する。例えば、図2に示されるように、車両の下面に1.5m間隔で3箇所、測定器を設け、高さX1、X2およびX3を計測する。計測された高さX1、X2およびX3に基づき式(2)により変位量dを求める。この計測を、車両を移動させながら複数回実行する。これにより得られた複数の変位量dに基づき式(3)を計算し、平坦性σを算出する。
上述した「ひび割れ率」、「わだち掘れ量」および「平坦性」の計測を、100mの評価区間毎に実行する。損傷箇所が予め分かっている場合は、100mを40m+60mなどより小さい単位に分割して計測を行う場合もある。100m単位で実行された計測結果に基づきMCIを算出し、調書を作成する。
MCIは、計測したひび割れ率C[%]、わだち掘れ量D[mm]、および、平坦性σ[mm」に基づき、表1に示される4つの式を計算して値MCI、MCI1、MCI2およびMCI3を算出する。そして、算出された値MCI、MCI1、MCI2およびMCI3のうち、最小値をMCIとして採用する。採用されたMCIに基づき表2に示す評価基準に従い評価を行い、評価区間の路面に修繕が必要か否かを判定する。
また、計測結果に基づき路面性状調査の調査結果を纏めた調書を作成する。図3および図4は、既存の調書の例を示す図である。図3は、計測距離単位である100m毎に計測値を表示する調書(調書Aとする)の例を示す。図4は、当該計測距離単位である100m毎に、代表位置での画像と共に計測値を表示する調書(調書Bとする)の例を示す。
図3の例では、調書Aは、計測区間の累積距離、計測区間内の施設などの位置および名称、計測区間の起点および終点の座標(緯度、経度)、計測区間の区間距離、点検年月日、点検方法、評価値および算出値の各項目が含まれる。これらのうち、累積距離および区間距離は、例えば100m毎の値が表示される。また、評価値は、それぞれ計測距離単位である100m毎に処理された、ひび割れ率C、わだち掘れ量Dおよび平坦性σが含まれる。この例では、パッチング数も評価値に含まれている。算出値は、計測距離単位である100mにおけるMCI値およびMCI値の算出に用いた式(1=MCI、2=MCI1、3=MCI2、4=MCI3)と、縦断凹凸(IRI:International Roughness Index)とが表示される。
調書Bは、図4に示されるように、計測距離単位である100m毎の、区間(累積距離)、施設等、ひび割れ率C、わだち掘れ量D、平坦性σ、MCI、IRIの各値と、代表位置の画像とが含まれる。
[実施形態]
次に、実施形態に係る撮像システムについて説明する。実施形態では、ステレオ撮像が可能なカメラ(ステレオカメラ)を車両に取り付けて路面を撮像する。撮像されたステレオ撮像画像に基づき撮像位置から路面に対する奥行き情報を取得して路面の3次元形状を生成し、3次元路面データを作成する。この3次元路面データを解析することで、MCIを求めるために用いる「ひび割れ率」、「わだち掘れ量」および「平坦性」を取得することができる。
より具体的に説明する。ステレオカメラは、所定の長さ(基線長と呼ぶ)を離して設けられた2つのカメラを備え、この2つのカメラで撮像された2枚ペアの撮像画像(ステレオ撮像画像と呼ぶ)を出力する。このステレオ撮像画像に含まれる2枚の撮像画像間で対応する点を探索することで、撮像画像中の任意の点について、奥行き距離を復元することができる。撮像画像の全域について奥行きを復元し、各画素を奥行き情報により表したデータを、デプスマップと呼ぶ。すなわち、デプスマップは、それぞれ3次元の情報を持つ点の集合からなる3次元点群情報である。
このステレオカメラを車両の後方など1箇所に下向きに取り付け地面を撮像できるようにし、計測したい道路に沿って車両を移動させる。説明のため、測定のために車両に搭載するステレオカメラは、撮像範囲が、道路幅方向の規定の長さをカバーしているとする。
わだち掘れ量Dは、このステレオカメラにより撮像されたステレオ撮像画像から復元されたデプスマップ中の道路幅方向にストライプ状に切り取った部分の奥行き値を並べる。この奥行きの道路幅方向の変化に基づき、わだち掘れ深さD1およびD2を計算することができる。
ひび割れ率Cは、路面を撮像した撮像画像を解析して「ひび」などを検出し、検出結果に基づき上述した式(1)による計算を行うことで取得する。
ここで、車両の進行方向では、1回の撮像による撮像範囲が限定されるため、例えば100m区間のひび割れ率Cを1回の撮像による撮像画像に基づき計算することができない。そこで、車両を道路に従い移動させながら、撮像範囲の車両の進行方向の長さに応じた移動毎に順次、撮像を行う。このとき、前回の撮像における撮像範囲と、今回の撮像における撮像範囲とが、予め設計された重複率以上で重複するように、撮像のトリガを制御する。
このように、車両の移動に応じて撮像のトリガを制御することで、計測したい道路の路面を漏れなく撮像できる。そのため、車両の進行に応じて順次撮像された撮像画像をスティッチングと呼ばれる画像処理などを用いて繋ぎ合わせて、例えば100m区間の路面の画像を含む1枚の画像を生成する。この画像を目視確認あるいは解析することで、道路面上のひび割れ率Cを計測できる。
平坦性の測定は、Structure from Motion(以下、SfM)と呼ばれる、異なる撮像地点の画像から十分に重複して撮像された画像に基づき、その撮像位置を推定する技術を使う。
SfMの処理の概要について説明する。まず、撮像範囲を重複して撮像された画像を用い、それぞれの画像中で同一地点を撮像した点を対応点として検出する。対応点は、可能な限り多数を検出することが望ましい。次に、例えば1枚目の画像の撮像地点から、2枚目の画像の撮像地点へのカメラの移動を、回転と並進を未知パラメータとして、検出した対応点の座標を用いた連立方程式を立て、最もトータルの誤差が小さくなるようなパラメータを求める。このようにして、2枚目の画像の撮像位置を算出できる。
上述したように、それぞれの撮像地点におけるステレオ撮像画像から、画像中の任意の点の奥行きがデプスマップとして復元できている。1枚目のステレオ撮像画像に対応するデプスマップに対して、2枚目のステレオ撮像画像に対応するデプスマップを、上述の連立方程式により求めた2枚目のカメラの撮像位置を原点としたデプスマップに座標変換する。これにより、2枚のデプスマップを、1枚目のデプスマップの座標系に統一することができる。換言すれば、2枚のデプスマップを合成して1枚のデプスマップを生成できる。
この処理を、例えば計測距離単位である100m区間において撮像した全てのステレオ撮像画像に基づくデプスマップについて行い合成することで、1つの3次元空間中に、100m区間の道路面が復元される。このようにして復元された道路面の奥行き値を上述の式(2)に適用することで、変位量dを算出できる。この変位量dを上述の式(3)に適用して、平坦性σを算出する。
実施形態では、車両に搭載したステレオカメラによる撮像と、撮像されたステレオ撮像画像に対する画像処理を行うことによって、MCIを求めるための、道路面の平坦性σ、わだち掘れ量D、および、ひび割れ率Cを、纏めて計測することができる。実施形態では、この計測を、ステレオカメラとステレオ撮像画像に対する画像処理を行う情報処理装置とからなる撮像システムを用いて実施可能であり、MCIを簡易な構成により求めることが可能となる。
また、既存技術では、MCIを求めるための3つの指標に係る計測を、それぞれ別個の装置にて実行するため、データの保存や、データ同士の時刻同期などの制御と管理が煩雑になっていた。これに対して、実施形態では、MCIを求めるための3つの指標を共通のステレオ撮像画像に基づき算出するため、データの保存や、データ同士の時刻同期などの制御や管理が容易となる。
[実施形態に適用可能なカメラ配置]
次に、実施形態に適用可能なカメラ配置の例について説明する。図5は、実施形態に係る撮像システムの構成例を示す図である。図5(a)は、実施形態に係る撮像システムが車両1に搭載される様子を車両1の側面から示した図である。図5(a)において、図の左端に向けた方向が、車両1の進行方向とする。すなわち、図5(a)において、車両1の左端側が車両1の前部であり、右端側が車両1の後部である。図5(b)は、当該車両1を後部側から見た例を示す図である。
実施形態に係る撮像システムは、当該撮像システムを搭載する移動体としての車両1の車体後部に撮像装置取付用の取付部2を備える取付部材3を固定し、取付部2に1以上のステレオカメラ6を取り付ける。ここでは、図5(b)に例示されるように、車両1の車体の幅方向の両端側に、2台のステレオカメラ6Lおよび6Rが取り付けられるものとする。各ステレオカメラ6Lおよび6Rは、車両1が移動する路面4を撮像する向きに取り付けられる。好ましくは、各ステレオカメラ6Lおよび6Rは、路面4を垂直方向から撮像するように取り付けられる。
以降、ステレオカメラ6Lおよび6Rを区別する必要の無い場合には、ステレオカメラ6Lおよび6Rをステレオカメラ6として纏めて記述する。
ステレオカメラ6は、例えば車両1の内部に設置された、例えばパーソナルコンピュータ(PC)5により制御される。作業者はPC5を操作し、ステレオカメラ6による撮像開始を指示する。撮像開始が指示されると、PC5は、ステレオカメラ6による撮像を開始する。撮像は、ステレオカメラ6すなわち車両1の移動速度に応じてタイミング制御され、繰り返し実行される。
作業者は、例えば必要な区間の撮像の終了に応じてPC5を操作し撮像終了を指示する。PC5は、撮像終了の指示に応じて、ステレオカメラ6による撮像を終了させる。
図6および図7は、実施形態に適用可能な、ステレオカメラ6の撮像範囲の例を示す図である。なお、図6および図7において、上述した図5と共通する部分には同一の符号を付して、詳細な説明を省略する。
図6は、実施形態に適用可能な、ステレオカメラ6による、車両1の進行方向の撮像範囲(進行方向視野Vpとする)を説明するための図である。なお、図6は、上述の図1と同様に、図の左端に向けた方向を、車両1の進行方向としている。進行方向視野Vpは、図6に示されるように、ステレオカメラ6の画角αと、ステレオカメラ6の路面4に対する高さhとに従い決定される。
図7は、実施形態に適用可能な、ステレオカメラ6による、車両1の道路幅方向の撮像範囲を説明するための図である。図7は、車両1を後部側から見た図であり、図5(b)と共通する部分には同一の符号を付して、詳細な説明を省略する。
図7(a)において、ステレオカメラ6Lは、2つの撮像レンズ6LLおよび6LRを備える。撮像レンズ6LLおよび6LRを結ぶ線を基線、その長さを基線長と呼び、ステレオカメラ6Lは、基線が車両1の進行方向に対して垂直になるように配置される。ステレオカメラ6Rも同様に、基線長だけ離れた2つの撮像レンズ6RLおよび6RRを備え、基線が車両1の進行方向に対して垂直になるように配置される。
図7(b)は、実施形態に適用可能な、ステレオカメラ6Lおよび6Rの撮像範囲の例を示す。ステレオカメラ6Lにおいて、撮像レンズ6LLおよび6LRそれぞれの撮像範囲60LLおよび60LRは、基線長および高さhに応じてずれて重ねられる。ステレオカメラ6Rについても同様に、撮像レンズ6RLおよび6RRそれぞれによる、撮像範囲60RLおよび60RRは、基線長および高さhに応じてずれて重ねられる。
以下、特に記載の無い限り、これら撮像範囲60LLおよび60LR、ならびに、撮像範囲60RLおよび60RRを、それぞれ纏めてステレオ撮像範囲60Lおよび60Rと呼ぶ。ステレオカメラ6Lおよび6Rは、図7(b)に示されるように、ステレオ撮像範囲60Lおよび60Rが、ステレオ撮像範囲60Lの車両1の幅方向の一端と、ステレオ撮像範囲60Rの当該幅方向の他端とが、領域61において所定の重複率で重複するように、配置される。
図8は、実施形態に適用可能な、ステレオカメラ6Lによるステレオ撮像範囲60Lの、車両1の進行方向における重複を示す図である。なお、図8において、左カメラ視野VLおよび右カメラ視野VRは、それぞれステレオカメラ6Lにおける撮像レンズ6LLおよび6LRの視野(撮像範囲)を示している。移動中の車両1において、ステレオカメラ6Lにより2回の撮像を行ったものとする。ステレオカメラ6Lは、1回目は、ステレオ撮像範囲60L(撮像範囲60LLおよび60LR)の撮像を行い、2回目は、ステレオ撮像範囲60Lに対して、車両1の進行方向に、車両1の移動距離に応じた距離だけ移動したステレオ撮像範囲60L’(撮像範囲60LL’および60LR’)の撮像を行う。
このとき、ステレオ撮像範囲60Lとステレオ撮像範囲60L’とが、進行方向視野Vpに対して予め定められた進行方向重複率Dr以上の重複率で重複するように、ステレオカメラ6Lの撮像タイミングを制御する。このように、時間軸に沿ってステレオ撮像範囲60Lおよび60L’を順次撮像することで、ステレオ撮像範囲60Lおよび60L’を撮像した2枚のステレオ撮像画像を繋ぎ合わせる処理を容易とすることができる。
なお、上述では、実施形態に係る撮像システムが2台のステレオカメラ6Lおよび6Rを用いるものとして説明したが、これはこの例に限定されない。例えば、実施形態に係る撮像システムは、図9(a)に示されるように、ステレオカメラ6Lおよび6Rに対してさらに1台のステレオカメラ6Cを加え、3台のステレオカメラ6L、6Rおよび6Cを用いて構成してもよい。
図9(a)の例では、ステレオカメラ6Lおよび6Rの間隔が、ステレオカメラ6Lおよび6Rのみを用いる場合に比べて広げられ、その中央部にステレオカメラ6Cが配置されている。図9(b)に示されるように、ステレオカメラ6Cの撮像レンズ6CLおよび6CRによる撮像範囲60CLおよび60CRにより、ステレオ撮像範囲60Cが構成される。ステレオカメラ6L、6Cおよび6Rは、それぞれによる各ステレオ撮像範囲60L、60Cおよび60Rが車両1の幅方向に所定の重複率で以て重複するように配置される。
このように、1車線を撮像するために、3台のステレオカメラ6L、6Cおよび6Rを用いることで、車線の右側、中央および左側にそれぞれ撮像範囲を設定して撮像が可能となり、高画質(高解像)なステレオ撮像画像を、少ない台数のステレオカメラで撮像可能となる。ここで、特に道路幅は、一般的には、3.5mと規定されている。そこで、この道路幅の3.5mに対応して、ステレオカメラ6Lおよび6Rにより車線の道路幅方向の両端を撮像し、ステレオカメラ6Cにより中央部を撮像することが考えられる。
なお、撮像範囲がこの規定される道路幅(3.5m)をカバー可能な画角を有するステレオカメラを1台のみ用いて、撮像システムを構成してもよい。
[実施形態に係る撮像システムの構成]
次に、実施形態に係る撮像システムの構成について説明する。以下では、撮像システムが2台のステレオカメラを備えるものとして説明を行う。
図10は、実施形態に係る撮像システムの概略的な構成の例を示すブロック図である。図10において、撮像システム10は、撮像部1001および1002と、撮像制御部101と、情報処理部102と、計測データ記憶部103と、表示制御部104と、ユーザ入力部105と、表示部106と、を含む。計測データ記憶部103は、例えばストレージ5004の所定の記憶領域を適用することができる。
撮像部1001および1002は、それぞれ上述したステレオカメラ6Lおよび6Rに対応する。撮像制御部101は、撮像部1001および1002の撮像タイミング、露光、シャッタ速度などの撮像動作を制御する。情報処理部102は、撮像制御部101から出力された各ステレオ撮像画像に基づき、路面4の3次元情報からなる3次元路面データを生成する。情報処理部102は、生成した3次元路面データを計測データ記憶部103に記憶する。
また、情報処理部102は、計測データ記憶部103に記憶した3次元路面データに基づき、例えばひび割れ率C、わだち掘れ量Dおよび平坦性σの各指標を算出し、算出した各指標を用いてMCIを求める。このとき、情報処理部102は、既存の100mの距離計測単位(規定単位と呼ぶ)毎に各指標およびMCIを求めると共に、100mよりも短い単位(短単位と呼ぶ)で、規定単位内で局所的に各指標およびMCIを求める。短単位は、1m、5m、10m、20mなどであり、距離単位が100m未満であれば、適宜、設定することができる。情報処理部102は、複数の短単位それぞれにより各指標およびMCIを求めることができる。情報処理部102は、こうして求めた規定単位毎の各指標およびMCIと、短単位毎の各指標およびMCIと、を計測データ記憶部103に記憶することができる。
なお、短単位の最短の長さは、1mとすることが好ましい。これは、ポットホールや、マンホールなど構造物周囲の「ヘアクラック」など、1m程度の範囲で発生する損傷が存在するためである。短単位を最短1mから設定できるようにすることで、これら損傷を問題無く把握することが可能となる。
また、情報処理部102は、これら各指標およびMCIに基づき調書を作成する。作成した調書は、計測データ記憶部103に記憶される。情報処理部102は、規定単位毎の各指標およびMCIに基づく調書(以下、規定調書と呼ぶ)と、短単位毎の各指標およびMCIに基づく調書(以下、局所調書と呼ぶ)と、を作成することができる。
ユーザ入力部105は、例えばキーボード、マウス、タブレット、タッチパネルといった入力デバイスに対してなされるユーザ入力を受け付ける。表示部106は、LCD(Liquid Crystal Display)などの表示デバイスと、表示デバイスを駆動する駆動回路とを含み、表示デバイスに対して表示制御信号に応じた画面を表示させる。表示制御部104は、ユーザ入力部105に対するユーザ入力に応じて表示制御信号を生成し、生成した表示制御信号を表示部106に供給する。例えば、表示制御部104は、ユーザ入力に応じて、計測データ記憶部103から調書を読み出し、表示部106に表示させることができる。
図11は、実施形態に係る撮像システム10のハードウェア構成の例を示すブロック図である。図11において、撮像システム10は、ステレオカメラ6Lおよび6Rと、図5のPC5に対応する情報処理装置50と、入力装置51と、表示装置52と、を含む。
情報処理装置50は、所定のタイミングでトリガを生成し、生成したトリガをステレオカメラ6Lおよび6Rに送る。ステレオカメラ6Lおよび6Rは、このトリガに応じて撮像を行う。ステレオカメラ6Lおよび6Rにより撮像された各ステレオ撮像画像は、情報処理装置50に供給される。情報処理装置50は、ステレオカメラ6Lおよび6Rから供給された各ステレオ撮像画像をストレージなどに記憶、蓄積する。情報処理装置50は、蓄積したステレオ撮像画像に基づき、デプスマップの生成、生成したデプスマップの繋ぎ合わせ、などの画像処理を実行し、3次元路面データを生成する。
また、情報処理装置50は、生成した3次元路面データに基づき、ひび割れ率C、わだち掘れ量D、平坦性σといった路面性状を示す各指標を、規定単位毎および短単位毎に算出する。情報処理装置50は、算出された各指標から、規定単位毎のMCIと、短単位毎のMCIと、を求める。
入力装置51は、例えばキーボード、マウス、タブレットといった入力デバイスである。表示装置52は、LCDなどの表示デバイスとその駆動回路とを含む。情報処理装置50は、入力装置51に対するユーザ入力に応じて、各指標やMCIの算出を行い、表示装置52に対して調書を表示させる。また、情報処理装置50は、調書を所定のデータ形式で出力することもできる。
図12は、実施形態に係るステレオカメラ6Lの一例の構成を示すブロック図である。なお、ステレオカメラ6Rは、このステレオカメラ6Lと同様の個性にて実現可能であるので、ここでの説明を省略する。
図12において、ステレオカメラ6Lは、撮像光学系600Lおよび600Rと、撮像素子601Lおよび601Rと、駆動部602Lおよび602Rと、信号処理部603Lおよび603Rと、出力部604と、を含む。これらのうち、撮像光学系600L、撮像素子601L、駆動部602L、および、信号処理部603Lは、上述した撮像レンズ6LLに対応する構成である。同様に、撮像光学系600R、撮像素子601R、駆動部602R、および、信号処理部603Rは、上述した撮像レンズ6LRに対応する構成である。
撮像光学系600Lは、画角α、焦点距離fを有する光学系であって、被写体からの光を撮像素子601Lに投射する。例えばCMOS(Complementary Metal Oxide Semiconductor)を用いた光センサであって、投射された光に応じた信号を出力する。なお、撮像素子601Lに、CCD(Charge Coupled Device)による光センサを適用してもよい。駆動部602Lは、撮像素子601Lを駆動し、撮像素子601Lから出力された信号に対してノイズ除去、ゲイン調整などの所定の処理を施して出力する。信号処理部603Lは、駆動部602Lから出力された信号に対してA/D変換を施して、当該信号をディジタル方式の画像信号(撮像画像)に変換する。信号処理部603Lは、変換した画像信号に対してガンマ補正など所定の画像処理を施して出力する。信号処理部603Lから出力された撮像画像は、出力部604に供給される。
撮像光学系600R、撮像素子601R、駆動部602R、および、信号処理部603Rの動作は、上述の撮像光学系600L、撮像素子601L、駆動部602L、および、信号処理部603Lと同様なので、ここでの説明を省略する。
駆動部602Lおよび602Rは、例えば情報処理装置50から出力されたトリガが供給される。駆動部602Lおよび602Rは、このトリガに従い、撮像素子601Lおよび601Rから信号を取り込み、撮像を行う。
ここで、駆動部602Lおよび602Rは、撮像素子601Lおよび601Rにおける露光を、一括同時露光方式により行う。この方式は、グローバルシャッタと呼ばれる。これに対して、ローリングシャッタは、画素位置の上から順番(ライン順)に光を取り込んでいく方式であるため、フレーム中の各ラインは、厳密に同じ時刻の被写体を写したものではない。ローリングシャッタ方式の場合、1フレームの撮像信号を取り込んでいる間にカメラもしくは被写体が高速に動いてしまうと、被写体の像がライン位置に応じてずれて撮像されてしまう。そのため、実施形態に係るステレオカメラ6Lおよび6Rでは、グローバルシャッタを用いて、投影幾何的に正しく道路形状が撮像されるようにする。
出力部604は、信号処理部603Lおよび603Rから供給された各フレームの撮像画像を、1組のステレオ撮像画像として出力する。出力部604から出力されたステレオ撮像画像は、情報処理装置50に送られ、蓄積される。
図13は、実施形態に適用可能な情報処理装置50の一例の構成を示すブロック図である。図13において、情報処理装置50は、それぞれバス5030に接続されたCPU(Central Processing Unit)5000と、ROM(Read Only Memory)5001と、RAM(Random Access Memory)5002と、グラフィクスI/F(インタフェース)5003と、ストレージ5004と、入力デバイス5005と、データI/F5006と、通信I/F5007と、を備える。さらに、情報処理装置50は、それぞれバス5030に接続されたカメラI/F5010と、GNSS部5021と、を備える。
ストレージ5004は、データを不揮発に記憶する記憶媒体であって、ハードディスクドライブやフラッシュメモリを適用できる。ストレージ5004は、CPU5000が動作するためのプログラムやデータが記憶される。
CPU5000は、例えば、ROM5001やストレージ5004に予め記憶されたプログラムに従い、RAM5002をワークメモリとして用い、この情報処理装置50の全体の動作を制御する。グラフィクスI/F5003は、CPU5000によりプログラムに従い生成された表示制御信号に基づき、ディスプレイ5020が対応可能な表示信号を生成する。ディスプレイ5020は、グラフィクスI/F5003から供給された表示信号に応じた画面を表示する。
入力デバイス5005は、ユーザ操作を受け付け、受け付けたユーザ操作に応じた制御信号を出力する。入力デバイス5005としては、マウスやタブレットといったポインティングデバイスや、キーボードを適用できる。また、入力デバイス5005とディスプレイ5020とを一体的に形成し、所謂タッチパネル構成としてもよい。
データI/F5006は、外部の機器との間でデータの送受信を行う。データI/F5006としては、例えばUSB(Universal Serial Bus)を適用可能である。通信I/F5007は、CPU5000の指示に従い、外部のネットワークに対する通信を制御する。
カメラI/F5010は、各ステレオカメラ6Lおよび6Rに対するインタフェースである。各ステレオカメラ6Lおよび6Rから出力された各ステレオ撮像画像は、カメラI/F5010を介して、例えばCPU5000に渡される。また、カメラI/F5010は、CPU5000の指示に従い上述したトリガを生成し、生成したトリガを各ステレオカメラ6Lおよび6Rに送る。
GNSS部5021は、(Global Navigation Satellite System)の信号を受信し、位置情報および速度情報を取得する。GNSS部5021は、受信したGNSSによる信号のドップラー効果に基づき車両1の速度を示す速度情報を取得する。なお、速度情報は、車両1から直接的に取得することもできる。車両1に各ステレオカメラ6Lおよび6Rが取り付けられている場合、GNSS部5021が取得する速度情報は、各ステレオカメラ6Lおよび6Rの、被写体(路面)に対する速度を示す。
図14は、第1の実施形態に適用可能な情報処理装置50の機能を説明するための一例の機能ブロック図である。図14において、情報処理装置50は、撮像画像取得部500と、UI部501と、制御部502と、撮像制御部503と、位置情報取得部504と、を含む。情報処理装置50は、さらに、マッチング処理部510と、3D情報生成部511と、3D情報取得部520と、状態特性値算出部521と、調書処理部522と、表示情報生成部523と、を含む。
これら撮像画像取得部500、UI部501、制御部502、撮像制御部503、位置情報取得部504、マッチング処理部510、3D情報生成部511、3D情報取得部520、状態特性値算出部521、調書処理部522および表示情報生成部523は、CPU5000上で動作するプログラムにより実現される。これに限らず、これら撮像画像取得部500、UI部501、制御部502、撮像制御部503、位置情報取得部504、マッチング処理部510、3D情報生成部511、3D情報取得部520、状態特性値算出部521、調書処理部522および表示情報生成部523の一部または全部を、互いに協働して動作するハードウェア回路により構成してもよい。
位置情報取得部504は、GNSS部5021から現在位置を示す位置情報を取得する。位置情報は、例えば緯度および経度の情報として取得される。撮像画像取得部500は、各ステレオカメラ6Lおよび6Rから、ステレオ撮像画像を取得する。また、撮像画像取得部500は、ステレオ撮像画像の取得の際に、位置情報取得部504により現在位置を示す位置情報を取得し、取得した位置情報を、当該ステレオ撮像画像と関連付ける。撮像画像取得部500は、取得したステレオ撮像画像および位置情報を、例えばストレージ5004に記憶する。また、撮像画像取得部500は、例えばストレージ5004から、記憶されたステレオ撮像画像および位置情報を取得する。
UI部501は、入力デバイス5005やディスプレイ5020に対する表示によるユーザインタフェースを実現する。制御部502は、この情報処理装置50全体の動作を制御する。
撮像制御部503は、上述した撮像制御部101に対応する。すなわち、撮像制御部503は、各ステレオカメラ6Lおよび6Rの被写体(路面4)に対する速度を示す速度情報を取得し、取得した速度情報と、予め設定される各ステレオカメラ6Lおよび6Rの画角α、高さhと、に基づき、各ステレオカメラ6Lおよび6Rの撮像を指示するためのトリガを生成する。
マッチング処理部510は、撮像画像取得部500により取得されたステレオ撮像画像を構成する2枚の撮像画像を用いてマッチング処理を行う。3D情報生成部511は、3次元情報に係る処理を行う。例えば、3D情報生成部511は、マッチング処理部510によるマッチング処理の結果を用いて三角法などにより深度情報を求め、求めた深度情報に基づき3次元点群情報を生成する。また、3D情報生成部511は、車両1の進行方向に向けて重複部分を持たせながら順次撮像されたステレオ撮像画像に基づき生成された3次元点群情報から、3次元路面情報を生成する。
3D情報取得部520は、3D情報生成部511によりステレオ撮像画像毎に求めた3次元点群情報を取得する。状態特性値算出部521は、3D情報取得部520により取得された各3次元点群情報と、撮像画像取得部500により取得された各ステレオ撮像画像とを用いて、MCIを求めるための各指標としての、ひび割れ率C、わだち掘れ量Dおよび平坦性σの各状態特性値を算出する。すなわち、状態特性値算出部521は、路面を計測した計測データである各3次元点群情報と、各ステレオ撮像画像とを、各状態特性値に変換する変換部であるといえる。また、このとき、状態特性値算出部521は、当該ステレオ撮像画像に関連付けられた位置情報も取得する。状態特性値算出部521は、算出した各状態特性値と、取得した位置情報とを関連付けて、計測データ記憶部103(ストレージ5004)に記憶する。
調書処理部522は、調書に関する処理を行う。例えば、調書処理部522は、状態特性値算出部521により算出された各状態特性値に基づきMCIを求め、位置情報を含めて調書データを作成する。調書処理部522は、上述した規定単位毎に処理した規定調書データや、短単位毎に処理した局所調書データを作成し、例えば計測データ記憶部103に記憶する。また、調書処理部522は、ユーザ指示に応じて、規定調書データや局所調書データに対する検索を行い、検索結果を出力する。
表示情報生成部523は、例えばユーザ入力に応じたUI部501からの指示に従い、調書処理部522により出力された調書を表示する表示情報を生成する。また、表示情報生成部523は、ユーザ入力に応じたUI部501からの指示に従い、状態特性値算出部521により算出された各状態特性値に基づく画面を表示させる表示情報を生成する。
情報処理装置50における実施形態に係る各機能を実現するためのプログラムは、インストール可能な形式または実行可能な形式のファイルでCD(Compact Disk)、フレキシブルディスク(FD)、DVD(Digital Versatile Disk)などのコンピュータで読み取り可能な記録媒体に記録して提供される。これに限らず、当該プログラムを、インターネットなどのネットワークに接続されたコンピュータ上に格納し、当該ネットワークを介してダウンロードさせることにより提供してもよい。また、当該プログラムをインターネットなどのネットワークを経由して提供または配布するように構成してもよい。
当該プログラムは、撮像画像取得部500、UI部501、制御部502、撮像制御部503、マッチング処理部510、3D情報生成部511、3D情報取得部520、状態特性値算出部521、調書処理部522および表示情報生成部523を含むモジュール構成となっている。実際のハードウェアとしては、CPU5000がストレージ5004などの記憶媒体から当該プログラムを読み出して実行することにより、上述した各部がRAM5002などの主記憶装置上にロードされ、撮像画像取得部500、UI部501、制御部502、撮像制御部503、マッチング処理部510、3D情報生成部511、3D情報取得部520、状態特性値算出部521、調書処理部522および表示情報生成部523が主記憶装置上に生成されるようになっている。
[実施形態に係るトリガ生成方法]
次に、実施形態に係る、各ステレオカメラ6Lおよび6Rに対して撮像を指示するためのトリガの生成方法について、より詳細に説明する。実施形態において、撮像処理部101は、ステレオカメラ6Lおよび6Rの被測定物(路面4)に対するステレオ撮像範囲の、車両1の速度の方向の距離を、車両1が速度情報が示す速度で移動する時間に対して、当該時間より短い所定時間以下の時間間隔でトリガを生成する。
すなわち、トリガは、ステレオカメラ6Lおよび6Rにおける路面4の撮影範囲が、車両1の進行方向に所定の重複率(進行方向重複率Dr)を保つように発生させる必要がある。これは、後述するように、各ステレオ撮像画像から撮像位置を算出する処理において、安定的に精度の高いカメラ位置を算出するため、十分な対応点を検出できるようにすることが目的である。進行方向重複率Drの下限値は、例えば実験的に「60%」のように決定される。
実施形態において、トリガの生成方法は、下記の3通りの方法を適用できる。
(1)一定時間間隔で生成する方法(第1の生成方法)
(2)カメラの移動速度を検出して生成する方法(第2の生成方法)
(3)撮像画像を用いて移動距離を算出して生成する方法(第3の生成方法)
(第1の生成方法)
先ず、トリガの第1の生成方法について説明する。第1の生成方法においては、撮像中の車両1の最高速度Speedと、撮像範囲の大きさ(撮像範囲の車両1の進行方向の長さ)と、からトリガの時間間隔を決める。撮像制御部101は、車両1におけるシステム設定値や、情報処理装置50に対するユーザ入力により、車両1の最高速度Speedを予め取得しておく。撮像制御部503は、トリガの時間間隔を、取得した最高速度Speedと、進行方向視野Vpおよび進行方向重複率Drと、を用いて、下記の式(4)により算出する。なお、進行方向重複率Drは、上述した下限値が適用される。
式(4)により、1秒間に生成すべきトリガ数fpsが算出される。トリガ数fpsの逆数が、生成すべき次のトリガまでの時間間隔となる。
進行方向視野Vpは、模式的には、図6を用いて説明したように、各ステレオカメラ6Lおよび6Rの路面4からの高さhと、各ステレオカメラ6Lおよび6Rの画角αと、に基づき設定できる。実際は、さらに、各ステレオカメラ6Lおよび6Rの路面4に対する角度なども考慮して、進行方向視野Vpを設定する。
ここで、移動中の車両1が右もしくは左にカーブした際には、ステレオカメラ6Lおよび6Rのうち外側にあるカメラの移動量が大きくなる。そのため、車両1の最高速度Speedをそのまま使うのではなく、外側カメラの位置に基づく回転移動の速度を使うと、より好ましい。
撮像制御部503は、生成したトリガに応じて撮像されたステレオ撮像画像を、全て例えばストレージ5004やRAM5002に記憶し、蓄積する。
(第2の生成方法)
次に、トリガの第2の生成方法について説明する。上述した第1の方法は、シンプルである一方、車両1が停止している状態や、所定の速度よりも低速で移動している状態では、最高速度Speedに対して過剰に細かい間隔で撮像することになり、蓄積されるステレオ撮像画像の量が大きくなってしまう。第2の生成方法では、撮像制御部503は、カメラの移動速度を検出し、検出された移動速度に応じてトリガを生成する。
撮像制御部503は、例えばGNSS部5021により取得された速度情報が示す現在の車両1の速度を、式(4)の最高速度Speedとして用いて、次のトリガまでの時間間隔を算出し、撮像を行う。第2の生成方法によれば、車両1の移動速度が小さいほど、トリガ生成の時間間隔が長くなり、無駄な撮像が行われることが抑制される。
撮像制御部503は、生成したトリガに応じて撮像されたステレオ撮像画像を、全て例えばストレージ5004やRAM5002に記憶し、蓄積する。
なお、この第2の生成方法と、上述した第1の生成方法は、組み合わせて実施することが可能である。
(第3の生成方法)
次に、トリガの第3の生成方法について説明する。第3の生成方法では、上述した第1の生成方法と同様に、車両1の最高速度Speedに基づいた一定時間間隔でトリガを生成する。ここで、第3の生成方法においては、トリガに応じて撮像されたステレオ撮像画像を、全て蓄積するのではなく、進行方向重複率Drが予め設定された値を下回った場合にのみ蓄積する。
後述するが、車両1の進行方向に重複するように撮像されたステレオ撮像画像のみを用いて、カメラ(車両1)の移動距離を算出することが可能である。
撮像制御部503は、最後に蓄積されたステレオ撮像画像と、直前に撮像されたステレオ撮像画像とを用いてカメラの移動距離を算出する。撮像制御部503は、算出した距離が、進行方向重複率Drの下限値に対応した移動距離を超えたか否かを判定する。撮像制御部503は、超えたと判定した場合には、直前に撮像されたステレオ撮像画像を蓄積する。一方、撮像制御部503は、超えていないと判定した場合は、直前に撮像したステレオ撮像画像を破棄する。
これにより、車両1の現在速度を計測するためのセンサを用いずとも、移動速度が小さいときには無駄な画像蓄積が行われないことになる。
[実施形態に係る路面性状値の算出方法]
次に、実施形態に係る路面性状値の算出方法について説明する。以下では、実施形態に係る平坦性σ、わだち掘れ量Dおよびひび割れ率Cの計測方法について説明する。
(平坦性)
図15は、実施形態に係る平坦性の算出処理を示す一例のフローチャートである。ステップS100で、撮像画像取得部500により、ステレオカメラ6Lおよび6Rにより撮像され、例えばストレージ5004に記憶されたステレオ撮像画像が取得される。ステレオ撮像画像が取得されると、処理は、並列して処理が可能なステップS101aおよびステップS101bに移行する。
ステップS101aでは、ステップS100で取得されたステレオ撮像画像に基づきデプスマップが生成される。図16および図17を用いて、実施形態に適用可能なデプスマップの生成処理について説明する。図16は、実施形態に適用可能なデプスマップの生成処理を示す一例のフローチャートである。
ステップS120で、マッチング処理部510は、撮像画像取得部500からステレオ撮像画像を取得する。次のステップS121で、マッチング処理部510は、取得したステレオ撮像画像を構成する2枚の撮像画像に基づきマッチング処理を行う。次のステップS122で、3D情報生成部511は、ステップS121のマッチング処理結果に基づき深度情報を計算し、3次元点群情報であるデプスマップを生成する。
ステップS121およびステップS122の処理について、より具体的に説明する。実施形態では、ステレオ撮像画像を構成する2枚の撮像画像を用いて、ステレオ法により深度情報を計算する。ここでいうステレオ法は、2つのカメラにより異なる視点から撮像された2枚の撮像画像を用い、一方の撮像画像のある画素(参照画素)に対して、他方の撮像画像内における対応する画素(対応画素)を求め、参照画素と対応画素とに基づき三角法により深度(奥行き値)を算出する方法である。
ステップS121で、マッチング処理部510は、撮像画像取得部500から取得した、ステレオ撮像画像を構成する2枚の撮像画像を用い、基準となる一方の撮像画像における参照画素を中心とする所定サイズの領域に対応する、探索対象となる他方の撮像画像内の領域を、当該他方の撮像画像内で移動させて、探索を行う。
対応画素の探索は、様々な方法が知られており、例えば、ブロックマッチング法を適用することができる。ブロックマッチング法は、一方の撮像画像において参照画素を中心としてM画素×N画素のブロックとして切り出される領域の画素値を取得する。また、他方の撮像画像において、対象画素を中心としてM画素×N画素のブロックとして切り出される領域の画素値を取得する。画素値に基づき、参照画素を含む領域と、対象画素を含む領域との類似度を計算する。探索対象の画像内でM画素×N画素のブロックを移動させながら類似度を比較し、最も類似度が高くなる位置のブロックにおける対象画素を、参照画素に対応する対応画素とする。
類似度は、様々な計算方法により算出できる。例えば、式(5)に示される、正規化相互相関(NCC:Normalized Cross-Correlation)は、コスト関数の1つであって、コストを示す数値CNCCの値が大きいほど、類似度が高いことを示す。式(5)において、値MおよびNは、探索を行うための画素ブロックのサイズを表す。また、値I(i,j)は、基準となる一方の撮像画像における画素ブロック内の画素の画素値を表し、値T(i,j)は、探索対象となる他方の撮像画像における画素ブロック内の画素値を表す。
マッチング処理部510は、上述したように、一方の撮像画像における、M画素×N画素の画素ブロックに対応する、他方の撮像画像における画素ブロックを、他方の撮像画像内で例えば画素単位で移動ながら式(5)の計算を実行し、数値CNCCを算出する。他方の撮像画像において、数値CNCCが最大となる画素ブロックの中心画素を、参照画素に対応する対象画素とする。
図16の説明に戻り、ステップS122で、3D情報生成部511は、ステップS121のマッチング処理により求められた、参照画素および対応画素に基づき、三角法を用いて奥行き値(深度情報)を算出し、ステレオ撮像画像を構成する一方の撮像画像および他方の撮像画像に係る3次元点群情報を生成する。
図17は、実施形態に適用可能な三角法を説明するための図である。図中のターゲット物体403(例えば路面4上の1点)までの距離Sを、各撮像素子402(撮像素子601Lおよび601Rに対応)に撮像された画像内の撮像位置情報から算出することが処理の目的である。すなわち、この距離Sが、対象となる画素の深度情報に対応する。距離Sは、下記の式(6)により計算される。
なお、式(6)において、値baselineは、カメラ400aおよび400b間の基線の長さ(基線長)を表す。これは、図7の例では、撮像レンズ6LLおよび6LR(ステレオカメラ6Lの場合)による基線長に対応する。値fは、レンズ401(撮像レンズ6LLおよび6LRに対応)の焦点距離を表す。値qは、視差を表す。視差qは、参照画素と対応画素の座標値の差分に、撮像素子の画素ピッチを乗じた値である。対応画素の座標値は、ステップS121のマッチング処理の結果に基づき得られる。
この式(6)が、2つのカメラ400aおよび400b、すなわち、撮像レンズ6LLおよび6LRを利用した場合の距離Sの算出方法となる。これは2つのカメラ400aおよび400b、すなわち、撮像レンズ6LLおよび6LRによりそれぞれ撮像された撮像画像から距離Sを算出するものである。実施形態では、この式(6)による算出方法を、ステレオカメラ6Lの撮像レンズ6LLおよび6LR、ならびに、ステレオカメラ6Rの撮像レンズ6RLおよび6RRにより撮像された各撮像画像に適用して、画素毎に距離Sを算出する。
図15の説明に戻り、ステップS101bで、3D情報生成部511は、カメラ位置および向きを推定する。ここで、カメラ位置は、例えばステレオカメラ6Lを一体と捉えた場合のその中心座標を示す。ステップS101bの処理の詳細については、後述する。
ステップS101aおよびステップS101bの処理が終了すると、処理がステップS102に移行される。ステップS102で、3D情報生成部511は、時系列上で隣接する2つのデプスマップについて、ステップS101bで推定したカメラ位置および向きに基づき、前時刻のデプスマップの座標系に合うように、当該前時刻の次の次時刻のデプスマップの座標変換を行う。
なお、前時刻および次時刻は、ステレオカメラ6Lおよび6Rにおいてトリガに応じて時系列上で連続的に実行された1回目の撮像と、2回目の撮像とにおいて、1回目の撮像が行われた時刻を前時刻、2回目の撮像が行われた時刻を次時刻としている。すなわち、前時刻のデプスマップは、1回目の撮像によるステレオ撮像画像に基づき生成されたデプスマップであり、次時刻のデプスマップは、2回目の撮像によるステレオ撮像画像に基づき生成されたデプスマップである。
次のステップS103で、3D情報生成部511は、ステップS102で座標変換された次時刻のデプスマップを、前時刻のデプスマップに統合する。すなわち、ステップS102の座標変換により、前時刻および次時刻の2つのデプスマップが共通の座標系に並ぶため、これら2つのデプスマップを統合することができる。この、ステップS102およびステップS103の処理を、全ての時刻で撮像されたステレオ撮像画像に対して実施する。
なお、図7や図9に示すように、ステレオカメラ6Lおよび6R、あるいは、ステレオカメラ6L、6Cおよび6Rを道路幅方向に複数台並べて用いる場合、道路幅方向に並んだステレオカメラ同士(例えばステレオカメラ6Lおよび6R)においても、同様にしてカメラ位置および向きを推定し、その後、デプスマップ統合を行う。
また、上述した第3の生成方法における、カメラ(車両1)の移動距離は、ステップS102の座標変換、および、ステップS103のデプスマップ統合処理において、算出が可能である。
次のステップS104で、3D情報取得部520は、3D情報生成部511から、ステップS103で統合されたデプスマップを取得する。そして、状態特性値算出部521は、3D情報取得部520に取得されたデプスマップに基づき、平坦性σを算出する。すなわち、デプスマップが統合されると、計測した区間の道路について路面形状が、1つの3次元空間中の点群として復元される。点群が復元されると、路面上の各サンプリング地点について、規定に従い前後1.5m地点の座標を結んだ座標系を取り、中心部分の3次元点群までの距離を算出することで、式(2)と同様に変位量dを算出でき、式(3)に従い、この変位量dから平坦性σを算出できる。
(わだち掘れ量)
わだち掘れ量Dについては、ステップS104で、状態特性値算出部521は、3D情報取得部520に取得されたデプスマップを道路幅方向にスキャンすることで、図1(a)および図1(b)に示されるような深さD1およびD2を取得することができる。これら取得した深さD1およびD2と、デプスマップをスキャンした断面の情報に基づき、わだち掘れ量Dを求めることができる。
(ひび割れ率)
状態特性値算出部521は、例えば、ステップS103において統合されたデプスマップに対し、ステップS100で取得されたステレオ撮像画像を適用する。すなわち、状態特性値算出部521は、車両1の進行方向に、進行方向重複率Drで以て重複して撮像された各ステレオ撮像画像を統合する。状態特性値算出部521は、統合した画像に対して規定に従い50cmのメッシュを設定し、画像解析により各メッシュ内のひび、パッチングなどの情報を取得し、取得した情報に基づき規定に従いひび割れ率Cを算出する。
(カメラ位置および向きの推定処理)
次に、上述した図15のフローチャートにおけるステップS101bの、カメラ位置および向きの推定処理について、より詳細に説明する。図18は、実施形態に適用可能な、カメラ位置および向きの推定処理を示す一例のフローチャートである。実施形態では、カメラ位置および向きを、上述したSfMを用いて推定する。
ステップS130で、3D情報生成部511は、撮像画像取得部500からステレオ撮像画像を取得する。ここで、3D情報生成部511は、時系列上で連続的に撮像された2枚のステレオ撮像画像(前時刻のステレオ撮像画像、次時刻のステレオ撮像画像、とする)を取得する。次に、ステップS131で、3D情報生成部511は、取得した各ステレオ撮像画像から特徴点を抽出する。この特徴点抽出処理は、各ステレオ撮像画像の対応点として検出しやすい点を見つける処理であって、典型的には、画像中の変化があり、かつ変化が一様でないコーナーと呼ばれる点を検出する。
次のステップS132で、3D情報生成部511は、前時刻のステレオ撮像画像内で特徴点として抽出された点と同じ場所を撮像した点を、次時刻のステレオ撮像画像内から検出する。この検出処理は、オプティカルフローと呼ばれる手法や、SIFT(Scale-Invariant Feature Transform)、SURF(Speed-Upped Robust Feature)などに代表される特徴点マッチングと呼ばれる手法を適用することができる。
次のステップS133で、3D情報生成部511は、カメラの初期位置および向きを推定する。3D情報生成部511は、ステップS132において各ステレオ撮像画像で検出された対応点の座標を固定値とし、次時刻のステレオ撮像画像を撮像したカメラの位置および向きをパラメータとして連立方程式を解くことで、カメラの位置を推定し、3次元座標を算出する(ステップS134)。
図19を参照しながら、カメラの初期位置および向きの推定方法について説明する。式(7)は、空間の点Xjを、カメラ(視点)Piに投影した座標xijの関係を表している。なお、式(7)において、値nが3次元空間における点の数、値mは、カメラ(撮像画像)の数をそれぞれ表す。
各値Pは、それぞれのカメラについて、3次元空間の点の座標をその画像の2次元座標に変換する投影行列であって、次式(8)で表される。式(8)は、右辺に示す3次元座標の2行2列の変換行列と、3次元座標から2次元座標への射影変換fiから成る。
図19において、カメラに映った座標xijのみが与えられた連立方程式を用いて、値Xjと値Piとを算出する。この連立方程式の解法には、線形最小二乗法を用いることができる。
次のステップS135で、3D情報生成部511は、ステップS134で算出されたカメラ位置を示す3次元座標を最適化する。連立方程式を解いて算出されたカメラの位置および向きは、十分な精度を有していない場合がある。そのため、算出された値を初期値として最適化処理を行うことで、精度を向上させる。
画像上探索により取得された対応点座標と、ステップS134で算出された3次元座標および式(8)の投影行列をパラメータとして上述した式(7)により算出される2次元座標xij(再投影座標と呼ばれる)と、の差は、残差と呼ばれる。カメラの位置および向きを算出するために用いた全てのステレオ撮像画像中の、全ての対応点について、この残差の総和が最小になるように、パラメータを最適化演算によって調整する。これを、バンドル調整と呼ぶ。バンドル調整による全体最適化を行うことで、カメラの位置および向きの精度を向上させることができる。
以上が、通常のSfMにおけるカメラ位置および向き推定のベース処理である。実施形態では、基線長が既知のステレオカメラ6Lおよび6Rを使用しているため、車両1の移動に応じて撮像範囲を重複させて撮像されたステレオ撮像画像における対応点の検出に加えて、ステレオ撮像画像を構成する2枚の撮像画像における対応点の探索が容易である。したがって、空間での3次元座標Xjが実スケール(現実の大きさ)で確定し、移動後のカメラの位置および向きも安定的に算出できる。
なお、上述したように、実施形態に係る撮像システム10では、情報処理装置50においてトリガを生成し、生成したトリガを各ステレオカメラ6Lおよび6Rに全てのカメラに分配することで、各ステレオカメラ6Lおよび6Rが同期して撮像を行う構成となっている。このとき、各ステレオカメラ6Lおよび6Rが有するクロック生成器や、情報処理装置50においてトリガを分配するためのトリガ分配部品、情報処理装置50や各ステレオカメラ6Lおよび6Rにおけるトリガ配線長の差異などの影響により、実際に各ステレオカメラ6Lおよび6Rがトリガを取り込んで撮像を実行するタイミングに僅かなズレが発生する可能性がある。この撮像タイミングのズレは、可能な限り抑制することが好ましい。
特に基線長が既知であるステレオカメラ6Lおよび6Rの間では、撮像タイミングのズレを極力抑えることが望ましい。例えば、カメラI/F5010から各ステレオカメラ6Lおよび6Rにトリガ供給の配線を行う際に、トリガの品質確保のための中継器や、静電ノイズなどから保護するためにフォトカプラを経由する場合がある。この場合に、ステレオカメラ6Lおよび6R間でこれら中継器やフォトカプラを共有することが望ましい。
[実施形態に係る調書作成処理]
次に、実施形態に係る調書作成処理について、より具体的に説明する。図20は、実施形態に係る調書作成処理を示す一例のフローチャートである。調書データの作成が開始されると、ステップS200で、調書処理部522は、規定に従い、計測および算出対象要素を取得して出力し、規定調書データを作成する。ここで、規定に従った計測および算出対象要素は、規定単位毎に処理した各評価値(ひび割れ率C、わだち掘れ量D、平坦性σなど)と、各評価値に基づき求めた算出値(IRI、MCI値、MCI式選択値)と、を含む。
調書処理部522は、これらの計測および算出対象要素を、例えば所定のフォーマットに適用させて、規定調書の調書データを作成する。ここで作成される調書データは、例えば図5および図6で説明した調書Aおよび調書Bと同等である。なお、調書Bに含まれる画像は、例えば車両1に搭載されるドライブレコーダにより取得される画像を適用できる。
次のステップS201で、調書処理部522は、局所計測および算出対象要素を計測データ記憶部103から取得し、局所調書データを作成する。ここで、局所計測および算出対象要素は、短単位(5m、10m、20mなど)毎に処理された、各評価値(ひび割れ率C、わだち掘れ量D、平坦性σなど)と、各評価値に基づき求めた算出値(IRI、MCI値、MCI式選択値など)を含む。各評価値は、局所的に処理された、局所ひび割れ面積率CL、局所わだち掘れ量DL、局所平坦性σLである。また、算出値は、局所MCILとなる。これらのうち、局所わだち掘れ量DLは、短単位の中央位置でのデータに基づく。
図21は、第1の実施形態に係る、ステップS201で出力される局所調書データによる調書Aの例を示す図である。ここでは、短単位が10mであるものとして説明を行う。図21において、区間の項目における距離の累積値が短単位の10m単位とされ、区間距離がそれぞれ10mとされる。また、各位置情報、各評価値、各算出値も、10m毎に処理された値が用いられる。調書Bも、同様に作成することが可能である。
実施形態に係る情報処理装置50は、このように、調書作成の際に、規定単位毎の、ひび割れ率C、わだち掘れ量Dおよび平坦性σと、これらに基づき求めたMCIとを出力し、規定調書データを作成すると共に、短単位毎のひび割れ率C、わだち掘れ量Dおよび平坦性σと、これらに基づき求めたMCIとを出力し、局所調書データを作成する。そのため、膨大な量の撮像データおよび計測データからの、局所的な情報の抽出が容易となる。
[実施形態の第1の変形例]
次に、実施形態の第1の変形例について説明する。図22は、実施形態の第1の変形例に係る調書作成処理を示す一例のフローチャートである。なお、図22において、上述した図20のフローチャートによる処理と共通する処理には同一の符号を付して、詳細な説明を省略する。ステップS200、ステップS201で、調書処理部522は、上述と同様に、規定に従い計測および算出対象要素を取得して出力し、規定調書データを作成し、局所計測および算出対象要素を取得して出力し、局所調書データを作成する。
次のステップS210で、調書処理部522は、計測区間に対応する地図データを出力する。計測データには、緯度および経度の情報が含まれる。上述したように、撮像画像取得部500は、各ステレオカメラ6Lおよび6Rからステレオ撮像画像を取得する際に、位置情報取得部504により現在位置を示す位置情報を取得し、取得した位置情報を、当該ステレオ撮像画像と関連付ける。調書処理部522は、この位置情報に基づき地図データを出力し、当該位置情報と地図データ上の位置とを関連付ける。ここで、調書処理部522は、計測を行う区間に対応する地区の地図データを予め持っているものとする。
図23は、実施形態の第1の変形例に係る地図データ出力の例を示す図である。図23の例では、地図データに基づく地図画像700に対して、計測を行った、すなわち、車両1を移動させつつステレオ撮像画像を撮像した経路701が強調して表示されている。また、経路701は、地図画像700において、図23の下部の凡例に示すように、MCI値により色分けして表示される。これにより、路面性状を直感的に把握することが可能となる。
なお、図23では、経路701をMCI値に応じて色分けして表示しているが、これはこの例に限定されない。すなわち、経路701の表示を変化させる基準は、MCI値に限らず、ひび割れ率C、わだち掘れ量D、平坦性σ、ひび割れ面積率、局所わだち掘れ量CL、局所平坦性σLおよび局所MCILの中から選択できる。
[実施形態の第2の変形例]
次に、実施形態の第2の変形例について説明する。図24は、実施形態の第2の変形例に係る調書作成処理を示す一例のフローチャートである。なお、図24において、上述した図22のフローチャートによる処理と共通する処理には同一の符号を付して、詳細な説明を省略する。ステップS200、ステップS201で、調書処理部522は、上述と同様に、規定に従い計測および算出対象要素を取得して出力し、規定調書データを作成し、局所計測および算出対象要素を取得して出力し、局所調書データを作成する。ステップS210で、調書処理部522は、計測区間に対応する地図データを出力する。
次のステップS220で、調書処理部522は、事象分析を行い、分析結果を出力する。調書処理部522は、事象分析により、例えば、局所ひび割れ率CLを用いて、縦断ひび、横断ひび、密集ひび、がある可能性箇所を解析する。ここで、ひびが1本のみ、検出されたメッシュが縦方向(車両1の進行方向)にn個以上並んでいる場合は、縦断ひびの可能性箇所、横方向(道路幅方向)にn個以上並んでいる場合は横断ひびの可能性箇所、とする。また、ひびが2本以上検出されたメッシュがn×n個集結している場合は、密集ひびの可能性箇所とする。
なお、縦断ひび、横断ひび、密集ひびを判定するための値nは、予め設定されているものとする。また、値nは、後の検索、表示の際に変更することが可能である。
実施形態の第2の変形例では、規定の距離計測単位よりも短い距離単位でひび割れ率Cの処理を行っている。そのため、より詳細な解析を容易に実行できる。
次に、実施形態の第2の変形例に係る、検索処理について説明する。図25は、実施形態の第2の変形例に係る調書データに対する検索処理を示す一例のフローチャートである。ステップS300で、調書処理部522は、ステップS200で規定に従い計測および算出対象要素(ひび割れ率C、わだち掘れ量D、平坦性σ、MCI値など)を取得して規定調書データを作成し、作成した規定調書データに基づく表示を行う。規定調書データと共に、規定調書データに含まれる位置情報に対応する地図情報を表示させてもよい。
ここで、ステップS300での調書データおよび地図情報の表示に応じて、ユーザ入力により検索指示が入力されたものとする(ステップS301)。検索指示は、短単位の長さ(5m、10m、20mなど)の設定、ステップS220で説明した事象分析および可能性箇所の検出に関する値nの設定、検索パラメータの設定などを含む。検索パラメータの例としては、局所ひび割れ面積率CLや、局所平坦性σLの各値、横断ひび割れ、縦断ひび割れ、密集ひび割れの可能性箇所の表示、などがある。これらの検索パラメータは、単独でもよいし、複数の検索パラメータで論理和や論理積を取ることもできる。
次のステップS302で、調書処理部522は、ステップS301の検索指示に応じた検索結果を、例えば調書A(図21参照)、調書B、地図情報(図23参照)のうち1以上の形式で出力し、ディスプレイ5020に表示させる。ここで、出力されるデータは、ステップS301において入力される検索指示で設定された検索パラメータに合致した区間のデータである。データの表示順序は、例えば、数値昇順、降順など選択可能とされる。
ステップS302での検索結果の表示に応じて、ユーザ入力により局所データ表示指示が入力されたものとする(ステップS303)。例えば、調書処理部522は、ユーザ入力により、検索結果に含まれる、データを表示させたい区間と、表示内容とが指示される。
次のステップS304で、表示情報生成部523は、ステップS303で入力された局所データ表示指示に応じた画面を表示させる表示情報を生成する。例えば、局所データ表示指示が、検索結果に対して指示された短単位の区間における調書Bおよび地図情報の表示指示である場合、表示情報生成部523は、当該短単位の区間の位置情報、評価値、算出値に基づき調書Bおよび地図情報を表示させる表示情報を生成する。この表示情報に応じて、ディスプレイ5020に調書Bおよび地図情報が表示される。
以下では、煩雑さを避けるために、表示情報生成部523が表示情報を生成し、生成された表示情報に応じてディスプレイ5020に所定の画面が表示されることを、表示情報生成部523が画面を表示させる、などのように記述する。
さらに、表示情報生成部523は、図26に例示されるように、ディスプレイ5020における表示領域800に対し、検索結果に基づく短単位の区間の画像820を、規定単位である100mの区間の路面の画像810と共に、当該100mの路面の画像810内での位置を示しつつ(区間820’で示す)、表示させる。また、この画像820には、メッシュ部821に示されるように、50cmメッシュのひび本数(メッシュ部821の右上隅に表示)が表示されている。この図26の表示に対して、さらに、画像820の区間における局所わだち掘れ量DLの値と、局所平坦性σLの値と、を表示させることができる。
さらに、表示情報生成部523は、この図26の表示に対して、局所わだち掘れ量DLの値と、局所平坦性σLの値を、グラフィカルに表示させることが可能である。表示情報生成部523は、例えば、図27に例示されるように、画像820に対して、重畳表示8200〜8204のように、局所わだち掘れ量DLや局所平坦性σLの値に応じた透明度の画像を重畳させることができる。これに限らず、局所わだち掘れ量DLや局所平坦性σLの値に応じて、画像820の表示の濃淡を変化させることもできる。併せて、図24のフローチャートのステップS220で求めた、事象分析の結果や、可能性箇所の情報をさらに表示させることもできる。
ステップS304により表示される画面において、確認事項などのメモ入力を行うことが可能である(ステップS305)。例えば、画像目視を経ての事象分析確定情報、修繕優先度に関わる情報、その他備考情報、などを入力することが稽えられる。調書処理部522は、ユーザ入力による保存指示に応じて、入力されたメモ情報を、調書と関連付けて保存することができる。
このように、実施形態の第2の変形例では、調書データを短単位で検索、表示できるので、路面性状のより詳細な評価を行うことが可能である。
なお、上述の各実施形態は、本発明の好適な実施の例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変形による実施が可能である。
1 車両
4 路面
5 PC
6,6L,6R ステレオカメラ
6LL,6LR,6RL,6RR 撮像レンズ
10 撮像システム
50 情報処理装置
60C,60L,60R ステレオ撮像範囲
60CL,60CR,60LL,60LR,60RL,60RR 撮像範囲
1001,1002 撮像部
101,503 撮像制御部
103 生成部
500 撮像画像取得部
510 マッチング処理部
511 3D情報生成部
520 3D情報取得部
521 状態特性値算出部
522 調書処理部
523 表示情報生成部
700 地図画像
5021 GNSS部
特許第4848532号公報

Claims (16)

  1. 路面の状態の、該路面の車両進行方向に従った計測データを取得する取得部と、
    前記計測データに基づき、前記路面の車両進行方向に対する所定の距離単位で前記路面の状態を示す状態特性値に変換する変換部と、
    前記状態特性値に基づく調書を作成する作成部と、
    前記状態特性値に基づく画面を表示部に表示させる表示制御部と、
    を備え、
    前記変換部は、
    前記計測データに基づき、前記路面の車両進行方向に対する、規定された第1の距離単位に応じた前記状態特性値である第1の状態特性値と、該第1の距離単位より距離が短い第2の距離単位に応じた前記状態特性値である第2の状態特性値と、に変換する
    情報処理装置。
  2. 前記作成部は、
    前記第1の状態特性値に基づく第1の調書と、前記第2の状態特性値に基づく第2の調書と、を作成する
    請求項1に記載の情報処理装置。
  3. 前記表示制御部は、
    前記第1の状態特性値に基づく第1の表示に対し、前記第2の状態特性値に基づく第2の表示に含まれる該第2の状態特性値に対応する位置を示す情報を表示させる
    請求項1または請求項2に記載の情報処理装置。
  4. 前記状態特性値は、舗装の維持管理指数を算出するために用いる、ひび割れ率、わだち掘れ量、および、平坦性をそれぞれ示す各指標を含み、
    前記表示制御部は、
    前記ひび割れ率を示す指標に対応する前記第2の状態特性値による画面に対して、前記わだち掘れ量および前記平坦性のうち少なくとも一方を示す指標に対応する前記第2の状態特性値による画面を、計測位置を対応させて重畳させ、前記表示部に表示させる
    請求項1乃至請求項3の何れか1項に記載の情報処理装置。
  5. 前記計測データは、計測を行った地点の座標を示す座標情報を含み、
    前記表示制御部は、
    前記第2の状態特性値を示す表示を、前記座標情報に基づき地図情報に関連付けて前記表示部に表示させる
    請求項1または請求項2に記載の情報処理装置。
  6. 前記状態特性値は、舗装の維持管理指数であって、
    前記表示制御部は、
    前記第2の状態特性値を示す表示を、前記舗装の維持管理指数の値に応じた色を用いて前記地図情報に関連付けて表示させる
    請求項5に記載の情報処理装置。
  7. 前記変換した前記状態特性値を記憶する記憶部をさらに備え、
    前記状態特性値は、舗装の維持管理指数を算出するために用いる、ひび割れ率、わだち掘れ量、および、平坦性をそれぞれ示す各指標を含み、
    前記記憶部に記憶される前記第2の状態特性値に対し、前記ひび割れ率、わだち掘れ量、および、平坦性のうち少なくとも1をパラメータとして用いて検索を行う検索部
    をさらに備え、
    前記表示制御部は、
    前記検索部により検索された前記第2の状態特性値に基づく画面を前記表示部に表示させる
    請求項1乃至請求項6の何れか1項に記載の情報処理装置。
  8. 前記状態特性値は、舗装の維持管理指数を算出するために用いる、ひび割れ率を示す指標を含み、
    前記ひび割れ率に基づきひび割れ状態を解析する解析部
    をさらに備える
    請求項1乃至請求項7の何れか1項に記載の情報処理装置。
  9. 路面の状態の、該路面の車両進行方向に従った計測データを取得する取得ステップと、
    前記計測データに基づき、前記路面の車両進行方向に対する所定の距離単位で前記路面の状態を示す状態特性値に変換する変換ステップと、
    前記状態特性値に基づく調書を作成する作成ステップと、
    前記状態特性値に基づく画面を表示部に表示させる表示制御ステップと、
    を有し、
    前記変換ステップは、
    前記計測データに基づき、前記路面の車両進行方向に対する、規定された第1の距離単位に応じた前記状態特性値である第1の状態特性値と、該第1の距離単位より距離が短い第2の距離単位に応じた前記状態特性値である第2の状態特性値と、に変換する
    情報処理方法。
  10. 情報を表示する表示部と、
    路面の状態の、該路面の車両進行方向に従った計測データに基づき変換された、該車両進行方向に対する、規定された第1の距離単位に応じた状態特性値である第1の状態特性値と、該第1の距離単位より距離が短い第2の距離単位に応じた前記状態特性値である第2の状態特性値と、に基づく画面を前記表示部に表示させる表示制御部と、
    を備える
    表示装置。
  11. 前記表示制御部は、
    前記第1の状態特性値に基づく第1の表示に対し、前記第2の状態特性値に基づく第2の表示に含まれる該第2の状態特性値に対応する位置を示す情報を表示させる
    請求項10に記載の表示装置。
  12. 前記状態特性値は、舗装の維持管理指数を算出するために用いる、ひび割れ率、わだち掘れ量、および、平坦性をそれぞれ示す各指標を含み、
    前記表示制御部は、
    前記ひび割れ率を示す指標に対応する前記第2の状態特性値による画面に対して、前記わだち掘れ量および前記平坦性のうち少なくとも一方を示す指標に対応する前記第2の状態特性値による画面を、計測位置を対応させて重畳させ、前記表示部に表示させる
    請求項10または請求項11に記載の表示装置。
  13. 前記計測データは、計測を行った地点の座標を示す座標情報を含み、
    前記表示制御部は、
    前記第2の状態特性値を示す表示を、前記座標情報に基づき地図情報に関連付けて前記表示部に表示させる
    請求項10に記載の表示装置。
  14. 前記状態特性値は、舗装の維持管理指数であって、
    前記表示制御部は、
    前記第2の状態特性値を示す表示を、前記舗装の維持管理指数の値に応じた色を用いて前記地図情報に関連付けて表示させる
    請求項13に記載の表示装置。
  15. 前記変換した前記状態特性値を記憶する記憶部をさらに備え、
    前記状態特性値は、舗装の維持管理指数を算出するために用いる、ひび割れ率、わだち掘れ量、および、平坦性をそれぞれ示す各指標を含み、
    前記表示制御部は、
    前記記憶部に記憶される前記第2の状態特性値に対し、前記ひび割れ率、わだち掘れ量、および、平坦性のうち少なくとも1をパラメータとして用いて検索された前記第2の状態特性値に基づく画面を前記表示部に表示させる
    請求項10乃至請求項14の何れか1項に記載の表示装置。
  16. 路面の状態の該路面の車両進行方向に従った計測データを取得する取得部と、
    前記計測データに基づき、前記車両進行方向に対する所定の距離単位で前記路面の状態を示す状態特性値に変換する変換部と、
    前記状態特性値に基づく調書を作成する作成部と、
    前記状態特性値に基づく画面を表示部に表示させる表示制御部と、
    を備え、
    前記変換部は、
    前記計測データに基づき、前記距離単位が100メートル未満の状態特性値に変換する
    情報処理装置。
JP2018051797A 2018-03-19 2018-03-19 情報処理装置および情報処理方法 Active JP7163601B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051797A JP7163601B2 (ja) 2018-03-19 2018-03-19 情報処理装置および情報処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051797A JP7163601B2 (ja) 2018-03-19 2018-03-19 情報処理装置および情報処理方法

Publications (2)

Publication Number Publication Date
JP2019163624A true JP2019163624A (ja) 2019-09-26
JP7163601B2 JP7163601B2 (ja) 2022-11-01

Family

ID=68065887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051797A Active JP7163601B2 (ja) 2018-03-19 2018-03-19 情報処理装置および情報処理方法

Country Status (1)

Country Link
JP (1) JP7163601B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082227B1 (ja) 2021-03-15 2022-06-07 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
CN115045166A (zh) * 2022-06-13 2022-09-13 吴江市建设工程质量检测中心有限公司 一种城市道路交叉口车辙病害防治装置及其防治方法
JP2022141624A (ja) * 2021-03-15 2022-09-29 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
WO2023276019A1 (ja) * 2021-06-30 2023-01-05 日本電気株式会社 路面管理装置、路面管理方法、及び、記録媒体
JP7478181B2 (ja) 2022-03-31 2024-05-02 カヤバ株式会社 演算装置、演算方法及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196647A (ja) * 1996-01-23 1997-07-31 Mitsubishi Heavy Ind Ltd 路面性状測定装置の計測データ解析装置
JP2003288665A (ja) * 2002-03-27 2003-10-10 Fujitsu Fip Corp 交通量感知器を用いた路面性状推定方法とシステム
JP2008014691A (ja) * 2006-07-04 2008-01-24 Japan Aerospace Exploration Agency ステレオ画像計測方法とそれを実施する装置
JP2016057861A (ja) * 2014-09-10 2016-04-21 雄章 石川 路面状態管理装置及び路面状態管理プログラム
JP2017179992A (ja) * 2016-03-31 2017-10-05 倉敷紡績株式会社 構造物検査システムおよび構造物検査方法
JP2017181396A (ja) * 2016-03-31 2017-10-05 倉敷紡績株式会社 構造物表面検査装置およびそれを備える構造物表面検査システム並びに構造物表面検査方法
JP2018021375A (ja) * 2016-08-03 2018-02-08 株式会社東芝 舗装ひび割れ解析装置、舗装ひび割れ解析方法及び舗装ひび割れ解析プログラム
JP2018036076A (ja) * 2016-08-29 2018-03-08 株式会社東芝 施設管理装置及び施設管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196647A (ja) * 1996-01-23 1997-07-31 Mitsubishi Heavy Ind Ltd 路面性状測定装置の計測データ解析装置
JP2003288665A (ja) * 2002-03-27 2003-10-10 Fujitsu Fip Corp 交通量感知器を用いた路面性状推定方法とシステム
JP2008014691A (ja) * 2006-07-04 2008-01-24 Japan Aerospace Exploration Agency ステレオ画像計測方法とそれを実施する装置
JP2016057861A (ja) * 2014-09-10 2016-04-21 雄章 石川 路面状態管理装置及び路面状態管理プログラム
JP2017179992A (ja) * 2016-03-31 2017-10-05 倉敷紡績株式会社 構造物検査システムおよび構造物検査方法
JP2017181396A (ja) * 2016-03-31 2017-10-05 倉敷紡績株式会社 構造物表面検査装置およびそれを備える構造物表面検査システム並びに構造物表面検査方法
JP2018021375A (ja) * 2016-08-03 2018-02-08 株式会社東芝 舗装ひび割れ解析装置、舗装ひび割れ解析方法及び舗装ひび割れ解析プログラム
JP2018036076A (ja) * 2016-08-29 2018-03-08 株式会社東芝 施設管理装置及び施設管理方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082227B1 (ja) 2021-03-15 2022-06-07 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
JP2022141377A (ja) * 2021-03-15 2022-09-29 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
JP2022141624A (ja) * 2021-03-15 2022-09-29 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
JP7241948B2 (ja) 2021-03-15 2023-03-17 株式会社パスコ 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
WO2023276019A1 (ja) * 2021-06-30 2023-01-05 日本電気株式会社 路面管理装置、路面管理方法、及び、記録媒体
JP7478181B2 (ja) 2022-03-31 2024-05-02 カヤバ株式会社 演算装置、演算方法及びプログラム
CN115045166A (zh) * 2022-06-13 2022-09-13 吴江市建设工程质量检测中心有限公司 一种城市道路交叉口车辙病害防治装置及其防治方法
CN115045166B (zh) * 2022-06-13 2023-12-01 吴江市建设工程质量检测中心有限公司 一种城市道路交叉口车辙病害防治装置及其防治方法

Also Published As

Publication number Publication date
JP7163601B2 (ja) 2022-11-01

Similar Documents

Publication Publication Date Title
US10825198B2 (en) 3 dimensional coordinates calculating apparatus, 3 dimensional coordinates calculating method, 3 dimensional distance measuring apparatus and 3 dimensional distance measuring method using images
JP7163601B2 (ja) 情報処理装置および情報処理方法
JP6551623B1 (ja) 情報処理装置、移動体、画像処理システムおよび情報処理方法
JP7480833B2 (ja) 計測装置、計測システムおよび車両
JP2016057108A (ja) 演算装置、演算システム、演算方法およびプログラム
US11783580B2 (en) Input apparatus, input method of input apparatus, and output apparatus
US11671574B2 (en) Information processing apparatus, image capture apparatus, image processing system, and method of processing a plurality of captured images of a traveling surface where a moveable apparatus travels
JP4038726B2 (ja) 画像対応付け方法
JP2007147458A (ja) 位置検出装置、位置検出方法、位置検出プログラムおよび記録媒体
EP3051254B1 (en) Survey data processing device, survey data processing method, and program therefor
JP5463584B2 (ja) 変位計測方法、変位計測装置及び変位計測プログラム
US11222433B2 (en) 3 dimensional coordinates calculating apparatus and 3 dimensional coordinates calculating method using photo images
JP2011095858A (ja) 3次元デジタイザ
JP7119462B2 (ja) 撮像システム、撮像方法、撮像システムを搭載した移動体、撮像装置および撮像装置を搭載した移動体
Hu et al. A high-resolution surface image capture and mapping system for public roads
JP4550081B2 (ja) 画像測定方法
JP2006317418A (ja) 画像計測装置、画像計測方法、計測処理プログラム及び記録媒体
JP3910844B2 (ja) 新旧写真画像を用いた標定方法及び修正図化方法
JP4409924B2 (ja) 三次元画像表示装置及び方法
JP6257798B2 (ja) 画像処理装置及び画像処理方法
JP2019164017A (ja) 撮像システム、撮像装置、撮像方法、および、撮像システムを搭載した移動体
JP7293931B2 (ja) 位置計測用データ生成装置、位置計測用データ生成方法、及び位置計測用データ生成プログラム
KR102498028B1 (ko) 감시 카메라 시스템 및 그 시스템 사용 방법
JP2018084509A (ja) 画像測量方法、画像測量装置及び画像測量プログラム
JP2022123715A (ja) 計測装置、計測方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R151 Written notification of patent or utility model registration

Ref document number: 7163601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151