JP2019163376A - 樹脂粒子の製造方法、樹脂粒子の製造装置、樹脂粒子、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及びコアシェル型粒子 - Google Patents
樹脂粒子の製造方法、樹脂粒子の製造装置、樹脂粒子、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及びコアシェル型粒子 Download PDFInfo
- Publication number
- JP2019163376A JP2019163376A JP2018051657A JP2018051657A JP2019163376A JP 2019163376 A JP2019163376 A JP 2019163376A JP 2018051657 A JP2018051657 A JP 2018051657A JP 2018051657 A JP2018051657 A JP 2018051657A JP 2019163376 A JP2019163376 A JP 2019163376A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- particle
- particles
- core
- shell type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明の樹脂粒子の製造方法は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、
樹脂溶液をノズルから噴射して造粒する造粒工程と、を含み、更に必要に応じてその他の工程を含む。
本発明の樹脂粒子の製造装置は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、
樹脂溶液をノズルから噴射して造粒する造粒手段と、を有し、更に必要に応じてその他の手段を有する。
本発明の樹脂粒子の製造方法は、本発明の樹脂粒子の製造装置を好適に用いることができる。
溶解工程は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る工程である。
溶解手段は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る手段である。
ハイドロフルオロオレフィンは、オゾン層破壊係数(ODP)が約0、地球温暖化係数(GWP)が約1と非常に環境性に優れており、沸点が20℃以下であり、常温常圧(20℃、1気圧)で気体であるが、冷却により常圧で液体として取り扱うことができる不燃性の化合物である。
ハイドロフルオロオレフィンとしては、例えば、1−クロロ−3,3,3−トリフルオロプロペン、2−クロロ−3,3,3−トリフルオロプロペン、ジクロロ−フッ化プロペン、1,3,3,3−テトラフルオロプロペン、2,3,3,3−テトラフルオロプロペン、1,2,3,3,3−ペンタフルオロプロペン、1,1,3,3,3−ペンタフルオロプロペン、又はこれらのシス体及びトランス体などが挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、常圧で液体の状態を取りやすい点で、1−クロロ−3,3,3−トリフルオロプロペンが好ましい。
1−クロロ−3,3,3−トリフルオロプロペンは、適宜合成したものを使用してもよいし、市販品を使用してもよい。市販品としては、例えば、HFO−1233zd(E)(セントラル硝子株式会社製)などが挙げられる。ハイドロフルオロオレフィンの合成方法としては、例えば、特許第4864714号公報に記載している方法などが挙げられる。
また、ハイドロフルオロオレフィンを用いることにより、ドライプロセスで樹脂を溶解させることができるため、残留有機溶媒を実質的に含有しない樹脂粒子を製造することができる。
樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリオール樹脂、ポリアミド樹脂、ロジン、変性ロジン、テルペン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アクリル樹脂、ポリエステル樹脂がハイドロフルオロオレフィンへの溶解性に優れるため特に好ましい。
ハイドロフルオロオレフィンの沸点以下の温度としては、例えば、常温(20℃)以下などが挙げられる。また、ハイドロフルオロオレフィンの沸点以上であっても、当該沸点におけるハイドロフルオロオレフィンの蒸気圧下で使用することができる。
造粒工程は、樹脂溶液をノズルから噴射して樹脂粒子を造粒する工程である。
造粒手段は、樹脂溶液をノズルから噴射して樹脂粒子を造粒する手段である。
噴射される樹脂溶液の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、0.2MPa以上100MPa以下であることが好ましい。
樹脂粒子の製造装置1は、溶解手段10、造粒手段11、及び回収手段12を有している。
溶解手段10は、着脱式圧力タンク101を有しており、着脱式タンク101に樹脂溶液102が収容され、配管103によりバルブ104、ポンプ105、背圧弁106に接続している。樹脂溶液102は、着脱式タンク101に投入する原料の樹脂と液化ハイドロフルオロオレフィンを混合することにより得られる。着脱式タンク101には、スクリューなどの撹拌機構を設けていてもよい。
造粒手段11は、ノズル111、及び乾燥チャンバー112、及び圧縮気体供給手段124を有しており、溶解手段10で得られた樹脂溶液102を、圧縮気体供給手段124の圧縮気体によりノズル111から乾燥チャンバー112に噴射し、樹脂粒子を造粒する。
回収手段12は、造粒手段11により造粒した樹脂粒子をサイクロン121、粒子捕集器122、ブロワー123により回収する手段である。
本発明の樹脂粒子は、製造条件による樹脂の分子量変化が少ない樹脂粒子である。製造条件による樹脂の分子量変化が少ないとは、製造時に原料樹脂に加わる熱及び圧力等によって、樹脂がダメージを受ける。その結果、重量平均分子量が変化することを意味する。重量平均分子量の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゲル浸透クロマトグラフィー(GPC)などが挙げられる。
測定対象となる粒子1質量部に、2−プロパノール2質量部を加え、超音波で30分間分散させた後、冷蔵庫(5℃)にて1日間以上保存し、粒子中の溶媒を抽出する。上澄み液をガスクロマトグラフィー(GC−14A、株式会社島津製作所製)で分析し、粒子中の溶媒を測定することにより求めることができる。残留溶媒量の測定方法に使用する装置、及び条件は以下の通りである。
・装置:GC−14A(株式会社島津製作所製)
・カラム:CBP20−M50−0.25(株式会社島津製作所製)
・検出器:FID
・注入量:1〜5μL
・キャリアガス:He 2.5kg/cm2
・水素流量:0.6
・空気流量:0.5
・チャートスピード:5mm/min
・感度:Range101×Atten20
・カラム温度:40℃
・Injection Temp:150℃
本発明の樹脂粒子は、安全性、及び安定性に優れるため、例えば、日用品、医薬品、化粧品、電子写真用トナー等の用途として幅広く適用される。
本発明の樹脂粒子の用途としては、例えば、洗顔料、サンスクリーン剤、クレンジング剤、化粧水、乳液、美容液、クリーム、コールドクリーム、アフターシェービングローション、シェービングソープ、あぶらとり紙、マティフィアント剤などのスキンケア製品添加剤、ファンデーション、おしろい、水おしろい、マスカラ、フェイスパウダー、どうらん、眉墨、マスカラ、アイライン、アイシャドー、アイシャドーベース、ノーズシャドー、口紅、グロス、ほうべに、おはぐろ、マニキュア、トップコートなどの化粧品またはその改質剤、シャンプー、ドライシャンプー、コンディショナー、リンス、リンスインシャンプー、トリートメント、ヘアトニック、整髪料、髪油、ポマード、ヘアカラーリング剤などのヘアケア製品の添加剤、香水、オーデコロン、デオドラント、ベビーパウダー、歯磨き粉、洗口液、リップクリーム、石けんなどのアメニティ製品の添加剤、トナー用添加剤、塗料などのレオロジー改質剤、医療用診断検査剤、自動車材料、建築材料などの成形品への機械特性改良剤、フィルム、繊維などの機械特性改良材、ラピッドプロトタイピング、ラピッドマニュファクチャリングなどの樹脂成形体用原料、フラッシュ成形用材料、プラスティックゾル用ペーストレジン、粉ブロッキング材、粉体の流動性改良材、潤滑剤、ゴム配合剤、研磨剤、増粘剤、濾剤および濾過助剤、ゲル化剤、凝集剤、塗料用添加剤、吸油剤、離型剤、接着剤用充填剤、プラスティックフィルム・シートの滑り性向上剤、ブロッキング防止剤、光沢調節剤、つや消し仕上げ剤、光拡散剤、表面高硬度向上剤、靭性向上材等の各種改質剤、液晶表示装置用スペーサー、クロマトグラフィー用充填材、化粧品ファンデーション用基材・添加剤、マイクロカプセル用助剤、ドラッグデリバリーシステム・診断薬などの医療用材料、香料・農薬の保持剤、化学反応用触媒及びその担持体、ガス吸着剤、セラミック加工用焼結材、測定・分析用の標準粒子、食品工業分野用の粒子、粉体塗料用材料、電子写真現像用トナーなどが挙げられる。
本発明のコアシェル型粒子の製造方法は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、コア粒子と前記樹脂溶液を接触させて造粒する造粒工程と、を含み、さらに必要に応じてその他の工程を含む。
本発明のコアシェル型粒子の製造装置は、樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、コア粒子と前記樹脂溶液を接触させて造粒する造粒手段と、を有し、さらに必要に応じてその他の手段を有する。
溶解工程は、本発明の樹脂粒子の製造方法における溶解工程と同様の工程を用いることができるため、その説明を省略する。
溶解手段は、本発明の樹脂粒子の製造装置における溶解手段と同様の手段を用いることができるため、その説明を省略する。
造粒工程は、コア粒子と樹脂溶液とを接触させて造粒する造粒工程である。
造粒手段は、コア粒子と樹脂溶液とを接触させて造粒する造粒手段である。
コア粒子は、溶解工程で得られた樹脂溶液により被覆される粒子であり、コアシェル型粒子におけるコアとして機能する。
体積平均粒径(Dv)は、例えば、マイクロトラックUPA−150(日機装株式会社製)を用いて測定できる。
BET比表面積は、例えば、自動比表面積/細孔分布測定装置TriStar3000(株式会社島津製作所製)を用いて測定できる。
コア粒子の孔径は、例えば、電界放射型走査電子顕微鏡(FE−SEM)を用いてコア粒子を観察し、得られた画像からコア粒子の細孔の孔径を測定することで求めることができる。
コア粒子の平均孔径は、100個の細孔の孔径を測定し、それらの平均値から求めることができる。
図3に示す本発明のコアシェル型粒子の製造装置は、溶解手段10、造粒手段11を有している。
溶解手段10は、着脱式圧力タンク101を有しており、着脱式タンク101に樹脂溶液102が収容され、配管103によりバルブ104、ポンプ105、背圧弁106に接続している。樹脂溶液102は、着脱式タンク101に投入する原料の樹脂と液化ハイドロフルオロオレフィンを混合することにより得られる。着脱式タンク101には、スクリューなどの撹拌機構を設けていてもよい。
造粒手段11は、ノズル113、及び流動床式装置114、及び圧縮気体供給手段124を有しており、溶解手段10で得られた樹脂溶液102を、圧縮気体供給手段124の加圧空気によりノズル113から流動床式装置114に噴射し、流動床式装置114内に浮遊させたコア粒子表面をコーティングして造粒する。
本発明のコアシェル型粒子は、樹脂を液化ハイドロフルオロオレフィンに溶解した樹脂溶液と、コア粒子とを混合して得られた混合液を、ノズルから噴射することによって得られる。コアシェル型粒子は、コア粒子の表面に樹脂を被覆している。コアシェル型粒子におけるコア粒子を被覆する樹脂をシェル層と称することもある。
製造時の影響としては、特に制限はなく、例えば、加圧、加熱などが挙げられる。
本発明のコアシェル型粒子は、本発明のコアシェル型粒子の製造方法により好適に製造することができる。
体積平均粒径(Dv)は、例えば、マイクロトラックUPA−150(日機装株式会社製)を用いて測定できる。
コアシェル型粒子におけるシェル層の平均厚みは、走査型電子顕微鏡によるコアシェル型粒子の断面観察により得られた画像から定規を使って測定できる。
平均厚みは、シェル層の厚みを100箇所測定し、それらの平均値から求めることができる。
BET比表面積は、例えば、自動比表面積/細孔分布測定装置TriStar3000(株式会社島津製作所製)を用いて測定できる。
孔径及び平均孔径は、コア粒子の孔径及び平均孔径と同様にして求めることができる。
本発明のコアシェル型粒子は、本発明の樹脂粒子と同様の用途に用いることができるため、その説明を省略する。
本発明の樹脂組成物は、液化ハイドロフルオロオレフィンと、ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレート共重合体、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレート共重合体、ポリメタクリル酸メチル、及びポリ乳酸樹脂の少なくともいずれかと、を含有し、更に必要に応じてその他の成分を含有する。
アクリル樹脂(商品名:オイドラギットE100、エボニック社製、ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレートの共重合体)10質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)90質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、樹脂溶液1を得た。得られた樹脂溶液1を、図1に示す樹脂粒子の製造装置1(ノズル穴径0.2mm)を用いて連続的に噴射して、樹脂粒子1を得た。
アクリル樹脂(商品名:オイドラギットRS100、エボニック社製、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレートの共重合体)5質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)95質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、樹脂溶液2を得た。得られた樹脂溶液2を、図1に示す樹脂粒子の製造装置1(ノズル穴径0.3mm)を用いて連続的に噴射して、樹脂粒子2を得た。
アクリル樹脂(商品名:EH−1000DP、株式会社クラレ製、ポリメタクリル酸メチル)5質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)93質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、樹脂溶液3を得た。得られた樹脂溶液3を、図1に示す樹脂粒子の製造装置1(ノズル穴径0.7mm)を用いて連続的に噴射して、樹脂粒子3を得た。
ポリ乳酸樹脂(商品名:BE−410、東洋紡株式会社製)3質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)97質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、樹脂溶液4を得た。得られた樹脂溶液4を、図1に示す樹脂粒子の製造装置1(ノズル穴径0.5mm)を用いて連続的に噴射して、樹脂粒子4を得た。
アクリル樹脂(商品名:オイドラギットRS100、エボニック社製、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレートの共重合体)5質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)95質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、これにコア粒子としてリン酸カルシウム(製品名:球形HAP、太平化学産業株式会社製、平均粒径15〜20μm)5質量部を添加し、樹脂溶液5を得た。得られた樹脂溶液5を、図1に示す樹脂粒子の製造装置1(ノズル穴径0.5mm)を用いて連続的に噴射して、樹脂粒子5を得た。
アクリル樹脂(商品名:オイドラギットE100、エボニック社製、ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレートの共重合体)15質量部、ハイドロフルオロオレフィンガス(商品名:HFO−1233zd(E)、セントラル硝子株式会社製、トランス−1−クロロ−3,3,3−トリフルオロプロペン)85質量部を容器に採り、0.1MPa、室温(17℃)で均一溶解させ、樹脂溶液6を得た。次にコア粒子としてリン酸カルシウム(製品名:球形HAP、太平化学産業株式会社製、平均粒径15〜20μm)10質量部を図3に示す流動床式装置を用いて浮遊させ、流動床式装置内の温度を室温に制御し、これに樹脂溶液6を連続的に噴射(ノズル穴径0.7mm)して、樹脂粒子6を得た。
ポリ乳酸樹脂(商品名:BE−410、東洋紡株式会社製)91質量部を、図2の樹脂粒子の製造装置2(ノズル穴径:0.2mm)の高圧セル224に投入し、超臨界二酸化炭素を180℃、40MPaで含浸させ、固形分濃度が91%の樹脂溶融体7を調製した。次に、バルブ213dを開き、ポンプ212aとポンプ212cを作動させ、樹脂溶融体7をノズル232より噴射して、樹脂粒子7を得た。このとき、ポンプ212bと背圧弁213dを調製することにより高圧セル214内は、温度180℃、圧力40MPaを一定に維持した。
比較例1において、使用する樹脂を表1に記載のものに変更した以外は、比較例1と同様にして、樹脂粒子8〜10を得た。
実施例4において、ハイドロフルオロオレフィンを酢酸エチルに変更した以外は、実施例4と同様にして、樹脂粒子11を得た。
比較例5において、使用する樹脂を表1に記載のものに変更した以外は、比較例5と同様にして、樹脂粒子12〜14を得た。
実施例1において、ハイドロフルオロオレフィンをエタノールに変更した以外は、実施例1と同様にして、樹脂粒子15を得た。
造粒前の樹脂と造粒後の樹脂粒子を目視で確認し、着色の有無を以下の評価基準で評価した。
○:造粒前と比較して着色がない
△:造粒前と比較して僅かな着色がある
×:造粒前と比較して着色がある
原料樹脂及び造粒後の樹脂粒子の重量平均分子量をゲル浸透クロマトグラフィー(GPC)により以下の条件で測定した。
・装置:GPC−8020(東ソー株式会社製)
・カラム:TSK G2000HXL及びG4000HXL(東ソー株式会社製)
・温度:40℃
・溶媒:THF(テトラヒドロフラン)
・流速:1.0mL/分
濃度0.5質量%のポリマーを1mL注入し、上記の条件で測定したポリマーの分子量分布から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して、造粒前の原料樹脂及び造粒後の樹脂粒子の重量平均分子量Mwを算出した。算出した重量平均分子量Mwを以下の評価基準で評価した。
○:重量平均分子量変化[Mw(造粒後)/Mw(造粒前)]≧0.9
×:重量平均分子量変化[Mw(造粒後)/Mw(造粒前)]<0.9
測定対象となる樹脂粒子1質量部に、2−プロパノール2質量部を加え、超音波で30分間分散させた後、冷蔵庫(5℃)にて1日間以上保存し、樹脂粒子中の有機溶媒を抽出する。上澄み液をガスクロマトグラフィー(GC−14A、株式会社島津製作所製)で分析し、樹脂粒子中の有機溶媒を定量することにより、残留有機溶媒量を測定する。かかる分析時の測定条件は、以下の通りである。残留有機溶媒量を以下の評価基準で評価した。
・装置 :島津GC−14A
・カラム :CBP20−M 50−0.25
・検出器 :FID
・注入量 :1μL〜5μL
・キャリアガス :He 2.5kg/cm2
・水素流量 :0.6kg/cm2
・空気流量 :0.5kg/cm2
・チャートスピード:5mm/min
・感度 :Range101×Atten20
・カラム温度 :40℃
・Injection Temp :150℃
○:残留有機溶媒量が検出下限以下(N.D.)
△:残留有機溶媒量が検出下限(N.D.)以上、1000ppm未満
×:残留有機溶媒量が1000ppm以上
上記の各評価において、下記の評価基準に基づき総合評価を行った。結果を表2に示す。
○:すべて○であった場合
△:×がなく△があった場合
×:×が1つ以上あった場合
<1> 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、
前記樹脂溶液をノズルから噴射して造粒する造粒工程と、
を含むことを特徴とする樹脂粒子の製造方法である。
<2> 前記液化ハイドロフルオロオレフィンが、トランス−1−クロロ−3,3,3−トリフルオロプロペンである前記<1>に記載の樹脂粒子の製造方法である。
<3> 前記樹脂が、アクリル樹脂及び生分解性樹脂の少なくともいずれかである前記<1>から<2>のいずれかに記載の樹脂粒子の製造方法である。
<4> 前記アクリル樹脂が、ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレート共重合体、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレート共重合体、及びポリメタクリル酸メチルの少なくともいずれかである前記<3>に記載の樹脂粒子の製造方法である。
<5> 前記生分解性樹脂が、ポリ乳酸樹脂である前記<3>に記載の樹脂粒子の製造方法である。
<6> 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、
前記樹脂溶液をノズルから噴射して造粒する造粒手段と、
を有することを特徴とする樹脂粒子の製造装置である。
<7> 前記<1>から<5>のいずれかに記載の樹脂粒子の製造方法により得られ、分子量変化が0.1未満であり、残留有機溶媒を実質的に含有しないことを特徴とする樹脂粒子である。
<8> 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、
コア粒子と前記樹脂溶液とを接触させて造粒する造粒工程と、
を含むことを特徴とするコアシェル型粒子の製造方法である。
<9> 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、
コア粒子と前記樹脂溶液とを接触させて造粒する造粒手段と、
を有することを特徴とするコアシェル型粒子の製造装置である。
<10> 前記<8>に記載のコアシェル型粒子の製造方法により得られ、シェルに分子量変化が0.1未満であり、残留有機溶媒を実質的に含有しない樹脂を有することを特徴とするコアシェル型粒子である。
<11> 液化ハイドロフルオロオレフィンと、
ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレート共重合体、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレート共重合体、ポリメタクリル酸メチル、及びポリ乳酸樹脂の少なくともいずれかと、
を含有することを特徴とする樹脂組成物である。
10 溶解手段
11 造粒手段
Claims (11)
- 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、
前記樹脂溶液をノズルから噴射して造粒する造粒工程と、
を含むことを特徴とする樹脂粒子の製造方法。 - 前記液化ハイドロフルオロオレフィンが、トランス−1−クロロ−3,3,3−トリフルオロプロペンである請求項1に記載の樹脂粒子の製造方法。
- 前記樹脂が、アクリル樹脂及び生分解性樹脂の少なくともいずれかである請求項1から2のいずれかに記載の樹脂粒子の製造方法。
- 前記アクリル樹脂が、ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレート共重合体、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレート共重合体、及びポリメタクリル酸メチルの少なくともいずれかである請求項3に記載の樹脂粒子の製造方法。
- 前記生分解性樹脂が、ポリ乳酸樹脂である請求項3に記載の樹脂粒子の製造方法。
- 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、
前記樹脂溶液をノズルから噴射して造粒する造粒手段と、
を有することを特徴とする樹脂粒子の製造装置。 - 請求項1から5のいずれかに記載の樹脂粒子の製造方法により得られ、分子量変化が0.1未満であり、残留有機溶媒を実質的に含有しないことを特徴とする樹脂粒子。
- 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解工程と、
コア粒子と前記樹脂溶液とを接触させて造粒する造粒工程と、
を含むことを特徴とするコアシェル型粒子の製造方法。 - 樹脂を液化ハイドロフルオロオレフィンに溶解して樹脂溶液を得る溶解手段と、
コア粒子と前記樹脂溶液とを接触させて造粒する造粒手段と、
を有することを特徴とするコアシェル型粒子の製造装置。 - 請求項8に記載のコアシェル型粒子の製造方法により得られ、シェルに分子量変化が0.1未満であり、残留有機溶媒を実質的に含有しない樹脂を有することを特徴とするコアシェル型粒子。
- 液化ハイドロフルオロオレフィンと、
ブチルメタクリレート/メチルメタクリレート/ジメチルアミノエチルメタクリレート共重合体、エチルアクリレート/メチルメタクリレート/塩化トリメチルアンモニウムエチルメタクリレート共重合体、ポリメタクリル酸メチル、及びポリ乳酸樹脂の少なくともいずれかと、
を含有することを特徴とする樹脂組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018051657A JP7092973B2 (ja) | 2018-03-19 | 2018-03-19 | 樹脂粒子の製造方法、樹脂粒子の製造装置、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及び樹脂粒子製造用樹脂組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018051657A JP7092973B2 (ja) | 2018-03-19 | 2018-03-19 | 樹脂粒子の製造方法、樹脂粒子の製造装置、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及び樹脂粒子製造用樹脂組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019163376A true JP2019163376A (ja) | 2019-09-26 |
JP7092973B2 JP7092973B2 (ja) | 2022-06-29 |
Family
ID=68064618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018051657A Active JP7092973B2 (ja) | 2018-03-19 | 2018-03-19 | 樹脂粒子の製造方法、樹脂粒子の製造装置、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及び樹脂粒子製造用樹脂組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7092973B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231652A (ja) * | 2007-02-22 | 2008-10-02 | Ken Products Kk | 疑似毛髪形成用組成物、疑似毛髪形成用エアゾール及び疑似毛髪形成方法、並びにエアゾール糸状形成物による虫類の捕獲用組成物、虫類捕獲用エアゾール及び虫類捕獲方法 |
JP2015007209A (ja) * | 2013-05-31 | 2015-01-15 | 株式会社リコー | コアシェル型粒子、及びその製造方法 |
JP2016033121A (ja) * | 2014-07-31 | 2016-03-10 | 株式会社ダイゾー | エアゾール組成物 |
-
2018
- 2018-03-19 JP JP2018051657A patent/JP7092973B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231652A (ja) * | 2007-02-22 | 2008-10-02 | Ken Products Kk | 疑似毛髪形成用組成物、疑似毛髪形成用エアゾール及び疑似毛髪形成方法、並びにエアゾール糸状形成物による虫類の捕獲用組成物、虫類捕獲用エアゾール及び虫類捕獲方法 |
JP2015007209A (ja) * | 2013-05-31 | 2015-01-15 | 株式会社リコー | コアシェル型粒子、及びその製造方法 |
JP2016033121A (ja) * | 2014-07-31 | 2016-03-10 | 株式会社ダイゾー | エアゾール組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP7092973B2 (ja) | 2022-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105050705B (zh) | 喷雾干燥的微胶囊 | |
Chernyak et al. | Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process. Part 1: Experimental results | |
JP6284917B2 (ja) | 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、およびその用途 | |
Jenkins et al. | Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide | |
Wang et al. | Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process | |
JP6819919B2 (ja) | ポリアミド粒子及びその製造方法 | |
Ivanovic et al. | Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA | |
JP7277425B2 (ja) | 熱可塑性樹脂からなる略球状樹脂粒子及びその用途 | |
Nalawade et al. | Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications | |
CA3076942C (en) | Surface additive for three-dimensional metal printing compositions | |
Glebov et al. | Coating of metal powders with polymers in supercritical carbon dioxide | |
US10138344B2 (en) | Particulate polyamide, and method for preparing the particulate polyamide | |
de Paz et al. | Determination of phase equilibrium (solid− liquid− gas) in poly-(ε-caprolactone)− carbon dioxide systems | |
Sane et al. | Effect of material properties and processing conditions on RESS of poly (l-lactide) | |
Ko et al. | Fabricating and controlling PCL electrospun microfibers using filament feeding melt electrospinning technique | |
EP2808357A1 (en) | Core-shell type particles and method for producing the same | |
van Kampen et al. | Systematic process optimisation of fluid bed coating | |
JP2019163376A (ja) | 樹脂粒子の製造方法、樹脂粒子の製造装置、樹脂粒子、コアシェル型粒子の製造方法、コアシェル型粒子の製造装置、及びコアシェル型粒子 | |
PL188775B1 (pl) | Sposób wytwarzania reaktywnych preparatów farb proszkowych | |
Bender et al. | Phase behaviour of binary systems of lactones in carbon dioxide | |
Hede et al. | Fluidized-bed coating with sodium sulfate and PVA− TiO2, 1. review and agglomeration regime maps | |
JP2019137855A (ja) | 粒子の製造方法及びその製造装置、粒子及び組成物、並びに、粒子分散液及びその製造方法 | |
Akgün et al. | Protective coating of highly porous alginate aerogel particles in a Wurster fluidized bed | |
US11448979B2 (en) | Discharge device, particle manufacturing apparatus, and particle | |
Trivedi et al. | Study of the effect of pressure on melting behavior of saturated fatty acids in liquid or supercritical carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20220601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220523 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7092973 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |