JP2019162627A - 重質炭化水素除去方法 - Google Patents

重質炭化水素除去方法 Download PDF

Info

Publication number
JP2019162627A
JP2019162627A JP2019085811A JP2019085811A JP2019162627A JP 2019162627 A JP2019162627 A JP 2019162627A JP 2019085811 A JP2019085811 A JP 2019085811A JP 2019085811 A JP2019085811 A JP 2019085811A JP 2019162627 A JP2019162627 A JP 2019162627A
Authority
JP
Japan
Prior art keywords
gas stream
stream
hydrocarbons
unit
adsorbent bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019085811A
Other languages
English (en)
Inventor
ドラン,ウィリアム
Dolan William
ワイアット,ロジャー
Wyatt Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Corp
Original Assignee
BASF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Corp filed Critical BASF Corp
Publication of JP2019162627A publication Critical patent/JP2019162627A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/02Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with solid adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/26Fuel gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】プロセス効率を改善した、重質炭化水素を天然ガス流から除去するための方法の提供。【解決手段】C5+炭化水素を前記天然ガス流から吸着し、天然ガス流より高い濃度のメタンおよび低い濃度のC5+炭化水素を有する生成物ガス流を生成し、圧力スイング吸着(PSA)により、PSAユニット内の吸着剤床を再生し、C5+炭化水素を含有するガス流を形成させ、C5+炭化水素を含有するガスを熱スイング吸着(TSA)ユニットの吸着剤床を加熱するための燃料として使用する、重質炭化水素を天然ガス流から除去するための方法。【選択図】なし

Description

本発明は、水および炭化水素を天然ガス流から除去するための方法に関する。
「天然ガス」という用語は、多種多様な組成物の地下蓄積から生成されるガスに適用される。天然ガスの主成分はメタンである。メタンの他に、天然ガスは、一般に他の炭化水素、窒素、二酸化炭素、場合によっては少ない割合の硫化水素、および多くの場合水を含む。炭化水素成分には、エタン(C)、プロパン(C)、ブタン(C)、ペンタン(C)、ヘキサン(C)、ヘプタン(C)等が含まれる。5個以上の炭素原子を有する炭化水素は、一般にC5+と称される。メタン以外の天然ガス流の成分は、本明細書および特許請求の範囲において汚染物質と称される。本発明は、特に吸着と凝縮の組み合わせによる汚染物質の除去に関する。
より軽い成分であるC〜最大Cは、大気温度および圧力でガス相中に存在する。より重い成分であるC5+は、上昇温度での表面下からの生成中はガス相中に存在し、ガス混合物が冷却されるときは液相中に存在する。そのようなより重い成分を含有する天然ガスは、液体炭化水素を含有しないか、またはわずかな割合のみで液体炭化水素を含有する乾性ガスとは異なる「湿性ガス」として知られている。
天然ガス流からの汚染物質、特に水および炭化水素の除去は、それらの輸送中に起こり得る問題を防止するために重要である。未処理の天然ガスがパイプラインシステムを通じて輸送される事象では、パイプラインシステム内で不可避である圧力損失が、水および/または炭化水素の凝縮の結果として、液体を形成させる。少量のこのような液体は、パイプラインおよび分配システムの閉塞等の問題を引き起こし得る。さらに、液体の水は腐食を加速させ得る。
任意のガスの潜在的な液体含有量を示すために有用なパラメータは、露点に関するものである。この露点は、一般にガスが、水蒸気に関して飽和状態になる(すなわち、液体との平衡を得る)ために(一定組成で)冷却されなければならない温度として定義される。天然ガス等の混合ガスの場合、露点の代わりにクリコンデンバール(蒸気−液体平衡が存在する最高圧力)またはクリコンデンサーム(蒸気−液体平衡が存在する最高温度)が使用される。
天然ガス流中の液体形成を防止するために、汚染物質、特に水、および該当する場合は炭化水素を除去して、天然ガス流のクリコンデンサームを低下させる必要がある。メタン以外の炭化水素の含有量が低い天然ガスの場合、または炭化水素液体形成が許容される場合は、水の除去のみが必要とされる。しかしながら一般に、水および炭化水素の双方の除去が必要であり、これらは特にある所望のクリコンデンサームを達成するために天然ガスから除去することがより困難である。
水および炭化水素を天然ガス流から除去するための既知の方法は、例えば、論文“Solving storage problems”by T.Schulz,J.Rajani,D.Brands,Hydrocarbon Engineering June 2001,pages 55−60に記載されている。この既知の方法では、天然ガス流が、水および炭化水素汚染物質を除去するために吸着剤床と接触させられる。流れ上でしばらくした後、吸着床は再生が必要であり、この時間もまた、異なる種の汚染物質の選好吸着に起因して、吸着剤床を出る精製ガス流の所望の品質に依存する。
固体吸着剤を通るガス混合物からの構成成分の吸着は、発熱プロセスであり、熱スイング吸着(TSA)として知られる。このプロセスは、一般に吸着剤および吸着質相に熱を加えることによって逆戻りされる。加えられる熱が十分である場合、吸着された構成成分は、吸着剤内表面および孔を出る。再生を完了するために、吸着剤を再度その初期温度に冷却する。この吸着プロセスの逆戻りが再生と呼ばれる。
したがって、合計3つの吸着床が既知の方法において提供され、それらのうちの1つは吸着モードにあり、それらのうちの1つは、吸着された汚染物質がその床から除去されるように、未処理の天然ガス流のスリップストリームを上昇温度で床を超えて通過させることによって再生され、それらのうちの1つは、その床が再生された後にスリップストリームによって冷却される。スリップストリームは、最初に冷却される床を通過し、次いで加熱され、再生される床を通過する。スリップストリームは、再生モードの吸着剤床から除去される汚染物質を取り込む。次いで汚染されたスリップストリームが、空気および水冷却器を通過し、水の温度(水和物形成温度より上)で凝縮する汚染物質が、分離器内で液体として分離され得るようにする。フラッシュガスは、吸着モードの吸着床の上流で、処理される天然ガス流に再循環される。残念ながら、水冷却器および分離器は、あまり効率的でない。したがって、著しいレベルのC5+炭化水素汚染物質が、吸着床への再循環流中で蓄積し、吸着効率を低減し得る。あるいは、冷媒を用いて冷却することも、固体水和物が冷却器およびノックアウトポット内で形成し得るという点で問題である。
水および/または炭化水素を天然ガス流から除去するための吸着剤床の使用における問題は、吸着モードの床から得られる精製ガス流の十分に低いクリコンデンサームを達成することが、常に可能であるとは限らないことである。したがって、ある所望のクリコンデンサームを達成するために、汚染物質、典型的に水および炭化水素の双方を天然ガスから除去することを可能にする方法が必要である。
2007年11月22日に公開された米国公開第2007/0267328号に従い、汚染物質を天然ガス流から除去するための方法が提供される。この方法は、(a)天然ガス流の一部を第1のガス流として、上昇温度で再生モードの第1の吸着剤床と接触させて、この第1の吸着剤床上に存在する汚染物質を除去し、第1のガス流と比較して汚染物質が濃縮された第2のガス流を得るステップと、(b)第2のガス流を、少なくともいくらかの汚染物質が、汚染物質が濃縮された第1の液相に凝縮し始める温度に冷却することと、第1の液相を第2のガス流から分離して、第3のガス流を形成することと、を含む、第2のガス流をガス/液体分離ステップに送給するステップと、を含み、このガス/液体分離ステップが、第1のガス/液体分離ステップを形成し、この方法は、(c)第3のガス流を第2のガス/液体分離ステップに送給し、汚染物質が濃縮された第2の液相、および希薄なガス流を得ることをさらに含む。
米国公開第2007/0267328号に記載のプロセスの特に有利な実施形態では、ステップ(c)における第2のガス/液体分離は、加速度慣性分離器によって行われる。そのような分離器は、加速度で流れる流体流を形成し、該流体流を、水および炭化水素が第2の液体水/炭化水素相に凝縮する温度に冷却する。加速度慣性分離器は、有利に超音速慣性分離器であり、流体流は超音速で流れる。さらに、超音速で流れる流体流に渦運動を適切に導入することができ、それによって汚染物質、特に水および炭化水素を流れの集束帯域の径外方向の区域に流す。しかしながら、加速度慣性分離器を出た後、ガス流は吸着圧に圧縮されなければならない。この圧縮ステップは、本方法のエネルギー効率を低減する。
米国特許公開第2007/0267328号
ソルビングストレージプロブレム(Solving storage problems)、T.Schulz,J.Rajani,D.Brands,「ハイドロカーボンエンジニアリング(Hydrocarbon Engineering)」、2001年6月、55−60頁
本発明は、水および炭化水素を天然ガス流から除去するための方法を提供し、先行技術の方法を超えてプロセス効率を改善した。水および重質炭化水素汚染物質を天然ガス流から除去するための方法は、熱スイング吸着プロセスを含み、先行技術と同様に、汚染物質を天然ガス流から除去するために、天然ガス流が吸着剤床に向かう。吸着床は熱によって再生され、汚染物質が吸着剤から放出されて、汚染物質が濃縮された液相に凝縮するために汚染物質ガス流を冷却することを伴う、ガス/液体分離ステップに送られる。吸着剤床に対し、ガス/液体分離から生じるガス相を再循環させる代わりに、ガス相を圧力スイング吸着プロセスに送り、重質炭化水素を含む汚染物質が床内で吸着され、清浄な天然ガス流が形成される。圧力を低減することによって圧力スイング吸着床を再生するときに、低圧汚染物質流は燃料として使用され、熱スイング吸着床の再生モードのための熱を提供する。本発明は、圧力スイング吸着プロセスからの生成物および汚染物質の流れが、さらなる分離のために再循環または処理され得るプロセスの変型も対象とする。
本発明による方法およびシステムは、水の除去に加えて、供給ガス流からの炭化水素の除去を可能にし、供給ガス流と比較して低いクリコンデンサームをもたらす。本発明による方法では、供給ガス流からの水および炭化水素の除去の程度を操作することができ、それによって、供給ガス流の組成が、クリコンデンサームを十分に低いレベルに低下させることが、吸着のみを使用する方法等の他の技術を使用して達成され得ないようなものである場合でも、所望のクリコンデンサームを持つ生成物ガス流を形成する。
本発明の方法は、ガス−液体分離器からのガスが、熱スイング吸着ユニットに再循環され、連続再循環が、ガス−液体分離ユニット固有の非効率性に起因して、吸着プロセスにおける重質炭化水素の蓄積をもたらした先行技術において見出される問題を軽減する。圧力スイング吸着ユニットの使用は、重質炭化水素汚染物質を、熱スイング吸着ユニットを出る汚染物質流から効率的に除去する。圧力スイング吸着ユニットからの任意の再循環ガスは、凝縮器またはガス/液体分離器からのガスより著しく低い重質炭化水素含有量を有する。さらに、汚染物質のさらなる吸着のためのPSAユニットから熱スイング吸着ユニットへの任意の再循環ガスは、より高い圧力での圧力スイング吸着からの生成物ガスであり、したがってガス−液体分離器からのガス相が、圧力低下に起因して加速され、次いで熱スイング吸着ユニットの供給圧を満たすように圧縮される必要があった米国公開第2007/0267328号の効率性を改善する。
水および炭化水素を天然ガス流から除去するための本発明の方法の概略図であり、熱スイング吸着、ガス/液体分離、および圧力スイング吸着の組み合わせを示す。 水および炭化水素を天然ガス流から除去するための本発明の方法の概略図であり、熱スイング吸着、ガス/液体分離、および圧力スイング吸着の組み合わせを示し、PSAユニットからの汚染物質流は、TSAユニットを再生するための燃料として使用され、PSAユニットからの生成物は、さらなる汚染物質の低減のために、TSAユニットに再循環される。 水および炭化水素を天然ガス流から除去するための本発明の代替方法の概略図であり、熱スイング吸着、ガス/液体分離、および圧力スイング吸着の組み合わせを示し、PSAユニットからの汚染物質流は、TSAユニットを再生するための燃料として使用される前に、ガス/液体分離器に向かう。 水および炭化水素を天然ガス流から除去するためのさらに別の代替方法の概略図であり、TSA、ガス/液体分離、およびPSAユニットの組み合わせを示し、PSAユニットからの汚染物質流は、さらなるガス/液体分離を受ける。 水および炭化水素を天然ガス流から除去するための本発明の方法のさらに別の変型の概略図であり、TSA、ガス/液体分離、およびPSAユニットの組み合わせを示し、PSAユニットからの中間圧流が形成される。
処理される天然ガス流の組成は変化し得る。典型的に、天然ガス流は、0.01〜4モル%、好ましくは0.05〜2モル%の範囲内の濃度で水を含む。供給ガス流中のC、C、およびC炭化水素の濃度は、典型的に、0.4〜4モル%、特に1.0〜3モル%の範囲内である。供給ガス流中のC5+炭化水素の濃度は、典型的に、供給ガス流に基づいて0.05〜5モル%、特に0.1〜3モル%の範囲内である。
好ましくは、処理されたガス流は、天然ガス供給流のそれより低い、好ましくは少なくとも10℃低い、より好ましくは少なくとも15℃低い、最も好ましくは少なくとも20℃低いクリコンデンサームを有する。絶対的には、パイプラインに送給される処理したガス流は、10℃以下、好ましくは6℃以下、より好ましくは0℃以下、最も好ましくは−5℃以下のクリコンデンサームを有する。
上記および図1に参照番号10として示される天然ガス供給流は、熱スイング吸着ユニット(TSAユニット)12に向かう。TSAユニット12は、吸着段階、再生段階、および冷却段階のいずれかの処理が行われる1つ以上の床を含む。図1において、吸着段階は参照番号14によって示され、再生段階は参照番号16によって示され、冷却段階は参照番号18によって示される。供給流10は、ライン11を経由して吸着段階14に入る。吸着段階18は、供給流10からの水と、C5+炭化水素を含む重質炭化水素とを吸着することができる粒子吸着剤を含む。吸着段階の入口温度は、約5〜100℃の範囲であり得、好ましくは約15〜60℃、および20〜30℃も例示される。200〜1400psia、好ましくは600〜1200psia、および800〜1000psiaによってさらに例示される範囲の圧力が使用され得る。生成物流15は、供給流10より大幅に低減された重質炭化水素および水含有量を有し、TSA吸着剤床14を出る。供給流10の一部分を使用して、吸着および次の再生に続いて、段階18においてライン13を経由して吸着剤を冷却することもできる。このように、段階14における吸着剤がいったん加熱されると、吸着剤はそこから汚染物質を放出し、この段階は、ここで冷却され、吸着段階のために準備される必要がある。冷却段階の入口温度は、5〜100℃、好ましくは約15〜60℃の範囲であり得、20〜30℃も例示される。200〜1400psia、好ましくは600〜1200psia、および800〜1000psiaによってさらに例示される圧力を使用することができる。再生段階は、吸着剤が重質炭化水素を放出するように、吸着剤を加熱することを伴う。加熱は、冷却ユニット18を通過した供給流を送ること、およびユニット18からの供給流を、ライン20を経由してボイラー22に送ることによって達成される。ボイラー22内で供給流は加熱され、ライン24を経由して再生ユニット16に向かう。再生段階の入口温度は、約200〜350℃、好ましくは約200〜300℃の範囲であり得、270〜290℃も例示される。200〜1400psia、好ましくは600〜1200psia、および800〜1000psiaによってさらに例示される圧力を使用することができる。
適切な吸着剤は、微小構造を有する固体である。そのような吸着剤の内表面は、好ましくは100〜2000m/g、より好ましくは500〜1500m/gである。吸着剤床中の吸着剤の内表面の性質は、水およびC5+炭化水素が吸着されるようになっている。好適には、吸着剤の内表面は極性である。適切な吸着剤材料としては、シリカ、シリカゲル、アルミナ、またはシリカ−アルミナに基づく材料が挙げられる。ゼオライト型吸着剤が好ましい。
一般に、吸着剤床では、水は炭化水素より選好的に吸着される。C5+炭化水素、5個以上の炭素原子を有する炭化水素は、一般にC、C、またはC等のより軽い炭化水素より選好的に吸着される。典型的に、水は、得られる濃度が0.001〜0.5モル%、特に0.01〜0.4モル%、さらに特に0.05〜0.2モル%の範囲内になる程度に吸着される。典型的に、C5+炭化水素は、得られる濃度が0.01〜1モル%、特に0.05〜0.5モル%の範囲内になる程度に吸着される。
吸着剤床16を再生することは、吸着床14に入る天然ガス供給流10の相対汚染物質含有量と比較して、この床を出るガス流26の相対汚染物質含有量の増加をもたらす。このように吸着剤床は再生され得るが、ここで再生ガス26は、元の天然ガス流10より品質が悪い。一般に、再生ガス流を吸着モードの吸着剤床に再循環させることが所望されるため、これは問題である。先行技術では、この問題は、汚染物質の一部を液相に凝縮するように、空気および水冷却器内で再生ガスを冷却することによって、および液相を再生ガスから分離することによって解決される。
したがって、ガス流26は、凝縮器28内で、少なくともいくらかの水およびいくらかの炭化水素が液体の水/炭化水素相に凝縮し始めるような温度に冷却される。冷却温度は調整することができ、ガス流26の温度に依存する。典型的に、冷却は空気および/または水冷却器によって行われ、冷却温度は典型的に空気または水の温度であり、特に水和物温度を超える、例えば0〜+20℃の範囲を超える温度である。冷却器の入口温度は、約5〜60℃、好ましくは約15〜35℃の範囲であり、20〜35℃も例示される。200〜1400psia、好ましくは600〜1200psia、800〜1000psiaによってさらに例示される圧力を使用することができる。ガス相からの水および重質炭化水素の凝縮または分離は、冷却された流れ29を凝縮器28から受容する分離器30内で起こる。好ましくは、ガス流中のガス相に存在する水および炭化水素汚染物質の総量に基づいて、0.5%〜90%、より好ましくは1.0%〜80%の水および炭化水素汚染物質が凝縮する。
液体の水および重質炭化水素(C5+)は、ノックアウトまたは分離器30内で冷却された流れ29から分離され、ライン32を経由して排出される。主にC〜C炭化水素であり、水およびC5+汚染物質が激減したガス流34が、分離器30を出る。先行技術のシステムでは、ガス流34は、残留する重質炭化水素のさらなる除去のために、吸着剤床14に再循環された。しかしながら、前述のように、凝縮器28およびノックアウト30は、全体的に効率的でなく、したがって著しいレベルのC5+炭化水素汚染物質は、ガス相34中に残留し得る。吸着剤床への流れ34の連続再循環は、吸着剤を過負荷するため、吸着剤をより頻繁に再生する必要があるか、または吸着剤床のサイズの増加を必要とする。この床がより大きくされるか、または吸着剤がより頻繁に再生されるかに関わらず、再生ガスの量は増大し、その結果として、実際の再循環の量を増加させる。
本発明に従い、ノックアウト30内のガス/液体分離から得られるガス流34をさらに処理し、そこから重質炭化水素を除去する。処理に続いて、次にガス相をパイプラインに送給するか、または吸着剤床に過負荷をかけるという前述の困難なしに、吸着剤床に再循環され得る。図1を再度参照すると、ノックアウト30から分離されるガス相34は、加熱器36内で加熱され、加熱されたガス相は、ライン38を経由してPSAユニット40に送給される。図1に示されるように、PSAユニット40は、吸収剤の1つの床または典型的に複数の床が用いられるPSAシステムを表す。TSAシステムと同様に、PSAシステムの各床は、連続加圧/吸着および減圧/再生サイクルで作用する。PSAプロセスは、少なくとも4つの床を有するシステムについて説明する、Wagnerの米国特許第3,430,418号に示される、多層システムで典型的に実行される。一般に知られており、この特許に説明されるように、PSAプロセスは、各床において、(1)床の最終生成物からの廃生成物の放出を伴う、より高圧の吸着、(2)その最終生成物からの隙間ガスの放出を伴う、中間圧への並流減圧(co−current depressurization)、(3)より低い圧力への逆流減圧、(4)パージ、および(5)加圧を含む処理シーケンスのサイクルで一般に行われる。並流減圧ステップの間に放出した隙間ガスは、一般に圧力均衡化の目的で、かつその低い脱着圧で床にパージガスを提供するように用いられる。好適には、吸着剤の内表面は極性である。適切な吸着剤材料としては、シリカ、シリカゲル、アルミナ、またはシリカ−アルミナおよびゼオライト型吸着剤に基づく材料が挙げられる。一般に、PSA吸着段階の入口温度は、約65〜200℃、好ましくは約125〜175℃の範囲内であり得、150〜160℃の範囲も例示される。200〜1400psia、好ましくは500〜1200psia、および800〜1000psiaによってさらに例示される圧力を使用することができる。2〜100psia、好ましくは5〜30psia、および10〜20psiaによってさらに例示される圧力をパージ段階に使用することができる。
再度、図1を参照すると、PSAシステム40からの生成物ガスは、ガス流26およびガス相34より実質的に低い重質炭化水素含有量を有して、ライン42を経由して流出する。ライン42は、パイプラインに直接送給されるか、または凝縮器44によって冷却されて、更に水または重質液体炭化水素をノックアウトして、次いでパイプラインに向かう清浄なガス相46を生成することができる。PSAシステム40からの低圧汚染物質ガス相48は、吸着剤床を減圧することによって形成され、PSAの再生サイクルを表す。低圧ガス相48は、TSA吸着剤の再生のためにボイラー22を加熱するための燃料として使用されることができる。
図2は、図1に示されるものに代わる方法を表すが、TSAプロセスおよびガス/液相ノックアウトユニットは、各方法に対して同じである。天然ガス供給流50は、熱スイング吸着ユニット(TSAユニット)52に向かう。TSAユニット52は、吸着段階、再生段階、および冷却段階を通して代替的に処理される1つ以上の床を含む。図2では、吸着段階は参照番号54によって示され、再生段階は参照番号56によって示され、冷却段階は参照番号58によって示される。供給流50は、ライン51を経由して吸着段階54に入る。吸着段階54は、上に開示されるような特定の吸着剤を含み、水、およびC5+炭化水素を含む重質炭化水素を供給流50から吸着することができる。生成物流55は、供給流50より低い重質炭化水素および水含有量を有して、TSA吸着剤床54を出る。供給流50の一部分を使用して、ライン53を経由して段階58において吸着剤を冷却することもでき、上記のように吸着および次いで再生が続く。再生段階は、吸着剤が重質炭化水素を放出するように、吸着剤を加熱することを伴う。加熱は、冷却ユニット58を通過した供給流を送ることによって達成され、ユニット58からライン60を経由してボイラー62に向かう。ボイラー62では、供給流が加熱され、再生ユニット56にライン64を経由して向かう。
再生ユニット56では、加熱された吸着剤が吸着された水および炭化水素を放出し、それらはライン66から除去される。ライン66は、供給流50より大幅に高い濃度の水および重質炭化水素を有する。ガス流66は、図1に関して説明されるように、凝縮器68内で、少なくともいくらかの水およびいくらかの炭化水素が、液体の水/炭化水素相に凝縮し始める温度に冷却される。この水および重質炭化水素のガス相からの凝縮または分離は、冷却された流れ69を凝縮器68から受容する分離器70内で起こる。
液体の水/炭化水素相は、ノックアウトまたは分離器70内でガス流から分離され、ライン72を経由して排出される。汚染物質が枯渇したガス流74が、分離器70を出る。ガス流74は、図1に関して説明されるように、PSAユニット40と同じ方法で作動するPSAユニット80に向かう。したがって、重質炭化水素をC5+炭化水素の形態で含有するガス流74は、加熱器76内で加熱され、ガス流はライン78を経由してPSAプロセス80に送られる。PSAシステム80は、重質炭化水素に対して選択的な吸着剤を含む、吸着剤床を含む。高圧生成物流82は、プロセス流66、74、および78より実質的に少ない重質炭化水素を有して、PSAプロセス80の吸着剤床を経由してPSAプロセス80を出る。したがって、生成物82は、冷却器84内で冷却され、TSAプロセスの吸着剤床54への再循環のためにライン86を経由して送給され得る。流れ86が、PSAユニット80内の吸着に起因する低い重質炭化水素含有量を有する限り、TSA吸着ユニットへの再循環は、先行技術と同様にユニットに過負荷をかけない。図1と同様に、PSAユニット80からの低圧汚染物質相88は、ボイラー62の燃料として使用されることができる。
図3は、本発明の範囲内に含まれるさらに別の代替方法を描く。図1および2と同様に、図3の方法は、TSAおよびガス/液体分離の複合プロセスによって、天然ガス供給流を処理することを伴う。図1および2において、天然ガス供給流90は、TSAプロセス100によって処理され、清浄な生成物ガス101、および水/C5+炭化水素濃縮流102を産生する。凝縮器99およびガス/液体分離器103は、流れ102を処理し、再生中にTSAユニット100から脱着された汚染物質重質炭化水素をさらに含有する、生成物ガス相104を産生する。液体の水/重質炭化水素流107もまた、分離器103から除去される。図1および2に示される方法と同様に、生成物ガス相104は、加熱器105内で加熱され、ライン106を経由してPSAユニット108に送られる。PSAユニット108を出る生成物ガス110は、PSAユニット内で吸着された重質炭化水素が著しく低減する。吸着剤は、以前に開示されているとおりであり、より軽い炭化水素、すなわちC〜Cより水およびC5炭化水素に対して選択的である。したがって、生成物ガス110は、TSAユニット100内で吸着剤を過負荷することなく、ライン112および113を経由してTSA吸着ユニットに直接再循環され得る。PSAユニット108からの低圧汚染物質ガス相は、ライン114を経由して流出し、水および重質炭化水素が濃縮されている。この実施形態では、低圧汚染物質ガス流は、圧縮器116内で加圧され、ライン117を経由して凝縮器118に向かい、ライン119を経由して分離器120に向かい、水および重質炭化水素は、分離器120内でガス相成分C〜C炭化水素からさらに分離され、液体流122として分離器120を出る。分離器120からのガス相は、ライン124を経由して流出し、TSAユニット100のボイラー130内で燃料として使用され得る。したがって、C5+の液体炭化水素は、ライン107および122を通って分離器103および120からそれぞれ除去され、化学値が回復され得る。
図4は、本発明の方法に対するなおもさらに別の代替を表す。天然ガス供給流130は、TSAユニット132を通過して、大量の水および重質炭化水素を供給流から除去し、パイプラインに送給され得る生成物ガス134を生成する。TSAユニット132は、吸着段階、再生段階、および冷却段階を通じて代替的に処理される、1つ以上の床を含む。図4において、吸着段階は平行に走る2つの床133および135によって示され、再生段階は参照番号136によって示され、冷却段階は参照番号138によって示される。供給流130は、ライン131、139、および141を経由して同時に、または交互に吸着段階133および135に入る。吸着段階133および135は、水、およびC5+炭化水素を含む重質炭化水素を供給流130から吸着することができる粒子吸着剤を含む。吸着段階の入口温度および圧力は、図1の論考に記載されるとおりである。生成物流134は、供給流130より大幅に低減した重質炭化水素および水含有量を有して、TSA吸着剤床133および135を出る。供給流130の一部分を使用して、ライン137を経由して段階138において吸着剤を冷却することもでき、吸着および次いで再生が続く。したがって、段階133および135における吸着剤が加熱され、この吸着剤がそこから汚染物質を放出すると、段階はここで冷却され、前述のように吸着段階のために準備される必要がある。再生段階は、吸着剤が重質炭化水素を放出するように、吸着剤を加熱することを伴う。加熱は、冷却ユニット138を通過した供給流を送ることと、ユニット138からの供給流を、ライン140を経由してボイラー142に送ることによって達成される。ボイラー142内で供給流は加熱され、ライン144を経由して再生ユニット136に向かう。
TSAユニット132からの汚染物質流146は、吸着剤床136の再生によって形成され、ライン147を経由して凝縮器148に向かった後、ライン149を経由して分離器ユニット150に向かう。分離器150は、ガス/液体分離を提供し、水およびC5+炭化水素の液体汚染物質が、ライン151を経由して除去され、ガス相152は分離され、本発明に従いさらに処理されて、追加の重質炭化水素汚染物質を除去する。再度、ガス相152は、加熱器154内で加熱され、ライン156を経由してPSAユニット158に向かう。流れ156より低減されたレベルの水およびC5+炭化水素を有するPSAユニット158からの生成物は、ライン160を経由して流出し、パイプラインに向かう。任意選択により、(図示せず)ライン160は、TSAユニット132の吸着剤床に再循環され得る。PSAユニットからの低圧汚染物質流162は、圧縮器164内で加圧され、ライン165を経由して凝縮器166に向かい、ライン167を経由して分離器168に向かい、重質液体がライン170を経由してさらに除去される。図4に示される方法では、分離器168を出るガス相171は、圧縮器172内で加圧され、ライン174を経由して凝縮器176に向かい、ライン177を経由して分離器178に向かい、ライン180を経由するC5+液相、およびTSAユニット132内での吸着剤の再生の後、TSAユニット132を出る汚染物質ガス相146と混合するためのガス相182に分離する。複合流146および182は、流れ147を形成し、冷却されて分離ユニット150内で分離される。PSAユニット158からの中間圧生成物ガス相159は、燃料流157として取られる。ガス相159の一部分は、ライン161を経由してガス相171に向かう。この実施形態では、重質炭化水素は、初期供給流130からライン151、170、および180として回収される。
図5に示される最終代替実施形態では、水および重質炭化水素を除去するように処理される必要がある天然ガス流90は、図3に示され、前述されるように、TSAユニット100および分離ユニット103に送られる。分離器ユニット103から流出するのは液体汚染物質流190であり、化学値が回復され得る水および重質炭化水素、ならびに依然として少量の重質炭化水素C5+を含有するガス相192を含有する。前述の実施形態と同様に、ガス相192は、加熱器193内で加熱され、ライン194を経由してPSAユニット196に送られる。PSAユニット196内で、流れ194に含まれる重質炭化水素は、PSAユニット196の吸着剤床内で吸着され、流れ194より低いC5+炭化水素含有量を有する高圧生成物であるガス流198を生成する。この実施形態では、高圧生成物ガス流198は、TSAユニット100の吸着剤段階に再循環される。これは、ライン200および201を経由して示される。中間圧生成物流172もまた、PSAユニット196の最終生成物から並流して取られる。この中間圧生成物流202も、流れ194より低いC5+含有量を有し、圧縮器204内で加圧され、ライン206を経由して送られ、ライン200を経由してTSAユニット100の吸着剤段階に再循環する。PSAユニットからの中間圧流の除去および再循環は、PSAユニットの効率性を改善し、一般に2003年8月26日に発行された譲渡済米国特許第6,610,124号に示される。PSAユニット196を出る低圧の高度に汚染された流れ208は、圧縮器210内で加圧された後、ライン212を経由して凝縮器214に送給され、分離器216内でガス相および液相に分離される。重質炭化水素を含有する液相は、ライン218を経由して除去され、200を経由するガス相を使用して、TSAユニット100内のボイラーを加熱することができる。
実施例1(先行技術)
この実施例は、12,000kg/床、4床TSAプロセスを持つ炭化水素回収システムの性能を説明する。このシステムは、先行技術のTSAユニットおよび分離器を含む。このシステムは、図1と同じであり、吸着段階14は2つの床であり、各床に12,000kgの吸着剤を有する。PSAユニットに送給される分離器30からのガス相34の代わりに、ガス相34は、供給チャージ11に再循環される。このシステムは、−2℃の典型的なパイプライン仕様にはるかに及ばない32℃のクリコンデンサームを有する、生成物流15を生成する。流れは表1に定義され、上記限定のように、図1と関連付けられる。
Figure 2019162627
実施例2(先行技術)
この実施例は、実施例1と同様に、27,000kg/床、4床プロセスを持つ炭化水素回収システムの性能を説明する。この実施例では、床当たりの吸着剤インベントリを増加させることが生成物流15のクリコンデンサームに及ぼす影響が検討される。各床14中の吸着剤の量を増加させることによって、生成物15のクリコンデンサームは21℃である。流れは表2において定義される。
Figure 2019162627
実施例3(先行技術)
この実施例は、35,000kg/床、4床プロセスを持つ炭化水素回収システムの性能を説明する。この実施例では、床当たりの吸着剤インベントリをさらに増加させることが生成物流15のクリコンデンサームに及ぼす影響が考慮される。ここで、流れ15のクリコンデンサームは19.8℃である。流れデータについては表3を参照されたい。効果的に、全ての処理されたガスは再生に使用される。流れ10および34の流量を比較する。
Figure 2019162627
実施例4(先行技術)
この実施例は、実施例1と同様に、39,750kg/床、4床プロセスを持つ炭化水素回収システムの性能を説明する。この場合、供給に使用可能な量を超えて、再生に必要なガスの量を取る再循環が導入される。これは、高圧送風機の導入によって行われ得る。しかしながら、流れ15のクリコンデンサーム仕様にさらなる改善はなく、この場合、クリコンデンサームは依然として19.8℃である。流れデータについては表4を参照されたい。
Figure 2019162627
実施例5(本発明)
この例では、図4に示されるように、PSAが12,000kg/床、4床プロセスを持つ炭化水素回収システム上のTSAユニットに追加される。この場合、複合生成物流134および160のクリコンデンサームは10℃であり、依然として−2℃のクリコンデンサーム仕様に達していないが、TSAユニットの再生流上にPSAを置く方法の改善を示す。表5を参照されたい。
Figure 2019162627
実施例6(本発明)
この場合、PSAユニットは、実施例5と同様に、図4に示される21,000kg床、4床プロセスを持つTSAユニットに追加される。この場合、複合流134および160のクリコンデンサームは−2.3℃であり、−2℃のクリコンデンサーム仕様を満たし、TSAの再生流上にPSAを置く方法の改善を示す。この方法で生成されるC5+液体の量も重要な考慮事項であり、実施例5の76.7#モル/時間に対して111.6#モル/時間が生成された。増分C5+生成は相当量であり、プラント費用を支払うために使用することができる。典型的に、C5+コンデンセートは、1バレルの石油とガスとしてのその価値をはるかに超えてプレミア価格で取り引きされる。
Figure 2019162627
実施例7(本発明)
図1の流れ10によって説明される供給の場合、フガシティ係数は、様々な温度でのn−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタンの温度および圧力の関数として説明される。表7は、図1の流れ10について、2つの圧力での様々な構成成分のフガシティ係数対温度を示す。
表7に見ることができるように、高圧および上昇温度(華氏350度、摂氏176.7℃)で、フガシティ係数は、華氏70度(摂氏21.1℃)および高圧に対して最大1桁増加する。これに反して、低圧では、全ての構成成分が全ての温度で約1のフガシティ係数を有する。PSA内での分離のための駆動力は部分圧、より正確には部分圧xフガシティ係数の変化であるため、より高温のPSA操作は、PSAサイクル全体で圧力を変えるときにより大きな駆動力の変化を可能にすることが明らかとなるはずである。PSAサイクル全体のより大きな駆動力の変化は、より小さな吸着剤インベントリおよびより良好な性能を可能にする。
Figure 2019162627

Claims (22)

  1. 重質炭化水素を天然ガス流から除去するための方法であって、
    水およびC5+炭化水素を含有する天然ガス流を、前記天然ガス供給流から前記水およびC5+炭化水素の少なくとも一部分を吸着して、前記供給流より低減したレベルの水およびC5+炭化水素を有する第1の生成物ガス流を生成するように、熱スイング吸着(TSA)ユニットの吸着剤床に送り、加熱することによって前記吸着剤床を再生して、吸着した水およびC5+炭化水素を除去し、前記供給流より高い濃度の水およびC5+炭化水素を有する第2のガス流を形成することと、
    前記第2のガス流を冷却して液体の水および液体のC5+炭化水素を形成し、前記液体を前記第2のガス流から分離して第3のガス流を形成することと、
    前記第3のガス流からC5+炭化水素を吸着し、前記第3のガス流より低い濃度のC5+炭化水素を有する高圧の第2の生成物ガス流を生成するように、前記第3のガス流を圧力スイング吸着(PSA)ユニットの吸着剤床に送ることと、
    前記圧力を低下させることによって前記PSAユニット内の前記吸着剤床を再生し、C5+炭化水素を含有する低圧汚染物質ガス流を形成することと、を含む、前記方法。
  2. 前記PSAユニットからの前記低圧汚染物質ガス流が、前記TSAユニットの前記吸着剤床を加熱するための燃料として使用される、請求項1に記載の方法。
  3. 前記高圧の第2の生成物ガス流が、前記TSAユニットの前記吸着剤床に再循環される、請求項1に記載の方法。
  4. 前記低圧汚染物質ガス流が冷却され、C5+炭化水素液体を前記低圧汚染物質ガス流から凝縮し、当該液体を前記低圧汚染物質ガス流から分離および回収して、軽質炭化水素ガス流を形成する、請求項1に記載の方法。
  5. 前記軽質炭化水素ガス流が、前記TSAユニットの前記吸着剤床を加熱および再生するための燃料として使用される、請求項4に記載の方法。
  6. 前記低圧汚染物質ガス流が、前記冷却の前に加圧される、請求項4に記載の方法。
  7. 前記高圧の第2の生成物流が、前記TSAユニットの前記吸着剤床に再循環される、請求項4に記載の方法。
  8. 前記軽質炭化水素ガス流の一部分が、前記第2のガス流を冷却する前に前記第2のガス流と合わせられる、請求項4に記載の方法。
  9. 前記第3のガス流の一部分が、前記TSAユニットの前記吸着剤床を加熱および再生するための燃料として使用される、請求項8に記載の方法。
  10. 前記高圧の第2の生成物ガス流が、前記TSAユニットの前記吸着剤床に再循環される、請求項8に記載の方法。
  11. 前記高圧の第2の生成物ガス流が、前記TSAユニットの前記吸着剤床に再循環される、請求項9に記載の方法。
  12. 前記高圧の第2の生成物ガス流の流れと並流する、前記PSAユニットからの中間圧ガス流を形成し、前記中間圧流を前記TSAユニットの前記吸着剤床に再循環させることを含む、請求項1に記載の方法。
  13. 前記中間圧ガス流が、前記高圧の第2の生成物ガス流と混合されて再循環可能な混合ガスを形成し、前記混合ガスを前記TSAユニットの前記吸着剤床に送る、請求項12に記載の方法。
  14. 前記天然ガス供給流の一部分が加熱され、前記吸着剤床を再生するように前記TSAの前記吸着剤床に送られる、請求項1に記載の方法。
  15. 前記TSAユニットおよび前記PSAユニットの前記吸着剤床が、シリカ、シリカゲル、アルミナ、シリカ−アルミナ、およびゼオライト吸着剤から選択される、請求項1に記載の方法。
  16. 前記第1の生成物ガス流、前記高圧の第2の生成物ガス流、または前記ガス流の双方が、天然ガスパイプラインに送給される、請求項1に記載の方法。
  17. 前記軽質炭化水素ガス流が冷却され、液体C5+炭化水素流を前記軽質炭化水素ガス流から分離して回収する、請求項4に記載の方法。
  18. 前記高圧の第2の生成物ガス流の流れと並流する、前記PSAユニットからの中間圧ガス流を形成することを含む、請求項1に記載の方法。
  19. 前記PSAが、少なくとも65℃の温度、および少なくとも500psia(3.45MPa)の圧力で吸着する、請求項1に記載の方法。
  20. 前記PSAが、少なくとも150℃の温度、および少なくとも800psia(5.52MPa)の圧力で吸着する、請求項19に記載の方法。
  21. 重質炭化水素をメタンおよび重質炭化水素を含有するガス流から除去する方法であって、
    5+炭化水素を前記ガス流から吸着し、前記ガス流より高い濃度のメタンおよび低い濃度のC5+炭化水素を有する生成物ガス流を生成するように、前記ガス流を、少なくとも65℃の温度および少なくとも500psia(3.45MPa)の圧力で吸着する圧力スイング吸着(PSA)ユニットの吸着剤床に送ることと、
    前記圧力を低下させることによって、前記PSAユニット内の前記吸着剤床を再生し、C5+炭化水素を含有する低圧汚染ガス流を形成することと、を含む、前記方法。
  22. 前記PSAユニットが、少なくとも125℃の温度、および少なくとも500psia(3.45MPa)の圧力で吸着する、請求項21に記載の方法。
JP2019085811A 2012-02-01 2019-04-26 重質炭化水素除去方法 Withdrawn JP2019162627A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/363,699 2012-02-01
US13/363,699 US8778050B2 (en) 2012-02-01 2012-02-01 Heavy hydrocarbon removal process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017114210A Division JP2017222853A (ja) 2012-02-01 2017-06-09 重質炭化水素除去方法

Publications (1)

Publication Number Publication Date
JP2019162627A true JP2019162627A (ja) 2019-09-26

Family

ID=48869083

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014555741A Expired - Fee Related JP6161635B2 (ja) 2012-02-01 2013-02-01 重質炭化水素除去方法
JP2017114210A Pending JP2017222853A (ja) 2012-02-01 2017-06-09 重質炭化水素除去方法
JP2019085811A Withdrawn JP2019162627A (ja) 2012-02-01 2019-04-26 重質炭化水素除去方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014555741A Expired - Fee Related JP6161635B2 (ja) 2012-02-01 2013-02-01 重質炭化水素除去方法
JP2017114210A Pending JP2017222853A (ja) 2012-02-01 2017-06-09 重質炭化水素除去方法

Country Status (16)

Country Link
US (1) US8778050B2 (ja)
EP (2) EP3495458A1 (ja)
JP (3) JP6161635B2 (ja)
KR (1) KR20140128366A (ja)
CN (1) CN104204159B (ja)
BR (1) BR112014019130A8 (ja)
CA (1) CA2863650C (ja)
ES (1) ES2714276T3 (ja)
HR (1) HRP20182130T1 (ja)
HU (1) HUE042542T2 (ja)
MX (1) MX336446B (ja)
MY (1) MY165753A (ja)
PL (1) PL2809752T3 (ja)
RU (1) RU2634711C2 (ja)
SG (1) SG11201404574QA (ja)
WO (1) WO2013116627A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936669B2 (en) * 2013-05-06 2015-01-20 Uop Llc Temperature swing adsorption systems and methods for purifying fluids using the same
CN103525492A (zh) * 2013-10-23 2014-01-22 宁夏宝塔石化科技实业发展有限公司 一种天然气加工利用工艺
WO2015108569A1 (en) * 2014-01-17 2015-07-23 Dow Global Technologies Llc Methane-rich natural gas supply for stationary combustion systems
MX2016009157A (es) * 2014-01-23 2016-09-09 Dow Global Technologies Llc Metodo para proporcionar gas natural de calidad en tuberia.
DE102014005935A1 (de) * 2014-04-24 2015-10-29 Linde Aktiengesellschaft Verfahren zum Abtrennen von schweren Kohlenwasserstoffen
EA201791685A1 (ru) 2015-01-27 2018-01-31 Дау Глоубл Текнолоджиз Ллк Отделение азота от газообразного углеводорода с использованием пиролизованной сульфированной макропористой ионообменной смолы
US9908079B2 (en) 2015-01-27 2018-03-06 Dow Global Technologies Llc Separation of hydrocarbons using regenerable macroporous alkylene-bridged adsorbent
CA2996137C (en) * 2015-09-02 2021-01-19 Exxonmobil Upstream Research Company Apparatus and system for combined rapid cycle temperature and pressure swing adsorption processes related thereto
EP3344371B1 (en) * 2015-09-02 2021-09-15 ExxonMobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
EP3216511A1 (en) * 2016-03-08 2017-09-13 Casale SA A temperature-swing adsorption process
CN106085528B (zh) * 2016-06-02 2018-10-30 成都深冷液化设备股份有限公司 一种高适应性脱除重烃的工艺
EP3260185A1 (de) * 2016-06-21 2017-12-27 Donaldson Filtration Deutschland GmbH Vorrichtung zur temperaturwechsel-adsorption und verfahren zur temperaturwechsel-adsorption für die reinigung von gasen
US10399007B2 (en) * 2016-11-08 2019-09-03 Uop Llc Temperature swing adsorption process and apparatus with closed loop regeneration
US10052580B2 (en) * 2016-12-28 2018-08-21 Uop Llc Trim bed for adsorption separation zone
US10946327B2 (en) * 2017-03-31 2021-03-16 Uop Llc Use of a peak-dampening capacitor to improve adsorber separation performance
EP3449996A1 (en) * 2017-08-28 2019-03-06 Casale Sa A temperature-swing adsorption process
EP3449997A1 (en) * 2017-08-28 2019-03-06 Casale Sa A temperature-swing adsorption process
US10646817B2 (en) 2017-11-09 2020-05-12 Apache Corporation Porous materials for natural gas liquids separations
US10441915B2 (en) 2017-11-09 2019-10-15 Apache Corporation Natural gas liquids recovery from pressure swing adsorption and vacuum swing adsorption
US11260337B2 (en) 2018-03-29 2022-03-01 Uop Llc Process for the removal of carbon dioxide and heavy hydrocarbons
US11097219B2 (en) 2018-03-31 2021-08-24 Uop Llc Thermal swing adsorption process with purification
US10821394B2 (en) * 2018-06-20 2020-11-03 Uop Llc Temperature swing adsorption process for heavy hydrocarbon removal
US11034903B2 (en) * 2018-06-27 2021-06-15 Uop Llc Adsorption process for treating natural gas
US10850225B2 (en) * 2018-07-17 2020-12-01 Uop Llc Processes for removing heavy hydrocarbons and water from a stream of natural gas
US10882004B2 (en) * 2018-08-23 2021-01-05 Uop Llc Reducing peak compositions in regeneration gas for swing adsorption processes
US20200115301A1 (en) * 2018-10-15 2020-04-16 Uop Llc Process for recovery of ethylene from dry gas
CN110237659B (zh) * 2019-06-24 2021-06-25 浙江天采云集科技股份有限公司 一种甲烷法制氯甲烷中天然气及循环反应气无损干燥方法
EP4061913A1 (en) * 2019-11-19 2022-09-28 Basf Corporation Systems and processes for heavy hydrocarbon removal
JP7356885B2 (ja) * 2019-12-06 2023-10-05 株式会社豊田中央研究所 ガス分離装置およびガス分離装置の制御方法
EP3900809A1 (en) * 2020-04-23 2021-10-27 Linde GmbH Process and apparatus for removing unwanted components from a gas mixture
CN112516741A (zh) * 2020-11-06 2021-03-19 瑞必科净化设备(上海)有限公司 一种psa尾气对tsa进行再生的方法
US11717784B1 (en) 2020-11-10 2023-08-08 Solid State Separation Holdings, LLC Natural gas adsorptive separation system and method
US20240001285A1 (en) * 2020-12-04 2024-01-04 Basf Corporation Elimination of recycle compressor in dehydration and contaminant removal systems
US11981635B2 (en) * 2020-12-21 2024-05-14 Basf Corporation Hydrocarbon recovery units with separators configured to reduce liquid hydrocarbon exposure to regeneration gas streams
EP4074407A1 (en) * 2021-04-13 2022-10-19 Linde GmbH Gas treatment process and process arrangement
EP4309764A1 (en) 2022-07-21 2024-01-24 Linde GmbH Process and apparatus for removing components from a feed gas mixture
EP4311594A1 (en) 2022-07-29 2024-01-31 Linde GmbH Method and apparatus for temperature swing adsorption

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430418A (en) 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
GB1419380A (en) * 1972-03-03 1975-12-31 British Gas Corp Purification of natural gas
DE2461759B2 (de) * 1974-01-02 1976-10-14 Union Carbide Corp., New York, N.Y. (V.StA.) Verfahren zum reinigen von rohem methan
US4425142A (en) * 1982-11-15 1984-01-10 Chicago Bridge & Iron Company Pressure swing adsorption cycle for natural gas pretreatment for liquefaction
US4749393A (en) * 1987-09-18 1988-06-07 Air Products And Chemicals, Inc. Process for the recovery of hydrogen/heavy hydrocarbons from hydrogen-lean feed gases
US5013334A (en) * 1990-01-09 1991-05-07 Uop Methane purification by pressure swing adsorption
US5012037A (en) * 1990-01-10 1991-04-30 Uop Integrated thermal swing-pressure swing adsorption process for hydrogen and hydrocarbon recovery
US5089034A (en) * 1990-11-13 1992-02-18 Uop Process for purifying natural gas
US5245099A (en) * 1992-07-22 1993-09-14 Uop PSA process for recovery or ethylene
CA2133302A1 (en) * 1993-10-06 1995-04-07 Ravi Kumar Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
US6103773A (en) * 1998-01-27 2000-08-15 Exxon Research And Engineering Co Gas conversion using hydrogen produced from syngas for removing sulfur from gas well hydrocarbon liquids
US6444012B1 (en) 2000-10-30 2002-09-03 Engelhard Corporation Selective removal of nitrogen from natural gas by pressure swing adsorption
US6497750B2 (en) 2001-02-26 2002-12-24 Engelhard Corporation Pressure swing adsorption process
US6610124B1 (en) 2002-03-12 2003-08-26 Engelhard Corporation Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
AU2004285080B2 (en) 2003-10-30 2008-04-24 Shell Internationale Research Maatschappij B.V. Process and system for removing contaminants from a natural gas stream
US7442233B2 (en) * 2005-07-06 2008-10-28 Basf Catalysts Llc Integrated heavy hydrocarbon removal, amine treating and dehydration
US8529662B2 (en) * 2007-05-18 2013-09-10 Exxonmobil Research And Engineering Company Removal of heavy hydrocarbons from gas mixtures containing heavy hydrocarbons and methane
FR2921470B1 (fr) * 2007-09-24 2015-12-11 Inst Francais Du Petrole Procede de liquefaction d'un gaz naturel sec.
US7803215B2 (en) * 2007-12-12 2010-09-28 Uop Llc Adsorber for pretreatment of natural gas containing bulk hydrogen sulfide
CN100595263C (zh) * 2008-04-22 2010-03-24 成都五环新锐化工有限公司 从富含甲烷的混合气体中生产液化天然气的前端组合净化工艺
US7780764B2 (en) * 2008-06-27 2010-08-24 Praxair Technology, Inc. Methods and systems for helium recovery
CN101508923B (zh) * 2009-03-12 2012-10-10 西安长庆科技工程有限责任公司 一种天然气脱水脱重烃装置及工艺方法
WO2011014345A1 (en) * 2009-07-30 2011-02-03 Exxonmobil Upstream Research Company Systems and methods for removing heavy hydrocarbons and acid gases from a hydrocarbon gas stream
CN101732942A (zh) * 2010-01-22 2010-06-16 西安联合超滤净化设备有限公司 混合气体中重烃的分离方法及其装置

Also Published As

Publication number Publication date
CN104204159B (zh) 2017-05-17
US8778050B2 (en) 2014-07-15
MX336446B (es) 2016-01-19
EP2809752B1 (en) 2018-12-05
CN104204159A (zh) 2014-12-10
EP3495458A1 (en) 2019-06-12
BR112014019130A8 (pt) 2017-07-11
JP2015523413A (ja) 2015-08-13
EP2809752A4 (en) 2015-12-16
MY165753A (en) 2018-04-23
HRP20182130T1 (hr) 2019-03-08
HUE042542T2 (hu) 2019-07-29
MX2014009319A (es) 2014-11-12
PL2809752T3 (pl) 2019-05-31
KR20140128366A (ko) 2014-11-05
US20130192299A1 (en) 2013-08-01
BR112014019130A2 (ja) 2017-06-20
SG11201404574QA (en) 2014-10-30
RU2014135273A (ru) 2016-03-20
RU2634711C2 (ru) 2017-11-03
CA2863650C (en) 2020-07-14
WO2013116627A1 (en) 2013-08-08
JP6161635B2 (ja) 2017-07-12
JP2017222853A (ja) 2017-12-21
CA2863650A1 (en) 2013-08-08
EP2809752A1 (en) 2014-12-10
ES2714276T3 (es) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6161635B2 (ja) 重質炭化水素除去方法
AU2006265026B2 (en) Integrated heavy hydrocarbon removal, amine treating and dehydration
CN104607000B (zh) 一种炼厂干气中c2、c3组分、轻烃组分及氢气的回收方法
AU2014263067B2 (en) Temperature swing adsorption systems and methods for purifying fluids using the same
CA2538178A1 (fr) Procede de purification d'un gaz naturel par adsorption des mercaptans
AU2014216630B2 (en) Process for floating liquified natural gas pretreatment
CN205461668U (zh) 用于粗合成气体的纯化的装置
RU2613914C1 (ru) Способ переработки природного углеводородного газа
WO2017033217A1 (ja) 炭化水素ガスの液化前処理設備及び出荷基地設備
AU2004285080B2 (en) Process and system for removing contaminants from a natural gas stream
JPH07207280A (ja) 排ガスからアルケンを回収するための方法
US20220403273A1 (en) Systems and processes for heavy hydrocarbon removal
WO2016085721A1 (en) Oxygen and sulfur tolerant adsorbent system
JP2024506144A (ja) メタン含有ガスからco2を除去する方法
FR2971043A1 (fr) Procede de liquefaction d'un gaz naturel a haute pression avec un pretraitement utilisant un solvant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191108