JP2019160502A - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
JP2019160502A
JP2019160502A JP2018043712A JP2018043712A JP2019160502A JP 2019160502 A JP2019160502 A JP 2019160502A JP 2018043712 A JP2018043712 A JP 2018043712A JP 2018043712 A JP2018043712 A JP 2018043712A JP 2019160502 A JP2019160502 A JP 2019160502A
Authority
JP
Japan
Prior art keywords
battery
energization path
battery device
movable part
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018043712A
Other languages
Japanese (ja)
Inventor
耕嗣 北田
Koji Kitada
耕嗣 北田
貴洋 藤本
Takahiro Fujimoto
貴洋 藤本
正規 渡邉
Masanori Watanabe
正規 渡邉
しおみ 藪本
Shiomi Yabumoto
しおみ 藪本
勇輝 梅村
Yuki Umemura
勇輝 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018043712A priority Critical patent/JP2019160502A/en
Publication of JP2019160502A publication Critical patent/JP2019160502A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a battery device that can raise the temperature of a battery with a simple configuration.SOLUTION: A battery device includes at least one battery and an energization path electrically connected to at least one battery, and the energization path includes a movable part configured to bendable in a direction intersecting with the energization direction in the energization path, and when the movable part bends as the temperature decreases, at least a part of the movable part is away from the energization path and the cross-sectional area of the energization path facing the energization direction decreases.SELECTED DRAWING: Figure 1

Description

本開示は、バッテリ装置に関する。   The present disclosure relates to a battery device.

環境対応車として、電気自動車(EV)やプラグインハイブリッド電気自動車(PHEV)は今後も成長が期待されている。EVやPHEVにはリチウムイオンバッテリが使用されているが、リチウムイオンバッテリの特性維持及び寿命確保には適切な温度管理が必要である。特にリチウムイオンバッテリの温度が低い場合には、リチウムイオンバッテリ内部に存在する電解液中のイオン輸送又は活性物質/電解液界面のイオン授受の速度が遅くなることで抵抗が上昇し、期待した性能を引き出せない場合がある。このため、バッテリの温度が低い場合には、バッテリの温度を昇温する必要がある。リチウムイオンバッテリに関するものではないが、特許文献1には、バッテリ装置内において複数の蓄電素子のそれぞれを直列に接続するバスバーに発熱体を設けて、蓄電素子を早期に温度上昇させることが記載されている。   As environmentally friendly vehicles, electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) are expected to grow in the future. Lithium ion batteries are used for EVs and PHEVs, but appropriate temperature management is necessary to maintain the characteristics and ensure the life of the lithium ion batteries. In particular, when the temperature of the lithium ion battery is low, the resistance is increased by slowing the rate of ion transport in the electrolyte existing inside the lithium ion battery or ion exchange at the active substance / electrolyte interface, and the expected performance. May not be available. For this reason, when the temperature of the battery is low, it is necessary to raise the temperature of the battery. Although not related to a lithium-ion battery, Patent Document 1 describes that a heating element is provided in a bus bar that connects each of a plurality of power storage elements in series in a battery device to quickly increase the temperature of the power storage elements. ing.

特開2010−97923号公報JP 2010-97923 A

しかしながら、バッテリを昇温するための発熱体を設けると、発熱体の作動機構等が必要になってバッテリ装置の構成が複雑になり、バッテリ装置の重量及び体積が増加してしまうといった問題点があった。   However, if a heating element for raising the temperature of the battery is provided, the operation mechanism of the heating element is required, the configuration of the battery device becomes complicated, and the weight and volume of the battery device increase. there were.

上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、簡単な構成でバッテリを昇温可能なバッテリ装置を提供することを目的とする。   In view of the above-described circumstances, at least one embodiment of the present disclosure aims to provide a battery device capable of raising the temperature of a battery with a simple configuration.

本発明の少なくとも1つの実施形態に係るバッテリ装置は、少なくとも1つのバッテリと、少なくとも1つのバッテリに電気的に接続される通電経路とを備え、通電経路は、通電経路における通電方向に対して交差する方向に屈曲可能に構成された可動部を含み、可動部が温度の低下に伴って屈曲することにより、可動部の少なくとも一部が通電経路から離れて通電方向に対向する通電経路の断面積が低下する。   The battery device according to at least one embodiment of the present invention includes at least one battery and an energization path electrically connected to the at least one battery, and the energization path intersects the energization direction in the energization path. A cross-sectional area of an energization path that is at least partially separated from the energization path and faces the energization direction by bending the movable part as the temperature decreases. Decreases.

この構成によると、バッテリの温度が低いときに通電経路の一部の断面積が小さくなることで、電気抵抗が上昇して発生するジュール熱が増加するので、発生するジュール熱でバッテリを昇温することができる。   According to this configuration, when the temperature of the battery is low, a part of the cross-sectional area of the energization path is reduced, so that the Joule heat generated by increasing the electrical resistance is increased. can do.

いくつかの実施形態では、可動部は、可動部を構成する第1材料の膨張係数よりも大きい膨張係数の第2材料を含んでもよい。この構成によると、可動部の温度が低いときに第1材料よりも第2材料の収縮量が大きいことで可動部の少なくとも一部が通電経路から離れるように可動部を屈曲させて、通電方向に対向する通電経路の一部の断面積を減少させることができるとともに、可動部の温度が高いときに第1材料及び第2材料の収縮量の差が小さいことで可動部の屈曲量を低下させて、通電方向に対向する通電経路の一部の断面積を増加させることができる。   In some embodiments, the movable part may include a second material having a coefficient of expansion greater than that of the first material constituting the movable part. According to this configuration, when the temperature of the movable part is low, the contraction amount of the second material is larger than that of the first material, so that the movable part is bent so that at least a part of the movable part is separated from the energization path, Can reduce the cross-sectional area of a part of the energization path that faces the surface, and when the temperature of the movable part is high, the difference in the amount of contraction between the first material and the second material is small, thereby reducing the amount of bending of the movable part. Thus, the cross-sectional area of a part of the energization path that faces the energization direction can be increased.

いくつかの実施形態では、可動部は、可動部が屈曲していない状態で通電経路に接する内側接触面を有し、内側接触面は凸状に湾曲してもよい。この構成によると、可動部の屈曲量に応じて、通電経路から離れる可動部の範囲を細かく変化するようになるので、内側接触面が平坦な場合と比べて、通電方向に対向する通電経路の断面積が減少した領域の範囲を細かく調節することができる。   In some embodiments, the movable part may have an inner contact surface that contacts the energization path when the movable part is not bent, and the inner contact surface may be curved in a convex shape. According to this configuration, since the range of the movable part that is separated from the energization path changes finely according to the bending amount of the movable part, the energization path opposite to the energization direction is compared with the case where the inner contact surface is flat. The range of the area where the cross-sectional area is reduced can be finely adjusted.

いくつかの実施形態では、通電経路は、少なくとも1つのバッテリの集電体に接続された集電端子を含み、集電端子は可動部を含んでもよい。また、バッテリ装置は複数のバッテリを備え、通電経路は、複数のバッテリ同士を電気的に接続するバスバーを含み、バスバーは可動部を含んでもよい。この構成によると、集電端子やバスバーのような既存の部品に可動部が形成されるので、バッテリ装置の大型化を抑制できる。   In some embodiments, the energization path may include a current collecting terminal connected to the current collector of at least one battery, and the current collecting terminal may include a movable part. The battery device may include a plurality of batteries, the energization path may include a bus bar that electrically connects the plurality of batteries, and the bus bar may include a movable portion. According to this structure, since a movable part is formed in the existing components like a current collection terminal and a bus bar, the enlargement of a battery apparatus can be suppressed.

いくつかの実施形態では、バッテリ装置は、少なくとも1つのバッテリの充放電を制御する制御部をさらに備え、制御部は、少なくとも1つのバッテリの温度が予め設定された要求温度に上昇するまで、少なくとも1つのバッテリからパルス的に放電を行わせてもよい。この構成によると、バッテリの始動時のようにバッテリの温度が低いためにバッテリを放電させても直ちにカットオフ電圧に到達してしまう場合でも、バッテリからパルス的に放電させることによって、バッテリを昇温させることができる。   In some embodiments, the battery device further includes a control unit that controls charging / discharging of at least one battery, and the control unit at least until the temperature of the at least one battery rises to a preset required temperature. You may make it discharge in a pulse from one battery. According to this configuration, even when the battery is discharged and the cut-off voltage is reached immediately even when the battery is discharged, such as when the battery is started, the battery is raised by discharging the battery in pulses. Can be warmed.

本開示の少なくとも1つの実施形態によれば、バッテリの温度が低いときに通電経路の一部の断面積が小さくなることで、電気抵抗が上昇して発生するジュール熱が増加するので、発生するジュール熱でバッテリを昇温することができる。   According to at least one embodiment of the present disclosure, when the temperature of the battery is low, a partial cross-sectional area of the energization path is reduced, thereby increasing Joule heat generated due to an increase in electrical resistance. The battery can be heated with Joule heat.

本開示の実施形態1に係るバッテリ装置の斜視図である。It is a perspective view of a battery device concerning Embodiment 1 of this indication. 図1の領域Aの拡大正面図である。It is an enlarged front view of the area | region A of FIG. 図1の領域Aの拡大正面図である。It is an enlarged front view of the area | region A of FIG. 本開示の実施形態2に係るバッテリ装置の平面図である。It is a top view of the battery apparatus which concerns on Embodiment 2 of this indication. 本開示の実施形態3に係るバッテリ装置の構成模式図である。FIG. 9 is a schematic configuration diagram of a battery device according to a third embodiment of the present disclosure. 本開示の実施形態3に係るバッテリ装置におけるバッテリからの放電制御の動作を説明するためのグラフである。12 is a graph for explaining an operation of discharge control from a battery in a battery device according to Embodiment 3 of the present disclosure.

以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the following embodiments are not merely intended to limit the scope of the present invention, but are merely illustrative examples.

(実施形態1)
図1に示されるように、本開示の実施形態1に係るバッテリ装置1は、例えばリチウムイオンバッテリであるバッテリ2と、バッテリ2の負極側及び正極側の集電体3及び4のそれぞれに接続された集電端子5及び6とを備えている。集電端子5及び6はそれぞれ、バッテリ2への充電時又はバッテリ2からの放電時に電流が流れる経路である通電経路の一部を構成する。集電端子5及び6はそれぞれ、負極側の外部端子20及び正極側の外部端子30に電気的に接続されている。
(Embodiment 1)
As illustrated in FIG. 1, a battery device 1 according to Embodiment 1 of the present disclosure is connected to a battery 2 that is, for example, a lithium ion battery, and current collectors 3 and 4 on the negative electrode side and the positive electrode side of the battery 2. Current collecting terminals 5 and 6. The current collecting terminals 5 and 6 respectively constitute part of an energization path that is a path through which a current flows when the battery 2 is charged or discharged from the battery 2. The current collecting terminals 5 and 6 are electrically connected to the negative external terminal 20 and the positive external terminal 30, respectively.

図2に示されるように、集電端子5は、集電体3に接する内側側面5aと、内側側面5aに対向する外側側面5bとを有している。集電端子5には、外側側面5bから内側側面5aに向かって凸状に湾曲した切り込み7が形成されている。集電端子5に電流が流れる方向である通電方向を矢印Bで表すと、この切り込み7により、通電方向Bに対して交差する方向(矢印Cの方向)に屈曲可能な可動部8が構成される。   As shown in FIG. 2, the current collecting terminal 5 has an inner side surface 5 a that contacts the current collector 3 and an outer side surface 5 b that faces the inner side surface 5 a. The current collecting terminal 5 is formed with a notch 7 curved in a convex shape from the outer side surface 5b toward the inner side surface 5a. When the energizing direction, which is the direction in which current flows through the current collecting terminal 5, is represented by an arrow B, the notch 7 forms a movable portion 8 that can be bent in a direction intersecting the energizing direction B (the direction of the arrow C). The

可動部8は、可動部8を構成する第1材料の膨張係数よりも大きい膨張係数の第2材料で形成された板材9を、外側側面5bにおいて板材9が露出するとともに外側側面5bに板材9が面一となるように含んでいる。詳細には図示しないが、図1に示されるように、集電端子6も集電端子5と同様に、板材9を含む可動部8を有している。   The movable part 8 includes a plate material 9 formed of a second material having an expansion coefficient larger than that of the first material constituting the movable part 8, and the plate material 9 is exposed on the outer side surface 5b and the plate material 9 is formed on the outer side surface 5b. Is included so as to be flush with each other. Although not shown in detail, as shown in FIG. 1, the current collecting terminal 6 has a movable portion 8 including a plate material 9, similarly to the current collecting terminal 5.

集電端子5において、第1材料が銅である場合には、第2材料としてアルミニウム合金、ステンレスSUS304、銀、すず等を使用することができる。一方、集電端子6において、第1材料がアルミニウムである場合には、第2材料としてマグネシウム合金、亜鉛合金等を使用することができる。   In the current collecting terminal 5, when the first material is copper, an aluminum alloy, stainless steel SUS304, silver, tin or the like can be used as the second material. On the other hand, in the current collecting terminal 6, when the first material is aluminum, a magnesium alloy, a zinc alloy, or the like can be used as the second material.

次に、実施形態1に係るバッテリ装置1の動作について説明する。
図1に示されるように、バッテリ装置1から任意の図示しない電子機器に給電する場合、バッテリ2から電流が集電体4及び集電端子6を順次流れ、電子機器と外部端子30とを接続する図示しない配線を介して電子機器に給電され、電子機器と外部端子20とを接続する図示しない配線、集電端子5、集電体3を順次電流が流れる。しかし、バッテリ2の温度が低い場合、期待した性能をバッテリ装置1から引き出せない場合がある。
Next, the operation of the battery device 1 according to the first embodiment will be described.
As shown in FIG. 1, when power is supplied from a battery device 1 to any electronic device (not shown), current flows from the battery 2 sequentially through the current collector 4 and the current collector terminal 6 to connect the electronic device and the external terminal 30. Power is supplied to the electronic device through the wiring (not shown), and current flows sequentially through the wiring (not shown), the current collector terminal 5, and the current collector 3 that connect the electronic device and the external terminal 20. However, when the temperature of the battery 2 is low, the expected performance may not be extracted from the battery device 1 in some cases.

実施形態1に係るバッテリ装置1では、バッテリ2の温度が低い場合には、集電体3,4、集電端子5,6、及び外部端子20,30それぞれの温度も低くなっている。そうすると、図2に示されるように、集電端子5すなわち可動部8を構成する第1材料よりも板材9を構成する第2材料の収縮量が大ききいため、可動部8は、その自由端部8aが内側側面5aから離れる方向(矢印Cの方向)に回動すなわち屈曲する。   In the battery device 1 according to the first embodiment, when the temperature of the battery 2 is low, the temperatures of the current collectors 3 and 4, the current collector terminals 5 and 6, and the external terminals 20 and 30 are also low. Then, as shown in FIG. 2, since the contraction amount of the second material constituting the plate material 9 is larger than that of the first material constituting the current collecting terminal 5, that is, the movable portion 8, the movable portion 8 has its free end. The part 8a rotates, that is, bends in a direction away from the inner side surface 5a (in the direction of arrow C).

可動部8が矢印Cの方向に屈曲すると、図3に示されるように、可動部8の一部が集電端子5から離れる。可動部8の一部が集電端子5から離れた部分では、通電方向Bに対向する断面積Sが他の部分の断面積Sよりも減少する。通電方向Bに対向する断面積が小さくなるほど電気抵抗が上昇するので、可動部8が屈曲することによって通電方向Bに対向する断面積が減少した領域Rで発生するジュール熱は増加する。この増加したジュール熱がバッテリ2内に伝わることでバッテリ2(図1参照)を昇温することができる。尚、集電端子6(図1参照)における可動部8も同様の動作をするので、同様の原理でバッテリ2を昇温することができる。 When the movable part 8 bends in the direction of the arrow C, a part of the movable part 8 is separated from the current collecting terminal 5 as shown in FIG. Part of the movable portion 8 is in a portion away from the current collector terminal 5, the cross-sectional area S opposite the current direction B is smaller than the cross-sectional area S 0 of the other part. Since the electrical resistance increases as the cross-sectional area facing the energizing direction B decreases, the Joule heat generated in the region R where the cross-sectional area facing the energizing direction B decreases as the movable part 8 bends increases. The increased Joule heat is transferred into the battery 2 to increase the temperature of the battery 2 (see FIG. 1). In addition, since the movable part 8 in the current collection terminal 6 (refer FIG. 1) also performs the same operation | movement, the battery 2 can be heated up on the same principle.

実施形態1では、切り込み7を内側側面5aに向かって凸状に湾曲させることによって、可動部8が屈曲していない状態で集電端子5に接する内側接触面8bは凸状に湾曲している。この構成によると、可動部8の屈曲量に応じて、集電端子5から離れる可動部8の範囲が細かく変化するようになるので、内側側面5aが平坦な場合と比べて、通電方向に対向する集電端子5の断面積が減少した領域Rの範囲を細かく調節することができる。尚、集電端子6における可動部8も同様の効果を有する。   In Embodiment 1, the notch 7 is curved in a convex shape toward the inner side surface 5a, so that the inner contact surface 8b in contact with the current collecting terminal 5 is curved in a convex shape when the movable portion 8 is not bent. . According to this configuration, the range of the movable part 8 that is separated from the current collecting terminal 5 changes finely according to the amount of bending of the movable part 8, so that it is opposed to the energization direction compared to the case where the inner side surface 5a is flat. The range of the region R in which the cross-sectional area of the current collecting terminal 5 is reduced can be finely adjusted. The movable portion 8 in the current collecting terminal 6 has the same effect.

期待する性能をバッテリ装置1から引き出せるようになる程度にバッテリ2の温度が昇温する頃には、このようなジュール熱によって可動部8及び板材9の温度も上昇する。そうすると、可動部8及び板材9の収縮量の差が小さくなることにより、可動部8は、その自由端部8aが内側側面5aに近づく方向(矢印Dの方向)に回動する。すなわち、可動部8の屈曲量が低下する。可動部8の矢印D方向への回動によって、可動部8の内側接触面8bと集電端子5とが接する範囲は大きくなり、通電方向Bに対向する断面積が減少した領域Rの範囲が縮小していく。その結果、発生するジュール熱の増加も抑えられる。最終的に、内側接触面8bの全領域が集電端子5の側面5cに接するようになり、図2に示されるように、可動部8が集電端子5から離れた部分は消滅する。   When the temperature of the battery 2 rises to such an extent that expected performance can be extracted from the battery device 1, the temperature of the movable part 8 and the plate material 9 also rises due to such Joule heat. Then, the difference in contraction amount between the movable portion 8 and the plate member 9 is reduced, so that the movable portion 8 rotates in the direction in which the free end portion 8a approaches the inner side surface 5a (direction of arrow D). That is, the amount of bending of the movable part 8 decreases. Due to the rotation of the movable part 8 in the direction of arrow D, the area where the inner contact surface 8b of the movable part 8 and the current collecting terminal 5 are in contact with each other increases, and the range of the region R where the cross-sectional area facing the energizing direction B decreases. Reduce. As a result, an increase in the generated Joule heat can be suppressed. Eventually, the entire area of the inner contact surface 8b comes into contact with the side surface 5c of the current collecting terminal 5, and the portion of the movable portion 8 away from the current collecting terminal 5 disappears as shown in FIG.

このように、バッテリ2の温度が低いときに集電端子5,6の一部の断面積が小さくなることで、電気抵抗が上昇して発生するジュール熱が増加するので、発生するジュール熱でバッテリ2を昇温することができる。   As described above, when the temperature of the battery 2 is low, a part of the cross-sectional area of the current collecting terminals 5 and 6 is reduced, so that the Joule heat generated by increasing the electrical resistance is increased. The battery 2 can be heated.

実施形態1では、集電端子5,6の両方に可動部8を設けていたが、いずれか一方のみに可動部8を設けてもよい。ただし、負極側における電解液中のイオン輸送又は活性物質/電解液界面のイオン授受の方が正極側に比べて温度の影響が大きいので、集電端子5,6のいずれか一方のみに可動部8を設ける場合には、負極側の集電端子5に可動部8を設けることが好ましい。   In the first embodiment, the movable portion 8 is provided in both the current collecting terminals 5 and 6, but the movable portion 8 may be provided in only one of them. However, since the ion transport in the electrolyte on the negative electrode side or the ion exchange at the active substance / electrolyte interface has a larger influence on the temperature than the positive electrode side, only one of the current collecting terminals 5 and 6 is movable. When 8 is provided, it is preferable to provide the movable part 8 on the current collecting terminal 5 on the negative electrode side.

実施形態1では、バッテリ装置1は1つのバッテリ2を有していたが、バッテリ装置1は、バスバーで互いに連結された複数のバッテリ2を備えてもよい。この場合、全てのバッテリ2の集電端子5,6に可動部8を設けてもよいし、複数のバッテリ2のうちの少なくとも1つの集電端子5,6に可動部8を設けてもよい。   In the first embodiment, the battery device 1 has one battery 2, but the battery device 1 may include a plurality of batteries 2 connected to each other by a bus bar. In this case, the movable part 8 may be provided on the current collecting terminals 5 and 6 of all the batteries 2, or the movable part 8 may be provided on at least one current collecting terminal 5 and 6 of the plurality of batteries 2. .

(実施形態2)
次に、実施形態2に係るバッテリ装置について説明する。実施形態2に係るバッテリ装置は、実施形態1に対して、可動部を設ける位置を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 2)
Next, the battery device according to the second embodiment will be described. The battery device according to the second embodiment is obtained by changing the position where the movable portion is provided with respect to the first embodiment. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示されるように、本開示の実施形態2に係るバッテリ装置1は複数のバッテリ2を備えている。複数のバッテリ2はそれぞれ、外部端子20及び外部端子30がバスバー40により接続されている。すなわち、バスバー40は、バッテリ2同士を電気的に接続しており、バッテリ2への充電時又はバッテリ2からの放電時に電流が流れる経路である通電経路の一部を構成する。   As illustrated in FIG. 4, the battery device 1 according to the second embodiment of the present disclosure includes a plurality of batteries 2. In each of the plurality of batteries 2, the external terminal 20 and the external terminal 30 are connected by a bus bar 40. That is, the bus bar 40 electrically connects the batteries 2 and constitutes a part of an energization path that is a path through which a current flows when the battery 2 is charged or discharged from the battery 2.

バスバー40が複数存在する場合、そのうちの少なくとも1つの両側縁のそれぞれに、実施形態1と同じ構造の可動部8が設けられている。ただし、1つのバスバー40に設けられる2つの可動部8はそれぞれ、切り込み7の延びる方向が互いに対して逆になるように設けられている。実施形態1と同様に、可動部8は、バスバー40における通電方向Bに対して交差する方向(矢印Cの方向)に屈曲可能に構成されている。その他の構成は実施形態1と同じである。   When there are a plurality of bus bars 40, the movable portion 8 having the same structure as that of the first embodiment is provided on each of at least one side edge thereof. However, the two movable parts 8 provided in one bus bar 40 are provided so that the extending directions of the cuts 7 are opposite to each other. Similar to the first embodiment, the movable portion 8 is configured to be bendable in a direction intersecting the energizing direction B in the bus bar 40 (direction of arrow C). Other configurations are the same as those of the first embodiment.

実施形態2においても、実施形態1と同様に、バッテリ2の温度が低い場合にはバスバー40の温度が低いので、可動部8が矢印Cの方向に屈曲することで、バスバー40の一部に、通電方向に対向する断面積が減少した領域が存在する。この領域におけるジュール熱の発生量は、実施形態1における原理と同様の原理で他の部分よりも増加するので、この増加したジュール熱がバッテリ2内に伝わることでバッテリ2を昇温することができる。バッテリ2の温度が上昇した場合に、可動部8が矢印Dの方向に回転する原理は実施形態1と同じである。このように、バスバー40に可動部8を設けても、実施形態1と同じ効果を得ることができる。   Also in the second embodiment, as in the first embodiment, when the temperature of the battery 2 is low, the temperature of the bus bar 40 is low, so that the movable portion 8 bends in the direction of the arrow C, so that a part of the bus bar 40 is obtained. There is a region where the cross-sectional area facing the energization direction is reduced. Since the generation amount of Joule heat in this region is larger than that of the other parts based on the same principle as that of the first embodiment, the battery 2 can be heated by transferring the increased Joule heat into the battery 2. it can. The principle that the movable part 8 rotates in the direction of the arrow D when the temperature of the battery 2 rises is the same as in the first embodiment. Thus, even if the movable part 8 is provided in the bus bar 40, the same effect as that of the first embodiment can be obtained.

(実施形態3)
次に、実施形態3に係るバッテリ装置について説明する。実施形態3に係るバッテリ装置は、実施形態1及び2のそれぞれに対して、バッテリ2からの放電の制御動作を付加したものである。以下では、実施形態1の構成にバッテリ2からの放電の制御動作を付加した構成で実施形態3を説明するが、実施形態2の構成にバッテリ2からの放電の制御動作を付加することによって実施形態3を構成してもよい。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
(Embodiment 3)
Next, a battery device according to Embodiment 3 will be described. The battery device according to the third embodiment is obtained by adding a control operation for discharging from the battery 2 to each of the first and second embodiments. In the following, the third embodiment will be described with a configuration in which the control operation for discharging from the battery 2 is added to the configuration in the first embodiment. However, the control operation for discharging from the battery 2 is added to the configuration in the second embodiment. Form 3 may be configured. Note that in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示されるように、実施形態3に係るバッテリ装置1は、バッテリ2と、バッテリ2の温度を検出する温度センサ51と、バッテリ2の通電経路に設けられたスイッチ52と、温度センサ51及びスイッチ52のそれぞれに電気的に接続された制御部であるECU50とを備えている。その他の構成は実施形態1と同じである。   As shown in FIG. 5, the battery device 1 according to the third embodiment includes a battery 2, a temperature sensor 51 that detects the temperature of the battery 2, a switch 52 that is provided in the energization path of the battery 2, and a temperature sensor 51. And an ECU 50 that is a control unit electrically connected to each of the switches 52. Other configurations are the same as those of the first embodiment.

バッテリ2の始動時のようにバッテリ2の温度が低いと、バッテリ2を放電させても直ちにカットオフ電圧に到達してしまい、放電が直ちに停止してしまう場合がある。そうすると、可動部8(図2又は3参照)が屈曲して集電端子5,6(図1参照)の一部の断面積を減少させても電流が流れないのでジュール熱が発生せず、バッテリ2を昇温することができない。   If the temperature of the battery 2 is low as at the time of starting the battery 2, even if the battery 2 is discharged, the cut-off voltage is reached immediately, and the discharge may stop immediately. Then, even if the movable part 8 (see FIG. 2 or 3) is bent and the sectional area of a part of the current collecting terminals 5 and 6 (see FIG. 1) is reduced, no current flows, so no Joule heat is generated. The battery 2 cannot be heated.

実施形態3では、温度センサ51による検出値と予め設定された要求温度とをECU50が比較し、前者が後者に達するまで、ECU50はスイッチ52のオン/オフを短期間で繰り返し切り替えることによって、バッテリ2からパルス的に放電を行わせる。この際、図6に示されるように、パルス的な放電の下限電圧を通常時の放電時の下限電圧よりも低くする。このようなパルス的な放電によって電流がパルス的に集電端子5,6に流れ、可動部8が屈曲して断面積が減少した領域R(図3参照)においてジュール熱の発生が他の部分よりも増加するので、バッテリ2の温度が徐々に上昇する。バッテリ2の温度が要求温度に達した後は、ECU50がスイッチ52をオンにしたままにすることで、通常の放電が行われる。   In the third embodiment, the ECU 50 compares the value detected by the temperature sensor 51 with a preset required temperature, and the ECU 50 repeatedly switches on / off of the switch 52 in a short period until the former reaches the latter, so that the battery 2 is discharged in pulses. At this time, as shown in FIG. 6, the lower limit voltage of pulsed discharge is set lower than the lower limit voltage during normal discharge. Due to such a pulsed discharge, current flows in a pulsed manner to the current collecting terminals 5 and 6, and the Joule heat is generated in the other part in the region R (see FIG. 3) where the movable part 8 is bent and the cross-sectional area is reduced. Therefore, the temperature of the battery 2 gradually increases. After the temperature of the battery 2 reaches the required temperature, the ECU 50 keeps the switch 52 turned on, so that normal discharge is performed.

このように、バッテリ2の始動時のようにバッテリ2の温度が低いためにバッテリ2を放電させても直ちにカットオフ電圧に到達してしまう場合でも、バッテリ2からパルス的に放電させることによって、バッテリ2を昇温させることができる。   In this way, even when the battery 2 is discharged because the temperature of the battery 2 is low, such as when the battery 2 is started, even when the cutoff voltage is reached immediately, the battery 2 is discharged in a pulsed manner. The battery 2 can be heated.

実施形態1〜3では、可動部8は、集電端子5の側面5cに向かって凸状に湾曲している内側接触面8bを含む形状を有していたが、この形状に限定するものではなく、任意の形状を有してもよい。   In Embodiments 1 to 3, the movable portion 8 has a shape including the inner contact surface 8b that is convexly curved toward the side surface 5c of the current collecting terminal 5. However, the movable portion 8 is not limited to this shape. It may have any shape.

実施形態1では可動部8は集電端子5,6に設けられ、実施形態2では可動部8はバスバー40に設けられていたが、これらの形態に限定するものではない。集電端子5,6及びバスバー40以外でも通電経路の任意の個所に可動部8を設けてもよい。   In the first embodiment, the movable portion 8 is provided on the current collecting terminals 5 and 6, and in the second embodiment, the movable portion 8 is provided on the bus bar 40. However, the present invention is not limited to these embodiments. Other than the current collecting terminals 5 and 6 and the bus bar 40, the movable portion 8 may be provided at an arbitrary position in the energization path.

1 バッテリ装置
2 バッテリ
3 (正極側の)集電体
4 (負極側の)集電体
5 集電端子(通電経路)
5a (集電端子の)内側側面
5b (集電端子の)外側側面
5c (集電端子の)側面
6 集電端子(通電経路)
7 切り込み
8 可動部
8a (可動部の)自由端部
8b (可動部の)内側接触面
9 板材
20 外部端子
30 外部端子
40 バスバー(通電経路)
50 ECU(制御部)
51 温度センサ
52 スイッチ
B 通電方向
R 断面積が減少した領域
DESCRIPTION OF SYMBOLS 1 Battery apparatus 2 Battery 3 Current collector 4 (on the positive electrode side) Current collector 5 (on the negative electrode side) Current collector terminal (energization path)
5a Inner side surface 5b (of the current collecting terminal) Outer side surface 5c (of the current collecting terminal) Side surface 6 (of the current collecting terminal) Current collecting terminal (energization path)
7 Notch 8 Movable part 8a Free end part 8b (of movable part) Inner contact surface 9 (of movable part) Plate material 20 External terminal 30 External terminal 40 Bus bar (energization path)
50 ECU (control unit)
51 Temperature sensor 52 Switch B Energizing direction R Area where cross-sectional area is reduced

Claims (6)

少なくとも1つのバッテリと、
前記少なくとも1つのバッテリに電気的に接続される通電経路と
を備え、
前記通電経路は、該通電経路における通電方向に対して交差する方向に屈曲可能に構成された可動部を含み、該可動部が温度の低下に伴って屈曲することにより、前記可動部の少なくとも一部が前記通電経路から離れて前記通電方向に対向する前記通電経路の断面積が低下するバッテリ装置。
At least one battery;
An energization path electrically connected to the at least one battery,
The energization path includes a movable part configured to bendable in a direction intersecting the energization direction in the energization path, and the movable part bends as the temperature decreases, so that at least one of the movable parts. A battery device in which a cross-sectional area of the energization path facing away from the energization path and facing the energization direction decreases.
前記可動部は、該可動部を構成する第1材料の膨張係数よりも大きい膨張係数の第2材料を含む、請求項1に記載のバッテリ装置。   The battery device according to claim 1, wherein the movable part includes a second material having an expansion coefficient larger than that of the first material constituting the movable part. 前記可動部は、該可動部が屈曲していない状態で前記通電経路に接する内側接触面を有し、該内側接触面は凸状に湾曲している、請求項1または2に記載のバッテリ装置。   3. The battery device according to claim 1, wherein the movable portion has an inner contact surface that contacts the energization path in a state where the movable portion is not bent, and the inner contact surface is curved in a convex shape. . 前記通電経路は、前記少なくとも1つのバッテリの集電体に接続された集電端子を含み、該集電端子は前記可動部を含む、請求項1〜3のいずれか一項に記載のバッテリ装置。   4. The battery device according to claim 1, wherein the energization path includes a current collecting terminal connected to a current collector of the at least one battery, and the current collecting terminal includes the movable portion. . 前記バッテリ装置は複数のバッテリを備え、
前記通電経路は、前記複数のバッテリ同士を電気的に接続するバスバーを含み、該バスバーは前記可動部を含む、請求項1〜3のいずれか一項に記載のバッテリ装置。
The battery device includes a plurality of batteries,
The battery device according to any one of claims 1 to 3, wherein the energization path includes a bus bar that electrically connects the plurality of batteries, and the bus bar includes the movable portion.
前記バッテリ装置は、前記少なくとも1つのバッテリの充放電を制御する制御部をさらに備え、
前記制御部は、前記少なくとも1つのバッテリの温度が予め設定された要求温度に上昇するまで、前記少なくとも1つのバッテリからパルス的に放電を行わせる、請求項1〜5のいずれか一項に記載のバッテリ装置。
The battery device further includes a control unit that controls charging / discharging of the at least one battery,
6. The control unit according to claim 1, wherein the control unit causes pulse discharge from the at least one battery until a temperature of the at least one battery rises to a preset required temperature. 6. Battery device.
JP2018043712A 2018-03-12 2018-03-12 Battery device Pending JP2019160502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043712A JP2019160502A (en) 2018-03-12 2018-03-12 Battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043712A JP2019160502A (en) 2018-03-12 2018-03-12 Battery device

Publications (1)

Publication Number Publication Date
JP2019160502A true JP2019160502A (en) 2019-09-19

Family

ID=67993518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043712A Pending JP2019160502A (en) 2018-03-12 2018-03-12 Battery device

Country Status (1)

Country Link
JP (1) JP2019160502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004118A1 (en) * 2022-06-30 2024-01-04 三菱電機株式会社 Storage battery temperature-increasing control device and storage battery temperature-increasing system
JP7514652B2 (en) 2020-05-11 2024-07-11 日産自動車株式会社 Solid-state battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514652B2 (en) 2020-05-11 2024-07-11 日産自動車株式会社 Solid-state battery system
WO2024004118A1 (en) * 2022-06-30 2024-01-04 三菱電機株式会社 Storage battery temperature-increasing control device and storage battery temperature-increasing system

Similar Documents

Publication Publication Date Title
JP5804540B2 (en) Battery pack with improved safety
KR102008524B1 (en) Circuit breaker and battery pack including the same
JP5169715B2 (en) Heating device for vehicle power storage means
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
JP4550078B2 (en) Safety switch using heat shrinkable tube and secondary battery including the same
US10587021B2 (en) All solid state lithium battery
US9478829B2 (en) Rechargeable battery with multiple resistance levels
JP2015528989A (en) Battery with thermal switch
JP7218308B2 (en) Battery system inflow current interruption method and battery system, power supply device and power storage device provided with battery system
EP2793295A2 (en) Rechargeable battery
KR20120139609A (en) Soldering connector, and battery module and battery pack comprising the same
JP6412152B2 (en) Lithium ion battery protector
US9634350B2 (en) Energy storage device
JP2019160502A (en) Battery device
JP2014018017A (en) Battery system controller
JP2016012494A (en) battery
JP2007173005A (en) Protection element for battery and battery
JP2013013245A (en) Power storage system
JP4751500B2 (en) Electrode wound type secondary battery
JP6057684B2 (en) Battery pack breaker, battery pack using this breaker, and temperature switch
JP2015032475A (en) Heater unit, heater unit system and battery pack using them
JP2012028044A (en) Lithium ion battery
JP2016081883A (en) All-solid battery
JP2016066469A (en) All-solid-state battery
CN212725515U (en) Take overcurrent protection's laminate polymer battery structure