JP2016066469A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2016066469A
JP2016066469A JP2014194012A JP2014194012A JP2016066469A JP 2016066469 A JP2016066469 A JP 2016066469A JP 2014194012 A JP2014194012 A JP 2014194012A JP 2014194012 A JP2014194012 A JP 2014194012A JP 2016066469 A JP2016066469 A JP 2016066469A
Authority
JP
Japan
Prior art keywords
solid
battery
current collector
state battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014194012A
Other languages
Japanese (ja)
Inventor
尚己 長田
Naomi Osada
尚己 長田
井上 俊彦
Toshihiko Inoue
俊彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014194012A priority Critical patent/JP2016066469A/en
Publication of JP2016066469A publication Critical patent/JP2016066469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid-state battery capable of being safely deactivated while suppressing excessive voltage and a temperature rise in a simple structure, and further capable of being reused even after having been deactivated.SOLUTION: In an all-solid-state battery of the present invention, a positive electrode collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode collector are laminated. At a terminal 111 of the positive electrode collector and a terminal 112 of the negative electrode collector, a cross-linking body 120 cross-linking between the terminals of these collectors is arranged. The cross-linking body 120 is formed of a material having an electrical conductivity of 10(1/(Ω cm)) or less when the all-solid-state battery 100 is within an operational temperature range and an electrical conductivity of 10 (1/(Ω cm)) or more when the all-solid-state battery 100 is over an operational temperature range.SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池に関する。さらに詳しくは、本発明は、簡易的な構造により、過度な電圧及び温度上昇を抑制しつつ、安全に失活させ、さらに、失活させた後も再利用することができる、全固体電池に関する。   The present invention relates to an all solid state battery. More specifically, the present invention relates to an all-solid-state battery that can be safely deactivated with a simple structure while suppressing excessive voltage and temperature rise, and can be reused even after deactivation. .

近年、電解液を固体電解質に置換した全固体電池が注目されている。電解液を用いる二次電池と比較して、全固体電池は、電解液を用いないことから、過充電に起因する電解液の分解等を生じることなく、更に、高いサイクル耐久性及びエネルギー密度を有している。   In recent years, all-solid-state batteries in which the electrolytic solution is replaced with a solid electrolyte have attracted attention. Compared to a secondary battery using an electrolytic solution, an all-solid battery does not use an electrolytic solution, so that it does not cause decomposition of the electrolytic solution due to overcharge, and further has high cycle durability and energy density. Have.

しかしながら、全個体電池は、過度な充電等による電池温度の上昇又は衝撃等により、電池内部の短絡若しくはレアショートを招来して、更に昇温する問題がある。そのため、かかる課題の解決が望まれていた。   However, all the solid batteries have a problem that the internal temperature of the battery is short-circuited or rarely short-circuited due to an increase in battery temperature due to excessive charging or the like, an impact, or the like, and the temperature is further increased. Therefore, it has been desired to solve this problem.

特許文献1の電気化学デバイスでは、正極及び負極とそれぞれ電気的に接続されている第1及び第2のダミー電極が、セパレータを介して対向した対向部分を有するようにし、対向部分の互いに対向する側に抵抗制御層を設け、第1及び第2のダミー電極間でセパレータの収縮又は溶融などにより短絡が生じたときに、第一のダミー電極、抵抗制御層、そして第二のダミー電極を介在させて正極及び負極を導通させることで、極めて緩やかな内部短絡を生じさせることができ、異常高温雰囲気での電気化学デバイスの安全性を向上させることができるとされている。   In the electrochemical device of Patent Document 1, the first and second dummy electrodes that are electrically connected to the positive electrode and the negative electrode, respectively, have opposing portions that face each other through the separator, and the opposing portions face each other. A resistance control layer is provided on the side, and when a short circuit occurs between the first and second dummy electrodes due to shrinkage or melting of the separator, the first dummy electrode, the resistance control layer, and the second dummy electrode are interposed. By making the positive electrode and the negative electrode conductive, an extremely gradual internal short circuit can be generated, and the safety of the electrochemical device in an abnormally high temperature atmosphere can be improved.

特許文献2の電池では、過充電や、内部短絡などの異常により、電池内部の温度が過度に上昇した場合に、正極接続部材に接している第一電気伝導体と負極接続部材に接している第二電気伝導体との間に配置されている低融点合金層が融解して、第一電気伝導体と第二電気伝導体を導通させて短絡させることができるとされている。   In the battery of Patent Document 2, when the temperature inside the battery is excessively increased due to an abnormality such as overcharge or internal short circuit, the battery is in contact with the first electrical conductor in contact with the positive electrode connection member and the negative electrode connection member. It is said that the low melting point alloy layer disposed between the second electric conductor is melted, and the first electric conductor and the second electric conductor can be conducted to be short-circuited.

特許文献3のリチウム二次電池では、電池温度が60℃を超えたときに、電池内部の形状記憶合金が加熱されることで変形し、この形状記憶合金を介して正極及び負極を導通させ、短絡させることができる機構を有するとされている。   In the lithium secondary battery of Patent Document 3, when the battery temperature exceeds 60 ° C., the shape memory alloy inside the battery is deformed by being heated, and the positive electrode and the negative electrode are conducted through the shape memory alloy, It is said to have a mechanism that can be short-circuited.

特開2009−238493号公報JP 2009-238493 A 特開2013−98132号公報JP2013-98132A 特許第3468015号公報Japanese Patent No. 3468015

特許文献1の電気化学デバイスでは、抵抗制御層を介在させて緩やかな内部短絡を生じさせるために、セパレータを収縮又は溶融させる必要がある。したがって、セパレータを収縮又は溶融させて、短絡させた後にはセパレータが使用不能になるため、電池の再利用は困難である。   In the electrochemical device of Patent Document 1, it is necessary to shrink or melt the separator in order to cause a gentle internal short circuit through the resistance control layer. Therefore, since the separator becomes unusable after the separator is contracted or melted and short-circuited, it is difficult to reuse the battery.

特許文献2の電池は、低融点合金層を融解させることにより、内部短絡を生じさせるので、電池の再利用は困難である。   Since the battery of Patent Document 2 causes an internal short circuit by melting the low melting point alloy layer, it is difficult to reuse the battery.

特許文献3のリチウム二次電池は、複雑な短絡機構を含み、かつ短絡による温度上昇を生じる。   The lithium secondary battery of Patent Document 3 includes a complicated short-circuit mechanism and causes a temperature increase due to a short circuit.

したがって、本発明は、簡易的な構造により、過度な電圧及び温度上昇を抑制しつつ、安全に失活させ、さらに、失活させた後も再利用することができる、全固体電池を提供することを目的とする。   Therefore, the present invention provides an all-solid-state battery that can be safely deactivated with a simple structure while suppressing excessive voltage and temperature rise, and can be reused even after deactivation. For the purpose.

本発明者らは、加熱されたときに電気伝導率が増加する材料からなる架橋体を、正極及び負極集電体の間に設けることにより、上記の課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は、下記のとおりである。   The present inventors have found that the above problem can be solved by providing a cross-linked body made of a material whose electrical conductivity increases when heated between the positive electrode and the negative electrode current collector. Completed. That is, the present invention is as follows.

〈1〉正極集電体、正極活物質層、固体電解質層、負極活物質層、及び負極集電体が積層された全固体電池であって、
前記正極集電体及び前記負極集電体の間に、それらの間を架橋している架橋体が配置されており、
前記架橋体は、前記全固体電池が作動温度範囲のときに10−3(1/(Ω・cm))以下の電気伝導率を有し、かつ前記全固体電池が作動温度範囲超のときに10(1/(Ω・cm))以上の電気伝導率を有する材料で形成される、
全固体電池。
<1> An all-solid battery in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated,
Between the positive electrode current collector and the negative electrode current collector, a cross-linked body that cross-links between them is disposed,
The cross-linked body has an electric conductivity of 10 −3 (1 / (Ω · cm)) or less when the all solid state battery is in an operating temperature range, and when the all solid state battery exceeds an operating temperature range. Formed of a material having an electrical conductivity of 10 (1 / (Ω · cm)) or more,
All solid battery.

本発明によれば、簡易的な構造により、過度な電圧及び温度上昇を抑制しつつ、安全に失活させ、さらに、失活させた後も再利用することができる、全固体電池を提供することができる。   According to the present invention, there is provided an all-solid-state battery that can be safely deactivated with a simple structure, while suppressing excessive voltage and temperature rise, and can be reused even after deactivation. be able to.

図1は、本発明の全固体電池の第一の実施形態の概略正面図である。FIG. 1 is a schematic front view of the first embodiment of the all solid state battery of the present invention. 図2は、本発明の全固体電池の第二の実施形態の概略断面図である。FIG. 2 is a schematic cross-sectional view of a second embodiment of the all solid state battery of the present invention. 図3は、本発明の全固体電池の第三の実施形態の概略断面図である。FIG. 3 is a schematic cross-sectional view of the third embodiment of the all solid state battery of the present invention.

以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々変形して実施できる。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist of the present invention. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.

本発明において、「架橋体の長さ」とは、架橋体が架橋している箇所における正極集電体と、負極集電体との間の距離を意味し、「架橋体の断面積」とは、架橋体の長さ方向に垂直な面で切断したときの架橋体の断面の面積を意味する。   In the present invention, “the length of the cross-linked body” means the distance between the positive electrode current collector and the negative electrode current collector at the location where the cross-linked body is cross-linked, and “the cross-sectional area of the cross-linked body” Means the area of the cross-section of the cross-linked body when cut along a plane perpendicular to the length direction of the cross-linked body.

本発明の全固体電池では、正極集電体、正極活物質層、固体電解質層、負極活物質層、及び負極集電体が積層されている。全固体電池は、その全体がフィルム状のパッケージ又はケース等で包装されたものであってよい。このようなフィルム状のパッケージ又はケースは、ポリマーフィルム、特にアルミニウム等の金属箔を積層されたポリマーフィルムで形成されていてよい。   In the all solid state battery of the present invention, a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated. The all-solid battery may be entirely packaged in a film-like package or case. Such a film-like package or case may be formed of a polymer film, particularly a polymer film in which a metal foil such as aluminum is laminated.

〈架橋体〉
正極及び負極集電体の間、例えば、箔状の集電体本体とその端部に接合されている端子とを有する正極及び負極集電体の間には、それらの間を架橋している架橋体が配置されている。架橋体は、電池温度が上昇したときに、それに伴って架橋体が加熱される任意の位置に配置することができる。したがって、架橋体は、正極及び負極集電体本体の間でも、正極及び負極集電体の端子の間に配置することもできる。架橋体を正極及び負極集電体本体の間に配置した場合、架橋体を正極及び負極集電体の端子の間に配置するよりも、全固体電池をコンパクトに作製することが可能である。
<Crosslinked product>
Between the positive electrode and the negative electrode current collector, for example, between the positive electrode and the negative electrode current collector having a foil-shaped current collector main body and a terminal bonded to the end thereof, there is a bridge between them. A cross-linked body is arranged. The cross-linked body can be disposed at an arbitrary position where the cross-linked body is heated when the battery temperature rises. Therefore, the crosslinked body can be disposed between the positive electrode and the negative electrode current collector body or between the terminals of the positive electrode and the negative electrode current collector. When the cross-linked body is disposed between the positive electrode and the negative electrode current collector main body, it is possible to produce an all-solid battery more compactly than when the cross-linked body is disposed between the terminals of the positive electrode and the negative electrode current collector.

図1を参照して、本発明の全固体電池の第一の実施形態を示す。図1の全固体電池100は、正極集電体の端子111及び負極集電体の端子112と、それらの集電体の端子に架橋している架橋体120とを有する。   Referring to FIG. 1, a first embodiment of the all solid state battery of the present invention is shown. The all-solid-state battery 100 of FIG. 1 has a positive electrode current collector terminal 111 and a negative electrode current collector terminal 112, and a cross-linked body 120 that is cross-linked to the terminals of the current collector.

図2を参照して、本発明の全固体電池の第二の実施形態を示す。図2は、本発明の全固体電池200の概略断面図であって、全固体電池200は、正極活物質層211、固体電解質層212、及び負極活物質層213の順に積層された単電池210と、これらが逆の順序で積層された単電池220と、正極集電体231及び負極集電体232と、架橋体240とを有する。   Referring to FIG. 2, a second embodiment of the all solid state battery of the present invention is shown. FIG. 2 is a schematic cross-sectional view of the all-solid battery 200 of the present invention. The all-solid battery 200 is a unit cell 210 in which a positive electrode active material layer 211, a solid electrolyte layer 212, and a negative electrode active material layer 213 are stacked in this order. And a single battery 220 in which these are stacked in the reverse order, a positive electrode current collector 231, a negative electrode current collector 232, and a cross-linked body 240.

より具体的には、全固体電池200では、正極集電体231、単電池210、負極集電体232、単電池220、正極集電体231、単電池210、及び負極集電体232がこの順で積層されている。集電体は、積層面の面方向において、単電池の長さよりもその長さが少し長く、それによって、集電体の一端が単電池の端から出っ張るようにされている。そして、集電体の出っ張っている部分の間に架橋体240が配置されている。   More specifically, in the all-solid-state battery 200, the positive electrode current collector 231, the single battery 210, the negative electrode current collector 232, the single battery 220, the positive electrode current collector 231, the single battery 210, and the negative electrode current collector 232 are the same. They are stacked in order. The current collector has a length slightly longer than the length of the unit cell in the plane direction of the stacked surface, so that one end of the current collector protrudes from the end of the unit cell. And the bridge | crosslinking body 240 is arrange | positioned between the parts which the electrical power collector protrudes.

図3を参照して、本発明の全固体電池の第三の実施形態を示す。図3は、本発明の全固体電池300の概略断面図であって、全固体電池300は、正極活物質層311、固体電解質層312、及び負極活物質層313の順に積層された単電池310と、これらが逆の順序で積層された単電池320と、正極集電体331及び負極集電体332と、架橋体340とを有する。   Referring to FIG. 3, a third embodiment of the all solid state battery of the present invention is shown. FIG. 3 is a schematic cross-sectional view of the all solid state battery 300 of the present invention. The all solid state battery 300 includes a unit cell 310 in which a positive electrode active material layer 311, a solid electrolyte layer 312 and a negative electrode active material layer 313 are stacked in this order. And a single battery 320 in which these are stacked in the reverse order, a positive electrode current collector 331, a negative electrode current collector 332, and a cross-linked body 340.

より具体的には、全固体電池300では、正極集電体331、単電池310、負極集電体332、単電池320、正極集電体331、単電池310、及び負極集電体332がこの順で積層されている。この全固体電池300は、架橋体340が電池の端部ではなく、中心部に配置されていることを除いて、図2の全固体電池200と同様である。   More specifically, in the all-solid-state battery 300, the positive electrode current collector 331, the single battery 310, the negative electrode current collector 332, the single battery 320, the positive electrode current collector 331, the single battery 310, and the negative electrode current collector 332 are the same. They are stacked in order. This all-solid-state battery 300 is the same as the all-solid-state battery 200 of FIG. 2 except that the cross-linked body 340 is arranged not at the end of the battery but at the center.

架橋体は、全固体電池が作動温度範囲のときに10−3(1/(Ω・cm))以下の電気伝導率を有し、かつ全固体電池が作動温度範囲超のときに10(1/(Ω・cm))以上の電気伝導率を有する材料で形成されている。 The crosslinked body has an electric conductivity of 10 −3 (1 / (Ω · cm)) or less when the all solid state battery is in the operating temperature range, and 10 (1 / (Ω · cm)) or more.

したがって、全固体電池が作動温度範囲のとき、架橋体は、絶縁体として機能して全固体電池の外部との導通による電流の流れを阻害せず、かつ全固体電池が作動温度範囲超となったとき、架橋体は、導電体として機能して、全固体電池を自己放電させることができる。   Therefore, when the all solid state battery is in the operating temperature range, the crosslinked body functions as an insulator and does not hinder the flow of current due to conduction with the outside of the all solid state battery, and the all solid state battery exceeds the operating temperature range. Then, the crosslinked body functions as a conductor and can self-discharge the all solid state battery.

全固体電池が作動温度範囲超のときの架橋体の電気伝導率は、全固体電池の放電容量、電位及び作動温度などを考慮して調整される。   The electrical conductivity of the crosslinked body when the all-solid battery exceeds the operating temperature range is adjusted in consideration of the discharge capacity, potential, operating temperature, etc. of the all-solid battery.

具体的には、例えば、全固体電池が作動温度範囲超のときの架橋体の電気伝導率を所定の範囲にすることによって、全固体電池の発熱上限温度よりも、架橋体の発熱上限温度を低く保つことにより、発熱した架橋体が全固体電池を加熱することを抑制しつつ、電池を自己放電させ、また、その自己放電により、全固体電池を安全に失活させることができる。したがって、本発明によれば、全固体電池の損壊を防止又は最小限に抑制しつつ、その再利用が可能である。   Specifically, for example, by setting the electrical conductivity of the crosslinked body when the all solid state battery exceeds the operating temperature range to a predetermined range, the heat generation upper limit temperature of the crosslinked body is set higher than the heat generation upper limit temperature of the all solid state battery. By keeping it low, it is possible to self-discharge the battery while suppressing the heated cross-linked body from heating the all-solid battery, and the all-solid battery can be safely deactivated by the self-discharge. Therefore, according to the present invention, the all-solid-state battery can be reused while preventing or minimizing the damage.

これに対して、全固体電池が作動温度範囲超のときの架橋体の電気伝導率が所定の範囲より低い場合、その放電終止電圧に到達するまでに時間がかかるため、全固体電池では、その温度が上昇し続け、さらに、更なる短絡又はレアショートを生じる虞がある。   On the other hand, when the electrical conductivity of the crosslinked body is lower than the predetermined range when the all-solid battery is over the operating temperature range, it takes time to reach the discharge end voltage. There is a risk that the temperature will continue to rise and further shorts or rare shorts may occur.

また、全固体電池が作動温度範囲超のときの架橋体の電気伝導率が所定の範囲より高い場合、架橋体は、大きな電流が流れて、高温に発熱し、それによって発熱した架橋体が全固体電池を加熱する虞がある。   In addition, when the electrical conductivity of the crosslinked body when the all-solid battery exceeds the operating temperature range is higher than a predetermined range, the crosslinked body generates a large current and generates heat at a high temperature. There is a risk of heating the solid state battery.

例えば、全固体電池の発熱上限温度よりも、架橋体の発熱上限温度を低く保つための条件を、下記の式(I)で表すことができる:
ρL/A < Vt/Q … (I)
[式中、
ρ(Ω・cm):架橋体の抵抗率
L(cm):架橋体の長さ
A(cm):架橋体の断面積
V(J/c):全固体電池の電圧
t(s):時間
Q(J):全固体電池の発熱量]
For example, the conditions for keeping the heat generation upper limit temperature of the crosslinked body lower than the heat generation upper limit temperature of the all-solid battery can be expressed by the following formula (I):
ρL / A <V 2 t / Q (I)
[Where:
ρ (Ω · cm): Resistivity of crosslinked body L (cm): Length of crosslinked body A (cm 2 ): Cross-sectional area of crosslinked body V (J / c): Voltage of all solid state battery t (s): Time Q (J): Calorific value of all solid state battery]

以下では、上記の式(I)の導出過程を具体的に説明する。   Hereinafter, the process of deriving the above formula (I) will be specifically described.

全固体電池の発熱上限温度よりも、架橋体の発熱上限温度を低く保つためには、架橋体及び全固体電池の単位時間当たりの発熱量は、下記の式(II)を充足する必要がある:
< I … (II)
[式中、
(A):架橋体を流れる電流
(A):全固体電池を流れる電流
(Ω・cm):架橋体の抵抗値
(Ω・cm):全固体電池の抵抗値]
In order to keep the heat generation upper limit temperature of the crosslinked body lower than the heat generation upper limit temperature of the all-solid battery, the heat generation amount per unit time of the crosslinked body and the all-solid battery needs to satisfy the following formula (II). :
I 1 2 R 1 <I 2 2 R 2 (II)
[Where:
I 1 (A): current flowing through the crosslinked body I 2 (A): current flowing through the all-solid battery R 1 (Ω · cm): resistance value of the crosslinked body R 2 (Ω · cm): resistance value of the all-solid battery ]

全固体電池が作動温度範囲超であるとき、架橋体の抵抗値は十分に小さく、架橋体及び全固体電池を流れる電流はほぼ同値と近似できる。したがって、I≒Iが成立し、上記の式(II)から下記の式(III)が導出される:
< R … (III)
When the all-solid-state battery exceeds the operating temperature range, the resistance value of the crosslinked body is sufficiently small, and the current flowing through the crosslinked body and the all-solid battery can be approximated to the same value. Therefore, I 1 ≈I 2 holds, and the following formula (III) is derived from the above formula (II):
R 1 <R 2 (III)

さらに、架橋体の抵抗値Rは、下記の式(IV)で表すことができる:
=ρL/A … (IV)
Furthermore, the resistance value R 1 of the crosslinked product can be represented by the following formula (IV):
R 1 = ρL / A (IV)

また、オームの法則及びジュールの法則から、全固体電池の抵抗値Rを下記の式(V)及び(VI)で表すことができる:
=V/I … (V)
Q=R t=Vt/R … (VI)
Further, from Ohm's law and Joule's law, the resistance value R 2 of the all-solid-state battery can be expressed by the following equations (V) and (VI):
R 2 = V / I 2 (V)
Q = R 2 I 2 2 t = V 2 t / R 2 (VI)

上記の式(V)及び(VI)から下記の式(VII)が導出される:
=Vt/Q … (VII)
From the above formulas (V) and (VI), the following formula (VII) is derived:
R 2 = V 2 t / Q (VII)

これらの式(III)、(IV)、及び(VII)から上記の式(I)が導出される。   The above formula (I) is derived from these formulas (III), (IV), and (VII).

架橋体の電気伝導率が温度変化に対して可逆的に変化するため、温度上昇によって全固体電池が失活した後も、全固体電池の再利用が可能である。   Since the electrical conductivity of the crosslinked body changes reversibly with respect to temperature change, the all-solid battery can be reused even after the all-solid battery is deactivated due to temperature rise.

架橋体の導通時における発熱上限温度は、200℃以下、好ましくは170℃以下、更に好ましくは150℃以下でよい。   The heat generation upper limit temperature during conduction of the crosslinked body may be 200 ° C. or less, preferably 170 ° C. or less, and more preferably 150 ° C. or less.

架橋体の電気伝導率としては、全固体電池の作動温度範囲で絶縁性を発現させる観点から、全固体電池の作動温度範囲において、10−3(1/(Ω・cm))以下、好ましくは10−4(1/(Ω・cm))以下、更に好ましくは10−5(1/(Ω・cm))以下でよい。 The electrical conductivity of the cross-linked body is 10 −3 (1 / (Ω · cm)) or less in the operating temperature range of the all-solid battery, preferably from the viewpoint of expressing insulation in the operating temperature range of the all-solid battery, preferably 10 −4 (1 / (Ω · cm)) or less, more preferably 10 −5 (1 / (Ω · cm)) or less.

架橋体の電気伝導率としては、全固体電池の作動温度範囲超で電気伝導性を発現させ、かつ全固体電池の自己放電を調整する観点から、全固体電池の作動温度範囲超のとき、10(1/(Ω・cm))以上、好ましくは5×10(1/(Ω・cm))以上、更に好ましくは10(1/(Ω・cm))以上でよい。 The electrical conductivity of the cross-linked body is 10 when the operating temperature range of the all solid state battery is exceeded, from the viewpoint of expressing the electrical conductivity above the operating temperature range of the all solid state battery and adjusting the self-discharge of the all solid state battery. (1 / (Ω · cm)) or more, preferably 5 × 10 (1 / (Ω · cm)) or more, more preferably 10 2 (1 / (Ω · cm)) or more.

全固体電池の作動温度範囲としては、全固体電池を安全に作動させる観点から、200℃以下、好ましくは150℃以下、更に好ましくは100℃以下、特に好ましくは80℃以下でよい。   The operating temperature range of the all solid state battery may be 200 ° C. or less, preferably 150 ° C. or less, more preferably 100 ° C. or less, particularly preferably 80 ° C. or less, from the viewpoint of safely operating the all solid state battery.

全固体電池の作動温度範囲としては、全固体電池を最低限作動させる観点から、−200℃以上、好ましくは−150℃以上、更に好ましくは−100℃以上、特に好ましくは−30℃以上でよい。   The operating temperature range of the all solid state battery may be −200 ° C. or higher, preferably −150 ° C. or higher, more preferably −100 ° C. or higher, particularly preferably −30 ° C. or higher, from the viewpoint of operating the all solid state battery as a minimum. .

例えば、全固体電池の温度が−30℃〜80℃の範囲のときに、架橋体は、10−3(1/(Ω・cm))以下の電気伝導率を有することができ、全固体電池の温度が80℃以上のときに、架橋体は、10(1/(Ω・cm))以上の電気伝導率を有することができる。 For example, when the temperature of the all-solid battery is in the range of −30 ° C. to 80 ° C., the crosslinked body can have an electric conductivity of 10 −3 (1 / (Ω · cm)) or less, and the all-solid battery When the temperature is 80 ° C. or higher, the crosslinked body can have an electrical conductivity of 10 (1 / (Ω · cm)) or higher.

架橋体の形状、長さ及び断面積としては、架橋体の電気伝導率を上記のように設定可能であれば、任意の形状、長さ及び断面積でよい。例えば、架橋体の電気伝導率は、一般に、架橋体の断面積の大きさに比例し、架橋体の長さに反比例する。また、架橋体の形状を放熱効率のよい形状、例えば、板状としてもよい。   The shape, length, and cross-sectional area of the crosslinked body may be any shape, length, and cross-sectional area as long as the electrical conductivity of the crosslinked body can be set as described above. For example, the electrical conductivity of the crosslinked body is generally proportional to the size of the cross-sectional area of the crosslinked body and inversely proportional to the length of the crosslinked body. The cross-linked body may have a shape with good heat dissipation efficiency, for example, a plate shape.

架橋体の構成材料としては、上記のように電気伝導率を調節可能な材料であれば、任意の材料でよい。例えば、架橋体の構成材料としては、NTCサーミスタ及び二酸化バナジウム(VO)などの半導体材料を挙げることができるが、これに限定されない。 As a constituent material of the crosslinked body, any material may be used as long as the electrical conductivity can be adjusted as described above. For example, examples of the constituent material of the crosslinked body include, but are not limited to, semiconductor materials such as NTC thermistor and vanadium dioxide (VO 2 ).

〈正極及び負極集電体〉
正極又は負極集電体としては、任意の集電体を用いることができ、例えば、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、又は銅などの各種金属の集電体を用いることができる。
<Positive electrode and negative electrode current collector>
As the positive electrode or the negative electrode current collector, any current collector can be used. For example, various metal current collectors such as aluminum, nickel, iron, stainless steel, titanium, or copper can be used.

集電体は、随意に箔状の集電体本体と、その端部に接合されている端子とを有することができる。   The current collector can optionally have a foil-like current collector body and a terminal bonded to the end thereof.

集電体本体及び集電体の端子の構成材料としては、外部と導通可能であれば任意の構成材料でよく、例えば、集電体本体及び集電体の端子は、同一の構成材料でも、異なる構成材料でもよい。   As a constituent material of the current collector main body and the current collector terminal, any constituent material may be used as long as it can be electrically connected to the outside.For example, the current collector main body and the current collector terminal may be the same constituent material. Different constituent materials may be used.

集電体の端子の形状としては、外部と導通可能であれば任意の形状でよく、好ましくは、正極及び負極集電体の端子の間に架橋体を形成することができる形状でよい。集電体の端子の形状としては、例えば、三角形、四角形などの多角形、ギボシ型、L型、又はテーパー型などを挙げることができるが、これに限定されない。   The shape of the terminal of the current collector may be any shape as long as it can be electrically connected to the outside, and preferably a shape capable of forming a crosslinked body between the terminals of the positive electrode and the negative electrode current collector. Examples of the shape of the terminals of the current collector include, but are not limited to, a polygon such as a triangle and a quadrangle, a giboshi shape, an L shape, and a taper shape.

集電体の端子の配置としては、外部と導通可能であれば任意の配置でよく、例えば、正極及び負極集電体の端子を互いに近い位置に配置し、それらの端子の間に架橋体を容易に形成することができるようにしてもよい。   The terminals of the current collector may be arranged arbitrarily as long as they can be electrically connected to the outside.For example, the terminals of the positive electrode and the negative electrode current collector are arranged at positions close to each other, and a cross-linked body is interposed between these terminals. You may make it easy to form.

〈正極活物質層〉
正極活物質層は、正極活物質、並びに随意に導電助剤及び固体電解質材料を含有している。
<Positive electrode active material layer>
The positive electrode active material layer contains a positive electrode active material, and optionally a conductive additive and a solid electrolyte material.

正極活物質としては、マンガン、コバルト、ニッケル及びチタンから選ばれる少なくとも1種の遷移金属及びリチウムを含む金属酸化物、例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、及びニッケルコバルトマンガン酸リチウム(Li1+xNi3/5Co1/5Mn1/5)等を挙げることができる。 As the positive electrode active material, at least one transition metal selected from manganese, cobalt, nickel and titanium and a metal oxide containing lithium, such as lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ) And nickel cobalt lithium manganate (Li 1 + x Ni 3/5 Co 1/5 Mn 1/5 O 2 ).

導電助剤としては、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、ケッチェンブラック、カーボンナノチューブ及びカーボンナノ繊維等の炭素材並びに金属材等を挙げることができる。   Examples of the conductive aid include VGCF (vapor grown carbon fiber), carbon materials such as carbon black, ketjen black, carbon nanotubes, and carbon nanofibers, and metal materials.

固体電解質材料としては、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、LiS、P、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P若しくはLiI−LiS−B等の硫化物系非晶質固体電解質、LiO−B−P若しくはLiO−SiO等の酸化物系非晶質固体電解質、又はLi1.3l0.3Ti0.7(PO若しくはLi1+x+yTi2−xSi3−y12(Aは、Al又はGa、0≦x≦0.4、0<y≦0.6)等の結晶質酸化物等を用いることができる。硫化物系非晶質固体電解質が、優れたリチウムイオン伝導性を有する点で好ましく用いられる。また、固体電解質材料としては、リチウム塩を含むポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、又はポリアクリロニトリル等の半固体のポリマー電解質も使用することができる。 As the solid electrolyte material, a material that can be used as a solid electrolyte of an all-solid battery can be used. For example, Li 2 S, P 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5, or LiI—Li 2 S—B 2 S 3, etc. Sulfide-based amorphous solid electrolyte, oxide-based amorphous solid electrolyte such as Li 2 O—B 2 O 3 —P 2 O 5 or Li 2 O—SiO 2 , or Li 1.3 A 10.3 Ti 0.7 (PO 4 ) 3 or Li 1 + x + y A x Ti 2 -x Si y P 3 -yO 12 (A is Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), etc. A crystalline oxide or the like can be used. A sulfide-based amorphous solid electrolyte is preferably used in that it has excellent lithium ion conductivity. Further, as the solid electrolyte material, a semi-solid polymer electrolyte such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, or polyacrylonitrile containing a lithium salt can also be used.

〈固体電解質層〉
固体電解質層は、固体電解質材料を含有している。固体電解質材料としては、正極活物質層に関して挙げた材料を用いることができる。
<Solid electrolyte layer>
The solid electrolyte layer contains a solid electrolyte material. As the solid electrolyte material, the materials mentioned for the positive electrode active material layer can be used.

〈負極活物質層〉
負極活物質層は、負極活物質、並びに随意に導電助剤及び固体電解質材料を含有している。
<Negative electrode active material layer>
The negative electrode active material layer contains a negative electrode active material, and optionally a conductive additive and a solid electrolyte material.

負極活物質としては、リチウムイオン等の金属イオンを吸蔵・放出可能であれば特に限定されないが、例えば、Li、Sn、Si若しくはIn等の金属、リチウムとチタン、マグネシウム若しくはアルミニウムとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイト等の炭素材料等を挙げることができる。   The negative electrode active material is not particularly limited as long as it can occlude / release metal ions such as lithium ions. For example, a metal such as Li, Sn, Si or In, an alloy of lithium and titanium, magnesium or aluminum, or Examples thereof include carbon materials such as hard carbon, soft carbon, and graphite.

導電助剤及び固体電解質材料としては、正極活物質層に関して挙げた材料を用いることができる。   As the conductive auxiliary agent and the solid electrolyte material, the materials mentioned for the positive electrode active material layer can be used.

本発明の好ましい実施形態を詳細に記載したが、特許請求の範囲から逸脱することなく、本発明で使用される全固体電池、正極及び負極集電体の端子、並びに架橋体の配置及びタイプについて変更が可能であることを当業者は理解する。   Although preferred embodiments of the present invention have been described in detail, the arrangement and type of all-solid-state batteries, positive and negative electrode current collectors, and cross-linked bodies used in the present invention without departing from the scope of the claims. Those skilled in the art will appreciate that modifications are possible.

100,200,300 全固体電池
111 正極集電体の端子
112 負極集電体の端子
120 架橋体
210,220,310,320 単電池
211,311 正極活物質層
212,312 固体電解質層
213,313 負極活物質層
231,331 正極集電体
232,332 負極集電体
240,340 架橋体
100, 200, 300 All-solid-state battery 111 Terminal of positive electrode current collector 112 Terminal of negative electrode current collector 120 Cross-linked body 210, 220, 310, 320 Single cell 211, 311 Positive electrode active material layer 212, 312 Solid electrolyte layer 213, 313 Negative electrode active material layer 231, 331 Positive electrode current collector 232, 332 Negative electrode current collector 240, 340 Crosslinked body

Claims (1)

正極集電体、正極活物質層、固体電解質層、負極活物質層、及び負極集電体が積層された全固体電池であって、
前記正極集電体及び前記負極集電体の間に、それらの間を架橋している架橋体が配置されており、
前記架橋体は、前記全固体電池が作動温度範囲のときに10−3(1/(Ω・cm))以下の電気伝導率を有し、かつ前記全固体電池が作動温度範囲超のときに10(1/(Ω・cm))以上の電気伝導率を有する材料で形成される、
全固体電池。
An all-solid battery in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are laminated,
Between the positive electrode current collector and the negative electrode current collector, a cross-linked body that cross-links between them is disposed,
The cross-linked body has an electric conductivity of 10 −3 (1 / (Ω · cm)) or less when the all solid state battery is in an operating temperature range, and when the all solid state battery exceeds an operating temperature range. Formed of a material having an electrical conductivity of 10 (1 / (Ω · cm)) or more,
All solid battery.
JP2014194012A 2014-09-24 2014-09-24 All-solid-state battery Pending JP2016066469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194012A JP2016066469A (en) 2014-09-24 2014-09-24 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194012A JP2016066469A (en) 2014-09-24 2014-09-24 All-solid-state battery

Publications (1)

Publication Number Publication Date
JP2016066469A true JP2016066469A (en) 2016-04-28

Family

ID=55805781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194012A Pending JP2016066469A (en) 2014-09-24 2014-09-24 All-solid-state battery

Country Status (1)

Country Link
JP (1) JP2016066469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082511A (en) * 2016-11-14 2018-05-24 株式会社村田製作所 Charger, electronic apparatus, electric vehicle and power system
CN113270694A (en) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 Utmost point ear subassembly and electric core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082511A (en) * 2016-11-14 2018-05-24 株式会社村田製作所 Charger, electronic apparatus, electric vehicle and power system
CN113270694A (en) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 Utmost point ear subassembly and electric core

Similar Documents

Publication Publication Date Title
KR102546297B1 (en) All solid-state lithium battery
JP6885309B2 (en) Series stacked all-solid-state battery
JP2017130283A (en) All-solid battery
JP5762537B2 (en) A battery pack having a prismatic cell having a bipolar electrode
TWI599088B (en) Power storage unit and solar power generation unit
JP6870914B2 (en) Non-aqueous electrolyte batteries, battery packs and vehicles
CN106663839B (en) Nonaqueous electrolyte battery and battery pack
JPH10241665A (en) Electrode and battery using the same
JP2013081357A (en) Control device of secondary battery
JP4382557B2 (en) Non-aqueous secondary battery
JP2010257811A (en) Secondary battery
JP2012151036A (en) Laminated battery
JP6885353B2 (en) Power storage device
JP2013187040A (en) Battery and manufacturing method thereof
JP2013054909A (en) Lithium ion secondary battery
JP2016066469A (en) All-solid-state battery
JP5838042B2 (en) Lithium ion battery separator and lithium ion battery using the same
US10530014B2 (en) Assembled battery
WO2015029084A1 (en) Electrode structure and secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2011142040A (en) Solid-state battery module
JP3594481B2 (en) Sealed battery and method of manufacturing the same
JP2012028044A (en) Lithium ion battery
CN212725515U (en) Take overcurrent protection&#39;s laminate polymer battery structure
JP2023097835A (en) battery