JP2019160442A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2019160442A
JP2019160442A JP2018041643A JP2018041643A JP2019160442A JP 2019160442 A JP2019160442 A JP 2019160442A JP 2018041643 A JP2018041643 A JP 2018041643A JP 2018041643 A JP2018041643 A JP 2018041643A JP 2019160442 A JP2019160442 A JP 2019160442A
Authority
JP
Japan
Prior art keywords
battery
heat
temperature
cooling
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018041643A
Other languages
Japanese (ja)
Other versions
JP7025246B2 (en
Inventor
秀明 酒井
Hideaki Sakai
秀明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018041643A priority Critical patent/JP7025246B2/en
Priority to CN201920259893.XU priority patent/CN209374628U/en
Publication of JP2019160442A publication Critical patent/JP2019160442A/en
Application granted granted Critical
Publication of JP7025246B2 publication Critical patent/JP7025246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a battery module capable of warming or cooling a battery pack efficiently.SOLUTION: A battery module 1 includes a battery pack 2, a heat sink 7 for receiving the battery pack 2, an electric heater 3 provided in the heat sink 7, and a cooling surface 76 that is a part of the heat sink 7. The battery module 1 has a heat conduction member 5 provided between the battery pack 2 and the cooling surface 76, a heat insulation member 4 provided between the battery pack 2 and a bottom plate 72 of the heat sink 7 where the battery pack 2 is installed, and having heat conductivity lower than that of the heat conduction member 5, and a bimetal thermostat 6 having a bimetal 62 the shape of which changes according to the temperature of the battery pack 2, and changing over the heat conduction state where the heat conduction member 5 is close to the cooling surface 76 and the battery pack 2, and the non-heat conduction state where the heat conduction member 5 is separated from at least any one of the cooling surface 76 and the battery pack 2, according to the shape of the bimetal 62.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリモジュールに関する。より詳しくは、電池と、この電池を加熱するヒータと、この電池を冷却する冷却部と、を備えるバッテリモジュールに関する。   The present invention relates to a battery module. More specifically, the present invention relates to a battery module including a battery, a heater that heats the battery, and a cooling unit that cools the battery.

ハイブリッド自動車や電気自動車等の電動車両は、バッテリモジュールから供給される電力を用いてモータを駆動することによって走行する。バッテリモジュールは、リチウムイオン電池やニッケル水素電池等の充放電が可能な単電池を複数積層して構成される組み電池と、この組電池を収容する箱状の筐体と、を備える。   An electric vehicle such as a hybrid vehicle or an electric vehicle travels by driving a motor using electric power supplied from a battery module. The battery module includes an assembled battery configured by stacking a plurality of chargeable / dischargeable cells such as a lithium ion battery and a nickel metal hydride battery, and a box-shaped housing that accommodates the assembled battery.

またバッテリモジュールには、筐体内の組電池を充放電に適した温度範囲に制御するため、組電池を加熱する加熱装置や組電池を冷却する冷却装置が設けられる。   The battery module is provided with a heating device for heating the assembled battery and a cooling device for cooling the assembled battery in order to control the assembled battery in the housing to a temperature range suitable for charging and discharging.

例えば特許文献1には、複数の電池と、これら電池を収容する筐体と、筐体内に設けられ電池を加熱するための熱を発する加熱部と、筐体に形成された吸気口から筐体内に電池を冷却するための空気を供給するブロアファンと、を備える空冷式のバッテリモジュールが示されている。特許文献1の発明では、ブロアファンによる冷却時に、電池の近傍に設けられた加熱部が空気の流れの妨げにならないようにするため、加熱部を電池からやや離れた位置に設けている。また特許文献1の発明では、加熱部に温度上昇により形状が変化するバイメタルを用いることにより、加熱部を発熱させて電池を加温する際には、この加熱部を電池に接近させる。特許文献1の発明によれば、電池の加温時には加熱部を電池に接近させることにより、加熱部によって電池を効率的に加温しつつ、冷却時には加熱部が冷却の妨げとなるのを防止できる。   For example, Patent Document 1 discloses a plurality of batteries, a casing that accommodates the batteries, a heating unit that is provided in the casing and generates heat for heating the batteries, and an intake port formed in the casing. An air-cooled battery module including a blower fan for supplying air for cooling the battery is shown. In the invention of Patent Document 1, the heating unit provided in the vicinity of the battery at the time of cooling by the blower fan is provided at a position slightly away from the battery so as not to obstruct the air flow. Further, in the invention of Patent Document 1, by using a bimetal whose shape changes as the temperature rises, the heating unit is brought close to the battery when the heating unit generates heat and the battery is heated. According to the invention of Patent Document 1, by bringing the heating unit closer to the battery when the battery is heated, the battery is efficiently heated by the heating unit, and the heating unit is prevented from interfering with cooling during cooling. it can.

特開2012−79441号公報JP 2012-79441 A

しかしながら特許文献1の発明では、バイメタルの形状が変化するまで加熱部を発熱する必要があり、加熱部を電池に接近させ、加熱部を加熱するまでに時間がかかってしまう。また特許文献1の発明では、外気の温度が低下し、ひいては筐体自体の温度が低下すると、その内部に設けられた電池の温度も低下してしまう。このため加熱部による加温が要求される低温時には、外気によって冷やされた筐体によって加熱部による電池の加温が妨げられてしまうおそれがある。   However, in the invention of Patent Document 1, it is necessary to generate heat in the heating unit until the shape of the bimetal changes, and it takes time to bring the heating unit close to the battery and heat the heating unit. Further, in the invention of Patent Document 1, when the temperature of the outside air is lowered, and as a result, the temperature of the casing itself is lowered, the temperature of the battery provided therein is also lowered. For this reason, at the time of the low temperature which requires heating by a heating part, there exists a possibility that the heating of the battery by a heating part may be prevented by the case cooled by outside air.

本発明は、電池を効率的に加温又は冷却できるバッテリモジュールを提供することを目的とする。   An object of this invention is to provide the battery module which can heat or cool a battery efficiently.

(1)本発明に係るバッテリモジュール(例えば、後述のバッテリモジュール1)は、電池(例えば、後述の組電池2)と、前記電池を収容しかつ冷媒によって冷却される筐体(例えば、後述のヒートシンク7)と、前記筐体に設けられたヒータ(例えば、後述の電気ヒータ3)と、前記筐体の一部又は当該筐体に接する部材である冷却部(例えば、後述の冷却面76)と、を備えるものであって、前記電池と前記冷却部との間に設けられた熱伝導部材(例えば、後述の熱伝導部材5)と、前記電池の温度に応じて状態が変化する状態変化部材(例えば、後述のバイメタル62)を備え、当該状態変化部材の状態に応じて、前記熱伝導部材が前記冷却部及び前記電池に接近した伝熱状態と、前記熱伝導部材が前記冷却部及び前記電池の少なくとも何れかから離隔した非伝熱状態とで切り替える切替装置(例えば、後述のバイメタルサーモスタット6)と、を備えることを特徴とする。   (1) A battery module (for example, a battery module 1 described later) according to the present invention includes a battery (for example, an assembled battery 2 described later) and a casing (for example, described later) that houses the battery and is cooled by a refrigerant. A heat sink 7), a heater (for example, an electric heater 3 to be described later) provided in the casing, and a cooling unit (for example, a cooling surface 76 to be described later) which is a part of the casing or a member in contact with the casing. And a heat conductive member (for example, a heat conductive member 5 described later) provided between the battery and the cooling unit, and a state change in which the state changes according to the temperature of the battery. A member (e.g., a bimetal 62 described later), and according to the state of the state change member, the heat conduction member is in a heat transfer state close to the cooling unit and the battery, and the heat conduction member is the cooling unit and Less of the battery Also switching device to switch the non-heat transfer condition spaced from one (e.g., bimetallic thermostat 6 will be described later), characterized in that it comprises a a.

(2)この場合、前記電池と前記筐体のうち前記電池が設置される設置部との間に設けられ、前記熱伝導部材よりも熱伝導率が低い断熱部材(例えば、後述の断熱部材4)をさらに備えることが好ましい。   (2) In this case, a heat insulating member (for example, a heat insulating member 4 to be described later) is provided between the battery and an installation portion of the housing where the battery is installed and has a lower thermal conductivity than the heat conductive member. ).

(3)この場合、前記バッテリモジュールは、前記筐体の内部に設けられたヒータをさらに備え、前記ヒータは、前記冷却部よりも前記電池に近い位置に設けられていることが好ましい。   (3) In this case, it is preferable that the battery module further includes a heater provided inside the housing, and the heater is provided at a position closer to the battery than the cooling unit.

(4)前記状態変化部材は、前記電池に接する部材(例えば、後述の熱伝導部材5)又は前記電池に接することが好ましい。   (4) It is preferable that the said state change member contacts the member (for example, heat conductive member 5 mentioned later) or the said battery which contacts the said battery.

(5)この場合、前記筐体は、内部に冷媒である冷却水(例えば、後述の冷却水75a)が通流する冷却水流路(例えば、後述の冷却水流路75)が形成された冷却壁部(例えば、後述の左側壁部73)を備え、前記冷却部は、前記冷却壁部のうち前記冷却水流路が形成されている部分の前記電池側の面であることが好ましい。   (5) In this case, the casing has a cooling wall in which a cooling water channel (for example, a cooling water channel 75 described later) through which cooling water (for example, a cooling water 75a described later) flows is formed. It is preferable that the cooling part is a surface on the battery side of a part of the cooling wall part where the cooling water flow path is formed.

(6)この場合、前記熱伝導部材は、前記電池と接する接触部(例えば、後述の固定部51)と前記冷却部と対向する対向部(例えば、後述の可動部52)とを有し、前記状態変化部材は、前記熱伝導部材の温度に応じて第1形状又は第2形状に変形するバイメタル(例えば、後述のバイメタル62)であり、前記切替装置は、前記バイメタルと、当該バイメタルの形状の変化に応じて進退するプランジャ(例えば、後述のプランジャ63)と、を備えるバイメタルサーモスタットであり、前記切替装置は、前記バイメタルの形状が前記第1形状である場合には、前記対向部を前記冷却部から離隔させることによって前記熱伝導部材を前記非伝熱状態にし、前記バイメタルの形状が前記第2形状である場合には、前記対向部を前記冷却部に接近させることによって前記熱伝導部材を前記伝熱状態にすることが好ましい。   (6) In this case, the heat conducting member has a contact portion (for example, a fixed portion 51 described later) in contact with the battery and a facing portion (for example, a movable portion 52 described later) facing the cooling portion, The state change member is a bimetal (for example, a bimetal 62 described later) that deforms into a first shape or a second shape according to the temperature of the heat conducting member, and the switching device includes the bimetal and the shape of the bimetal. And a plunger (e.g., a plunger 63 described later) that moves forward and backward in response to the change, and when the shape of the bimetal is the first shape, the switching device can When the heat conducting member is brought into the non-heat transfer state by being separated from the cooling part and the shape of the bimetal is the second shape, the facing part is in contact with the cooling part. It is preferable that the said heat conducting member to the heat transfer condition by.

(7)この場合、前記バイメタルは、第1設定温度を上回ると前記第1形状から前記第2形状に変形し、前記第1設定温度より低い第2設定温度を下回ると前記第2形状から前記第1形状に変形し、前記第1設定温度は、充放電中における前記電池の適温範囲の上限近傍に設定され、前記第2設定温度は、前記適温範囲の下限近傍に設定されることが好ましい。   (7) In this case, the bimetal deforms from the first shape to the second shape when it exceeds a first set temperature, and from the second shape when it falls below a second set temperature that is lower than the first set temperature. Preferably, the first set temperature is set near the upper limit of the appropriate temperature range of the battery during charging and discharging, and the second set temperature is set near the lower limit of the appropriate temperature range. .

(1)本発明のバッテリモジュールは、冷媒によって冷却される筐体と、この筐体に収容された電池と筐体の一部又は筐体に接する部材である冷却部との間に設けられた熱伝導部材と、電池の温度に応じて状態が変化する状態変化部材を備え、この状態変化部材の状態に応じて、熱伝導部材を伝熱状態と非伝熱状態とで切り替える切替装置と、を備える。ここで伝熱状態では、熱伝導部材は冷却部及び電池に接近した状態になる。従って本発明では、電池の冷却が要求される高温時には、熱伝導部材は切替装置により伝熱状態に切り替えられるため、電池の熱は熱伝導部材を介して冷却部に放熱されるので、電池を効率的に冷却できる。   (1) The battery module of the present invention is provided between a casing cooled by a refrigerant, a battery accommodated in the casing, and a cooling unit which is a part of the casing or a member in contact with the casing. A heat conduction member and a state change member that changes state according to the temperature of the battery, and a switching device that switches the heat conduction member between a heat transfer state and a non-heat transfer state according to the state of the state change member; Is provided. Here, in the heat transfer state, the heat conducting member is in a state of being close to the cooling unit and the battery. Therefore, in the present invention, since the heat conduction member is switched to the heat transfer state by the switching device at a high temperature at which cooling of the battery is required, the heat of the battery is dissipated to the cooling unit via the heat conduction member. It can be cooled efficiently.

一方、非伝熱状態では、熱伝導部材は冷却部及び電池の少なくとも何れかから離隔する。従って本発明では、電池の加温が要求される低温時には、熱伝導部材は切替装置により非伝熱状態に切り替えられるため、電池から冷却部への熱伝導部材を介した熱の伝導経路が遮断される。以上のように本発明では、熱伝導部材を介した熱の伝導経路が遮断されるため、電池の加温が要求される低温時には、ヒータを用いることによって電池を効率的に加温できる。   On the other hand, in the non-heat transfer state, the heat conducting member is separated from at least one of the cooling unit and the battery. Therefore, in the present invention, since the heat conduction member is switched to the non-heat transfer state by the switching device at a low temperature where the battery is required to be heated, the heat conduction path from the battery to the cooling unit through the heat conduction member is interrupted. Is done. As described above, in the present invention, the heat conduction path through the heat conducting member is interrupted, so that the battery can be efficiently heated by using the heater at a low temperature where the battery is required to be heated.

(2)本発明のバッテリモジュールでは、冷媒によって冷却される筐体のうち電池が設置される設置部と電池との間には、熱伝導部材よりも熱伝導率が低い断熱部材が設けられる。これにより、電池の加温が要求される低温時には、上記のように切替装置により電池から冷却部への熱伝導部材を介した熱の伝熱経路が遮断され、さらにこの断熱部材により電池から筐体への設置部を介した熱の伝導経路も遮断される。このように本発明では、熱伝導部材を介した熱の伝導経路と電池の設置部を介した熱の伝導経路との両方が遮断されるため、電池の加温が要求される低温時には、ヒータを用いることによって電池を効率的に加温できる。   (2) In the battery module of the present invention, a heat insulating member having a thermal conductivity lower than that of the heat conducting member is provided between the battery and the installation portion where the battery is installed in the casing cooled by the refrigerant. As a result, when the battery is required to be heated at a low temperature, the heat transfer path through the heat conduction member from the battery to the cooling unit is blocked by the switching device as described above. The heat conduction path through the installation part to the body is also blocked. As described above, in the present invention, since both the heat conduction path through the heat conduction member and the heat conduction path through the battery installation portion are blocked, the heater is used at a low temperature when the battery is required to be heated. By using the battery, the battery can be efficiently heated.

(3)本発明のバッテリモジュールでは、ヒータを、冷却部よりも電池に近い位置に設ける。すなわち本発明では、電池をヒータで直接加温する。よって本発明によれば、熱伝導部材が伝熱状態であるか非伝熱状態であるかに関わらず、ヒータで電池を加温することができる。   (3) In the battery module of the present invention, the heater is provided at a position closer to the battery than the cooling unit. That is, in the present invention, the battery is directly heated by the heater. Therefore, according to the present invention, the battery can be heated by the heater regardless of whether the heat conducting member is in a heat transfer state or a non-heat transfer state.

(4)本発明のバッテリモジュールでは、電池に接する部材又は電池に接する状態変化部材の状態に応じて伝熱状態と非伝熱状態とを切り替える。これにより本発明では、電池の温度に応じて状態変化部材の状態を変化させることができるので、電池の温度が好ましい範囲に収まるように、熱伝導部材を伝熱状態と非伝熱状態とで切り替えることができる。   (4) In the battery module of the present invention, the heat transfer state and the non-heat transfer state are switched according to the state of the member in contact with the battery or the state change member in contact with the battery. Thereby, in this invention, since the state of a state change member can be changed according to the temperature of a battery, a heat conductive member is made into a heat-transfer state and a non-heat-transfer state so that the temperature of a battery may be settled in a preferable range. Can be switched.

(5)本発明のバッテリモジュールでは、筐体に、その内部に冷却水が通流する冷却水流路が形成された冷却壁部を設け、この冷却壁部のうち冷却水流路が形成されている部分の電池側の面を冷却部とする。このため、筐体の内部に冷却水の配管や冷却部を設ける必要がない。したがって本発明によれば、筐体の容積を小さくしながら、電池を効率的に加温又は冷却できる。   (5) In the battery module of the present invention, the casing is provided with a cooling wall portion in which a cooling water passage through which cooling water flows is formed, and the cooling water passage is formed in the cooling wall portion. A part of the battery side is a cooling part. For this reason, it is not necessary to provide a cooling water pipe or a cooling unit inside the housing. Therefore, according to the present invention, the battery can be efficiently heated or cooled while reducing the volume of the housing.

(6)本発明のバッテリモジュールでは、熱伝導部材として、電池と接する接触部と冷却部と対向する対向部とを有するものを用い、状態変化部材として、熱伝導部材の温度に応じて第1形状又は第2形状に変形するバイメタルを用い、切替装置として、このバイメタルと、バイメタルの変形に応じて進退するプランジャと、を備えるバイメタルサーモスタットを用いる。またこの切替装置は、バイメタルの形状が第1形状である場合には、対向部を冷却部から離隔させることで熱伝導部材を非伝熱状態にし、バイメタルの形状が第2形状である場合には、対向部を冷却部に接近させることで熱伝導部材を伝熱状態にする。これにより本発明によれば、電池の温度に応じたレベルの検出信号を発生する温度センサや、この温度センサの検出信号に基づいて熱伝導部材を伝熱状態と非伝熱状態とで切り替える電磁アクチュエータ及びその制御装置等を用いずに、適切なタイミングで熱伝導部材を伝熱状態と非伝熱状態とで切り替えることができる。   (6) In the battery module of the present invention, as the heat conducting member, a member having a contact part in contact with the battery and a facing part facing the cooling part is used, and the state change member is the first according to the temperature of the heat conducting member. A bimetal thermostat having a shape or a second shape is used, and a bimetal thermostat including the bimetal and a plunger that advances and retreats according to the deformation of the bimetal is used as a switching device. In addition, in the case where the shape of the bimetal is the first shape, the switching device makes the heat conducting member in a non-heat transfer state by separating the facing portion from the cooling portion, and the shape of the bimetal is the second shape. Makes the heat conducting member in a heat transfer state by bringing the facing portion closer to the cooling portion. Thus, according to the present invention, a temperature sensor that generates a detection signal at a level corresponding to the temperature of the battery, or an electromagnetic that switches the heat conducting member between a heat transfer state and a non-heat transfer state based on the detection signal of the temperature sensor. The heat conducting member can be switched between a heat transfer state and a non-heat transfer state at an appropriate timing without using an actuator and its control device.

(7)本発明のバッテリモジュールでは、バイメタルとして、第1設定温度を上回ると第1形状から第2形状に変形することで対向部を冷却部に接近させ、第2設定温度を下回ると第2形状から第1形状に変形することで対向部を冷却部から離隔させるものを用い、第1設定温度は、充放電中における電池の適温範囲の上限近傍に設定し、第2設定温度は、適温範囲の下限近傍に設定する。したがって本発明によれば、電池及びこれと接する熱伝導部材の温度が、電池の適温範囲の上限近傍の第1設定温度を上回ると対向部が冷却部に接近するので、電池は冷却部によって冷却され、その温度が低下に転じる。その後電池及び熱伝導部材の温度が適温範囲の下限近傍の第2設定温度を下回ると対向部が冷却部から離隔するので、電池の昇温が促進され、その温度が上昇に転じる。よって本発明によれば、上記のように温度センサ、電磁アクチュエータ、及びその制御装置を用いずに、電池の温度を適温範囲内に維持できる。   (7) In the battery module of the present invention, as the bimetal, when the temperature exceeds the first set temperature, the opposing portion approaches the cooling portion by deforming from the first shape to the second shape, and when the temperature falls below the second set temperature, Using the one that separates the opposing part from the cooling part by deforming from the shape to the first shape, the first set temperature is set in the vicinity of the upper limit of the appropriate temperature range of the battery during charging and discharging, and the second set temperature is the appropriate temperature. Set near the lower end of the range. Therefore, according to the present invention, when the temperature of the battery and the heat conducting member in contact with the battery exceeds the first set temperature in the vicinity of the upper limit of the appropriate temperature range of the battery, the facing part approaches the cooling part, so the battery is cooled by the cooling part. And the temperature starts to drop. Thereafter, when the temperature of the battery and the heat conducting member falls below the second set temperature near the lower limit of the appropriate temperature range, the facing portion is separated from the cooling portion, so that the temperature rise of the battery is promoted, and the temperature starts to rise. Therefore, according to the present invention, the temperature of the battery can be maintained within an appropriate temperature range without using the temperature sensor, the electromagnetic actuator, and the control device thereof as described above.

本発明の一実施形態に係るバッテリモジュールの構成を示す図である。It is a figure which shows the structure of the battery module which concerns on one Embodiment of this invention. 本実施形態に係るバッテリモジュールの構成を示す図である。It is a figure which shows the structure of the battery module which concerns on this embodiment. 本実施形態に係るバッテリモジュールの作動例を示す図である。It is a figure which shows the operation example of the battery module which concerns on this embodiment. 変形例のバッテリモジュールの作動例を示す図である。It is a figure which shows the operation example of the battery module of a modification.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1及び図2は、本実施形態に係るバッテリモジュール1の構成を示す図である。バッテリモジュール1は、これを電源としてモータを駆動し走行する図示しない電動車両に搭載される。なお図1は、後述の熱伝導部材5が伝熱状態である場合を示し、図2は、熱伝導部材が非伝熱状態である場合を示す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG.1 and FIG.2 is a figure which shows the structure of the battery module 1 which concerns on this embodiment. The battery module 1 is mounted on an electric vehicle (not shown) that runs by driving a motor using this as a power source. 1 shows a case where a heat conduction member 5 described later is in a heat transfer state, and FIG. 2 shows a case where the heat conduction member is in a non-heat transfer state.

バッテリモジュール1は、複数の単電池セルを積層して構成される立方体状の組電池2と、組電池2を加温する機能を有する電気ヒータ3と、断熱部材4と、熱伝導部材5と、組電池2の温度に応じて状態が変化するバイメタル62を有するバイメタルサーモスタット6と、これら組電池2、電気ヒータ3、断熱部材4、熱伝導部材5、及びバイメタルサーモスタット6を収容する筐体としてのヒートシンク7と、を備える。なお図1には、バッテリモジュール1の一部を組電池2の積層方向に対し垂直な断面に沿って破断した図を示す。   The battery module 1 includes a cube-shaped assembled battery 2 configured by stacking a plurality of unit cells, an electric heater 3 having a function of heating the assembled battery 2, a heat insulating member 4, and a heat conducting member 5. A bimetal thermostat 6 having a bimetal 62 whose state changes according to the temperature of the assembled battery 2, and a housing that houses the assembled battery 2, the electric heater 3, the heat insulating member 4, the heat conducting member 5, and the bimetal thermostat 6. Heat sink 7. FIG. 1 is a view in which a part of the battery module 1 is broken along a cross section perpendicular to the stacking direction of the assembled battery 2.

ヒートシンク7は、組電池2よりもやや大きな略立方体状の槽体であり、少なくともその一部は冷却水75aによって冷却される。ヒートシンク7は、組電池2が設置される底板72と、組電池2の左右両側部に立設された板状の左側壁部73及び右側壁部74と、図示しない蓋部と、を備える。これら底板72、左側壁部73、及び右側壁部74は、例えばアルミニウム等の金属が用いられる。   The heat sink 7 is a substantially cubic tank that is slightly larger than the assembled battery 2, and at least a part thereof is cooled by the cooling water 75 a. The heat sink 7 includes a bottom plate 72 on which the assembled battery 2 is installed, plate-like left side wall portions 73 and right side wall portions 74 that are erected on both left and right sides of the assembled battery 2, and a lid portion (not shown). These bottom plate 72, left side wall 73, and right side wall 74 are made of metal such as aluminum.

左側壁部73の内部には、冷却水流路75が形成されている。この冷却水流路75には、図示しない冷却システムによって冷却及び圧送された冷却水75aが通流する。このため、左側壁部73のうち冷却水流路75が張り巡らされた部分の組電池2側の内壁面は、冷却水75aによって冷却される冷却面76となっている。また左側壁部73のうち冷却水流路75から離れた部分の内壁面は、冷却面76よりも冷却水75aによる冷却効果が小さい非冷却面77となっている。なお右側壁部74の内部には、左側壁部73と異なり冷却水流路は形成されていない。このため、右側壁部74は、左側壁部73よりも高い温度で維持される。   A cooling water channel 75 is formed inside the left side wall portion 73. Cooling water 75a cooled and pumped by a cooling system (not shown) flows through the cooling water passage 75. Therefore, the inner wall surface on the assembled battery 2 side of the left wall portion 73 where the cooling water flow path 75 is stretched is a cooling surface 76 that is cooled by the cooling water 75a. Further, the inner wall surface of the left side wall portion 73 that is away from the cooling water flow path 75 is a non-cooling surface 77 that is less effective in cooling by the cooling water 75 a than the cooling surface 76. In the right side wall 74, unlike the left side wall 73, no cooling water flow path is formed. For this reason, the right side wall 74 is maintained at a higher temperature than the left side wall 73.

断熱部材4は、シート状であり、組電池2及び熱伝導部材5が設置される底板72に敷かれている。すなわち、組電池2及び熱伝導部材5とヒートシンク7の底板72との間には、断熱部材4が設けられている。断熱部材4は、ヒートシンク7や後述の熱伝導部材5よりも熱伝導率が低い材料、より具体的には、ウレタンやセルロース等の樹脂製の断熱材やグラスウールやロックウール等の難燃性の断熱材等、既知の材料が用いられる。   The heat insulating member 4 has a sheet shape and is laid on a bottom plate 72 on which the assembled battery 2 and the heat conducting member 5 are installed. That is, the heat insulating member 4 is provided between the assembled battery 2 and the heat conducting member 5 and the bottom plate 72 of the heat sink 7. The heat insulating member 4 is made of a material having a lower thermal conductivity than the heat sink 7 or the heat conductive member 5 described later, more specifically, a heat insulating material made of resin such as urethane or cellulose, or a flame-retardant material such as glass wool or rock wool. Known materials such as a heat insulating material are used.

組電池2は、ヒートシンク7内のうち、左側壁部73よりも右側壁部74に近い位置において、断熱部材4を介して底板72の上に設置されている。   The assembled battery 2 is installed on the bottom plate 72 via the heat insulating member 4 at a position closer to the right wall 74 than the left wall 73 in the heat sink 7.

電気ヒータ3は、板状であり、組電池2の右側面と右側壁部74との間に設けられている。電気ヒータ3は、図示しない補機バッテリと接続されており、この補機バッテリから供給されるヒータ電流が流れると発熱し、その発熱面31と対向する組電池2を加温する。図1に示すように、電気ヒータ3の発熱面31は、左側壁部73に形成された冷却面76よりも組電池2に近い位置に設けられている。したがってバッテリモジュール1は、電気ヒータ3の発熱面で発生する熱で組電池2及びその周囲の空気を加温し、組電池2を直接的に加温する直接加温式となっている。なおこの電気ヒータ3には、その温度が高くなるほど内部抵抗が大きくなり、ヒータ電流が流れにくくなる特性を有する所謂PTCヒータが好ましく用いられる。   The electric heater 3 has a plate shape and is provided between the right side surface of the assembled battery 2 and the right side wall 74. The electric heater 3 is connected to an auxiliary battery (not shown). When a heater current supplied from the auxiliary battery flows, the electric heater 3 generates heat and heats the assembled battery 2 facing the heat generating surface 31. As shown in FIG. 1, the heating surface 31 of the electric heater 3 is provided at a position closer to the assembled battery 2 than the cooling surface 76 formed on the left side wall 73. Therefore, the battery module 1 is a direct heating type in which the assembled battery 2 and the surrounding air are heated by heat generated on the heat generating surface of the electric heater 3 to directly heat the assembled battery 2. The electric heater 3 is preferably a so-called PTC heater having a characteristic that the internal resistance increases as the temperature increases, and the heater current hardly flows.

熱伝導部材5は、断熱部材4よりも熱伝導率の高い材料によって形成されており、組電池2と左側壁部73の一部である冷却面76との間で熱伝達を可能とする部材である。熱伝導部材5は、板状であり、断面視ではU字状に曲げられた状態で、ヒートシンク7内のうち組電池2の左側部と左側壁部73との間に設けられている。   The heat conducting member 5 is formed of a material having a higher thermal conductivity than the heat insulating member 4 and enables heat transfer between the assembled battery 2 and the cooling surface 76 that is a part of the left side wall 73. It is. The heat conducting member 5 has a plate shape and is provided between the left side portion and the left side wall portion 73 of the assembled battery 2 in the heat sink 7 in a state bent in a U shape in a cross-sectional view.

熱伝導部材5は、組電池2の左側面においてその積層方向に沿って延びる板状の固定部51と、左側壁部73において冷却面76に沿って延びる板状の可動部52と、これら固定部51と可動部52とを接続する接続部53と、を備える。これら固定部51と可動部52と接続部53とは同じ材料、例えばアルミニウム等の金属によって形成されており、したがって各々の温度は熱伝導によりほぼ等しい。   The heat conducting member 5 includes a plate-like fixed portion 51 extending along the stacking direction on the left side surface of the battery pack 2, a plate-like movable portion 52 extending along the cooling surface 76 on the left side wall portion 73, and these fixed portions. A connecting portion 53 that connects the portion 51 and the movable portion 52. The fixed portion 51, the movable portion 52, and the connecting portion 53 are formed of the same material, for example, a metal such as aluminum. Therefore, the temperatures are substantially equal due to heat conduction.

固定部51は、ねじやボルト等の締結部材や接着剤等によって組電池2の左側面と常に接するように、組電池2に固定されている。したがって熱伝導部材5と組電池2との間では、常に熱交換を行うことが可能となっている。   The fixing portion 51 is fixed to the assembled battery 2 so as to be always in contact with the left side surface of the assembled battery 2 by a fastening member such as a screw or a bolt or an adhesive. Therefore, heat exchange can always be performed between the heat conducting member 5 and the assembled battery 2.

可動部52は、左側壁部73の冷却面76に対向する位置に設けられている。可動部52と接続部53とは図示しないヒンジを介して連結されている。従って熱伝導部材5は、図1に示すように可動部52が冷却面76に接近した伝熱状態と、図2に示すように可動部52が冷却面76から離隔した非伝熱状態と、の2つの状態間で遷移することが可能となっている。伝熱状態では、非伝熱状態よりも可動部52が冷却面76に接近しているため、熱伝導部材5と冷却面76との間で非伝熱状態よりも効率的な熱交換を行うことが可能となっている。なお伝熱状態では、図1に示すように熱伝導部材5と冷却面76との間で熱交換が可能な程度に可動部52と冷却面76とは離隔していてもよいし、可動部52は冷却面76に接触していてもよい。   The movable portion 52 is provided at a position facing the cooling surface 76 of the left side wall portion 73. The movable part 52 and the connection part 53 are connected via a hinge (not shown). Accordingly, the heat conducting member 5 has a heat transfer state in which the movable portion 52 approaches the cooling surface 76 as shown in FIG. 1 and a non-heat transfer state in which the movable portion 52 is separated from the cooling surface 76 as shown in FIG. It is possible to transition between the two states. In the heat transfer state, since the movable part 52 is closer to the cooling surface 76 than in the non-heat transfer state, heat exchange between the heat conducting member 5 and the cooling surface 76 is performed more efficiently than in the non-heat transfer state. It is possible. In the heat transfer state, as shown in FIG. 1, the movable part 52 and the cooling surface 76 may be separated from each other to such an extent that heat can be exchanged between the heat conducting member 5 and the cooling surface 76. 52 may be in contact with the cooling surface 76.

バイメタルサーモスタット6は、熱伝導部材5の所定の部位に接する受熱部61と、この受熱部61に接するバイメタル62と、バイメタル62の形状の変化に応じて進退するプランジャ63と、を備える。バイメタルサーモスタット6は、例えば熱伝導部材5の可動部52の先端部と左側壁部73の非冷却面77との間に設けられている。   The bimetal thermostat 6 includes a heat receiving portion 61 in contact with a predetermined portion of the heat conducting member 5, a bimetal 62 in contact with the heat receiving portion 61, and a plunger 63 that advances and retreats according to a change in the shape of the bimetal 62. The bimetal thermostat 6 is provided between, for example, the distal end portion of the movable portion 52 of the heat conducting member 5 and the non-cooling surface 77 of the left side wall portion 73.

バイメタル62は、断面視では湾曲した円盤状であり、熱膨張係数の異なる2種以上の金属や合金を接合して構成されている。このためバイメタル62は、自身の温度に応じてその形状を変化させる。受熱部61は、棒状であり、一端側が熱伝導部材5の可動部52に接続され、他端側がバイメタル62の熱伝導部材5側の面の中央部に接続されている。このようにバイメタル62は、受熱部61及び熱伝導部材5を介して組電池2に接するため、その温度は組電池2の温度に応じて変化する。またバイメタル62の外周部のうち非冷却面77側の面は、プランジャ63を介して非冷却面77に接続している。受熱部61は、プランジャ63よりも熱伝導率の高い材料で形成されている。したがってバイメタル62は、非冷却面77よりも熱伝導部材5との間で効率的な熱交換が可能となっている。よってバイメタル62の温度は、熱伝導部材5、及び組電池2とほぼ等しい。   The bimetal 62 has a curved disk shape in a cross-sectional view, and is configured by joining two or more kinds of metals and alloys having different thermal expansion coefficients. For this reason, the bimetal 62 changes its shape according to its own temperature. The heat receiving portion 61 is rod-shaped, and one end side is connected to the movable portion 52 of the heat conducting member 5 and the other end side is connected to the center portion of the surface of the bimetal 62 on the heat conducting member 5 side. Thus, since the bimetal 62 is in contact with the assembled battery 2 via the heat receiving portion 61 and the heat conducting member 5, the temperature changes according to the temperature of the assembled battery 2. The surface on the non-cooling surface 77 side of the outer periphery of the bimetal 62 is connected to the non-cooling surface 77 via the plunger 63. The heat receiving portion 61 is formed of a material having a higher thermal conductivity than the plunger 63. Therefore, the bimetal 62 can exchange heat more efficiently with the heat conducting member 5 than with the non-cooling surface 77. Therefore, the temperature of the bimetal 62 is substantially equal to that of the heat conducting member 5 and the assembled battery 2.

バイメタル62は、その温度が所定の第1設定温度を上回ると、断面視では非冷却面77に対し凹状であり、その中央部が非冷却面77に接近した第2形状となる(図1参照)。これによりプランジャ63は受熱部61側へ退避する。またバイメタル62は、その温度が第1設定温度よりも低い第2設定温度を下回ると、断面視では非冷却面77に対し凸状であり、その中央部が非冷却面77から離隔した第1形状となる(図2参照)。これによりプランジャ63は非冷却面77側へ前進する。   When the temperature of the bimetal 62 exceeds a predetermined first set temperature, the bimetal 62 has a concave shape with respect to the non-cooling surface 77 in a cross-sectional view, and has a second shape in which the central portion approaches the non-cooling surface 77 (see FIG. 1). ). Thereby, the plunger 63 is retracted to the heat receiving part 61 side. In addition, when the temperature of the bimetal 62 falls below a second set temperature that is lower than the first set temperature, the bimetal 62 is convex with respect to the non-cooling surface 77 in a cross-sectional view, and the central portion is separated from the non-cooling surface 77. It becomes a shape (see FIG. 2). Thereby, the plunger 63 moves forward to the non-cooling surface 77 side.

バイメタル62は、第2形状になると、その中央部が非冷却面77に接近する。したがって、このバイメタル62と受熱部61を介して接続された可動部52は、バイメタル62の形状の変化によって冷却面76に接近し、熱伝導部材5は伝熱状態になる(図1参照)。   When the bimetal 62 has the second shape, the central portion thereof approaches the non-cooling surface 77. Therefore, the movable part 52 connected to the bimetal 62 via the heat receiving part 61 approaches the cooling surface 76 due to a change in the shape of the bimetal 62, and the heat conducting member 5 enters a heat transfer state (see FIG. 1).

またバイメタル62は、第1形状になると、その中央部が非冷却面77から離隔する。したがって、このバイメタル62と受熱部61を介して接続された可動部52は、バイメタル62の形状の変化によって冷却面76から離隔し、熱伝導部材5は非伝熱状態になる(図2参照)。   Further, when the bimetal 62 has the first shape, the central portion thereof is separated from the non-cooling surface 77. Accordingly, the movable portion 52 connected to the bimetal 62 via the heat receiving portion 61 is separated from the cooling surface 76 due to a change in the shape of the bimetal 62, and the heat conducting member 5 is in a non-heat transfer state (see FIG. 2). .

以上のように、バイメタルサーモスタット6は、受熱部61に接続された熱伝導部材5の温度に応じて、この熱伝導部材5を伝熱状態と非伝熱状態とで切り替える。ここでバイメタル62の材料や板厚は、第1設定温度が充放電中における組電池の適温範囲(例えば、25℃〜35℃)の下限(例えば、25℃)よりも高い温度に設定され、第2設定温度はこの第1設定温度よりも低い温度に設定されるようなものが用いられる。   As described above, the bimetal thermostat 6 switches the heat conduction member 5 between the heat transfer state and the non-heat transfer state according to the temperature of the heat conduction member 5 connected to the heat receiving unit 61. Here, the material and the plate thickness of the bimetal 62 are set to a temperature at which the first set temperature is higher than the lower limit (for example, 25 ° C.) of the appropriate temperature range (for example, 25 ° C. to 35 ° C.) of the assembled battery during charging and discharging. The second set temperature is set to a temperature lower than the first set temperature.

図3は、バッテリモジュール1の作動例を示す図である。より具体的には、車両を寒冷地で停止させた後、組電池2を外部充電器で充電した場合におけるバッテリモジュール1の作動例を示す。図1において横軸は組電池2の温度であるバッテリ温度[℃]を示し、縦軸は冷却水の温度である冷却水温度[℃]を示す。図3では、バッテリ温度及び冷却水温度の2つのパラメータで特定されるバッテリモジュール1の状態の遷移を示す。   FIG. 3 is a diagram illustrating an operation example of the battery module 1. More specifically, an operation example of the battery module 1 when the assembled battery 2 is charged with an external charger after the vehicle is stopped in a cold region is shown. In FIG. 1, the horizontal axis indicates the battery temperature [° C.] that is the temperature of the assembled battery 2, and the vertical axis indicates the cooling water temperature [° C.] that is the temperature of the cooling water. FIG. 3 shows the transition of the state of the battery module 1 specified by the two parameters of the battery temperature and the cooling water temperature.

図3において破線3aよりも上方側は冷却水温度がバッテリ温度よりも高い領域となっており、破線3aよりも下方側はバッテリ温度が冷却水温度よりも高い領域となっている。また図3において破線3bは、組電池2において充放電を行うことが可能な温度範囲である使用可能範囲の上限(例えば、60℃)を示し、破線3cは、この使用可能範囲の下限(例えば、−30℃)を示す。   In FIG. 3, the region above the broken line 3a is a region where the coolant temperature is higher than the battery temperature, and the region below the broken line 3a is a region where the battery temperature is higher than the coolant temperature. In FIG. 3, a broken line 3 b indicates an upper limit (for example, 60 ° C.) of the usable range that is a temperature range in which charging and discharging can be performed in the assembled battery 2, and a broken line 3 c indicates a lower limit (for example, the usable range) -30 ° C).

また図3において一点鎖線3dは、組電池2の適温範囲の上限(例えば、35℃)を示し、一点鎖線3eは、組電池2の適温範囲の下限(例えば、25℃)を示す。従って図3において、一点鎖線3dよりも高温側は、組電池2の冷却が要求されている領域であり、一点鎖線3eよりも低温側は、組電池2の加温が要求されている領域である。   In FIG. 3, the alternate long and short dash line 3d indicates the upper limit (for example, 35 ° C.) of the appropriate temperature range of the assembled battery 2, and the alternate long and short dash line 3e indicates the lower limit (for example, 25 ° C.) of the appropriate temperature range of the assembled battery 2. Therefore, in FIG. 3, the higher temperature side than the alternate long and short dash line 3d is an area where the assembled battery 2 is required to be cooled, and the lower temperature side than the alternate long and short dashed line 3e is an area where the assembled battery 2 is required to be heated. is there.

また図3において二点鎖線3fは、バイメタルサーモスタット6の第1設定温度を示し、二点鎖線3gは、バイメタルサーモスタット6の第2設定温度を示す。また図3において二点鎖線3hは、電気ヒータ3が発熱する作動温度を示す。   In FIG. 3, a two-dot chain line 3 f indicates the first set temperature of the bimetal thermostat 6, and a two-dot chain line 3 g indicates the second set temperature of the bimetal thermostat 6. In FIG. 3, a two-dot chain line 3h indicates an operating temperature at which the electric heater 3 generates heat.

図3では、P1で示す状態においてバッテリモジュール1を搭載する車両のパワースイッチがオフにされた場合を示す。状態P1では、組電池2の温度が第1設定温度よりも高温であることに応じて、熱伝導部材5は図1に示す伝熱状態となっている。   In FIG. 3, the case where the power switch of the vehicle which mounts the battery module 1 in the state shown by P1 is turned off is shown. In the state P1, the heat conducting member 5 is in the heat transfer state shown in FIG. 1 in response to the temperature of the assembled battery 2 being higher than the first set temperature.

先ず、状態P1においてパワースイッチがオフにされると、組電池2及びヒートシンク7の冷却水の温度は、外気によって低下し、バッテリ温度は冷却水温度と等しくなる(状態P2参照)。状態P2では、熱伝導部材5は伝熱状態である。したがって、バッテリ温度は、冷却水温度と等しい速度で低下する。   First, when the power switch is turned off in the state P1, the temperature of the cooling water of the assembled battery 2 and the heat sink 7 is lowered by the outside air, and the battery temperature becomes equal to the cooling water temperature (see the state P2). In the state P2, the heat conducting member 5 is in a heat transfer state. Therefore, the battery temperature decreases at a rate equal to the cooling water temperature.

その後、状態P3では、バッテリ温度が第2設定温度まで低下したことに応じて、熱伝導部材5は伝熱状態から非伝熱状態に切り替わる。これにより、組電池2と冷却面76との間の熱の経路が遮断されるため、バッテリ温度の低下速度は冷却水温度の低下速度よりも遅くなる。   Thereafter, in the state P3, the heat conducting member 5 is switched from the heat transfer state to the non-heat transfer state in response to the battery temperature being lowered to the second set temperature. As a result, the heat path between the assembled battery 2 and the cooling surface 76 is interrupted, so that the battery temperature decrease rate is slower than the cooling water temperature decrease rate.

その後、状態P4では、バッテリ温度が電気ヒータ3の作動温度まで低下したことに応じて、電気ヒータ3にヒータ電流が流れ始める。その後、電気ヒータ3が発熱することにより、バッテリ温度が上昇し、バッテリモジュール1は、状態P4から状態P5に遷移する。この際、熱伝導部材5は非伝熱状態となっているため、組電池2と冷却面76との間の熱の経路が遮断される。このため、電気ヒータ3はバッテリ温度のみを上昇させ、冷却水温度は殆ど上昇しない。また電気ヒータ3をオフにした後も、組電池2と冷却面76との間の熱の経路が遮断されているため、組電池2の保温効果が高い。すなわちバッテリモジュール1によれば、寒冷地において車両を停車させた後は、熱伝導部材5が非伝熱状態に切り替わり、組電池2は少ないエネルギで保温されるため、効率的な充電が可能となる。   Thereafter, in the state P4, the heater current starts to flow through the electric heater 3 in response to the battery temperature decreasing to the operating temperature of the electric heater 3. Thereafter, when the electric heater 3 generates heat, the battery temperature rises, and the battery module 1 changes from the state P4 to the state P5. At this time, since the heat conducting member 5 is in a non-heat transfer state, the heat path between the assembled battery 2 and the cooling surface 76 is blocked. For this reason, the electric heater 3 increases only the battery temperature, and the cooling water temperature hardly increases. In addition, since the heat path between the assembled battery 2 and the cooling surface 76 is blocked even after the electric heater 3 is turned off, the heat retention effect of the assembled battery 2 is high. That is, according to the battery module 1, after stopping the vehicle in a cold region, the heat conducting member 5 is switched to a non-heat conducting state, and the assembled battery 2 is kept warm with a small amount of energy, so that efficient charging is possible. Become.

その後、P5で示す状態から、車両のパワースイッチがオンにされたことに応じて、組電池2の温度が上昇し始める。この際、熱伝導部材5は非伝熱状態となっているため、冷却水温度よりもバッテリ温度の方が速く上昇する。その後、状態P6においてバッテリ温度が第1設定温度を上回ったことに応じて、熱伝導部材5は非伝熱状態から伝熱状態に切り替わる。このため、バッテリ温度は冷却水温度に近づくように低下しながら、冷却水温度が上昇する。その後、状態P7においてバッテリ温度が第2設定温度を下回ったことに応じて、熱伝導部材5は伝熱状態から非伝熱状態に切り替わる。これにより図3に示すように、バッテリ温度は再び上昇に転じる。以上のように、バッテリモジュール1によれば、組電池2の温度は第1設定温度と第2設定温度との間に概ね維持される。   Thereafter, from the state indicated by P5, the temperature of the assembled battery 2 begins to rise in response to the vehicle power switch being turned on. At this time, since the heat conducting member 5 is in a non-heat transfer state, the battery temperature rises faster than the cooling water temperature. Thereafter, in response to the battery temperature exceeding the first set temperature in the state P6, the heat conducting member 5 is switched from the non-heat conducting state to the heat conducting state. For this reason, the cooling water temperature rises while the battery temperature decreases so as to approach the cooling water temperature. Thereafter, in response to the battery temperature falling below the second set temperature in state P7, heat conducting member 5 switches from the heat transfer state to the non-heat transfer state. Thereby, as shown in FIG. 3, the battery temperature starts to rise again. As described above, according to the battery module 1, the temperature of the assembled battery 2 is generally maintained between the first set temperature and the second set temperature.

本実施形態に係るバッテリモジュール1によれば、以下の効果を奏する。
(1)バッテリモジュール1は、冷却水によって冷却されるヒートシンク7と、このヒートシンク7に収容された組電池2と冷却面76との間に設けられた熱伝導部材5と、組電池2の温度に応じて形状が変化するバイメタル62を有し、このバイメタル62の形状に応じて、熱伝導部材5を伝熱状態と非伝熱状態とで切り替えるバイメタルサーモスタット6と、を備える。ここで伝熱状態では、熱伝導部材は冷却面76及び組電池2に接近した状態になる。従ってバッテリモジュール1では、組電池2の冷却が要求される高温時には、熱伝導部材5はバイメタルサーモスタット6により伝熱状態に切り替えられるため、組電池2の熱は熱伝導部材5を介して冷却面76に放熱されるので、組電池2を効率的に冷却できる。
The battery module 1 according to the present embodiment has the following effects.
(1) The battery module 1 includes a heat sink 7 cooled by cooling water, a heat conducting member 5 provided between the assembled battery 2 accommodated in the heat sink 7 and the cooling surface 76, and the temperature of the assembled battery 2. And a bimetal thermostat 6 that switches the heat conducting member 5 between a heat transfer state and a non-heat transfer state according to the shape of the bimetal 62. Here, in the heat transfer state, the heat conducting member is in a state of being close to the cooling surface 76 and the assembled battery 2. Therefore, in the battery module 1, since the heat conduction member 5 is switched to the heat transfer state by the bimetal thermostat 6 at a high temperature at which the assembled battery 2 is required to be cooled, the heat of the assembled battery 2 is cooled via the heat conduction member 5. Since the heat is radiated to 76, the assembled battery 2 can be efficiently cooled.

一方、非伝熱状態では、熱伝導部材5は冷却面76及び組電池2の少なくとも何れかから離隔する。従ってバッテリモジュール1では、組電池2の加温が要求される低温時には、熱伝導部材5はバイメタルサーモスタット6により非伝熱状態に切り替えられるため、組電池2から冷却面76への熱伝導部材5を介した熱の伝導経路が遮断される。以上のようにバッテリモジュール1では、熱伝導部材5を介した熱の伝導経路が遮断されるため、組電池2の加温が要求される低温時には、電気ヒータ3を用いることによって組電池2を効率的に加温できる。   On the other hand, in the non-heat transfer state, the heat conducting member 5 is separated from at least one of the cooling surface 76 and the assembled battery 2. Therefore, in the battery module 1, since the heat conduction member 5 is switched to the non-heat transfer state by the bimetal thermostat 6 at a low temperature when the assembled battery 2 is required to be heated, the heat conduction member 5 from the assembled battery 2 to the cooling surface 76 is switched. The heat conduction path through is interrupted. As described above, in the battery module 1, the heat conduction path via the heat conducting member 5 is interrupted, so that the assembled battery 2 can be removed by using the electric heater 3 at a low temperature when the assembled battery 2 is required to be heated. Can be heated efficiently.

(2)バッテリモジュール1では、冷却水によって冷却されるヒートシンク7のうち組電池2が設置される底板72と組電池2との間には、熱伝導部材5よりも熱伝導率が低い断熱部材4が設けられる。これにより、組電池2の加温が要求される低温時には、上記のようにバイメタルサーモスタット6により組電池2から冷却面76への熱伝導部材5を介した熱の伝熱経路が遮断され、さらにこの断熱部材4により組電池2からヒートシンク7への底板72を介した熱の伝導経路も遮断される。このようにバッテリモジュール1では、熱伝導部材5を介した熱の伝導経路と組電池2の底板72を介した熱の伝導経路との両方が遮断されるため、組電池2の加温が要求される低温時には、電気ヒータ3を用いることによって組電池2を効率的に加温できる。   (2) In the battery module 1, a heat insulating member having a lower thermal conductivity than the heat conducting member 5 is provided between the bottom plate 72 where the assembled battery 2 is installed and the assembled battery 2 among the heat sinks 7 cooled by the cooling water. 4 is provided. As a result, when the assembled battery 2 is required to be heated at a low temperature, the bimetal thermostat 6 blocks the heat transfer path from the assembled battery 2 to the cooling surface 76 via the heat conducting member 5 as described above. The heat conduction path from the assembled battery 2 to the heat sink 7 through the bottom plate 72 is also blocked by the heat insulating member 4. As described above, in the battery module 1, both the heat conduction path via the heat conducting member 5 and the heat conduction path via the bottom plate 72 of the assembled battery 2 are blocked, so that the assembled battery 2 needs to be heated. When the temperature is low, the assembled battery 2 can be efficiently heated by using the electric heater 3.

(3)バッテリモジュール1では、電気ヒータ3を、冷却面76よりも組電池2に近い位置に設ける。すなわちバッテリモジュール1では、組電池2を電気ヒータ3で直接加温する。よってバッテリモジュール1によれば、熱伝導部材5が伝熱状態であるか非伝熱状態であるかに関わらず、電気ヒータ3で組電池2を加温することができる。   (3) In the battery module 1, the electric heater 3 is provided at a position closer to the assembled battery 2 than the cooling surface 76. That is, in the battery module 1, the assembled battery 2 is directly heated by the electric heater 3. Therefore, according to the battery module 1, the assembled battery 2 can be heated by the electric heater 3 regardless of whether the heat conducting member 5 is in a heat transfer state or a non-heat transfer state.

(4)バッテリモジュール1では、受熱部61及び熱伝導部材5を介して組電池2に接するバイメタル62の形状に応じて伝熱状態と非伝熱状態とを切り替える。これによりバッテリモジュール1では、組電池2の温度が好ましい範囲に収まるように、熱伝導部材5を伝熱状態と非伝熱状態とで切り替えることができる。   (4) In the battery module 1, the heat transfer state and the non-heat transfer state are switched according to the shape of the bimetal 62 that contacts the assembled battery 2 via the heat receiving portion 61 and the heat conducting member 5. Thereby, in the battery module 1, the heat conductive member 5 can be switched between a heat transfer state and a non-heat transfer state so that the temperature of the assembled battery 2 is within a preferable range.

(5)バッテリモジュール1では、ヒートシンク7に、その内部に冷却水が通流する冷却水流路75が形成された左側壁部73を設け、この左側壁部73のうち冷却水流路75が形成された部分の組電池2側の面を冷却面76とする。このため、ヒートシンク7の内部に冷却水の配管や冷却面を設ける必要がない。したがってバッテリモジュール1によれば、ヒートシンク7の容積を小さくしながら、組電池2を効率的に加温又は冷却できる。   (5) In the battery module 1, the heat sink 7 is provided with the left side wall portion 73 in which the cooling water flow path 75 through which the cooling water flows is formed, and the cooling water flow path 75 is formed in the left side wall portion 73. The surface of the part on the assembled battery 2 side is a cooling surface 76. For this reason, it is not necessary to provide a cooling water pipe or a cooling surface inside the heat sink 7. Therefore, according to the battery module 1, the assembled battery 2 can be efficiently heated or cooled while reducing the volume of the heat sink 7.

(6)バッテリモジュール1では、熱伝導部材5として、組電池2と接する固定部51と冷却面76と対向する可動部52とを有するものを用い、切替装置として、熱伝導部材5の温度に応じて第1形状又は第2形状に変形するバイメタル62と、バイメタル62の変形に応じて進退するプランジャ63と、を備えるバイメタルサーモスタット6を用いる。またこのバイメタルサーモスタット6は、バイメタル62の形状が第1形状である場合には、可動部52を冷却面76から離隔させることで熱伝導部材5を非伝熱状態にし、バイメタル62の形状が第2形状である場合には、可動部52を冷却面76に接近させることで熱伝導部材5を伝熱状態にする。   (6) In the battery module 1, the heat conducting member 5 having a fixed portion 51 in contact with the assembled battery 2 and a movable portion 52 facing the cooling surface 76 is used, and the temperature of the heat conducting member 5 is changed as a switching device. Accordingly, a bimetal thermostat 6 including a bimetal 62 that deforms to the first shape or the second shape and a plunger 63 that advances and retreats according to the deformation of the bimetal 62 is used. In addition, when the shape of the bimetal 62 is the first shape, the bimetal thermostat 6 makes the heat conducting member 5 in a non-heat transfer state by separating the movable portion 52 from the cooling surface 76, and the shape of the bimetal 62 is the first shape. In the case of two shapes, the heat conducting member 5 is brought into a heat transfer state by bringing the movable portion 52 closer to the cooling surface 76.

ところで、組電池2の温度に応じて状態を変化させる状態変化部材として、上記のようにバイメタル62を用いる場合の他、組電池2の温度に応じたレベルの検出信号を発生する温度センサを用いることもできる。しかしながらこの場合、温度センサに電力を供給するための電源や、温度センサの検出信号に基づいて熱伝導部材5を伝熱状態と非伝熱状態とで切り替える電磁アクチュエータ及びその制御装置等を用いる必要がある。これに対し本発明では、状態変化部材としてバイメタル62を用いることにより、大がかりな装置を用いずに、適切なタイミングで熱伝導部材5を伝熱状態と非伝熱状態とで切り替えることができる。   By the way, as a state change member that changes the state in accordance with the temperature of the assembled battery 2, a temperature sensor that generates a detection signal of a level corresponding to the temperature of the assembled battery 2 is used in addition to the case where the bimetal 62 is used as described above. You can also. However, in this case, it is necessary to use a power source for supplying power to the temperature sensor, an electromagnetic actuator that switches the heat conducting member 5 between a heat transfer state and a non-heat transfer state based on a detection signal of the temperature sensor, a control device thereof, and the like. There is. In contrast, in the present invention, by using the bimetal 62 as the state change member, the heat conducting member 5 can be switched between the heat transfer state and the non-heat transfer state at an appropriate timing without using a large-scale device.

次に、本実施形態に係るバッテリモジュールの変形例について説明する。変形例に係るバッテリモジュールは、上記バッテリモジュール1と第1設定温度及び第2設定温度の大きさが異なる。より具体的には、変形例におけるバイメタルサーモスタットの第1設定温度は上限近傍(例えば、適温範囲の上限温度35℃の±1℃の範囲内)に設定され、第2設定温度は上記適温範囲の下限近傍(例えば、適温範囲の下限温度25℃の±1℃の範囲内)に設定される。   Next, a modification of the battery module according to this embodiment will be described. The battery module which concerns on a modification differs from the said battery module 1 in the magnitude | size of 1st preset temperature and 2nd preset temperature. More specifically, the first set temperature of the bimetal thermostat in the modified example is set in the vicinity of the upper limit (for example, within the range of ± 1 ° C. of the upper limit temperature of 35 ° C. of the appropriate temperature range), and the second set temperature is within the above appropriate temperature range. It is set near the lower limit (for example, within the range of ± 1 ° C. of the lower limit temperature 25 ° C. of the appropriate temperature range).

図4は、上記実施形態に係るバッテリモジュールの変形例の作動例を示す図である。図4において、破線3a,3b,3c、一点鎖線3d,3e、及び二点鎖線3f,3g,3hの意味はそれぞれ図3と同じであるので説明を省略する。また状態P1,P2,P4,P5の間の遷移は、図3とほぼ同じであるので詳細な説明は省略する。   FIG. 4 is a diagram illustrating an operation example of a modification of the battery module according to the embodiment. In FIG. 4, the meanings of the broken lines 3a, 3b, 3c, the alternate long and short dash lines 3d, 3e, and the alternate long and two short dashes lines 3f, 3g, 3h are the same as in FIG. The transitions between the states P1, P2, P4 and P5 are almost the same as those in FIG.

P5で示す状態から、車両のパワースイッチがオンにされたことに応じて、組電池2の温度が上昇し始める。この際、熱伝導部材5は非伝熱状態となっているため、冷却水温度よりもバッテリ温度の方が速く上昇する。その後、状態P6においてバッテリ温度が第1設定温度を上回ったことに応じて、熱伝導部材5は非伝熱状態から伝熱状態に切り替わる。このため、バッテリ温度は冷却水温度に近づくように低下しながら、冷却水温度が上昇する。その後、状態P7においてバッテリ温度が第2設定温度を下回ったことに応じて、熱伝導部材5は伝熱状態から非伝熱状態に切り替わる。これにより図4に示すように、バッテリ温度は再び上昇に転じる。以上のように、バッテリモジュール1によれば、組電池2の温度は第1設定温度と第2設定温度との間に概ね維持される。ここで、第1設定温度は、組電池2の適温範囲の上限近傍に設定され、また第2設定温度は、組電池2の適温範囲の下限近傍に設定される。よって変形例に係るバッテリモジュールによれば、組電池2の温度は、その適温範囲内に維持される。   From the state indicated by P5, the temperature of the assembled battery 2 begins to rise in response to the vehicle power switch being turned on. At this time, since the heat conducting member 5 is in a non-heat transfer state, the battery temperature rises faster than the cooling water temperature. Thereafter, in response to the battery temperature exceeding the first set temperature in the state P6, the heat conducting member 5 is switched from the non-heat conducting state to the heat conducting state. For this reason, the cooling water temperature rises while the battery temperature decreases so as to approach the cooling water temperature. Thereafter, in response to the battery temperature falling below the second set temperature in state P7, heat conducting member 5 switches from the heat transfer state to the non-heat transfer state. Thereby, as shown in FIG. 4, the battery temperature starts to rise again. As described above, according to the battery module 1, the temperature of the assembled battery 2 is generally maintained between the first set temperature and the second set temperature. Here, the first set temperature is set near the upper limit of the appropriate temperature range of the assembled battery 2, and the second set temperature is set near the lower limit of the appropriate temperature range of the assembled battery 2. Therefore, according to the battery module which concerns on a modification, the temperature of the assembled battery 2 is maintained in the appropriate temperature range.

変形例に係るバッテリモジュールによれば、以下の効果を奏する。
(7)バッテリモジュールでは、バイメタルとして、第1設定温度を上回ると第1形状から第2形状に変形することで可動部を冷却面に接近させ、第2設定温度を下回ると第2形状から第1形状に変形することで可動部を冷却面から離隔させるものを用い、第1設定温度は、充放電中における電池の適温範囲の上限近傍に設定し、第2設定温度は、適温範囲の下限近傍に設定する。したがってバッテリモジュールによれば、組電池及びこれと接する熱伝導部材の温度が、組電池の適温範囲の上限近傍の第1設定温度を上回ると可動部が冷却面に接近するので、組電池は冷却面によって冷却され、その温度が低下に転じる。その後組電池及び熱伝導部材の温度が適温範囲の下限近傍の第2設定温度を下回ると可動部が冷却面から離隔するので、組電池の昇温が促進され、その温度が上昇に転じる。よってバッテリモジュールによれば、上記のように温度センサ、電磁アクチュエータ、及びその制御装置を用いずに、組電池の温度を適温範囲内に維持できる。
According to the battery module which concerns on a modification, there exist the following effects.
(7) In the battery module, as the bimetal, when the temperature exceeds the first set temperature, the first shape is deformed to the second shape to bring the movable part closer to the cooling surface, and when the temperature falls below the second set temperature, the second shape changes from the second shape. The first set temperature is set near the upper limit of the appropriate temperature range of the battery during charging and discharging, and the second set temperature is the lower limit of the appropriate temperature range. Set near. Therefore, according to the battery module, when the temperature of the assembled battery and the heat conducting member in contact with the battery module exceeds the first set temperature near the upper limit of the appropriate temperature range of the assembled battery, the movable part approaches the cooling surface. Cooled by the surface, the temperature starts to drop. Thereafter, when the temperature of the assembled battery and the heat conducting member falls below the second set temperature near the lower limit of the appropriate temperature range, the movable part is separated from the cooling surface, so that the temperature rise of the assembled battery is promoted and the temperature starts to rise. Therefore, according to the battery module, the temperature of the assembled battery can be maintained within an appropriate temperature range without using the temperature sensor, the electromagnetic actuator, and the control device thereof as described above.

以上、本発明の一実施形態について説明したが、本発明はこれに限らない。
例えば上記実施形態では、熱伝導部材5を伝熱状態と非伝熱状態に切り替える切替装置としてバイメタルサーモスタット6を用いた場合について説明したが、本発明はこれに限らない。切替装置は、組電池2の温度に応じて状態が変化する状態変化部材を有し、この状態変化部材の状態に応じて熱伝導部材5を伝熱状態と非伝熱状態とで切り替える機能を備えるものであれば、どのようなものを用いてもよい。
Although one embodiment of the present invention has been described above, the present invention is not limited to this.
For example, in the above-described embodiment, the case where the bimetal thermostat 6 is used as the switching device that switches the heat conducting member 5 between the heat transfer state and the non-heat transfer state has been described, but the present invention is not limited thereto. The switching device has a state change member whose state changes according to the temperature of the assembled battery 2, and has a function of switching the heat conducting member 5 between a heat transfer state and a non-heat transfer state according to the state of the state change member. Any device may be used as long as it is provided.

例えば上記実施形態では、バイメタルサーモスタット6の受熱部61を、組電池2に接する部材でありかつその温度が組電池2の温度と相関がある熱伝導部材5の可動部52に接続し、バイメタル62を熱伝導部材5の温度に応じて変形させた場合について説明したが、本発明はこれに限らない。例えば、受熱部61を組電池2に接触させることにより、バイメタル62を組電池2の温度に応じて変形させてもよい。この場合、組電池2の温度変化に対するバイメタル62の応答性を向上できる場合がある。   For example, in the above embodiment, the heat receiving portion 61 of the bimetal thermostat 6 is connected to the movable portion 52 of the heat conducting member 5 that is a member in contact with the assembled battery 2 and whose temperature is correlated with the temperature of the assembled battery 2. Although the case where is deformed according to the temperature of the heat conducting member 5 has been described, the present invention is not limited to this. For example, the bimetal 62 may be deformed according to the temperature of the assembled battery 2 by bringing the heat receiving portion 61 into contact with the assembled battery 2. In this case, the response of the bimetal 62 to the temperature change of the assembled battery 2 may be improved.

また上記実施形態では、バイメタルサーモスタット6の受熱部61を組電池2に接する熱伝導部材5に接触させた場合について説明したが、本発明はこれに限らない。例えば冷間始動時には、組電池2の温度は、これを収容するヒートシンク7や冷却水75aの温度とほぼ等しいことから、ヒートシンク7や冷却水75aの温度も組電池2と相関があるといえる。よって受熱部61を、ヒートシンク7や冷却水75aに接触させてもよい場合がある。また電気ヒータ3で冷却水75aを加温する場合には、冷却水75aの温度も組電池2の温度と相関があるといえる。よってこの場合には、受熱部61を冷却水75aに接触させてもよい場合がある。   Moreover, although the said embodiment demonstrated the case where the heat receiving part 61 of the bimetal thermostat 6 was made to contact the heat conductive member 5 which contact | connects the assembled battery 2, this invention is not restricted to this. For example, at the time of cold start, the temperature of the assembled battery 2 is substantially equal to the temperature of the heat sink 7 and the cooling water 75a that accommodates it, so the temperature of the heat sink 7 and the cooling water 75a can be said to be correlated with the assembled battery 2. Therefore, the heat receiving part 61 may be brought into contact with the heat sink 7 or the cooling water 75a. When the cooling water 75a is heated by the electric heater 3, it can be said that the temperature of the cooling water 75a is also correlated with the temperature of the assembled battery 2. Therefore, in this case, the heat receiving part 61 may be brought into contact with the cooling water 75a.

また上記実施形態では、電気ヒータ3の発熱面31を左側壁部73の冷却水流路75よりも組電池2に近い位置に設け、直接加温式とした場合について説明したが、本発明はこれに限らない。電気ヒータ3は、例えば組電池2よりも冷却水流路75に近い位置、例えば冷却水流路75内に設けてもよい。すなわち、電気ヒータ3の発熱面で発生する熱で冷却水75aを加温し、これにより間接的に組電池2を加温する冷却水加温式としてもよい。   In the above embodiment, the heating surface 31 of the electric heater 3 is provided at a position closer to the assembled battery 2 than the cooling water channel 75 of the left side wall 73, and the direct heating type is described. Not limited to. For example, the electric heater 3 may be provided in a position closer to the cooling water flow path 75 than the assembled battery 2, for example, in the cooling water flow path 75. That is, a cooling water heating type in which the cooling water 75a is heated by the heat generated on the heat generating surface of the electric heater 3 and the assembled battery 2 is indirectly heated by this heat may be employed.

1…バッテリモジュール
2…組電池(電池)
3…電気ヒータ(ヒータ)
31…発熱面(発熱部)
4…断熱部材
5…熱伝導部材
51…固定部(接触部)
52…可動部(対向部)
6…バイメタルサーモスタット(切替装置)
62…バイメタル(状態変化部材)
63…プランジャ
7…ヒートシンク(筐体)
72…底板(設置部)
73…左側壁部(冷却壁部)
75…冷却水流路
75a…冷却水(冷媒)
76…冷却面(冷却部)
1 ... battery module 2 ... assembled battery (battery)
3 ... Electric heater (heater)
31 ... Heat generating surface (heat generating part)
4 ... Thermal insulation member 5 ... Heat conduction member 51 ... Fixed part (contact part)
52. Movable part (opposite part)
6. Bimetal thermostat (switching device)
62 ... Bimetal (state change member)
63 ... Plunger 7 ... Heat sink (housing)
72 ... Bottom plate (installation part)
73 ... Left side wall (cooling wall)
75 ... cooling water flow path 75a ... cooling water (refrigerant)
76 ... Cooling surface (cooling part)

Claims (7)

電池と、
前記電池を収容しかつ冷媒によって冷却される筐体と、
前記筐体の一部又は当該筐体に接する部材である冷却部と、を備えるバッテリモジュールであって、
前記電池と前記冷却部との間に設けられた熱伝導部材と、
前記電池の温度に応じて状態が変化する状態変化部材を備え、当該状態変化部材の状態に応じて、前記熱伝導部材が前記冷却部及び前記電池に接近した伝熱状態と、前記熱伝導部材が前記冷却部及び前記電池の少なくとも何れかから離隔した非伝熱状態とで切り替える切替装置と、を備えることを特徴とするバッテリモジュール。
Battery,
A housing containing the battery and cooled by a refrigerant;
A battery module comprising: a part of the housing or a cooling unit that is a member in contact with the housing;
A heat conducting member provided between the battery and the cooling unit;
A state change member that changes state according to the temperature of the battery, and according to the state of the state change member, the heat conduction member approaches the cooling unit and the battery, and the heat conduction member And a switching device that switches between a non-heat transfer state separated from at least one of the cooling unit and the battery.
前記電池と前記筐体のうち前記電池が設置される設置部との間に設けられ、前記熱伝導部材よりも熱伝導率が低い断熱部材をさらに備えることを特徴とする請求項1に記載のバッテリモジュール。   The thermal insulation member provided between the said battery and the installation part in which the said battery is installed among the said housing | casings is further provided with a heat conductivity lower than the said heat conduction member, The Claim 1 characterized by the above-mentioned. Battery module. 前記筐体の内部に設けられたヒータをさらに備え、
前記ヒータは、前記冷却部よりも前記電池に近い位置に設けられていることを特徴とする請求項1又は2に記載のバッテリモジュール。
A heater provided inside the housing;
The battery module according to claim 1, wherein the heater is provided at a position closer to the battery than the cooling unit.
前記状態変化部材は、前記電池に接する部材又は前記電池に接することを特徴とする請求項1から3の何れかに記載のバッテリモジュール。   The battery module according to claim 1, wherein the state change member is in contact with the battery or the battery. 前記筐体は、内部に冷媒である冷却水が通流する冷却水流路が形成された冷却壁部を備え、
前記冷却部は、前記冷却壁部のうち前記冷却水流路が形成されている部分の前記電池側の面であることを特徴とする請求項1から4の何れかに記載のバッテリモジュール。
The housing includes a cooling wall portion in which a cooling water flow path through which cooling water as a coolant flows is formed,
5. The battery module according to claim 1, wherein the cooling part is a surface on the battery side of a part of the cooling wall part where the cooling water flow path is formed.
前記熱伝導部材は、前記電池と接する接触部と前記冷却部と対向する対向部とを有し、
前記状態変化部材は、前記熱伝導部材の温度に応じて第1形状又は第2形状に変形するバイメタルであり、
前記切替装置は、前記バイメタルと、当該バイメタルの形状の変化に応じて進退するプランジャと、を備えるバイメタルサーモスタットであり、
前記切替装置は、前記バイメタルの形状が前記第1形状である場合には、前記対向部を前記冷却部から離隔させることによって前記熱伝導部材を前記非伝熱状態にし、前記バイメタルの形状が前記第2形状である場合には、前記対向部を前記冷却部に接近させることによって前記熱伝導部材を前記伝熱状態にすることを特徴とする請求項1から5の何れかに記載のバッテリモジュール。
The heat conducting member has a contact portion that contacts the battery and a facing portion that faces the cooling portion,
The state change member is a bimetal that deforms into a first shape or a second shape according to the temperature of the heat conducting member,
The switching device is a bimetal thermostat comprising the bimetal and a plunger that advances and retreats according to a change in the shape of the bimetal.
When the shape of the bimetal is the first shape, the switching device causes the heat conducting member to be in the non-heat transfer state by separating the facing portion from the cooling portion, and the shape of the bimetal is the 6. The battery module according to claim 1, wherein, in the case of the second shape, the heat conducting member is brought into the heat transfer state by bringing the facing portion closer to the cooling portion. .
前記バイメタルは、第1設定温度を上回ると前記第1形状から前記第2形状に変形し、前記第1設定温度より低い第2設定温度を下回ると前記第2形状から前記第1形状に変形し、
前記第1設定温度は、充放電中における前記電池の適温範囲の上限近傍に設定され、
前記第2設定温度は、前記適温範囲の下限近傍に設定されることを特徴とする請求項6に記載のバッテリモジュール。
The bimetal deforms from the first shape to the second shape when it exceeds a first set temperature, and deforms from the second shape to the first shape when it falls below a second set temperature that is lower than the first set temperature. ,
The first set temperature is set near the upper limit of the appropriate temperature range of the battery during charging and discharging,
The battery module according to claim 6, wherein the second set temperature is set near a lower limit of the appropriate temperature range.
JP2018041643A 2018-03-08 2018-03-08 Battery module Active JP7025246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018041643A JP7025246B2 (en) 2018-03-08 2018-03-08 Battery module
CN201920259893.XU CN209374628U (en) 2018-03-08 2019-03-01 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041643A JP7025246B2 (en) 2018-03-08 2018-03-08 Battery module

Publications (2)

Publication Number Publication Date
JP2019160442A true JP2019160442A (en) 2019-09-19
JP7025246B2 JP7025246B2 (en) 2022-02-24

Family

ID=67823813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041643A Active JP7025246B2 (en) 2018-03-08 2018-03-08 Battery module

Country Status (2)

Country Link
JP (1) JP7025246B2 (en)
CN (1) CN209374628U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065330A1 (en) * 2019-09-30 2021-04-08
WO2023227993A1 (en) * 2022-05-27 2023-11-30 株式会社半導体エネルギー研究所 Battery pack and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283102A (en) * 1992-03-30 1993-10-29 Ngk Insulators Ltd Heat radiator for battery system
JP2004111370A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Thermal control apparatus of battery
WO2013111426A1 (en) * 2012-01-24 2013-08-01 日本碍子株式会社 Power storage apparatus and method of operating power storage apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283102A (en) * 1992-03-30 1993-10-29 Ngk Insulators Ltd Heat radiator for battery system
JP2004111370A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Thermal control apparatus of battery
WO2013111426A1 (en) * 2012-01-24 2013-08-01 日本碍子株式会社 Power storage apparatus and method of operating power storage apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065330A1 (en) * 2019-09-30 2021-04-08
WO2021065330A1 (en) * 2019-09-30 2021-04-08 旭化成株式会社 Container, accommodation device, and electrical component accommodation body
CN114401906A (en) * 2019-09-30 2022-04-26 旭化成株式会社 Container, storage device, and electrical component storage body
JP7355838B2 (en) 2019-09-30 2023-10-03 旭化成株式会社 Containers, storage devices, electrical parts storage bodies
WO2023227993A1 (en) * 2022-05-27 2023-11-30 株式会社半導体エネルギー研究所 Battery pack and vehicle

Also Published As

Publication number Publication date
CN209374628U (en) 2019-09-10
JP7025246B2 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP4564934B2 (en) Secondary battery module
KR100932214B1 (en) Heat exchange system of battery pack using thermoelectric elements
US8574734B2 (en) Vehicle battery temperature control system containing heating device and method
JP5142605B2 (en) Power supply for vehicle
EP2783404B1 (en) Power storage device and battery temperature regulating method
JP5268377B2 (en) Power supply for vehicle
KR102361268B1 (en) Cooling system for battery pack of electric vehicle and cooling method for battery pack system of electric vehicle using the same
JP2004538607A (en) Thermal jacket for batteries
JP2014103005A (en) Battery pack and in-vehicle heating system
JP2013219043A (en) Power supply device
JPH09259940A (en) Battery pack for electric vehicle
JP2010050000A (en) Power source device for vehicle
JP2009009889A (en) Power source device for vehicle
JP5585621B2 (en) Power supply for vehicle
JPH11354166A (en) Battery temperature controller
JPH0624238A (en) Battery temperature control device
US20120148886A1 (en) Battery system for a motor vehicle having at least one electrochemical cell and at least one latent heat accumulator
CN112542631B (en) Battery thermal management system
US20150010789A1 (en) Battery Module, Power Supply Apparatus Comprising Battery Module, and Method for Managing Temperature of Battery Module
JP7025246B2 (en) Battery module
WO2013111529A1 (en) Battery temperature adjustment device
JP2013037919A (en) Battery temperature adjustment device
JP2010277948A (en) Battery pack device
JP7306849B2 (en) Automotive battery temperature controller
CN115693002A (en) Battery pack and method for thermally managing battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220210

R150 Certificate of patent or registration of utility model

Ref document number: 7025246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150