JP5585621B2 - Power supply for vehicle - Google Patents

Power supply for vehicle Download PDF

Info

Publication number
JP5585621B2
JP5585621B2 JP2012158336A JP2012158336A JP5585621B2 JP 5585621 B2 JP5585621 B2 JP 5585621B2 JP 2012158336 A JP2012158336 A JP 2012158336A JP 2012158336 A JP2012158336 A JP 2012158336A JP 5585621 B2 JP5585621 B2 JP 5585621B2
Authority
JP
Japan
Prior art keywords
battery
cooling
insulating
spacer
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012158336A
Other languages
Japanese (ja)
Other versions
JP2012195313A (en
Inventor
渉 岡田
実一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007171066A external-priority patent/JP5142605B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012158336A priority Critical patent/JP5585621B2/en
Publication of JP2012195313A publication Critical patent/JP2012195313A/en
Application granted granted Critical
Publication of JP5585621B2 publication Critical patent/JP5585621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、主としてハイブリッドカー等の電動車両に搭載されて、車両を走行させるモータに電力を供給する車両用の電源装置に関し、とくに電池を強制冷却する車両用の電源装置に関する。   The present invention relates to a vehicle power supply device that is mounted on an electric vehicle such as a hybrid car and supplies electric power to a motor that drives the vehicle, and more particularly to a vehicle power supply device that forcibly cools a battery.

車両用の電源装置は、多数の素電池を直列に接続して出力電圧を高く、出力電力を大きくしている。この電源装置は、大電流で充放電されるので電池の温度が上昇する。また、極めて高温な環境でも使用されることから、電池を強制的に冷却する必要がある。現在のハイブリッドカーに搭載される電源装置は、電池に冷却用の空気をファンで強制的に送風して冷却している。この構造の電源装置は、空気を介して電池を冷却するので、電池温度が異常に上昇したときに速やかに冷却するのが難しい。また、熱容量の小さい空気を送風して冷却するので、多数の電池を均一な温度に冷却するのが難しい。この欠点を解消する電源装置として、電池ケースの周囲に冷却通路を設け、この冷却通路に不凍液を流して冷却する構造の車両用の電源装置が開発されている。(特許文献1参照)
特開平6−199139号公報
In a vehicle power supply device, a large number of unit cells are connected in series to increase output voltage and output power. Since this power supply device is charged and discharged with a large current, the temperature of the battery rises. In addition, since the battery is used in an extremely high temperature environment, it is necessary to cool the battery forcibly. The power supply device mounted on the current hybrid car cools the battery by forcibly blowing cooling air with a fan. Since the power supply device with this structure cools the battery via air, it is difficult to quickly cool the battery when the battery temperature rises abnormally. Moreover, since air with a small heat capacity is blown and cooled, it is difficult to cool a large number of batteries to a uniform temperature. As a power supply device that solves this drawback, a vehicle power supply device has been developed that has a structure in which a cooling passage is provided around a battery case and an antifreeze liquid is allowed to flow through the cooling passage to cool the battery case. (See Patent Document 1)
Japanese Patent Laid-Open No. 6-199139

特許文献1に記載する電源装置は、多数の電池を、温度むらができないように均一に冷却できない欠点がある。車両用の電源装置の組電池は、多数の電池を直列に接続している。この電源装置は、電池の温度差が電気特性のアンバランスの原因となる。電気特性のアンバランスは電池の寿命を短くする。それは、温度によって充放電の効率が変化して容量をアンバランスとし、さらに、容量がアンバランスになって小さくなった電池が加速して劣化されるからである。劣化して容量の減少した電池は、過充電と過放電になりやすく、この状態によって劣化が加速される。電池が過充電と過放電でより劣化が進むからである。このため、多数の電池を備える車両用の電源装置は、各々の電池の温度差をいかに小さくできるかが極めて大切である。とくに、温度差によって電池の寿命が著しく短くなる。   The power supply device described in Patent Document 1 has a drawback that a large number of batteries cannot be uniformly cooled so as to prevent temperature unevenness. A battery pack of a power supply device for a vehicle has a large number of batteries connected in series. In this power supply device, the temperature difference of the battery causes an unbalance of the electrical characteristics. The imbalance of electrical properties shortens battery life. This is because the charging / discharging efficiency changes depending on the temperature to make the capacity unbalanced, and furthermore, the battery that has become smaller due to the unbalanced capacity is accelerated and deteriorated. A battery having a reduced capacity due to deterioration is likely to be overcharged and overdischarged, and this state accelerates the deterioration. This is because the battery is further deteriorated by overcharge and overdischarge. For this reason, it is extremely important for a power supply device for a vehicle having a large number of batteries to reduce the temperature difference between the batteries. In particular, battery life is significantly shortened by temperature differences.

さらに、車両用の電源装置は、多数の電池を接近してケースに収納することから、いずれかの電池が熱暴走すると、この熱暴走が隣の電池に誘発されやすい。熱暴走して高温に加熱された電池が、輻射熱や熱伝導で隣の電池を加熱するからである。とくに、電池をリチウムイオン二次電池とする電源装置は、熱暴走によって電池の温度が極めて高くなることから、熱暴走の誘発を阻止することが大切である。電池の間にプラスチック製の隔壁を設ける構造は、隔壁で輻射熱を遮断できる。ただ、熱暴走した電池の温度が極めて高温になると、プラスチック製の隔壁は電池の熱で損傷される。このため、プラスチック製の隔壁によっては、全ての熱暴走の誘発を確実に阻止するのが難しい。   Further, since the power supply device for a vehicle stores a large number of batteries close to each other and accommodates them in a case, if one of the batteries is thermally runaway, this thermal runaway is likely to be induced in the adjacent battery. This is because a battery that is heated to a high temperature due to thermal runaway heats the adjacent battery by radiant heat or heat conduction. In particular, in a power supply device using a lithium ion secondary battery as the battery, the temperature of the battery becomes extremely high due to thermal runaway, so it is important to prevent induction of thermal runaway. The structure in which the plastic partition is provided between the batteries can block the radiant heat by the partition. However, when the temperature of the battery that has runaway is extremely high, the plastic partition is damaged by the heat of the battery. For this reason, it is difficult to reliably prevent the induction of all thermal runaway with a plastic partition wall.

本発明は、さらにこのような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、各々の電池を効率よく均一に冷却して電池の温度差を小さくして温度差による電池の劣化を有効に防止できる車両用の電源装置を提供することにある。   The present invention has been developed for the purpose of solving such drawbacks. An important object of the present invention is to provide a power supply device for a vehicle that can cool each battery efficiently and uniformly to reduce the battery temperature difference and effectively prevent deterioration of the battery due to the temperature difference.

さらに、本発明の他の大切な目的は、電池の熱暴走の誘発を確実に防止して安全性を向上できる車両用の電源装置を提供することにある。   Furthermore, another important object of the present invention is to provide a power supply device for a vehicle that can reliably prevent induction of thermal runaway of a battery and improve safety.

本発明の車両用の電源装置は、前述の目的を達成するために以下の構成を備える。
車両用の電源装置は、車両を走行させるモータに電力を供給する電池と、この電池を冷却する冷却機構とを備える。複数の電池を互いに積層状態に配置されてなる電池ブロックと、隣接する電池の対向面に挟まれて接触する電池を絶縁して冷却する絶縁冷却スペーサとを備えている。絶縁冷却スペーサは水密構造の冷却液通路を備え、この冷却液通路は冷却
機構に連結されて、冷却機構から供給される冷却液で絶縁冷却スペーサが冷却されており、前記絶縁冷却スペーサの表面には、前記冷却液通路に沿って凸部が形成されており、電池ブロックの両端に端面プレートを配置し、この一対の端面プレートは、固定バーに連結されて電池ブロックを挟着している。
The vehicle power supply device of the present invention has the following configuration in order to achieve the above-described object.
A power supply device for a vehicle includes a battery that supplies electric power to a motor that drives the vehicle, and a cooling mechanism that cools the battery. A battery block in which a plurality of batteries are arranged in a stacked state, and an insulating cooling spacer that insulates and cools a battery that is sandwiched between opposed surfaces of adjacent batteries. Insulating and cooling spacer is provided with a coolant passage of the watertight, the coolant passage is connected to the cooling mechanism, the insulating cooling spacer with a cooling fluid supplied from a cooling mechanism has been cooled, the surface of the insulating and cooling spacer Are formed with protrusions along the coolant passage, and end plates are disposed at both ends of the battery block. The pair of end plates are connected to a fixing bar to sandwich the battery block.

本発明の請求項2の車両用の電源装置は、冷却液通路の一部に、湾曲した通路が形成されている。本発明の請求項3の車両用の電源装置は、端面プレートに、複数の凹部が形成されている。
Power supply for a vehicle according to claim 2 of the present invention, a portion of the coolant passage, the curved passage that is formed. According to a third aspect of the present invention, a plurality of concave portions are formed in the end face plate.

本発明の車両用の電源装置は、組電池を構成する多数の角型電池を極めて効率よく均一に冷却して電池の温度差を小さくできる。このため、電池の温度差による劣化を少なくして寿命を長くできる。車両用の電源装置において、電池の寿命を長くすることは極めて大切である。それは、車両を走行させる組電池は、大きな出力が要求されることから、極めて大型で高価であるからである。本発明は、積層している複数の角型電池の間に、隣接する角型電池を絶縁しながら冷却する絶縁冷却スペーサを挟んでおり、この絶縁冷却スペーサには冷却液通路を設けて、これを冷却機構に連結している。冷却機構が冷却液通路に冷却液を供給して絶縁冷却スペーサが冷却される。冷却された絶縁冷却スペーサは角型電池の対向面を冷却する。本発明は、角型電池を積層してその間に冷却液で冷却される絶縁冷却スペーサを挟む独特の構造で、各々の電池を効率よく冷却する特徴を実現する。とくに、隣接する角型電池の対向面の間に絶縁冷却スペーサを配設するので、多数の電池を積層して大きな組電池としながら、最も冷却が難しい組電池の内部の熱を効率よく放熱して、多数の角型電池を均一な温度に冷却できる。また、絶縁冷却スペーサが、空気に比較して大きい比熱と熱容量の冷却液で効率よく冷却され、さらに絶縁冷却スペーサが隣接する角型電池の間に挟まれることから、絶縁冷却スペーサと角型電池とを広い面積に接触させて理想的な熱結合状態に配置できる。このため、絶縁冷却スペーサは、角型電池の隙間に空気を送風する構造とは比較にならないほどに効率よく、また角型電池の内部まで均一に冷却する。   The power supply device for a vehicle according to the present invention can cool a large number of prismatic batteries constituting the assembled battery extremely efficiently and uniformly to reduce the battery temperature difference. For this reason, the deterioration by the temperature difference of a battery can be decreased and a lifetime can be lengthened. In a power supply device for a vehicle, it is extremely important to lengthen the battery life. This is because an assembled battery for running a vehicle is required to have a large output and is extremely large and expensive. In the present invention, an insulating cooling spacer for cooling while insulating adjacent rectangular batteries is sandwiched between a plurality of stacked rectangular batteries, and a cooling liquid passage is provided in the insulating cooling spacer. Is connected to the cooling mechanism. The cooling mechanism supplies the coolant to the coolant passage to cool the insulating cooling spacer. The cooled insulating cooling spacer cools the opposing surface of the prismatic battery. The present invention realizes a feature of efficiently cooling each battery with a unique structure in which square batteries are stacked and an insulating cooling spacer sandwiched between them is cooled with a coolant. In particular, since insulating cooling spacers are arranged between the opposing surfaces of adjacent square batteries, a large assembled battery is formed by stacking a large number of batteries, while efficiently dissipating the heat inside the assembled battery, which is the most difficult to cool. Thus, a large number of prismatic batteries can be cooled to a uniform temperature. Also, since the insulating cooling spacer is efficiently cooled with a coolant having a specific heat and heat capacity larger than that of air, and the insulating cooling spacer is sandwiched between adjacent square batteries, the insulating cooling spacer and the square battery Can be placed in contact with a wide area and placed in an ideal thermal coupling state. For this reason, the insulating cooling spacer efficiently cools the inside of the prismatic battery uniformly as compared with a structure in which air is blown into the gap between the prismatic batteries.

さらに、本発明の車両用の電源装置は、組電池を構成する角型電池の熱暴走の誘発を有効に防止して安全性を向上できる特徴も実現する。それは、積層している角型電池の間に、絶縁しながら冷却する絶縁冷却スペーサを挟んで、絶縁冷却スペーサでもって、隣接する角型電池を絶縁、冷却状態で隔離しているからである。この冷却構造は、いずれかの角型電池が熱暴走して高温に加熱されても、絶縁冷却スペーサの冷却液通路に供給される比熱の大きな冷却液が効率よく冷却して、熱暴走の誘発を防止する。とくに、角型電池の隙間には、絶縁冷却スペーサを配設して、角型電池を強制的に冷却することから、空気で冷却するように隙間を設ける必要がない。角型電池の隙間には、絶縁冷却スペーサを隙間なく密着して配置できる。この構造は、熱暴走した角型電池の熱が輻射熱で隣の角型電池を加熱することがない。熱暴走した角型電池は、熱伝導によって隣の角型電池を加熱する。ただ、本発明の電源装置は、角型電池の間には、比熱と熱容量が大きい冷却液を冷却液通路に供給している絶縁冷却スペーサを配置する。この絶縁冷却スペーサは、冷却液通路に供給している冷却液が熱暴走した電池の熱を吸収し、これを外部の冷却機構で効率よく冷却する。このため、電池の熱暴走が隣の電池の熱暴走を誘発することがない。   Furthermore, the power supply device for a vehicle of the present invention also realizes a feature that can effectively prevent the thermal runaway of the rectangular battery constituting the assembled battery and improve safety. This is because an insulating cooling spacer that cools while insulating is sandwiched between the stacked rectangular batteries, and the adjacent rectangular batteries are insulated and isolated in a cooled state by the insulating cooling spacer. In this cooling structure, even if one of the square batteries is thermally runaway and heated to a high temperature, the coolant with a large specific heat supplied to the coolant passage of the insulating cooling spacer is efficiently cooled to induce thermal runaway. To prevent. In particular, an insulating cooling spacer is provided in the gap of the prismatic battery to forcibly cool the prismatic battery, so that it is not necessary to provide a gap to cool with air. Insulating cooling spacers can be arranged in close contact with each other in the gaps of the square batteries. In this structure, the heat of the square battery which has run out of heat does not heat the adjacent square battery with radiant heat. The square battery that has run out of heat heats the adjacent square battery by heat conduction. However, in the power supply device of the present invention, an insulating cooling spacer that supplies a coolant having a large specific heat and a large heat capacity to the coolant passage is disposed between the prismatic batteries. The insulating cooling spacer absorbs the heat of the battery in which the cooling liquid supplied to the cooling liquid passage is thermally runaway, and efficiently cools it with an external cooling mechanism. For this reason, the thermal runaway of the battery does not induce the thermal runaway of the adjacent battery.

本発明の一実施例にかかる車両用の電源装置の概略構成図である。It is a schematic block diagram of the power supply device for vehicles concerning one Example of the present invention. 図1に示す車両用の電源装置の組電池の斜視図である。It is a perspective view of the assembled battery of the power supply device for vehicles shown in FIG. 図2に示す組電池の分解斜視図である。It is a disassembled perspective view of the assembled battery shown in FIG. 角型電池と絶縁冷却スペーサの積層構造を示す一部拡大断面図である。It is a partially expanded sectional view which shows the laminated structure of a square battery and an insulation cooling spacer. 絶縁冷却スペーサの斜視図である。It is a perspective view of an insulation cooling spacer. 絶縁冷却スペーサの他の一例を示す拡大断面図である。It is an expanded sectional view showing other examples of an insulation cooling spacer. 絶縁冷却スペーサの他の一例を示す拡大断面図である。It is an expanded sectional view showing other examples of an insulation cooling spacer. 絶縁冷却スペーサの他の一例を示す斜視図である。It is a perspective view which shows another example of an insulation cooling spacer. 図8に示す絶縁冷却スペーサの拡大断面図である。It is an expanded sectional view of the insulation cooling spacer shown in FIG. 本発明の他の実施例にかかる車両用の電源装置の概略構成図である。It is a schematic block diagram of the power supply device for vehicles concerning the other Example of this invention.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は車両用の電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a vehicle power supply device for embodying the technical idea of the present invention, and the present invention does not specify the vehicle power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1の概略図に示す車両用の電源装置は、主として、エンジンとモータの両方で走行するハイブリッドカーや、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただし、ハイブリッドカーや電気自動車以外の車両に使用され、また電動車両以外の大出力が要求される用途にも使用できる。   The power supply device for a vehicle shown in the schematic diagram of FIG. 1 is mainly suitable for the power supply of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor. However, it can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.

図に示す電源装置は、車両を走行させるモータに電力を供給する組電池1と、この組電池1を冷却する冷却機構2とを備える。   The power supply device shown in the figure includes an assembled battery 1 that supplies electric power to a motor that drives a vehicle, and a cooling mechanism 2 that cools the assembled battery 1.

図2と図3は、組電池1を示す。これ等の図の組電池1は、所定の隙間で互いに積層状態に配置している複数の角型電池3と、この角型電池3の隙間に挟まれて隣接する角型電池3を絶縁して冷却する絶縁冷却スペーサ4とを備える。   2 and 3 show the assembled battery 1. The assembled battery 1 in these drawings insulates a plurality of prismatic batteries 3 arranged in a stacked state from each other with a predetermined gap and the adjacent square batteries 3 sandwiched between the gaps of the square batteries 3. And an insulating cooling spacer 4 for cooling.

角型電池3は、リチウムイオン二次電池である。ただし、角型電池は、ニッケル水素電池やニッケルカドミウム電池等の充電できる他の電池、さらには燃料電池とすることもできる。角型電池3は、アルミニウムやアルミニウム合金からなる金属製の外装缶3aを有する。金属製の外装缶3aは、正極又は負極の電極に接続され、あるいは接続されない。正極又は負極に接続される外装缶は、正極又は負極と同じ電位となり、正負の電極に接続されない外装缶は、正負の電極の中間電位となる。金属製の外装缶3aからなる角型電池3を積層して直列に接続している組電池1は、隣接する外装缶3aに電位差ができる。したがって、組電池1は、隣接する角型電池3を絶縁して積層している。図4に示す角型電池3は、表面に絶縁被膜6を設けている。絶縁被膜6は、プラスチック製の収縮チューブや絶縁塗料で設けられる。本発明の電源装置は、隣接する角型電池3を絶縁冷却スペーサ4で絶縁して積層するので、外装缶3aの表面をかならずしも絶縁する必要はない。ただ、外装缶3aの表面を絶縁している角型電池3が、間に挟まれる絶縁冷却スペーサ4で絶縁される構造は、隣接する角型電池3を理想的な状態で絶縁できる。   The square battery 3 is a lithium ion secondary battery. However, the prismatic battery may be a rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery, or a fuel cell. The square battery 3 has a metal outer can 3a made of aluminum or an aluminum alloy. The metal outer can 3a is connected to the positive electrode or the negative electrode or not connected thereto. The outer can connected to the positive electrode or the negative electrode has the same potential as the positive electrode or the negative electrode, and the outer can that is not connected to the positive or negative electrode has an intermediate potential between the positive and negative electrodes. The assembled battery 1 in which the prismatic batteries 3 made of the metal outer can 3a are stacked and connected in series has a potential difference between the adjacent outer cans 3a. Therefore, the assembled battery 1 insulates and laminates the adjacent rectangular batteries 3. The square battery 3 shown in FIG. 4 has an insulating coating 6 on the surface. The insulating coating 6 is provided by a plastic shrink tube or insulating paint. In the power supply device of the present invention, the adjacent square batteries 3 are insulated by the insulating cooling spacers 4 and stacked, so it is not always necessary to insulate the surface of the outer can 3a. However, the structure in which the square battery 3 that insulates the surface of the outer can 3a is insulated by the insulating cooling spacer 4 sandwiched therebetween can insulate the adjacent square batteries 3 in an ideal state.

図の角型電池3は、幅よりも薄い薄型の角型電池3である。薄型の角型電池3は、内容積に対して対向面3Aの面積を大きくして、絶縁冷却スペーサ4との接触面積を大きくで
きる。このため、絶縁冷却スペーサ4で効率よく冷却できる。さらに、図の角型電池3は、上端面に正負の電極端子5を突出させている。隣接して配列される角型電池3は、図示しないが、正負の電極端子5に、金属板からなるバスバーを接続して、互いに直列に接続される。
The illustrated square battery 3 is a thin square battery 3 that is thinner than the width. The thin prismatic battery 3 can increase the contact area with the insulating cooling spacer 4 by increasing the area of the facing surface 3A with respect to the internal volume. For this reason, it can cool efficiently with the insulating cooling spacer 4. Further, in the illustrated rectangular battery 3, positive and negative electrode terminals 5 are projected from the upper end surface. The prismatic batteries 3 arranged adjacent to each other are connected in series with each other by connecting a bus bar made of a metal plate to the positive and negative electrode terminals 5 although not shown.

組電池1は、複数の角型電池3を間に隙間ができるように積層して電池ブロック7としている。この電池ブロック7は、角型電池3の間の隙間に絶縁冷却スペーサ4を挟んでいる。絶縁冷却スペーサ4は、隣接する角型電池3の対向面3Aに挟着されて、隣接する角型電池3を絶縁状態に分離しながら冷却する。角型電池3を積層している電池ブロック7は、両端の端面プレート8に挟着して固定される。一対の端面プレート8は、固定バー9に連結されて電池ブロック7を固定している。   The assembled battery 1 is formed as a battery block 7 by stacking a plurality of prismatic batteries 3 so that there is a gap between them. In this battery block 7, an insulating cooling spacer 4 is sandwiched between gaps between the square batteries 3. The insulating cooling spacer 4 is sandwiched between the opposing surfaces 3A of the adjacent rectangular batteries 3 and cools the adjacent rectangular batteries 3 while being separated into an insulating state. The battery block 7 in which the square batteries 3 are stacked is fixed by being sandwiched between the end face plates 8 at both ends. The pair of end face plates 8 are connected to the fixing bar 9 to fix the battery block 7.

絶縁冷却スペーサ4は、水密構造の冷却液通路10を備えている。この冷却液通路10は冷却機構2に連結される。冷却機構2は、絶縁冷却スペーサ4の冷却液通路10に冷却液を循環して、絶縁冷却スペーサ4を冷却する。角型電池3の間に挟まれて冷却液で冷却される絶縁冷却スペーサ4は、角型電池3の対向面3Aを冷却する。   The insulating cooling spacer 4 includes a coolant passage 10 having a watertight structure. The coolant passage 10 is connected to the cooling mechanism 2. The cooling mechanism 2 cools the insulating cooling spacer 4 by circulating the cooling liquid through the cooling fluid passage 10 of the insulating cooling spacer 4. The insulating cooling spacer 4 sandwiched between the prismatic batteries 3 and cooled by the coolant cools the facing surface 3A of the prismatic battery 3.

絶縁冷却スペーサ4を図5に示している。この絶縁冷却スペーサ4は、対向する角型電池3の隙間に挟まれる絶縁スペーサ11と、この絶縁スペーサ11に設けた収納部12に配置している冷却パイプ13とからなり、冷却パイプ13で絶縁スペーサ11に冷却液通路10を設けている。絶縁スペーサ11は、絶縁特性と熱伝導特性に優れた材質、たとえばグラファイト系のプラスチック成形品である。プラスチック製の絶縁スペーサ11は、冷却パイプ13をインサート成形して冷却液通路10を設けることができる。ただ、絶縁スペーサ11を冷却パイプ13の収納部12のある形状に成形して、この収納部12に冷却パイプ13を入れて製造することもできる。   The insulating cooling spacer 4 is shown in FIG. The insulating cooling spacer 4 includes an insulating spacer 11 sandwiched between the gaps of the opposing prismatic batteries 3 and a cooling pipe 13 disposed in a storage portion 12 provided in the insulating spacer 11. A coolant passage 10 is provided in the spacer 11. The insulating spacer 11 is a material excellent in insulating characteristics and heat conduction characteristics, for example, a graphite-based plastic molded product. The insulating spacer 11 made of plastic can be provided with the coolant passage 10 by insert-molding the cooling pipe 13. However, it is also possible to manufacture the insulating spacer 11 by forming the insulating spacer 11 into a shape having the accommodating portion 12 of the cooling pipe 13 and inserting the cooling pipe 13 into the accommodating portion 12.

冷却パイプ13は、薄く押し潰された形状の金属パイプである。金属パイプは熱伝導性に優れることから、冷却液で角型電池3を効率よく冷却する。とくに、銅やアルミニウム等の金属は、優れた熱伝導特性があって、冷却パイプ13で角型電池3を効率よく冷却できる。冷却パイプ13の冷却液通路10が角型電池3を冷却する部分の拡大断面図を図4に示す。この図の絶縁冷却スペーサ4は、冷却パイプ13の表面を絶縁層14で被覆している。この絶縁冷却スペーサ4は、絶縁層14で金属パイプの表面を絶縁するので、金属パイプを角型電池3の外装缶3aから絶縁する。   The cooling pipe 13 is a thinly crushed metal pipe. Since the metal pipe is excellent in thermal conductivity, the prismatic battery 3 is efficiently cooled with the coolant. In particular, metals such as copper and aluminum have excellent heat conduction characteristics, and the prismatic battery 3 can be efficiently cooled by the cooling pipe 13. FIG. 4 shows an enlarged cross-sectional view of a portion where the coolant passage 10 of the cooling pipe 13 cools the square battery 3. The insulating cooling spacer 4 in this figure covers the surface of the cooling pipe 13 with an insulating layer 14. Since the insulating cooling spacer 4 insulates the surface of the metal pipe with the insulating layer 14, the metal pipe is insulated from the outer can 3 a of the rectangular battery 3.

さらに、図4に示す絶縁冷却スペーサ4は、冷却パイプ13を絶縁スペーサ11よりも厚くしている。この絶縁冷却スペーサ4は、冷却パイプ13を絶縁スペーサ11の表面から突出させて、角型電池3の対向面3Aに密着できる。この構造は、冷却パイプ13の表面を理想的な熱結合状態で角型電池3の表面に密着できる。このため、冷却パイプ13が効率よく角型電池3の対向面3Aを冷却する。   Further, the insulating cooling spacer 4 shown in FIG. 4 has the cooling pipe 13 thicker than the insulating spacer 11. The insulating cooling spacer 4 can be brought into close contact with the facing surface 3 </ b> A of the prismatic battery 3 by causing the cooling pipe 13 to protrude from the surface of the insulating spacer 11. With this structure, the surface of the cooling pipe 13 can be in close contact with the surface of the prismatic battery 3 in an ideal thermal coupling state. For this reason, the cooling pipe 13 efficiently cools the facing surface 3 </ b> A of the prismatic battery 3.

図6の絶縁冷却スペーサ4は、冷却パイプ13を絶縁スペーサ11と同一平面とする。この絶縁冷却スペーサ4は、冷却パイプ13と絶縁スペーサ11の両方を角型電池3の対向する表面に密着できる。この構造は、角型電池3の対向面3Aを広い面積で絶縁冷却スペーサ4に密着できる。このため、電池ブロック7を端面プレート8で強く押圧して、しっかりと固定できる。   In the insulating cooling spacer 4 in FIG. 6, the cooling pipe 13 is flush with the insulating spacer 11. The insulating cooling spacer 4 can attach both the cooling pipe 13 and the insulating spacer 11 to the opposing surface of the prismatic battery 3. With this structure, the facing surface 3A of the square battery 3 can be in close contact with the insulating cooling spacer 4 over a wide area. For this reason, the battery block 7 can be firmly fixed by pressing strongly with the end face plate 8.

図7の絶縁冷却スペーサ4は、冷却パイプ13を絶縁スペーサ11よりも薄くしている。この絶縁冷却スペーサ4は、絶縁スペーサ11を冷却パイプ13から突出させて角型電池3の対向面3Aに密着する。この構造は、外装缶3aの内圧が高くなって膨れても、これが強く冷却パイプ13に押圧されない。このため、冷却パイプ13に金属パイプを使用
しながら、金属パイプが外装缶3aに電気的に接触されるのを防止して安全性を向上できる。
In the insulating cooling spacer 4 of FIG. 7, the cooling pipe 13 is made thinner than the insulating spacer 11. The insulating cooling spacer 4 is in close contact with the facing surface 3 </ b> A of the prismatic battery 3 with the insulating spacer 11 protruding from the cooling pipe 13. In this structure, even if the internal pressure of the outer can 3a increases and it swells, it is not strongly pressed by the cooling pipe 13. For this reason, while using a metal pipe for the cooling pipe 13, it is possible to prevent the metal pipe from being in electrical contact with the outer can 3a and improve safety.

図8と図9の絶縁冷却スペーサ4は、中間に金属板15を内蔵している。この金属板15に冷却パイプ13が接触している。金属板15と冷却パイプ13は表面を絶縁している。この絶縁冷却スペーサ4は、冷却パイプ13で金属板15を冷却する。冷却された金属板15は、冷却パイプ13と一緒に、すなわち金属板15と冷却パイプ13の両方で角型電池3の対向面3Aを冷却する。   8 and 9 incorporates a metal plate 15 in the middle. The cooling pipe 13 is in contact with the metal plate 15. The metal plate 15 and the cooling pipe 13 are insulated from each other. The insulating cooling spacer 4 cools the metal plate 15 with the cooling pipe 13. The cooled metal plate 15 cools the facing surface 3 </ b> A of the prismatic battery 3 together with the cooling pipe 13, that is, both the metal plate 15 and the cooling pipe 13.

これ等の図に示す絶縁冷却スペーサ4は、積層している2枚の金属板15をシーム溶接して、内部に水密構造の冷却液通路10を設けている冷却プレート16とする。この冷却プレート16は、平らな金属板15を平行にシーム溶接し、シーム溶接した間に加圧空気を圧入し、空気の圧力で金属板15を膨れるように変形して冷却液通路10を設ける。冷却液通路10を設けた冷却プレート16は、表面を絶縁層14で絶縁する。   Insulating cooling spacers 4 shown in these drawings are formed as a cooling plate 16 in which two stacked metal plates 15 are seam welded to provide a coolant channel 10 having a watertight structure therein. The cooling plate 16 is formed by parallel seam welding of a flat metal plate 15 and pressurizing compressed air during the seam welding and deforming the metal plate 15 to swell by the pressure of the air to provide the coolant passage 10. . The surface of the cooling plate 16 provided with the coolant passage 10 is insulated by the insulating layer 14.

図1の装置の冷却機構2は、循環ポンプ21と放熱器22と、循環ポンプ21と放熱器22のファン23の運転を制御する制御回路20とを備える。循環ポンプ21は、冷却液を、絶縁冷却スペーサ4の冷却液通路10と放熱器22に循環させる。制御回路20は、角型電池3の温度を温度センサ24で検出して、電池温度が設定温度よりも高くなると循環ポンプ21を運転する。また、制御回路20は、冷却液の温度を温度センサ25で検出し、冷却液の温度が設定値よりも高くなると放熱器22のファン23を運転する。さらに、制御回路20は、複数の角型電池3の温度を検出して、電池の温度差が設定された温度差よりも大きくなると、循環ポンプ21を運転して電池の温度差を少なくすることもできる。循環ポンプ21で冷却液通路10に循環される冷却液は、絶縁油又は不凍液である。絶縁油には、シリコンオイル等が使用できる。   The cooling mechanism 2 of the apparatus in FIG. 1 includes a circulation pump 21 and a radiator 22 and a control circuit 20 that controls the operation of the circulation pump 21 and the fan 23 of the radiator 22. The circulation pump 21 circulates the coolant through the coolant passage 10 of the insulating cooling spacer 4 and the radiator 22. The control circuit 20 detects the temperature of the square battery 3 with the temperature sensor 24 and operates the circulation pump 21 when the battery temperature becomes higher than the set temperature. In addition, the control circuit 20 detects the temperature of the coolant with the temperature sensor 25, and operates the fan 23 of the radiator 22 when the temperature of the coolant becomes higher than a set value. Further, the control circuit 20 detects the temperatures of the plurality of prismatic batteries 3 and, when the battery temperature difference becomes larger than the set temperature difference, operates the circulation pump 21 to reduce the battery temperature difference. You can also. The coolant circulated to the coolant passage 10 by the circulation pump 21 is insulating oil or antifreeze. Silicon oil or the like can be used as the insulating oil.

冷却液には冷媒も使用できる。冷却液を冷媒とする冷却機構2を図10に示す。この冷却機構2は、気化した冷媒を加圧するコンプレッサ26と、このコンプレッサ26で加圧された冷媒を冷却して液化させる凝縮器27と、この凝縮器27で液化された冷媒を絶縁冷却スペーサ4の冷却液通路10に供給する膨張装置28とを備える。膨張装置28は、例えば、膨張弁もしくはキャピラリーチューブ等である。この冷却機構2は、膨張装置28から供給される液化された冷媒を冷却液通路10の内部で気化して、冷媒の気化熱で絶縁冷却スペーサ4を冷却する。この冷却機構2は、絶縁冷却スペーサ4を低温に冷却して角型電池3を極めて効率よく冷却できる。コンプレッサ26は、モータで運転され、あるいはハイブリッドカーにおいてはエンジンやモータで運転される。エンジンで運転されるコンプレッサは、電磁クラッチを介してエンジンに連結される。この冷却機構2は、コンプレッサ26の運転が制御回路20で制御される。この冷却機構2は、冷媒をコンプレッサ26→凝縮器27→膨張装置28→絶縁冷却スペーサ4の冷却液通路10→コンプレッサ26に循環して、絶縁冷却スペーサ4を冷却する。コンプレッサ26の運転は、電池の温度を検出する制御回路20で制御され、電池の温度が設定温度よりも高くなるとコンプレッサ26を運転して電池を冷却する。   A coolant can also be used as the coolant. FIG. 10 shows a cooling mechanism 2 that uses a coolant as a refrigerant. The cooling mechanism 2 includes a compressor 26 that pressurizes the vaporized refrigerant, a condenser 27 that cools and liquefies the refrigerant pressurized by the compressor 26, and an insulating cooling spacer 4 that cools the refrigerant liquefied by the condenser 27. And an expansion device 28 for supplying the coolant to the coolant passage 10. The expansion device 28 is, for example, an expansion valve or a capillary tube. The cooling mechanism 2 vaporizes the liquefied refrigerant supplied from the expansion device 28 inside the cooling liquid passage 10 and cools the insulating cooling spacer 4 with the heat of vaporization of the refrigerant. The cooling mechanism 2 can cool the prismatic battery 3 very efficiently by cooling the insulating cooling spacer 4 to a low temperature. The compressor 26 is operated by a motor, or is operated by an engine or a motor in a hybrid car. A compressor operated by the engine is connected to the engine via an electromagnetic clutch. In the cooling mechanism 2, the operation of the compressor 26 is controlled by the control circuit 20. The cooling mechanism 2 cools the insulating cooling spacer 4 by circulating the refrigerant through the compressor 26 → the condenser 27 → the expansion device 28 → the cooling fluid passage 10 of the insulating cooling spacer 4 → the compressor 26. The operation of the compressor 26 is controlled by the control circuit 20 that detects the temperature of the battery. When the battery temperature becomes higher than the set temperature, the compressor 26 is operated to cool the battery.

制御回路20は、電池の温度のみでなく、電池の発熱量を検出して、放熱器22のファン23やコンプレッサ26の運転を制御することもできる。電池の発熱量は電池の充電電流や放熱電流から検出する。電池の発熱量が設定値よりも小さい状態では、ファン23やコンプレッサ26の運転を停止し、設定値よりも大きくなるとファン23やコンプレッサ26を運転して電池を冷却する。   The control circuit 20 can detect not only the temperature of the battery but also the amount of heat generated by the battery to control the operation of the fan 23 and the compressor 26 of the radiator 22. The amount of heat generated by the battery is detected from the charging current and heat dissipation current of the battery. When the amount of heat generated by the battery is smaller than the set value, the operation of the fan 23 and the compressor 26 is stopped, and when the value exceeds the set value, the fan 23 and the compressor 26 are operated to cool the battery.

また、制御回路20は、電池の温度と発熱量の両方を検出し、ファン23とコンプレッサ26の運転を制御することもできる。この制御回路20は、電池の温度が設定温度より
も高くなり、あるいは発熱量が設定値よりも大きい状態において、ファン23やコンプレッサ26を運転して電池を冷却する。この制御回路20は、電池の温度と発熱量の両方でファン23とコンプレッサ26の運転を制御するので、電池の温度上昇を制限しながら、電池を効率よく冷却できる。
The control circuit 20 can also detect both the temperature of the battery and the amount of heat generated, and control the operation of the fan 23 and the compressor 26. The control circuit 20 cools the battery by operating the fan 23 and the compressor 26 in a state where the battery temperature is higher than the set temperature or the calorific value is larger than the set value. Since the control circuit 20 controls the operation of the fan 23 and the compressor 26 based on both the battery temperature and the calorific value, the battery can be efficiently cooled while limiting the temperature rise of the battery.

1…組電池
2…冷却機構
3…角型電池 3A…対向面
3a…外装缶
4…絶縁冷却スペーサ
5…電極端子
6…絶縁被膜
7…電池ブロック
8…端面プレート
9…固定バー
10…冷却液通路
11…絶縁スペーサ
12…収納部
13…冷却パイプ
14…絶縁層
15…金属板
16…冷却プレート
20…制御回路
21…循環ポンプ
22…放熱器
23…ファン
24…温度センサ
25…温度センサ
26…コンプレッサ
27…凝縮器
28…膨張装置
DESCRIPTION OF SYMBOLS 1 ... Battery assembly 2 ... Cooling mechanism 3 ... Square battery 3A ... Opposite surface
3a ... outer can 4 ... insulating cooling spacer 5 ... electrode terminal 6 ... insulating coating 7 ... battery block 8 ... end face plate 9 ... fixing bar 10 ... cooling fluid passage 11 ... insulating spacer 12 ... storage part 13 ... cooling pipe 14 ... insulating layer DESCRIPTION OF SYMBOLS 15 ... Metal plate 16 ... Cooling plate 20 ... Control circuit 21 ... Circulation pump 22 ... Radiator 23 ... Fan 24 ... Temperature sensor 25 ... Temperature sensor 26 ... Compressor 27 ... Condenser 28 ... Expansion device

Claims (3)

車両を走行させるモータに電力を供給する電池と、この電池を冷却する冷却機構とを備える車両用の電源装置であって、
複数の電池を互いに積層状態に配置されてなる電池ブロックと、隣接する電池の対向面に挟まれて接触する電池を絶縁して冷却する絶縁冷却スペーサとを備え、
前記絶縁冷却スペーサは水密構造の冷却液通路を備えており、この冷却液通路は前記冷却機構に連結されて、冷却機構から供給される冷却液で絶縁冷却スペーサが冷却されており、
前記絶縁冷却スペーサの表面には、前記冷却液通路に沿って凸部が形成されており、
前記電池ブロックの両端に端面プレートを配置し、この一対の端面プレートは、固定バーに連結されて電池ブロックを挟着してなる車両用の電源装置。
A power supply device for a vehicle comprising a battery that supplies power to a motor that drives the vehicle, and a cooling mechanism that cools the battery,
A battery block in which a plurality of batteries are arranged in a stacked state, and an insulating cooling spacer that insulates and cools a battery that is sandwiched between opposing surfaces of adjacent batteries,
The insulating cooling spacer includes a water-tight cooling fluid passage, and the cooling fluid passage is connected to the cooling mechanism, and the insulating cooling spacer is cooled with a coolant supplied from the cooling mechanism,
On the surface of the insulating cooling spacer, a convex portion is formed along the coolant passage,
An end face plate is arranged at both ends of the battery block, and the pair of end face plates are connected to a fixing bar and sandwich the battery block.
前記冷却液通路の一部に、湾曲した通路が形成されている請求項1に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1, wherein a curved passage is formed in a part of the coolant passage. 前記端面プレートに、複数の凹部が形成されている請求項1に記載される車両用の電源装置。  The vehicle power supply device according to claim 1, wherein a plurality of recesses are formed in the end face plate.
JP2012158336A 2007-06-28 2012-07-17 Power supply for vehicle Active JP5585621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158336A JP5585621B2 (en) 2007-06-28 2012-07-17 Power supply for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007171066A JP5142605B2 (en) 2007-06-28 2007-06-28 Power supply for vehicle
JP2012158336A JP5585621B2 (en) 2007-06-28 2012-07-17 Power supply for vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007171066A Division JP5142605B2 (en) 2007-06-28 2007-06-28 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2012195313A JP2012195313A (en) 2012-10-11
JP5585621B2 true JP5585621B2 (en) 2014-09-10

Family

ID=47086973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158336A Active JP5585621B2 (en) 2007-06-28 2012-07-17 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP5585621B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170697A (en) * 2013-03-05 2014-09-18 Honda Motor Co Ltd Battery pack
DE102014219812A1 (en) * 2014-09-30 2016-03-31 Robert Bosch Gmbh Cooling plate for an electrical energy storage
JP2016192335A (en) * 2015-03-31 2016-11-10 日立オートモティブシステムズ株式会社 Battery pack
CN105932355A (en) * 2016-05-10 2016-09-07 济南陆枋志合信息技术有限公司 New energy bus
CN105932368A (en) * 2016-05-10 2016-09-07 济南陆枋志合信息技术有限公司 Lithium battery pack
CN105870509A (en) * 2016-05-10 2016-08-17 济南陆枋志合信息技术有限公司 Lithium battery pack assembly
CN105946537A (en) * 2016-05-10 2016-09-21 济南陆枋志合信息技术有限公司 New energy logistics car
GB201705513D0 (en) * 2017-04-05 2017-05-17 Siemens Ag Cooling system and method
JP6969913B2 (en) * 2017-06-26 2021-11-24 株式会社東芝 Battery device
DE102019113603A1 (en) * 2019-05-22 2020-11-26 Lisa Dräxlmaier GmbH COOLING PLATE FOR A BATTERY FOR A MOTOR VEHICLE AND BATTERY FOR A MOTOR VEHICLE WITH A COOLING PLATE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111244A (en) * 1994-10-12 1996-04-30 Nissan Motor Co Ltd Layer-built battery device
JP3271495B2 (en) * 1995-10-24 2002-04-02 松下電器産業株式会社 Battery pack
JPH09199186A (en) * 1996-01-22 1997-07-31 Toyota Autom Loom Works Ltd Storage battery cooling structure, storage battery module using storage battery cooling structure and storage battery cooling method
JP4164212B2 (en) * 1999-11-18 2008-10-15 株式会社日立製作所 Battery module and power supply device
JP4961627B2 (en) * 2000-07-24 2012-06-27 トヨタ自動車株式会社 Battery holder and battery pack
JP3850688B2 (en) * 2001-07-19 2006-11-29 松下電器産業株式会社 Cooling device for prismatic battery and battery pack
JP2004006089A (en) * 2002-05-31 2004-01-08 Toyota Motor Corp Battery system
JP2006185788A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Battery cooling device

Also Published As

Publication number Publication date
JP2012195313A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5142605B2 (en) Power supply for vehicle
JP5137480B2 (en) Power supply for vehicle
JP5585621B2 (en) Power supply for vehicle
JP7348180B2 (en) Battery system and electric vehicle and power storage device equipped with the battery system
JP5078463B2 (en) Power supply for vehicle
JP5431486B2 (en) Battery module assembly with improved cooling efficiency
JP5595871B2 (en) Power supply
KR101431717B1 (en) Bus Bar with Novel Structure
JP5540114B2 (en) Medium or large battery pack with improved cooling efficiency
EP2853436B1 (en) Battery module including indirect air cooling structure
EP2605328B1 (en) Battery pack of novel structure
KR101526667B1 (en) Device for cooling and heating battery module of vehicle
KR101675013B1 (en) Battery pack for vehicle with improved cooling efficiency
EP3745525B1 (en) Power supply device, vehicle provided with power supply device, and power storage device
US20170194681A1 (en) Battery module having water-cooled type cooling structure
WO2011092773A1 (en) Cell module
US20150072191A1 (en) Battery cell of improved cooling efficiency
KR101767633B1 (en) Battery Module
KR20170070795A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
WO2014010438A1 (en) Battery system, and vehicle and power storage device equipped with battery system
KR20190012998A (en) Cartridge for battery cell and battery module including the same
JP2012248339A (en) Power unit for electric power and vehicle with power unit
JP2010277863A (en) Vehicular battery system and vehicle loading the same
JP2009037934A (en) Power supply device for vehicle
KR101515114B1 (en) Battery Pack Using Perfluorinated Solution as Coolant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151