JP2019156938A - Thermoplastic resin composition and method for producing same - Google Patents

Thermoplastic resin composition and method for producing same Download PDF

Info

Publication number
JP2019156938A
JP2019156938A JP2018043962A JP2018043962A JP2019156938A JP 2019156938 A JP2019156938 A JP 2019156938A JP 2018043962 A JP2018043962 A JP 2018043962A JP 2018043962 A JP2018043962 A JP 2018043962A JP 2019156938 A JP2019156938 A JP 2019156938A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
recovered material
less
resin composition
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018043962A
Other languages
Japanese (ja)
Other versions
JP7098970B2 (en
Inventor
靖治 齊田
Yasuharu Saita
靖治 齊田
啓太 宮崎
Keita Miyazaki
啓太 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018043962A priority Critical patent/JP7098970B2/en
Publication of JP2019156938A publication Critical patent/JP2019156938A/en
Application granted granted Critical
Publication of JP7098970B2 publication Critical patent/JP7098970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a thermoplastic resin composition in which the variation in physical properties are sufficiently reduced.SOLUTION: The thermoplastic resin composition has the electric conductivity of the water in which the recovered material was immersed therein, of 5 μS/cm or more and 50 μS/cm. The pH of the water in which the recovered material was immersed therein, is 5.0 or more and 9.0 or less. The total amount of foreign matter adhering to the recovered material is 20 ppm or less with respect to the recovered material.SELECTED DRAWING: None

Description

本発明は、熱可塑性樹脂組成物および熱可塑性樹脂組成物の製造方法に関する。   The present invention relates to a thermoplastic resin composition and a method for producing a thermoplastic resin composition.

熱可塑性樹脂は、添加物の添加によって種々の特性を付与でき、様々な分野において有用な材料として利用されている。一方、近年では、環境保全の観点から、廃棄物の減量が求められており、そのための一手段として、使用済みの熱可塑性樹脂製の製品(以下、「廃材」とも言う)を回収し、それを熱可塑性樹脂製の新たな製品の原料として再利用することが知られている。   Thermoplastic resins can be imparted with various properties by the addition of additives, and are used as useful materials in various fields. On the other hand, in recent years, waste reduction has been demanded from the viewpoint of environmental conservation, and as one means for that purpose, used thermoplastic resin products (hereinafter also referred to as “waste materials”) are collected and used. It is known to reuse as a raw material for new products made of thermoplastic resin.

廃材は、一般に、熱可塑性樹脂の種類毎に回収される。回収された個々の廃材は、元の用途に応じた特有の物性を有している。このため、廃材は、一般に、樹脂の種類は同じだがそれぞれ異なる物性を有する。よって、廃材を熱可塑性樹脂製の新たな製品の原料として再利用する場合には、廃材による物性のばらつきの影響を抑制する必要がある。   Waste materials are generally recovered for each type of thermoplastic resin. Each recovered waste material has specific physical properties according to the original application. For this reason, waste materials generally have the same physical properties but different types of resins. Therefore, when the waste material is reused as a raw material for a new product made of a thermoplastic resin, it is necessary to suppress the influence of variations in physical properties due to the waste material.

廃材における物性のばらつきを抑制する技術として、廃材に未使用の熱可塑性樹脂(バージン材)を混合する技術が知られている(例えば、特許文献1参照)。特許文献1に記載の技術では、廃材と、未使用の熱可塑性樹脂とを混合することで、廃材における物性のばらつきを抑制して、所望の物性を有する熱可塑性樹脂の原料を得る。   As a technique for suppressing variation in physical properties of the waste material, a technique of mixing an unused thermoplastic resin (virgin material) with the waste material is known (see, for example, Patent Document 1). In the technique described in Patent Document 1, a raw material of a thermoplastic resin having desired physical properties is obtained by mixing a waste material and an unused thermoplastic resin to suppress variation in physical properties of the waste material.

また、廃材をアルカリ洗浄して、熱可塑性樹脂製の新たな製品の原料として再利用する技術も知られている(例えば、特許文献2参照)。特許文献2に記載の技術では、廃材をアルカリ洗浄することで、廃材の表面に付着した異物を除去して、廃材における物性のばらつきを抑制して、所望の物性を有する熱可塑性樹脂の原料を得る。   In addition, a technique in which waste materials are washed with alkali and reused as a raw material for new products made of thermoplastic resin is also known (see, for example, Patent Document 2). In the technique described in Patent Document 2, the waste material is washed with an alkali to remove foreign substances adhering to the surface of the waste material, thereby suppressing variations in physical properties of the waste material, and using a thermoplastic resin material having desired physical properties. obtain.

特開2006−335890号公報JP 2006-335890 A 特開2001−287225号公報JP 2001-287225 A

しかしながら、特許文献1に記載の技術では、未使用の熱可塑性樹脂を使用するため、廃材を再利用するという効果が薄れてしまう。また、特許文献2に記載の技術では、アルカリ洗浄するため、洗浄剤が廃材の表面に残留してしまうことがある。この場合、廃材の表面に付着した洗浄剤が熱可塑性樹脂の物性を低下させる原因となり得る。このように、廃材による物性のばらつきの影響を抑制する技術には改善の余地がある。   However, in the technique described in Patent Document 1, since an unused thermoplastic resin is used, the effect of reusing waste materials is diminished. Further, in the technique described in Patent Document 2, since the alkali cleaning is performed, the cleaning agent may remain on the surface of the waste material. In this case, the cleaning agent adhering to the surface of the waste material can cause a decrease in the physical properties of the thermoplastic resin. Thus, there is room for improvement in the technology that suppresses the influence of variations in physical properties due to waste materials.

本発明は、物性のばらつきを有する熱可塑性樹脂製の原料を用いて、原料の物性のばらつきによる製品の物性のばらつきを十分に低減させた熱可塑性樹脂組成物およびその製造する方法を提供することを課題とする。   The present invention provides a thermoplastic resin composition in which variations in physical properties of products due to variations in physical properties of raw materials are sufficiently reduced using a thermoplastic resin raw material having variations in physical properties, and a method for producing the same. Is an issue.

本発明は、上記の課題を解決するための一態様として、熱可塑性樹脂を含む回収材料を溶融混練した熱可塑性樹脂組成物であって、前記回収材料10gを水100gに浸漬させた後の前記水の電気伝導度は、5μS/cm以上50μS/cm以下であり、前記回収材料10gを水100gに浸漬させた後の前記水のpHは、5.0以上9.0以下である、熱可塑性樹脂組成物。   The present invention is a thermoplastic resin composition in which a recovered material containing a thermoplastic resin is melt-kneaded as one aspect for solving the above-described problems, and 10 g of the recovered material is immersed in 100 g of water. The electrical conductivity of water is 5 μS / cm or more and 50 μS / cm or less, and the pH of the water after 10 g of the recovered material is immersed in 100 g of water is 5.0 or more and 9.0 or less. Resin composition.

本発明は、上記の課題を解決するための一態様として、熱可塑性樹脂を含む回収材料を溶融混練して熱可塑性樹脂組成物を得る製造方法であって、前記回収材料10gを水100gに浸漬させた後の前記水の電気伝導度を測定する工程と、前記回収材料10gを水100gに浸漬させた後の前記水のpHを測定する工程と、前記回収材料を溶融混練する工程と、を含み、前記電気伝導度は、5μS/cm以上50μS/cm以下であり、前記pHは、5.0以上9.0以下である。   The present invention is a production method for obtaining a thermoplastic resin composition by melting and kneading a recovered material containing a thermoplastic resin as one aspect for solving the above-mentioned problems, wherein 10 g of the recovered material is immersed in 100 g of water. A step of measuring the electrical conductivity of the water after being made, a step of measuring the pH of the water after immersing 10 g of the recovered material in 100 g of water, and a step of melt-kneading the recovered material. The electrical conductivity is 5 μS / cm or more and 50 μS / cm or less, and the pH is 5.0 or more and 9.0 or less.

本発明によれば、物性が安定した熱可塑性樹脂組成物が得られる。   According to the present invention, a thermoplastic resin composition having stable physical properties can be obtained.

以下、本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

[熱可塑性樹脂組成物]
本実施の一形態に係る熱可塑性樹脂組成物は、熱可塑性樹脂を含む回収材料を溶融混練することで得られる。
[Thermoplastic resin composition]
The thermoplastic resin composition according to one embodiment of the present invention can be obtained by melt-kneading a recovered material containing a thermoplastic resin.

回収材料は、熱可塑性樹脂を含む。熱可塑性樹脂の例には、ポリカーボネート(PC)、ポリエチレンテレフタラート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)およびポリブチレンテレフタラート(PBT)が含まれる。回収材料に含まれる熱可塑性樹脂は、1種類でもよいし、2種類以上でもよい。   The recovered material includes a thermoplastic resin. Examples of thermoplastic resins include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS resin) and polybutylene. Terephthalate (PBT) is included. The thermoplastic resin contained in the recovered material may be one type or two or more types.

熱可塑性樹脂は、市場から回収された使用済みの熱可塑性樹脂製品またはその破砕物である廃材や、市場に出回る前に回収された未使用の熱可塑性樹脂製品またはその破砕物である未使用品を含む。廃材および未使用品は、熱可塑性樹脂として用いられる場合には、一般に破砕物として樹脂の種類に応じて分類され、または分類品の混合品として用いられる。   Thermoplastic resins are used thermoplastic products that have been collected from the market or waste materials that are crushed, and unused thermoplastic products that have been collected before they are marketed or unused that are crushed. including. When waste materials and unused products are used as thermoplastic resins, they are generally classified as crushed materials according to the type of resin, or used as a mixture of classified products.

回収材料は、熱可塑性樹脂のみから構成されていてもよいし、他の添加剤をさらに含有していてもよい。添加剤の例には、安定化剤、難燃剤、強化材、および流動化剤が含まれる。添加剤は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。   The recovered material may be composed of only a thermoplastic resin, or may further contain other additives. Examples of additives include stabilizers, flame retardants, reinforcing materials, and fluidizing agents. An additive may be used individually by 1 type and may use 2 or more types together.

安定化剤の例には、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系の酸化防止剤や、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤が含まれる。   Examples of the stabilizer include hindered phenol-based, sulfur-containing organic compound-based and phosphorus-containing organic compound-based antioxidants, and benzotriazole-based, benzophenone-based, and salicylate-based ultraviolet absorbers.

難燃剤の例には、リン酸エステルなどのリン系化合物やブロモ化合物が含まれる。   Examples of the flame retardant include phosphorus compounds such as phosphate esters and bromo compounds.

強化材の例には、ブタジエン系ゴム、アクリル系ゴム、シリコーン・アクリル複合ゴムが含まれる。   Examples of the reinforcing material include butadiene rubber, acrylic rubber, and silicone / acrylic composite rubber.

流動化剤の例には、高級脂肪酸の金属塩類、高級脂肪酸アミド類が含まれる。   Examples of the fluidizing agent include higher fatty acid metal salts and higher fatty acid amides.

回収材料に対する熱可塑性樹脂の含有量は、40質量%以上100質量%以下が好ましい。また、回収材料に対する添加剤の含有量は、添加剤を添加することによる効果を発揮する観点から、0.3質量%以上が好ましく、0.5質量%以上がより好ましい。また、添加剤の含有量は、溶融混練する工程に影響をおよぼさない観点から、40質量%以下が好ましく、30質量%以下がより好ましい。   The content of the thermoplastic resin relative to the recovered material is preferably 40% by mass or more and 100% by mass or less. Moreover, 0.3 mass% or more is preferable and 0.5 mass% or more is more preferable from a viewpoint of exhibiting the effect by adding an additive with respect to collection | recovery material. In addition, the content of the additive is preferably 40% by mass or less, more preferably 30% by mass or less, from the viewpoint of not affecting the melt-kneading step.

回収材料を水に浸漬させた後の当該水の電気伝導度は、5μS/cm以上50μS/cm以下であり、5μS/cm以上35μS/cm以下が好ましい。電気伝導度は、水に溶解した主に金属塩の量に応じて変化する。回収材料に含まれる金属塩は、熱可塑性樹脂組成物が劣化する原因となる。当該電気伝導度が5μS/cm未満の場合、回収材料としての物性は良いが、回収材料全体における電気伝導度のばらつきが大きくなりすぎてしまう。一方、電気伝導度が50μS/cm超の場合、回収材料に含まれる金属塩の除去に多くの工程を必要とするため、作業効率が悪くなる。よって、電気伝導度が前述の範囲内にある回収材料を使用することで、得られる熱可塑性樹脂組成物の物性を均一化できる。   The electric conductivity of the water after the collected material is immersed in water is 5 μS / cm or more and 50 μS / cm or less, and preferably 5 μS / cm or more and 35 μS / cm or less. The electrical conductivity varies mainly depending on the amount of metal salt dissolved in water. The metal salt contained in the recovered material causes deterioration of the thermoplastic resin composition. When the electrical conductivity is less than 5 μS / cm, the physical properties of the recovered material are good, but the variation in the electrical conductivity of the entire recovered material becomes too large. On the other hand, when the electrical conductivity exceeds 50 μS / cm, many steps are required to remove the metal salt contained in the recovered material, resulting in poor work efficiency. Therefore, the physical properties of the obtained thermoplastic resin composition can be made uniform by using a recovered material having an electric conductivity within the above-mentioned range.

回収材料に対応した電気伝導度は、例えば、以下の方法で測定できる。10gの回収材料を100gの純水(水)に漬けて3分間撹拌し、熱可塑性樹脂表面に付着している金属塩などを純水に溶解させる。次いで、金属塩などが溶解した純水の電気伝導度を電気伝導度計(AS710;アズワン株式会社)で測定する。   The electrical conductivity corresponding to the recovered material can be measured, for example, by the following method. 10 g of the recovered material is immersed in 100 g of pure water (water) and stirred for 3 minutes to dissolve the metal salt or the like adhering to the surface of the thermoplastic resin in pure water. Next, the electrical conductivity of pure water in which a metal salt or the like is dissolved is measured with an electrical conductivity meter (AS710; ASONE CORPORATION).

回収材料を水に浸漬させた後の当該水のpHは、5.0以上9.0以下であり、5.0以上8.0以下が好ましい。pHは、水中の水素イオン濃度に応じて変化する。回収材料に含まれる酸性物質やアルカリ性物質は、回収材料が劣化する原因となる。pHが5.0未満の場合と、9.0超の場合とは、酸性物質またはアルカリ性物質の除去に多くの工程を必要とするため、作業効率が悪くなる。よって、pHが前述の範囲内にある回収材料を使用することで、得られる熱可塑性樹脂組成物の物性を均一化できる。   The pH of the water after the recovered material is immersed in water is 5.0 or more and 9.0 or less, and preferably 5.0 or more and 8.0 or less. The pH varies depending on the hydrogen ion concentration in the water. Acidic substances and alkaline substances contained in the recovered material cause the recovered material to deteriorate. When the pH is less than 5.0 and when the pH is more than 9.0, many steps are required to remove the acidic substance or alkaline substance, resulting in poor working efficiency. Therefore, the physical properties of the obtained thermoplastic resin composition can be made uniform by using the recovered material having a pH within the above-mentioned range.

回収材料に対応したpHは、例えば、以下の方法で測定できる。10gの回収材料を100gの純水(水)に漬けて3分間撹拌し、熱可塑性樹脂表面に付着している酸性物質またはアルカリ性物質を純水に溶解させる。次いで、酸性物質またはアルカリ性物質が溶解した水のpHをpHメーター(HM−30P;東亜ディーケーケー株式会社)で測定する。   The pH corresponding to the recovered material can be measured, for example, by the following method. 10 g of the recovered material is immersed in 100 g of pure water (water) and stirred for 3 minutes to dissolve the acidic substance or alkaline substance adhering to the surface of the thermoplastic resin in pure water. Next, the pH of water in which the acidic substance or alkaline substance is dissolved is measured with a pH meter (HM-30P; Toa DKK Corporation).

回収材料に付着している異物の総量は、回収材料に対して20ppm以下が好ましく、15ppm以下がより好ましい。前述した電気伝導度およびpHが所定の範囲内であっても、当該異物の総量が20ppm超の場合、成形品におけるクラック点が多くなることがあるため、あまり好ましくない。回収材料に含まれる異物は、得られた熱可塑性樹脂を用いて製造された成形品のクラック点になる。よって、異物の総量を20ppm以下にすることで、成形品におけるクラック点を減少させ、成形品の品質をさらに向上させる事ができる。   The total amount of foreign matter adhering to the collected material is preferably 20 ppm or less, more preferably 15 ppm or less, based on the collected material. Even if the electrical conductivity and pH described above are within a predetermined range, if the total amount of the foreign matter exceeds 20 ppm, the number of crack points in the molded product may increase, which is not preferable. The foreign matter contained in the recovered material becomes a crack point of a molded product manufactured using the obtained thermoplastic resin. Therefore, by setting the total amount of foreign matters to 20 ppm or less, the crack point in the molded product can be reduced, and the quality of the molded product can be further improved.

回収材料に付着した異物の総量は、例えば、以下の方法で測定できる。10gの回収材料を100gの溶媒に溶解させた後に、回収材料が溶解した溶媒を濾過して、濾過した後の残渣を異物として計量する。これにより、回収材料に付着した異物を測定できる。回収材料を溶解させる溶媒は、回収材料に含まれる熱可塑性樹脂を溶解させることができれば特に限定されない。溶媒の例には、テトラヒドロフラン(THF)、ヘキサフルオロイソプロパンオールが含まれる。   The total amount of foreign matter adhering to the recovered material can be measured, for example, by the following method. After 10 g of the recovered material is dissolved in 100 g of solvent, the solvent in which the recovered material is dissolved is filtered, and the filtered residue is weighed as a foreign substance. Thereby, the foreign material adhering to the collection | recovery material can be measured. The solvent for dissolving the recovered material is not particularly limited as long as the thermoplastic resin contained in the recovered material can be dissolved. Examples of the solvent include tetrahydrofuran (THF) and hexafluoroisopropanol.

[熱可塑性樹脂組成物の製造方法]
本発明の一実施の形態に係る熱可塑性樹脂組成物の製造方法は、電気伝導度を測定する工程と、pHを測定する工程と、溶融混練する工程と、を含む。
[Method for producing thermoplastic resin composition]
The method for producing a thermoplastic resin composition according to one embodiment of the present invention includes a step of measuring electrical conductivity, a step of measuring pH, and a step of melt-kneading.

電気伝導度を測定する工程では、前述した方法に基づいて、回収材料を浸漬した水の電気伝導度を測定する。   In the step of measuring the electrical conductivity, the electrical conductivity of the water in which the recovered material is immersed is measured based on the method described above.

pHを測定する工程では、前述した方法に基づいて、回収材料を浸漬した水のpHを測定する。   In the step of measuring the pH, the pH of the water in which the recovered material is immersed is measured based on the method described above.

電気伝導度の測定およびpHの測定は、回収材料を溶融混練する前に行われる。本実施の形態では、回収材料は連続して溶融混練機の投入口に投入されて溶融混練されるため、電気伝導度の測定およびpHの測定は任意の間隔で行えばよい。   The measurement of electric conductivity and the measurement of pH are performed before the recovered material is melt-kneaded. In the present embodiment, since the recovered material is continuously fed into the inlet of the melt kneader and melt kneaded, the electrical conductivity measurement and pH measurement may be performed at arbitrary intervals.

より具体的には、回収材料を投入口まで搬送する途中で、回収材料の一部をサンプリングして、電気伝導度およびpHを測定すればよい。   More specifically, a part of the recovered material may be sampled and the electric conductivity and pH may be measured while the recovered material is conveyed to the input port.

溶融混練する工程では、回収材料を溶融混練機で溶融混練する。回収材料を溶融混練する溶融混練機は、公知(市販)の機械を使用できる。例えば、溶融混練機は、回収材料を投入するための投入口と、投入した回収材料を溶融混練するためのシリンダーと、溶融混練した回収材料を外部に吐出するためのダイとを有する。   In the melt-kneading step, the recovered material is melt-kneaded with a melt-kneader. A known (commercially available) machine can be used as the melt kneader for melting and kneading the recovered material. For example, the melt-kneader has an inlet for charging the recovered material, a cylinder for melt-kneading the input recovered material, and a die for discharging the melt-kneaded recovered material to the outside.

溶融混練する工程では、測定した電気伝導度が5μS/cm以上50μS/cm以下であり、かつpHが5.0以上9.0以下の回収材料を使用する。溶融混練時のシリンダーの温度は、回収材料の種類に応じて適宜選択できる。PCを回収材料に含む場合のシリンダーの温度は、220〜300℃である。PEを回収材料に含む場合のシリンダーの温度は、170〜250℃である。PETを回収材料に含む場合のシリンダーの温度は、220〜300℃である。ABS樹脂を回収材料に含む場合のシリンダーの温度は、170〜250℃である。溶融混練機で溶融混練された回収材料は、熱可塑性樹脂組成物として溶融混練機の外部に吐出される。   In the melt-kneading step, a recovered material having a measured electrical conductivity of 5 μS / cm to 50 μS / cm and a pH of 5.0 to 9.0 is used. The temperature of the cylinder at the time of melt kneading can be appropriately selected according to the type of the recovered material. The temperature of the cylinder when PC is included in the recovered material is 220 to 300 ° C. The temperature of the cylinder when PE is included in the recovered material is 170 to 250 ° C. The temperature of the cylinder when PET is included in the recovered material is 220 to 300 ° C. The temperature of the cylinder when ABS resin is included in the recovered material is 170 to 250 ° C. The recovered material melt-kneaded by the melt-kneader is discharged outside the melt-kneader as a thermoplastic resin composition.

熱可塑性樹脂組成物の製造方法は、その他の工程として、例えば、回収材料に付着している異物の総量を測定する工程、回収材料を洗浄する工程、溶融混練した熱可塑性樹脂組成物を冷却する工程、冷却した熱可塑性樹脂組成物を切断する工程を含んでいてもよい。   The method for producing a thermoplastic resin composition includes, as other steps, for example, a step of measuring the total amount of foreign matter adhering to the collected material, a step of washing the collected material, and cooling the melt-kneaded thermoplastic resin composition. The process and the process of cut | disconnecting the cooled thermoplastic resin composition may be included.

異物の総量を測定する工程では、前述した方法に基づいて異物の総量を測定する。熱可塑性樹脂組成物の製造方法として、異物の総量を測定する工程を含む場合、溶融混練する工程では、回収材料として、測定した異物の総量が回収材料に対して20ppm以下の回収材料を使用する。   In the step of measuring the total amount of foreign matter, the total amount of foreign matter is measured based on the method described above. When the method for producing a thermoplastic resin composition includes a step of measuring the total amount of foreign matter, in the melt-kneading step, a recovered material having a total amount of measured foreign matter of 20 ppm or less based on the recovered material is used as the recovered material. .

回収材料を洗浄する工程では、溶融混練する前に回収材料を洗浄する。洗浄には、非イオン性界面活性剤およびキレート剤を用いることが好ましい。非イオン性界面活性剤の例には、エステル型の非イオン性界面活性剤、エステル・エーテル型の非イオン性界面活性剤が含まれる。キレート剤の例には、アミノカルボン酸系のキレート剤、ホスホン酸系のキレート剤が含まれる。   In the step of washing the collected material, the collected material is washed before melt-kneading. It is preferable to use a nonionic surfactant and a chelating agent for cleaning. Examples of nonionic surfactants include ester-type nonionic surfactants and ester-ether type nonionic surfactants. Examples of chelating agents include aminocarboxylic acid chelating agents and phosphonic acid chelating agents.

回収材料は、例えば、以下の方法で洗浄できる。純水に回収材料、非イオン性界面活性剤およびキレート剤を混合して、3分間撹拌し、熱可塑性樹脂表面に付着している金属塩、酸性物質、アルカリ性物質、異物などを除去する。次いで、回収材料のみを回収する。   The recovered material can be washed, for example, by the following method. A recovered material, a nonionic surfactant and a chelating agent are mixed in pure water and stirred for 3 minutes to remove metal salts, acidic substances, alkaline substances, foreign substances and the like adhering to the surface of the thermoplastic resin. Next, only the recovered material is recovered.

溶融混練した熱可塑性樹脂組成物を冷却する工程では、溶融混練機から吐出した熱可塑性樹脂組成物を冷却する。熱可塑性樹脂組成物を冷却する方法および冷却温度は、適宜設定できる。熱可塑性樹脂組成物を冷却する方法は、水冷でもよいし、空冷でもよい。熱可塑性樹脂組成物の冷却温度は、適宜設定できる。熱可塑性樹脂組成物の冷却温度は、例えば、30℃である。   In the step of cooling the melt-kneaded thermoplastic resin composition, the thermoplastic resin composition discharged from the melt-kneader is cooled. The method for cooling the thermoplastic resin composition and the cooling temperature can be appropriately set. The method for cooling the thermoplastic resin composition may be water cooling or air cooling. The cooling temperature of the thermoplastic resin composition can be appropriately set. The cooling temperature of the thermoplastic resin composition is, for example, 30 ° C.

熱可塑性樹脂組成物を切断する工程では、熱可塑性樹脂組成物をペレダイザーで巻き取りながらペレット状に切断する。   In the step of cutting the thermoplastic resin composition, the thermoplastic resin composition is cut into pellets while being wound with a pelletizer.

本実施の形態では、熱可塑性樹脂組成物の材料として、廃材や未使用品を含む回収材料を使用している。回収材料から再生した熱可塑性樹脂組成物の物性を低下させる原因として、回収材料に付着した汚れ、ゴミ、異物由来の酸、塩基成分、金属成分、界面活性剤の成分がある。回収材料中にこれらの成分が含まれると、熱可塑性樹脂が分解されたり、熱可塑性樹脂が可塑化されてしまう。また、回収材料中に異物が含まれると、再生した熱可塑性樹脂組成物を用いた再生製品は、クラック点を有することになる。   In the present embodiment, a recovered material including waste materials and unused products is used as the material of the thermoplastic resin composition. As a cause of lowering the physical properties of the thermoplastic resin composition regenerated from the recovered material, there are dirt, dust, foreign-derived acid, base component, metal component, and surfactant component adhering to the recovered material. When these components are contained in the recovered material, the thermoplastic resin is decomposed or the thermoplastic resin is plasticized. Moreover, when a foreign material is contained in the recovered material, a recycled product using the recycled thermoplastic resin composition will have a crack point.

そこで、本発明では、回収材料に含まれる熱可塑性樹脂を劣化させる金属イオンの量を電気伝導度に基づいて規定して、酸性物質またはアルカリ性物質の量をpHに基づいて規定している。また、熱可塑性樹脂組成物を用いた成形品のクラック点の数を異物の総量に基づいて規定している。このように、本発明では、所定の条件を満たす回収材料のみを使用することで、回収材料の物性のばらつきを抑制している。これにより、熱可塑性樹脂組成物の物性が低下するのを抑制している。   Therefore, in the present invention, the amount of metal ions that degrade the thermoplastic resin contained in the recovered material is defined based on electrical conductivity, and the amount of acidic substance or alkaline substance is defined based on pH. Further, the number of crack points of a molded product using the thermoplastic resin composition is defined based on the total amount of foreign matter. As described above, in the present invention, only the recovered material satisfying the predetermined condition is used, thereby suppressing variations in physical properties of the recovered material. Thereby, it is suppressed that the physical property of a thermoplastic resin composition falls.

以上のように、本実施の形態では、電気伝導度およびpHに基づいて回収材料を選択し、当該条件に合致した回収材料のみを使用しているため、回収材料の物性のばらつきを抑制できる。これにより、溶融混練によって得られる熱可塑性樹脂組成物を安定して得ることができる。   As described above, in the present embodiment, since the recovered material is selected based on the electrical conductivity and the pH, and only the recovered material that matches the conditions is used, variation in the physical properties of the recovered material can be suppressed. Thereby, the thermoplastic resin composition obtained by melt-kneading can be obtained stably.

[回収材料の準備]
回収材料1〜13として、回収されたPCの破砕物を湿式比重選別により選別した粉砕物を準備した。回収材料14として、回収されたPETの破砕物を湿式比重選別により選別した粉砕物を準備した。回収材料15として、回収されたABS樹脂の破砕物を湿式比重選別により選別した粉砕物を準備した。回収材料16として、回収されたPEの破砕物を湿式比重選別により選別した粉砕物を準備した。回収材料1〜6、8〜16は、非イオン性界面活性剤およびキレート剤を用いて洗浄した後、乾燥させた。なお、洗浄では、非イオン性界面活性剤およびキレート剤の混合物としてDKビークリヤ CW−6530E(第一工業製薬株式会社)を使用した。
[Preparation of collected materials]
As the recovered materials 1 to 13, pulverized products obtained by sorting the recovered PC crushed materials by wet specific gravity sorting were prepared. As the recovered material 14, a pulverized material obtained by sorting the recovered PET crushed material by wet specific gravity sorting was prepared. As the recovered material 15, a pulverized product obtained by sorting the recovered crushed ABS resin material by wet specific gravity sorting was prepared. As the recovered material 16, a pulverized product obtained by sorting the recovered crushed PE by wet specific gravity sorting was prepared. The recovered materials 1 to 6 and 8 to 16 were washed using a nonionic surfactant and a chelating agent and then dried. In the cleaning, DK Bee Clear CW-6530E (Daiichi Kogyo Seiyaku Co., Ltd.) was used as a mixture of a nonionic surfactant and a chelating agent.

[二軸溶融混練機の準備]
溶融混練機として、二軸溶融混練機(HYPERKTX 30;株式会社神戸製鋼所)を準備した。
[Preparation of biaxial melt kneader]
A biaxial melt kneader (HYPERKTX 30; Kobe Steel, Ltd.) was prepared as a melt kneader.

[実施例1〜10、比較例1〜4]
真空乾燥機を用いて各回収材料を80℃、4時間乾燥させた。次いで、各回収材料を二軸溶融混練機の投入口から連続して10時間、10kg/時の量で投入して溶融混練した。溶融混練時のシリンダーの温度は、PCまたはPETを含む回収材料1〜14については270℃とし、ABS樹脂またはPEを含む回収材料15、16については、190℃とした。
[Examples 1 to 10, Comparative Examples 1 to 4]
Each recovered material was dried at 80 ° C. for 4 hours using a vacuum dryer. Next, each recovered material was continuously added from the charging port of the biaxial melt kneader at a rate of 10 kg / hour for 10 hours, and melt kneaded. The temperature of the cylinder at the time of melt-kneading was 270 ° C. for the recovered materials 1 to 14 containing PC or PET, and 190 ° C. for the recovered materials 15 and 16 containing ABS resin or PE.

一方、1時間毎に供給すべき各回収材料の一部をサンプリングして、各回収材料を用いたときの電気伝導度、pHおよび異物の総量をそれぞれ測定した。   On the other hand, a part of each recovered material to be supplied every hour was sampled, and the electrical conductivity, pH, and total amount of foreign matters when each recovered material was used were measured.

[電気伝導度の測定]
各回収材料10gを純水100gに浸漬し、3分攪拌した後、回収材料を除去した。回収材料を除去した後の水の電気伝導度をJIS K0130に準拠して測定した。
[Measurement of electrical conductivity]
After 10 g of each recovered material was immersed in 100 g of pure water and stirred for 3 minutes, the recovered material was removed. The electric conductivity of water after removing the recovered material was measured according to JIS K0130.

[pHの測定]
各回収材料10gを純水100gに浸漬し、3分攪拌した後、回収材料を除去した。回収材料を除去した後の水のpHをJIS Z8802に準拠して測定した。
[Measurement of pH]
After 10 g of each recovered material was immersed in 100 g of pure water and stirred for 3 minutes, the recovered material was removed. The pH of the water after removing the recovered material was measured according to JIS Z8802.

[異物の測定]
各回収材料10gを溶媒100gに溶解させた後、回収材料が溶解した溶媒を濾過した。濾紙上の残渣を異物として測定した。回収材料の樹脂種がPCおよびABS樹脂の場合の溶媒はTHFを使用し、回収材料の樹脂種がPETの場合の溶媒はヘキサフルオロイソプロパンオールを使用した。
[Measurement of foreign matter]
After 10 g of each recovered material was dissolved in 100 g of solvent, the solvent in which the recovered material was dissolved was filtered. The residue on the filter paper was measured as a foreign substance. THF was used as the solvent when the resin type of the recovered material was PC and ABS resin, and hexafluoroisopropaneol was used as the solvent when the resin type of the recovered material was PET.

二軸溶融混練機から吐出される樹脂ストランド樹脂ストランドは、30℃の水に浸漬されて急冷された。そして、急冷された樹脂ストランドは、ペレタイザーによりペレット状に粉砕された。こうして、ペレット状の熱可塑性樹脂組成物1〜10、13〜16をそれぞれ得た。   The resin strand discharged from the biaxial melt kneader The resin strand was immersed in water at 30 ° C. and rapidly cooled. Then, the rapidly cooled resin strand was pulverized into pellets by a pelletizer. In this manner, pellet-shaped thermoplastic resin compositions 1 to 10 and 13 to 16 were obtained.

[実施例11]
二軸溶融混練機への投入時に、難燃剤(CR−741;大八化学工業株式会社)を10質量%添加したこと以外は、実施例1と同様にして熱可塑性樹脂組成物11を得た。
[Example 11]
A thermoplastic resin composition 11 was obtained in the same manner as in Example 1 except that 10% by mass of a flame retardant (CR-741; Daihachi Chemical Industry Co., Ltd.) was added to the biaxial melt kneader. .

[実施例12]
二軸溶融混練機への投入時に、強化材(メタブレンC−223A;三菱ケミカル株式会社)を30質量%となる量で添加したこと以外は、実施例1と同様にして熱可塑性樹脂組成物12を得た。
[Example 12]
The thermoplastic resin composition 12 was obtained in the same manner as in Example 1 except that the reinforcing material (Methbrene C-223A; Mitsubishi Chemical Corporation) was added in an amount of 30% by mass when charged into the biaxial melt kneader. Got.

樹脂組成物の材料と、洗浄の条件と、各測定結果を表1に示す。   Table 1 shows the material of the resin composition, cleaning conditions, and measurement results.

Figure 2019156938
Figure 2019156938

[評価]
(試験片の成形)
ペレット状の各熱可塑性樹脂組成物を80℃で4時間乾燥させた後、射出成形機(J55ELII;株式会社日本製鋼所)によって、所定の試験片を得た。PCまたはPETを含む実施例1〜7、11、12、比較例1〜4については、シリンダー温度を270℃とし、金型温度を80℃とし、ABS樹脂またはPEを含む実施例8、9については、シリンダー温度を190℃とし、金型温度を50℃とした。
[Evaluation]
(Molding of test piece)
Each pellet-shaped thermoplastic resin composition was dried at 80 ° C. for 4 hours, and then a predetermined test piece was obtained by an injection molding machine (J55ELII; Nippon Steel Works, Ltd.). For Examples 1 to 7, 11, 12 and Comparative Examples 1 to 4 containing PC or PET, the cylinder temperature was set to 270 ° C., the mold temperature was set to 80 ° C., and Examples 8 and 9 containing ABS resin or PE were used. The cylinder temperature was 190 ° C. and the mold temperature was 50 ° C.

(破断伸びの評価)
破断伸びの評価は、JIS K7161に準じて破断伸び(%)を測定し、以下の基準で評価した。
PCを回収材料に含む実施例1〜7、11、12、比較例1〜4については、以下の基準で評価した。
◎:80%以上
○:70%以上80%未満
△:60%以上70%未満
×:60%未満
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:150%以上
○:100%以上150%未満
△:70%以上100%未満
×:70%未満
ABS樹脂を回収材料に含む実施例9については、以下の基準で評価した。
◎:25%以上
○:20%以上25%未満
△:15%以上20%未満
×:15%未満
PEを回収材料に含む実施例10については、以下の基準で評価した。
◎:200%以上
○:150%以上200%未満
△:100%以上150%未満
×:100%未満
このように、評価基準が熱可塑性樹脂毎に異なるのは、熱可塑性樹脂毎にその特性が異なり、一義に規定できないためである。
(Evaluation of elongation at break)
The elongation at break was evaluated by measuring the elongation at break (%) in accordance with JIS K7161, and evaluating it according to the following criteria.
Examples 1 to 7, 11, 12 and Comparative Examples 1 to 4 containing PC in the recovered material were evaluated according to the following criteria.
A: 80% or more B: 70% or more and less than 80% Δ: 60% or more and less than 70% ×: less than 60% Example 8 containing PET in the recovered material was evaluated according to the following criteria.
A: 150% or more B: 100% or more and less than 150% B: 70% or more and less than 100% X: less than 70% Example 9 containing ABS resin in the recovered material was evaluated according to the following criteria.
A: 25% or more B: 20% or more and less than 25% B: 15% or more and less than 20% X: less than 15% Example 10 containing PE in the recovered material was evaluated according to the following criteria.
◎: 200% or more ○: 150% or more and less than 200% △: 100% or more and less than 150% ×: Less than 100% As described above, the evaluation criteria differ for each thermoplastic resin. This is because it is different and cannot be defined unambiguously.

(衝撃強度の評価)
衝撃強度の評価は、JIS K7110に準じて衝撃強度(kJ/m)を測定し、以下の基準で評価した。
PCを回収材料に含む実施例1〜7、11、12、比較例1〜4については、以下の基準で評価した。
◎:15kJ/m以上
○:10kJ/m以上15kJ/m未満
△:8kJ/m以上10kJ/m未満
×:8kJ/m未満
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:3kJ/m以上
○:2kJ/m以上3kJ/m未満
△:1.5kJ/m以上2kJ/m未満
×:1.5kJ/m未満
ABS樹脂を回収材料に含む実施例9については、以下の基準で評価した。
◎:15kJ/m以上
○:10kJ/m以上15kJ/m未満
△:8kJ/m以上10kJ/m未満
×:8kJ/m未満
PEを回収材料に含む実施例10については、以下の基準で評価した。
◎:25kJ/m以上
○:20kJ/m以上25kJ/m未満
△:10kJ/m以上20kJ/m未満
×:10kJ/m未満
(Evaluation of impact strength)
The impact strength was evaluated by measuring the impact strength (kJ / m 2 ) according to JIS K7110 and evaluating it according to the following criteria.
Examples 1 to 7, 11, 12 and Comparative Examples 1 to 4 containing PC in the recovered material were evaluated according to the following criteria.
◎: 15 kJ / m 2 or more ○: 10 kJ / m 2 or more and less than 15 kJ / m 2 Δ: 8 kJ / m 2 or more and less than 10 kJ / m 2 ×: less than 8 kJ / m 2 Evaluation was made according to the following criteria.
◎: 3kJ / m 2 or more ○: 2kJ / m 2 or more 3 kJ / m less than 2 △: 1.5kJ / m 2 or more 2 kJ / m 2 less ×: implementation containing 1.5 kJ / m 2 less than ABS resin recovered material Example 9 was evaluated according to the following criteria.
◎: 15 kJ / m 2 or more ○: 10 kJ / m 2 or more and less than 15 kJ / m 2 Δ: 8 kJ / m 2 or more and less than 10 kJ / m 2 ×: less than 8 kJ / m 2 For Example 10 in which PE is included in the recovered material, Evaluation was made according to the following criteria.
◎: 25kJ / m 2 or more ○: 20kJ / m 2 more than 25kJ / m less than 2 △: 10kJ / m 2 more than 20kJ / m 2 less than ×: 10kJ / m less than 2

(流動特性の評価)
流動特性の評価は、JIS K7210に準じてMFR(g/10min)を測定し、以下の基準で評価した。なお、実施例1〜7、11、12、比較例1〜4については、300℃、1.2kgで測定し、実施例8については、270℃、2.16kgで測定し、実施例9については、200℃、5kgで測定し、実施例10については、270℃、2.16kgで測定した。
PCを回収材料に含む実施例1〜7、11、12、比較例1〜4については、以下の基準で評価した。
◎:17g/10min未満
○:17g/10min以上20g/10min未満
△:20g/10min以上25g/10min未満
×:25g/10min以上
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:25g/10min未満
○:25g/10min以上30g/10min未満
△:30g/10min以上40g/10min未満
×:40g/10min以上
ABS樹脂を回収材料に含む実施例9については、以下の基準で評価した。
◎:17g/10min未満
○:17g/10min以上20g/10min未満
△:20g/10min以上25g/10min未満
×:25g/10min以上
PEを回収材料に含む実施例10については、以下の基準で評価した。
◎:0.3g/10min未満
○:0.3g/10min以上0.4g/10min未満
△:0.4g/10min以上0.5g/10min未満
×:0.5g/10min以上
(Evaluation of flow characteristics)
The flow characteristics were evaluated by measuring MFR (g / 10 min) according to JIS K7210 and evaluating the following criteria. In addition, about Examples 1-7, 11, 12, and Comparative Examples 1-4, it measures at 300 degreeC and 1.2 kg, About Example 8, it measures at 270 degreeC and 2.16 kg, About Example 9 Was measured at 200 ° C. and 5 kg, and Example 10 was measured at 270 ° C. and 2.16 kg.
Examples 1 to 7, 11, 12 and Comparative Examples 1 to 4 containing PC in the recovered material were evaluated according to the following criteria.
A: Less than 17 g / 10 min. O: 17 g / 10 min or more and less than 20 g / 10 min. Δ: 20 g / 10 min or more and less than 25 g / 10 min. X: 25 g / 10 min or more. Example 8 containing PET in the recovered material was evaluated according to the following criteria. .
A: Less than 25 g / 10 min. O: 25 g / 10 min or more and less than 30 g / 10 min. Δ: 30 g / 10 min or more and less than 40 g / 10 min. X: 40 g / 10 min or more. Example 9 containing ABS resin in the recovered material was evaluated according to the following criteria. did.
A: Less than 17 g / 10 min. O: 17 g / 10 min or more and less than 20 g / 10 min. Δ: 20 g / 10 min or more and less than 25 g / 10 min. X: 25 g / 10 min or more. Example 10 containing PE in the recovered material was evaluated according to the following criteria. .
A: Less than 0.3 g / 10 min O: 0.3 g / 10 min or more and less than 0.4 g / 10 min Δ: 0.4 g / 10 min or more and less than 0.5 g / 10 min X: 0.5 g / 10 min or more

(ばらつきの評価)
10時間連続運転時に、得られた熱可塑性樹脂組成物を1時間ごとにサンプリングし、破断伸び、衝撃強度、流動特性(MFR)をそれぞれ測定し、以下の式に基づいてそのばらつきの大きさを確認した。上記3つの評価項目のばらつき評価の中で、最も悪い評価を、その条件でのばらつきの評価結果とした。
ばらつき(%)=(最大値−最小値)/平均値×100
(Evaluation of variation)
At the time of continuous operation for 10 hours, the obtained thermoplastic resin composition is sampled every hour, the elongation at break, impact strength, and flow characteristics (MFR) are measured, respectively, and the magnitude of the variation is determined based on the following formulas. confirmed. Of the three evaluation items, the worst evaluation is the evaluation result of the variation under the conditions.
Variation (%) = (maximum value−minimum value) / average value × 100

(破断伸びのばらつきの評価)
PC、ABS樹脂、PEを回収材料に含む実施例1〜7、9〜12、比較例1〜4については、以下の基準で評価した。
◎:30%未満
○:30%以上50%未満
△:50%以上70%未満
×:70%以上
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:40%未満
○:40%以上70%未満
△:70%以上100%未満
×:100%以上
(Evaluation of variation in elongation at break)
Examples 1 to 7, 9 to 12 and Comparative Examples 1 to 4 containing PC, ABS resin, and PE in the recovered material were evaluated according to the following criteria.
A: Less than 30% B: 30% or more and less than 50% Δ: 50% or more and less than 70% ×: 70% or more Example 8 containing PET in the recovered material was evaluated according to the following criteria.
◎: Less than 40% ○: 40% or more and less than 70% △: 70% or more and less than 100% ×: 100% or more

(衝撃強度のばらつきの評価)
PC、ABS樹脂、PEを回収材料に含む実施例1〜7、9〜12、比較例1〜4については、以下の基準で評価した。
◎:20%未満
○:20%以上40%未満
△:40%以上60%未満
×:60%以上
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:40%未満
○:40%以上70%未満
△:70%以上100%未満
×:100%以上
(Evaluation of variation in impact strength)
Examples 1 to 7, 9 to 12 and Comparative Examples 1 to 4 containing PC, ABS resin, and PE in the recovered material were evaluated according to the following criteria.
A: Less than 20% B: 20% or more and less than 40% B: 40% or more and less than 60% X: 60% or more Example 8 containing PET in the recovered material was evaluated according to the following criteria.
◎: Less than 40% ○: 40% or more and less than 70% △: 70% or more and less than 100% ×: 100% or more

(流動特性のばらつきの評価)
PC、ABS樹脂、PEを回収材料に含む実施例1〜7、9〜12、比較例1〜4については、以下の基準で評価した。
◎:20%未満
○:20%以上40%未満
△:40%以上60%未満
×:60%以上
PETを回収材料に含む実施例8については、以下の基準で評価した。
◎:30%未満
○:30%以上50%未満
△:50%以上70%未満
×:70%以上
(Evaluation of variation in flow characteristics)
Examples 1 to 7, 9 to 12 and Comparative Examples 1 to 4 containing PC, ABS resin, and PE in the recovered material were evaluated according to the following criteria.
A: Less than 20% B: 20% or more and less than 40% B: 40% or more and less than 60% X: 60% or more Example 8 containing PET in the recovered material was evaluated according to the following criteria.
◎: Less than 30% ○: 30% or more and less than 50% △: 50% or more and less than 70% ×: 70% or more

評価結果を表2に示す。   The evaluation results are shown in Table 2.

Figure 2019156938
Figure 2019156938

表2に示されるように、回収材料を水に浸漬させた後の水の電気伝導度が5μS/cm以上50μS/cmであり、回収材料を水に浸漬させた後の水のpHが5.0以上9.0以下である実施例1〜12の熱可塑性樹脂組成物1〜12では、破断伸び、挟撃強度およびMFRのいずれもが十分であった。   As shown in Table 2, the electrical conductivity of the water after the recovered material is immersed in water is 5 μS / cm or more and 50 μS / cm, and the pH of the water after the recovered material is immersed in water is 5. In the thermoplastic resin compositions 1-12 of Examples 1-12 which are 0 or more and 9.0 or less, all of breaking elongation, pinching strength, and MFR were sufficient.

一方、測定した電気伝導度がいずれも50μS/cm超の比較例1の熱可塑性樹脂組成物13では、破断伸びおよび流動性が十分でなかった。これは、回収材料中に含まれる金属イオンが多すぎて、熱可塑性樹脂が劣化したためと考えられる。測定したpHがいずれも9.0超の比較例2の熱可塑性樹脂組成物14では、破断伸びおよび流動性が十分でなかった。これは、回収材料中に含まれるアルカリ性物質が多すぎて、熱可塑性樹脂が劣化したためと考えられる。また、測定した電気伝導度がいずれも5μS/cm未満の比較例3の熱可塑性樹脂組成物15では、各評価結果は十分であったにも関わらず、ばらつきが大きかった。これは、回収材料全体の物性のばらつきが大きかったことによるものと考えられた。また、測定した電気伝導度のいずれかが50μS/cm超の比較例4の熱可塑性樹脂組成物16では、衝撃強度およびばらつきが十分でなかった。これは、回収材料に金属イオンが多く含まれている部分が存在したためと考えられる。   On the other hand, in the thermoplastic resin composition 13 of Comparative Example 1 in which the measured electrical conductivities were both greater than 50 μS / cm, the elongation at break and the fluidity were not sufficient. This is presumably because the thermoplastic resin was deteriorated due to excessive metal ions contained in the recovered material. In the thermoplastic resin composition 14 of Comparative Example 2 in which the measured pH was over 9.0, the elongation at break and the fluidity were not sufficient. This is presumably because the thermoplastic resin was deteriorated because the recovered material contained too much alkaline substance. Further, in the thermoplastic resin composition 15 of Comparative Example 3 in which the measured electric conductivity was less than 5 μS / cm, the evaluation results were sufficient, but the variation was large. This was thought to be due to the large variation in physical properties of the entire recovered material. Further, in the thermoplastic resin composition 16 of Comparative Example 4 in which any of the measured electrical conductivities exceeded 50 μS / cm, the impact strength and variation were not sufficient. This is thought to be due to the presence of a portion containing a large amount of metal ions in the recovered material.

本発明に係る熱可塑性樹脂組成物は、例えば、回収材料の再利用や、所期の物性から外れた物性を有する新規樹脂材料の有効活用など、樹脂材料の有効活用の拡充に有用である。   The thermoplastic resin composition according to the present invention is useful for expanding effective utilization of resin materials, for example, reuse of recovered materials and effective utilization of new resin materials having physical properties that deviate from intended physical properties.

Claims (8)

熱可塑性樹脂を含む回収材料を溶融混練した熱可塑性樹脂組成物であって、
前記回収材料10gを水100gに浸漬させた後の前記水の電気伝導度は、5μS/cm以上50μS/cm以下であり、
前記回収材料10gを水100gに浸漬させた後の前記水のpHは、5.0以上9.0以下である、
熱可塑性樹脂組成物。
A thermoplastic resin composition obtained by melt-kneading a recovered material containing a thermoplastic resin,
The electrical conductivity of the water after immersing 10 g of the recovered material in 100 g of water is 5 μS / cm or more and 50 μS / cm or less,
The pH of the water after immersing 10 g of the recovered material in 100 g of water is 5.0 or more and 9.0 or less.
Thermoplastic resin composition.
前記回収材料に付着している異物の総量は、前記回収材料に対して20ppm以下である、請求項1に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, wherein the total amount of foreign matter adhering to the recovered material is 20 ppm or less with respect to the recovered material. 前記回収材料は、溶融混練する前に、非イオン性界面活性剤およびキレート剤を用いた洗浄を行っている、請求項1または請求項2に記載の熱可塑性樹脂組成物。   3. The thermoplastic resin composition according to claim 1, wherein the recovered material is washed with a nonionic surfactant and a chelating agent before being melt-kneaded. 前記回収材料は、前記熱可塑性樹脂と、安定化剤、難燃剤、強化材および流動化剤からなる群から選択される1以上の添加剤と、を含み、
前記熱可塑性樹脂の含有量は、40質量%以上100質量%以下であり、
前記添加剤の含有量は、0質量%以上60質量%以下である、
請求項1〜3のいずれか一項に記載の熱可塑性樹脂組成物。
The recovered material includes the thermoplastic resin, and one or more additives selected from the group consisting of a stabilizer, a flame retardant, a reinforcing material, and a fluidizing agent,
The content of the thermoplastic resin is 40% by mass or more and 100% by mass or less,
The content of the additive is 0% by mass or more and 60% by mass or less.
The thermoplastic resin composition as described in any one of Claims 1-3.
熱可塑性樹脂を含む回収材料を溶融混練して熱可塑性樹脂組成物を得る製造方法であって、
前記回収材料10gを水100gに浸漬させた後の前記水の電気伝導度を測定する工程と、
前記回収材料10gを水100gに浸漬させた後の前記水のpHを測定する工程と、
前記回収材料を溶融混練する工程と、を含み、
前記電気伝導度は、5μS/cm以上50μS/cm以下であり、
前記pHは、5.0以上9.0以下である、
熱可塑性樹脂組成物の製造方法。
A production method for obtaining a thermoplastic resin composition by melt-kneading a recovered material containing a thermoplastic resin,
Measuring the electrical conductivity of the water after immersing 10 g of the recovered material in 100 g of water;
Measuring the pH of the water after immersing 10 g of the recovered material in 100 g of water;
Melting and kneading the recovered material, and
The electrical conductivity is 5 μS / cm or more and 50 μS / cm or less,
The pH is 5.0 or more and 9.0 or less.
A method for producing a thermoplastic resin composition.
前記回収材料に付着している異物の総量は、前記回収材料に対して20ppm以下である、請求項5に記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to claim 5, wherein the total amount of foreign matter adhering to the recovered material is 20 ppm or less with respect to the recovered material. 溶融混練する前に、前記回収材料を非イオン性界面活性剤およびキレート剤を用いて洗浄する工程をさらに有する、請求項5または請求項6に記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to claim 5 or 6, further comprising a step of washing the recovered material with a nonionic surfactant and a chelating agent before melt-kneading. 前記回収材料は、前記熱可塑性樹脂と、安定化剤、難燃剤、強化材および流動化剤からなる群から選択される1以上の添加剤と、を含み、
前記熱可塑性樹脂の含有量は、40質量%以上100質量%以下であり、
前記添加剤の含有量は、0質量%以上60質量%以下である、
請求項5〜7のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
The recovered material includes the thermoplastic resin, and one or more additives selected from the group consisting of a stabilizer, a flame retardant, a reinforcing material, and a fluidizing agent,
The content of the thermoplastic resin is 40% by mass or more and 100% by mass or less,
The content of the additive is 0% by mass or more and 60% by mass or less.
The manufacturing method of the thermoplastic resin composition as described in any one of Claims 5-7.
JP2018043962A 2018-03-12 2018-03-12 Method for manufacturing thermoplastic resin composition Active JP7098970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043962A JP7098970B2 (en) 2018-03-12 2018-03-12 Method for manufacturing thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043962A JP7098970B2 (en) 2018-03-12 2018-03-12 Method for manufacturing thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2019156938A true JP2019156938A (en) 2019-09-19
JP7098970B2 JP7098970B2 (en) 2022-07-12

Family

ID=67994651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043962A Active JP7098970B2 (en) 2018-03-12 2018-03-12 Method for manufacturing thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP7098970B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223416A (en) * 1992-11-23 1994-08-12 Sony Music Entertainment Inc Method for removal of film from compact disk
JP2006113551A (en) * 2004-09-14 2006-04-27 Konica Minolta Opto Inc Polarizing plate protective film and manufacturing method for the same
JP2010275466A (en) * 2009-05-29 2010-12-09 Teijin Chem Ltd Polycarbonate resin pellet, method for producing the same and molded article of the same
JP2011131507A (en) * 2009-12-24 2011-07-07 Idemitsu Kosan Co Ltd Method of recovering polycarbonate resin from waste optical disk and/or recovered optical disk and optical molded product obtained by molding recovered polycarbonate resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223416A (en) * 1992-11-23 1994-08-12 Sony Music Entertainment Inc Method for removal of film from compact disk
JP2006113551A (en) * 2004-09-14 2006-04-27 Konica Minolta Opto Inc Polarizing plate protective film and manufacturing method for the same
JP2010275466A (en) * 2009-05-29 2010-12-09 Teijin Chem Ltd Polycarbonate resin pellet, method for producing the same and molded article of the same
JP2011131507A (en) * 2009-12-24 2011-07-07 Idemitsu Kosan Co Ltd Method of recovering polycarbonate resin from waste optical disk and/or recovered optical disk and optical molded product obtained by molding recovered polycarbonate resin

Also Published As

Publication number Publication date
JP7098970B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
DE102004026799B4 (en) Press granulated flame retardant composition, process for its preparation and its use
JP5930661B2 (en) Method for recycling fiber reinforced plastic waste, recycled molded body, and recycling apparatus
EP3034554A1 (en) Polyamide compositions
DE10241376A1 (en) Compacted flame retardant composition
JP2009149768A (en) Regenerated polystyrene resin composition
CN103797057A (en) Regenerated thermoplastic resin material
CN102875897A (en) Material prepared from polypropylene regeneration material and specially used for automobile bumper
EP3546511A1 (en) Polyamide compositions
JP4793005B2 (en) Recycled polyolefin resin composition
JP7098970B2 (en) Method for manufacturing thermoplastic resin composition
JP3731009B2 (en) Recycled molded product of polypropylene resin waste material and method for recycling the same
JP2012011611A (en) Method of recycling plastic scrap, recycled plastic molded body and method of manufacturing the same
JPWO2019069798A1 (en) Detergent resin composition for injection molding machine and mold
JP2009143167A (en) Manufacturing method of resin composition for washing
CN103665718A (en) Method for toughening high impact polystyrene by using waste thermoplastic elastomer
JP2011126995A (en) Method for producing reclaimed abs resin composition
JP7024267B2 (en) Method for manufacturing thermoplastic resin composition
JP6116230B2 (en) Recycling method and recycling material for thermoplastic resin composition waste
JP2019202499A (en) Method for manufacturing thermoplastic resin composition, and apparatus for manufacturing thermoplastic resin composition
JP5367456B2 (en) Rigid polyvinyl chloride resin composition for injection molding and use thereof
JP2002001734A (en) Resin composition for cleaning
JP6332912B2 (en) Recycling method of waste thermoplastic resin composition
JP7267975B2 (en) How to recycle plastic materials
JP5451416B2 (en) Cleaning agent for molding machine
JP2018114640A (en) Washing and cleaning method for extruder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7098970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150