JP2019156862A - Rubber modified polyimide resin and polyimide resin solution - Google Patents

Rubber modified polyimide resin and polyimide resin solution Download PDF

Info

Publication number
JP2019156862A
JP2019156862A JP2018040271A JP2018040271A JP2019156862A JP 2019156862 A JP2019156862 A JP 2019156862A JP 2018040271 A JP2018040271 A JP 2018040271A JP 2018040271 A JP2018040271 A JP 2018040271A JP 2019156862 A JP2019156862 A JP 2019156862A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin
rubber
parts
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018040271A
Other languages
Japanese (ja)
Inventor
一光 白井
Kazumitsu Shirai
一光 白井
赤塚 泰昌
Yasumasa Akatsuka
泰昌 赤塚
長嶋 憲幸
Noriyuki Nagashima
憲幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2018040271A priority Critical patent/JP2019156862A/en
Publication of JP2019156862A publication Critical patent/JP2019156862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

To provide a novel polyimide resin capable of being used in various applications because it is excellent in heat resistance and has also solubility to methyl ethyl ketone or toluene or the like, which is a general-purpose organic solvent having low boiling point.SOLUTION: There is provided a rubber modified polyimide resin having a repeating unit represented by the following formula (1), where m and n are average repeating numbers, and represents a positive number satisfying relationships of 0<m≤200 and 0<n≤200, Qeach independently represents a bivalent aromatic group, Qeach independently represents a tetravalent aromatic group, and R each independently represents a bivalent aliphatic group.SELECTED DRAWING: None

Description

本発明は、低沸点の汎用的な有機溶剤に可溶なゴム変性ポリイミド樹脂であって、高いガラス転移点を有するポリイミド樹脂に関する。   The present invention relates to a polyimide resin having a high glass transition point, which is a rubber-modified polyimide resin soluble in a low-boiling general-purpose organic solvent.

ポリイミド樹脂は、優れた耐熱性、電気絶縁性、機械特性および耐薬品性を有することから、電気、電子部品、半導体、通信機器およびその回路部品や周辺機器に広く利用されている。しかしながら、ポリイミド樹脂は有機溶剤に対して難溶性なため、ポリイミド樹脂の原料であるポリアミド酸の極性溶媒溶液を基材等に塗工した後に加熱により脱水閉環してイミド化する等のプロセスによってフイルム状とする以外は応用し難い材料であることが長年の課題となっていた。   Polyimide resins have excellent heat resistance, electrical insulation, mechanical properties, and chemical resistance, and are therefore widely used in electrical, electronic components, semiconductors, communication devices, circuit components, and peripheral devices. However, since polyimide resin is poorly soluble in organic solvents, the film is processed by a process such as applying a polar solvent solution of polyamic acid, which is a raw material of polyimide resin, to a base material, etc., and then dehydrating and ring-closing to imidize. It has been a long-standing challenge to be a material that is difficult to apply except in the form of a material.

特許文献1には、γ−ブチロラクトンに可溶なフェノール性水酸基を有するポリイミド樹脂が開示されている。また近年は、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド及びジメチルスルホキシド等の極性溶剤に可溶性を有するポリイミド樹脂も見出されており、コーティング用途、液晶配向膜用途及びフレキシブル基板の絶縁膜用途等に応用されている。しかしながら、これらの溶剤は沸点が高いため高温処理が可能なプロセスでしか利用できないことが課題であり、低沸点汎用有機溶剤であるメチルエチルケトンやトルエンに可溶なポリイミド樹脂が求められていた。   Patent Document 1 discloses a polyimide resin having a phenolic hydroxyl group that is soluble in γ-butyrolactone. In recent years, polyimide resins having solubility in polar solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide have also been found. It is applied to insulating films for flexible substrates. However, since these solvents have a high boiling point, the problem is that they can only be used in processes capable of high-temperature treatment, and polyimide resins soluble in methyl ethyl ketone and toluene, which are low-boiling general-purpose organic solvents, have been demanded.

特許文献2には、テトラカルボン酸二無水物とシリコーンジアミン等のジアミンから得られる、ケトン系溶剤、エーテル系溶剤及びエステル系溶剤に可溶なブロック共重合ポリイミドが開示されている。該ポリイミドを含むポジ型感光性組成物は解像度に優れ、かつ該組成物からなるポリイミド膜は大気中において溶媒の吸湿により白化しないとの効果を奏するが、密着性や耐熱性等の点で満足し得るものではない。
即ち、ポリイミド樹脂の本来有する耐熱性等の優れた特性を維持したままで、かつメチルエチルケトンやトルエン等の沸点が低く汎用的な有機溶剤への溶解性を満足し得るポリイミド樹脂は、未だ市場では見出されていない状況である。
Patent Document 2 discloses a block copolymerized polyimide soluble in a ketone solvent, an ether solvent, and an ester solvent, obtained from a diamine such as tetracarboxylic dianhydride and silicone diamine. The positive photosensitive composition containing the polyimide has excellent resolution, and the polyimide film made of the composition has the effect of not whitening due to moisture absorption by the solvent in the atmosphere, but is satisfactory in terms of adhesion and heat resistance. It is not possible.
In other words, polyimide resins that still have excellent properties such as heat resistance inherent in polyimide resins and that have low boiling points such as methyl ethyl ketone and toluene and that can satisfy solubility in general-purpose organic solvents are still not found in the market. The situation has not been issued.

再公表WO2010/044381号Republished WO2010 / 044381 再公表WO2003/060010号Republished WO2003 / 060010

本発明は、上記の点に鑑みてなされたものであり、耐熱性等に優れ、かつ低沸点で汎用的な有機溶剤であるメチルエチルケトンやトルエン等に対する溶解性をも有することにより様々な用途に利用し得る新規なポリイミド樹脂を提供することを目的とするものである。   The present invention has been made in view of the above points, and is used for various applications by having excellent heat resistance and the like, and having solubility in methyl ethyl ketone, toluene and the like, which are low-boiling and general-purpose organic solvents. An object of the present invention is to provide a novel polyimide resin that can be used.

本発明者らは鋭意検討を行った結果、特定構造のポリイミド樹脂と特定構造のゴム状の脂肪族樹脂との重縮合構造を有するブロック共重合物であるゴム変性ポリイミド樹脂を用いることにより上記の課題が解決することを見出し、本発明を完成させた。
即ち本発明は、
[1]下記式(1)
As a result of intensive studies, the present inventors have used the rubber-modified polyimide resin, which is a block copolymer having a polycondensation structure of a polyimide resin having a specific structure and a rubber-like aliphatic resin having a specific structure. The present inventors have found that the problem can be solved and completed the present invention.
That is, the present invention
[1] The following formula (1)

Figure 2019156862
Figure 2019156862

(式(1)中、m及びnは平均繰り返し数であって、0<m≦200及び0<n≦200の関係を満たす正数を表す。Qはそれぞれ独立に二価の芳香族基を、Qはそれぞれ独立に四価の芳香族基を、Rはそれぞれ独立に二価の脂肪族基を表す。)で表される繰り返し単位を有するゴム変性ポリイミド樹脂、
[2]下記式(1−1)又は(1−2)
(In the formula (1), m and n are average repeat numbers and represent positive numbers satisfying the relationship of 0 <m ≦ 200 and 0 <n ≦ 200. Q 1 is independently a divalent aromatic group. a tetravalent aromatic group in Q 2 is independently, a rubber-modified polyimide resin having a repeating unit represented by the representative.) a divalent aliphatic group each R is independently,
[2] The following formula (1-1) or (1-2)

Figure 2019156862
Figure 2019156862
Figure 2019156862
Figure 2019156862

(式(1−1)及び式(1−2)中、m、n、Q、Q及びRは前項[1]に記載の式(1)におけるm、n、Q、Q及びRと同じ意味を表す。)で表される前項[1]に記載のゴム変性ポリイミド樹脂、
[3]前項[1]又は[2]に記載のゴム変性ポリイミド樹脂と有機溶剤を含むポリイミド樹脂溶液、
[4]沸点が140℃以下の有機溶剤を含む前項[3]に記載のポリイミド樹脂溶液、及び
[5]有機溶剤が、メチルエチルケトン又はトルエンの少なくとも一方を含む前項[4]に記載のポリイミド樹脂溶液、
に関する。
(Formula (1-1) and (1-2) in, m, n, Q 1, Q 2 and R m in the formula (1) according to item [1], n, Q 1 , Q 2 and The same meaning as R.) The rubber-modified polyimide resin according to [1],
[3] A polyimide resin solution containing the rubber-modified polyimide resin and the organic solvent according to [1] or [2] above,
[4] The polyimide resin solution according to [3] above, which contains an organic solvent having a boiling point of 140 ° C. or lower, and [5] the polyimide resin solution according to [4], wherein the organic solvent contains at least one of methyl ethyl ketone or toluene. ,
About.

本発明のゴム変性ポリイミド樹脂は、ガラス転移点が170℃以上という高い耐熱性を有しながら、メチルエチルケトンやトルエン等の沸点の低い溶剤に可溶である。従って該ポリイミド樹脂の低沸点溶剤溶液は、170℃以下の低温処理プロセスで様々な用途に利用可能である。   The rubber-modified polyimide resin of the present invention is soluble in a solvent having a low boiling point such as methyl ethyl ketone and toluene while having a high heat resistance with a glass transition point of 170 ° C. or higher. Therefore, the low boiling point solvent solution of the polyimide resin can be used for various applications in a low temperature treatment process of 170 ° C. or lower.

以下に、本発明の実施形態について説明する。
本発明のゴム変性ポリイミド樹脂は、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物との縮合物である両末端がアミノ基の芳香族ポリイミド樹脂と、脂肪族ジカルボン酸とのブロック共重合体である。
前記芳香族ポリイミド樹脂と脂肪族ジカルボン酸との共重合時に、脂肪族ジカルボン酸に対して過剰なモル比の芳香族ポリイミド樹脂を用いた場合は両末端がアミノ基のゴム変性ポリイミド樹脂が得られるが、該ゴム変性ポリイミド樹脂がアミノ基と反応し得る化合物で更に変性されたブロック共重合体や、該更に変性されたブロック共重合体がその末端置換基と反応し得る化合物で更に変性されたブロック共重合体も本発明のゴム変性ポリイミド樹脂の範疇に含まれる。
また、上記芳香族ポリイミド樹脂と脂肪族ジカルボン酸との共重合時に、芳香族ポリイミドに対して過剰なモル比の脂肪族ジカルボン酸を用いた場合は両末端がカルボキシル基のゴム変性ポリイミド樹脂が得られるが、該ゴム変性ポリイミド樹脂がカルボキシル基と反応し得る化合物で更に変性されたブロック共重合体や、該更に変性されたブロック共重合体がその末端置換基と反応し得る化合物で更に変性されたブロック共重合体も本発明のゴム変性ポリイミド樹脂の範疇に含まれる。
Hereinafter, embodiments of the present invention will be described.
The rubber-modified polyimide resin of the present invention is a block copolymer of an aromatic polyimide resin having amino groups at both ends, which is a condensate of an aromatic tetracarboxylic dianhydride and an aromatic diamine compound, and an aliphatic dicarboxylic acid. It is.
When the aromatic polyimide resin and aliphatic dicarboxylic acid are copolymerized with an aromatic polyimide resin having an excess molar ratio to the aliphatic dicarboxylic acid, a rubber-modified polyimide resin having amino groups at both ends is obtained. However, the rubber-modified polyimide resin is further modified with a compound that can be reacted with an amino group, and the block copolymer that has been further modified with a compound that can react with the terminal substituent. Block copolymers are also included in the category of the rubber-modified polyimide resin of the present invention.
In addition, when copolymerizing the aromatic polyimide resin and the aliphatic dicarboxylic acid, an aliphatic dicarboxylic acid having an excess molar ratio with respect to the aromatic polyimide is used to obtain a rubber-modified polyimide resin having carboxyl groups at both ends. However, the rubber-modified polyimide resin is further modified with a compound that can be further reacted with a carboxyl group, and the block copolymer that has been further modified with a compound that can react with the terminal substituent. The block copolymer is also included in the category of the rubber-modified polyimide resin of the present invention.

即ち、本発明のゴム変性ポリイミド樹脂は、下記式(1)で表される繰り返し単位を有する。   That is, the rubber-modified polyimide resin of the present invention has a repeating unit represented by the following formula (1).

Figure 2019156862
Figure 2019156862

式(1)中、m及びnは平均繰り返し数であって、0<m≦200、0<n≦200の関係を満たす正数を表す。Qはそれぞれ独立に二価の芳香族基を、Qはそれぞれ独立に四価の芳香族基を、Rはそれぞれ独立に二価の脂肪族基を表す。
式(1)のQが表す二価の芳香族基とは、芳香族ジアミンからアミノ基を二つ除いた二価の連結基である。Qが表す二価の芳香族基と成り得る芳香族ジアミンの具体例としては、m−フェニレンジアミン、p−フェニレンジアミン並びにm−トリレンジアミン等のフェニレンジアミン類、4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル並びに4,4’−ジアミノジフェニルチオエーテル等のジアミノジフェニルエーテル類、3,3’−ジメチル−4,4’−ジアミノジフェニルチオエーテル、3,3’−ジエトキシ−4,4’−ジアミノジフェニルチオエーテル、3,3’−ジアミノジフェニルチオエーテル並びに3,3’−ジメトキシ−4,4’−ジアミノジフェニルチオエーテル等のジアミノジフェニルチオエーテル類、4,4’−ジアミノベンゾフェノン並びに3,3’−ジメチル−4,4’−ジアミノベンゾフェノン等のジアミノベンゾフェノン類、4,4’−ジアミノジフェニルスルフォキサイド並びに4,4’−ジアミノジフェニルスルホン等のジアミノジフェニルスルホン類、ベンチジン、3,3’−ジメチルベンチジン並びに3,3’−ジメトキシベンチジン等のベンチジン類、;3,3’−ジアミノビフェニル等のジアミノビフェニル類、p−キシリレンジアミン、m−キシリレンジアミン並びにo−キシリレンジアミン等のキシリレンジアミン類、4,4’−ジアミノジフェニルメタン等のジアミノジフェニルメタン類、3,7−ジアミノ−2,8−ジメチル−ジベンゾチオフェン、2,8−ジアミノ−3,7−ジメチル−ジベンゾチオフェン、3,7−ジアミノ−2,6−ジメチル−ジベンゾチオフェン並びに3,7−ジアミノ−2,8−ジエチル−ジベンゾチオフェン等のジアミノ−ジベンゾチオフェン類、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−[4−アミノフェノキシ]フェニル]スルフォン、9、9−ビス(4−アミノフェニル)フルオレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’−ビストリフルオロメチル−5,5’−ジアミノビフェニルのジアミン、4,4’−ビス(4−アミノテトラフルオロフェノキシ)テトラフルオロベンゼン、4,4’−ビス(4−アミノテトラフルオロフェノキシ)オクタフルオロビフェニル、3,5−ジアミノベンゾトリフルオリド、2,5−ジアミノベンゾトリフルオリド、3,3’−ビストリフルオロメチル−4,4’−ジアミノビフェニル、3,3’−ビストリフルオロメチル−5,5’−ジアミノビフェニル、ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル、4,4’−ビス(4−アミノテトラフルオロフェノキシ)テトラフルオロベンゼン及び4,4’−ビス(4−アミノテトラフルオロフェノキシ)オクタフルオロビフェニル等のジアミン類が挙げられる。
In the formula (1), m and n are average repeat numbers, and represent positive numbers satisfying the relationship of 0 <m ≦ 200 and 0 <n ≦ 200. Q 1 is independently a divalent aromatic group, Q 2 is independently a tetravalent aromatic group, and R is independently a divalent aliphatic group.
The divalent aromatic group represented by Q 1 in the formula (1) is a divalent linking group obtained by removing two amino groups from an aromatic diamine. Specific examples of the aromatic diamine that can be a divalent aromatic group represented by Q 1 include m-phenylenediamine, p-phenylenediamine, and phenylenediamines such as m-tolylenediamine, 4,4′-diaminodiphenyl ether. 3,3′-dimethyl-4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether and diaminodiphenyl ethers such as 4,4′-diaminodiphenylthioether, 3,3′-dimethyl-4,4′- Diaminodiphenylthioethers such as diaminodiphenylthioether, 3,3′-diethoxy-4,4′-diaminodiphenylthioether, 3,3′-diaminodiphenylthioether and 3,3′-dimethoxy-4,4′-diaminodiphenylthioether 4,4'-diaminobenzophenone comparable Diaminobenzophenones such as 3,3′-dimethyl-4,4′-diaminobenzophenone, diaminodiphenyl sulfones such as 4,4′-diaminodiphenyl sulfoxide and 4,4′-diaminodiphenyl sulfone, benzidine, Bendidines such as 3,3′-dimethylbenzidine and 3,3′-dimethoxybenzidine; diaminobiphenyls such as 3,3′-diaminobiphenyl, p-xylylenediamine, m-xylylenediamine and o- Xylylenediamines such as xylylenediamine, diaminodiphenylmethanes such as 4,4′-diaminodiphenylmethane, 3,7-diamino-2,8-dimethyl-dibenzothiophene, 2,8-diamino-3,7-dimethyl- Dibenzothiophene, 3,7-diamino-2,6-dimethyl-dibenzo Offene and diamino-dibenzothiophenes such as 3,7-diamino-2,8-diethyl-dibenzothiophene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-amino Phenoxy) phenyl] propane, bis [4- [4-aminophenoxy] phenyl] sulfone, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexa Fluoropropane, 3,3′-bistrifluoromethyl-5,5′-diaminobiphenyl diamine, 4,4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenzene, 4,4′-bis (4-amino) Tetrafluorophenoxy) octafluorobiphenyl, 3,5-diaminobenzotrifluoride, 2,5- Aminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 3,3′-bistrifluoromethyl-5,5′-diaminobiphenyl, bis (trifluoromethyl) -4,4 ′ Examples include diamines such as -diaminodiphenyl, 4,4'-bis (4-aminotetrafluorophenoxy) tetrafluorobenzene, and 4,4'-bis (4-aminotetrafluorophenoxy) octafluorobiphenyl.

式(1)のQが表す四価の芳香族基とは、芳香族テトラカルボン酸二無水物の水和物からカルボキシル基を四つ除いた四価の連結基である。Qが表す四価の芳香族基と成り得るテトラカルボン酸二無水物の具体例としては、3,3’,4,4’−ビフエニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフエノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ビフエニルエーテルテトラカルボン酸二無水物(OPDA)、3,3’,4,4’−ジフエニルスルホンテトラカルボン酸ニ無水物(DSDA)、ビシクロ(2,2,2)−オクト−7エン−2,3,5,6−テトラカルボン酸二無水物(BCD)、1,2,4,5−シクロへキサンテトラカルボン酸二無水物(H−PMDA)、ピロメリット酸ニ無水物(PMDA)、2,2−ビス(3,4−ジカルボンキシフエニル)へキサフルオロプロパンニ無水物(6FDA)及び5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロへキセン−1,2−ジカルボン酸無水物(CP)等が挙げられる。 The tetravalent aromatic group represented by Q 2 in the formula (1) is a tetravalent linking group obtained by removing four carboxyl groups from the hydrate of aromatic tetracarboxylic dianhydride. Specific examples of the tetracarboxylic dianhydride that can be a tetravalent aromatic group represented by Q 2 include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3. ', 4,4'-Benzophenone tetracarboxylic dianhydride (BTDA), 3,3', 4,4'-biphenyl ether tetracarboxylic dianhydride (OPDA), 3,3 ', 4 4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), bicyclo (2,2,2) -oct-7ene-2,3,5,6-tetracarboxylic dianhydride (BCD), 1, 2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), pyromellitic dianhydride (PMDA), 2,2-bis (3,4-dicarbonoxyphenyl) hexafluoropropane Dianhydrides (6FDA) and 5- (2,5-di Kiso-tetrahydrofuryl) -3-methyl-3-cyclo-hexene-1,2-dicarboxylic acid anhydride (CP), and the like.

式(1)のRが表す二価の脂肪族基とは、脂肪族ジカルボン酸からカルボキシル基を二つ除いた二価の連結基である。Rが表す二価の脂肪族基と成り得る脂肪族ジカルボン酸は脂肪族鎖を主鎖とし、かつ両末端にカルボキシル基を有する脂肪族樹脂であれば特に限定されない。脂肪族樹脂の主鎖の水素原子は置換基で置換されていてもよく、主鎖は変性されていても構わないが、ブタジエン・アクリロニトリル共重合体、ブタジエン共重合体、水素化ブタジエン・アクリロニトリル共重合体又は水素化ブタジエン共重合体を主鎖とする脂肪族樹脂が好ましい。これらの脂肪族樹脂の数平均分子量は通常200乃至10,000であり、好ましくは500乃至5,000である。
式(1)のRが表す二価の脂肪族基と成り得る脂肪族ジカルボン酸の市販品の具体例としては、CVCサーモセットスペシャリスト製HYPRO CTBN 1300×8(ガラス転移点:−52℃)、HYPRO CTBN 1300X31(ガラス転移点:−66℃)、HYPRO CTBN 1300X13(ガラス転移点:−39℃)などが挙げられる。
The divalent aliphatic group represented by R in the formula (1) is a divalent linking group obtained by removing two carboxyl groups from an aliphatic dicarboxylic acid. The aliphatic dicarboxylic acid that can be a divalent aliphatic group represented by R is not particularly limited as long as it is an aliphatic resin having an aliphatic chain as a main chain and having carboxyl groups at both ends. The hydrogen atom in the main chain of the aliphatic resin may be substituted with a substituent, and the main chain may be modified, but the butadiene-acrylonitrile copolymer, butadiene copolymer, hydrogenated butadiene-acrylonitrile copolymer An aliphatic resin having a polymer or hydrogenated butadiene copolymer as the main chain is preferred. The number average molecular weight of these aliphatic resins is usually 200 to 10,000, preferably 500 to 5,000.
As a specific example of a commercially available product of an aliphatic dicarboxylic acid that can be a divalent aliphatic group represented by R in the formula (1), HYPRO CTBN 1300 × 8 (glass transition point: −52 ° C.) manufactured by CVC Thermoset Specialist, HYPRO CTBN 1300X31 (glass transition point: -66 ° C), HYPRO CTBN 1300X13 (glass transition point: -39 ° C), and the like.

部分構造Qを有する芳香族ジアミン化合物、部分構造Qを有する芳香族テトラカルボン酸二無水物及び部分構造Rを有する脂肪族ジカルボン酸のみから得られる両末端がアミノ基又はカルボキシル基のブロック共重合体を更に変性し得る化合物としては、アミノ基やカルボキシル基と反応し得るグリシジルエーテル基又はイソシアネート基等の置換基を有する化合物であれば特に限定されず、また、前記の置換基を有する化合物で更に変性されたブロック共重合体を更に変性し得る化合物も、該更に変性されたブロック共重合体がその末端に有する置換基と反応し得る化合物であれば特に限定されない。
本発明のゴム変性ポリイミド樹脂の範疇には、上記の通り部分構造Qを有する芳香族ジアミン化合物、部分構造Qを有する芳香族テトラカルボン酸二無水物及び部分構造Rを有する脂肪族ジカルボン酸のみから得られるブロック共重合体のみならず、該ブロック共重合体が更に各種化合物で編成されたブロック共重合体も含まれるが、本発明のゴム変性ポリアミド樹脂としては、部分構造Qを有する芳香族ジアミン化合物、部分構造Qを有する芳香族テトラカルボン酸二無水物及び部分構造Rを有する脂肪族ジカルボン酸のみから得られるブロック共重合体、即ち、下記式(1−1)又は(1−2)で表されるブロック共重合体がより好ましい。
Aromatic diamine compounds having a partial structure Q 1, the partial structure Q aromatic tetracarboxylic acid dianhydride with 2 and partial building block at both ends is an amino group or a carboxyl group derived from only aliphatic dicarboxylic acid co with R The compound that can further modify the polymer is not particularly limited as long as it is a compound having a substituent such as a glycidyl ether group or an isocyanate group capable of reacting with an amino group or a carboxyl group, and a compound having the above substituent The compound that can further modify the block copolymer further modified in (1) is not particularly limited as long as it is a compound that can react with a substituent at the terminal of the further modified block copolymer.
The scope of the rubber-modified polyimide resin of the present invention, aliphatic dicarboxylic acids having aromatic diamine compound having the following partial structure to Q 1 above, the aromatic tetracarboxylic acid dianhydride having a partial structure Q 2 and the partial structure R not only block copolymer obtained from only, but the block copolymer is included more block copolymers that are organized in various compounds, as the rubber-modified polyamide resin of the present invention, having the partial structure Q 1 aromatic diamine compounds, an aromatic tetracarboxylic dianhydride and the partial structure block copolymer obtained only from aliphatic dicarboxylic acids having R having the partial structure Q 2, i.e., the following formula (1-1) or (1 -2) is more preferable.

Figure 2019156862
Figure 2019156862
Figure 2019156862
Figure 2019156862

式(1−1)及び式(1−2)中、m、n、Q、Q及びRは式(1)におけるm、n、Q、Q及びRと同じ意味を表す。 Equation (1-1) and formula (1-2), m, n, Q 1, Q 2 and R represents m, n, the same meaning as Q 1, Q 2 and R in the formula (1).

次に、本発明のゴム変性ポリイミド樹脂の製造方法について説明する。
本発明のゴム変性ポリイミド樹脂は、芳香族テトラカルボン酸二無水物類と芳香族ジアミン類との縮合物である両末端がアミノ基の芳香族ポリイミド樹脂と、脂肪族ジカルボン酸とのブロック共重合体である。
具体的には、先ず両末端基がアミノ基の芳香族ポリイミド樹脂を合成し、合成後に110℃以下に冷却した樹脂溶液中に両末端にカルボキシル基を有する脂肪族樹脂を加えて、芳香族ポリイミド樹脂の末端と脂肪族樹脂の末端を縮合反応させることにより、本発明におけるブロック共重合体を得ることが出来る。ブロック共重合体の精製は定法に従って行えばよい。
Next, a method for producing the rubber-modified polyimide resin of the present invention will be described.
The rubber-modified polyimide resin of the present invention is a block copolymer of an aromatic polyimide resin having amino groups at both ends, which is a condensate of aromatic tetracarboxylic dianhydrides and aromatic diamines, and an aliphatic dicarboxylic acid. It is a coalescence.
Specifically, first, an aromatic polyimide resin having amino groups at both ends is synthesized, and an aliphatic resin having carboxyl groups at both ends is added to a resin solution cooled to 110 ° C. or lower after the synthesis. The block copolymer in the present invention can be obtained by performing a condensation reaction between the end of the resin and the end of the aliphatic resin. The block copolymer may be purified according to a conventional method.

芳香族テトラカルボン酸二無水物類と芳香族ジアミン類との縮合物である芳香族ポリイミド樹脂の両末端をアミノ基とするためには、芳香族テトラカルボン酸二無水物類の総モル数に対して、過剰な総モル数の芳香族ジアミン類を用いて縮合反応を行う。この場合、芳香族テトラカルボン酸二無水物類の総モル数と芳香族ジアミン類の総モル数が近いほど重量平均分子量の大きい長鎖の芳香族ポリイミド樹脂となり、芳香族テトラカルボン酸二無水物類の総モル数と芳香族ジアミン類の総モル数が離れるほど重量平均分子量の小さい短鎖の芳香族ポリイミド樹脂となる(縮合系高分子重合反応におけるフローリー則)。
芳香族テトラカルボン酸二無水物類と芳香族ジアミン類との縮合反応は、従来公知の方法で行えばよい。
To make both ends of the aromatic polyimide resin, which is a condensate of aromatic tetracarboxylic dianhydrides and aromatic diamines, with amino groups, the total number of moles of aromatic tetracarboxylic dianhydrides On the other hand, the condensation reaction is carried out using an excess of aromatic diamines having a total molar number. In this case, the closer the total number of moles of aromatic tetracarboxylic dianhydrides and the total number of moles of aromatic diamines, the longer the aromatic polyimide resin having a larger weight average molecular weight, and the aromatic tetracarboxylic dianhydride. The shorter the total number of moles of the aromatics and the total number of moles of the aromatic diamines, the shorter the weight average molecular weight of the short-chain aromatic polyimide resin (Flory rule in the condensation polymer polymerization reaction).
The condensation reaction between the aromatic tetracarboxylic dianhydrides and the aromatic diamines may be performed by a conventionally known method.

芳香族ポリイミド樹脂の重量平均分子量は、5,000乃至200,000が好ましく、20,000乃至60,000がより好ましい。重量平均分子量が5,000より小さいと、膜の強靭性が悪化して製膜できなくなる。重量平均分子量が200,000より大きいとブロック共重合体の溶剤溶解性が悪化して製膜できなくなる。尚、本発明における重量平均分子量とは、GPCの測定結果に基づいて、ポリスチレン換算で算出した重量平均分子量を意味する。   The weight average molecular weight of the aromatic polyimide resin is preferably 5,000 to 200,000, and more preferably 20,000 to 60,000. When the weight average molecular weight is less than 5,000, the toughness of the film is deteriorated and the film cannot be formed. When the weight average molecular weight is larger than 200,000, the solvent solubility of the block copolymer is deteriorated and film formation is impossible. In addition, the weight average molecular weight in this invention means the weight average molecular weight computed in polystyrene conversion based on the measurement result of GPC.

本発明のゴム変性ポリイミド樹脂は、前記した両末端にアミノ基を有する芳香族ポリイミド樹脂と両末端にカルボン酸基を有する脂肪族樹脂との縮合物であり、該縮合物は、例えば特開2003−342366公報に記載の方法に準じて合成することが出来る。
即ち、上記式(1−1)で表されるゴム変性ポリイミド樹脂は、脂肪族ジカルボン酸に対して、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物との縮合物である両末端がアミノ基の芳香族ポリイミド樹脂を過剰なモル数用いて得られるブロック共重合体であり、上記式(1−2)で表されるゴム変性ポリイミド樹脂は、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物との縮合物である両末端がアミノ基の芳香族ポリイミド樹脂に対して、脂肪族ジカルボン酸を過剰なモル数用いて得られるブロック共重合体である。
The rubber-modified polyimide resin of the present invention is a condensate of the above-described aromatic polyimide resin having amino groups at both ends and an aliphatic resin having carboxylic acid groups at both ends. -342366 can be synthesized according to the method described in the publication.
That is, in the rubber-modified polyimide resin represented by the above formula (1-1), both ends of the aliphatic dicarboxylic acid, which is a condensate of an aromatic tetracarboxylic dianhydride and an aromatic diamine compound, are amino. Is a block copolymer obtained by using an excessive number of moles of aromatic polyimide resin, and the rubber-modified polyimide resin represented by the above formula (1-2) is composed of aromatic tetracarboxylic dianhydride and aromatic It is a block copolymer obtained by using an aliphatic dicarboxylic acid in an excessive number of moles relative to an aromatic polyimide resin having amino groups at both ends, which is a condensate with a diamine compound.

両末端にアミノ基を有する芳香族ポリイミド樹脂に両末端にカルボキシル基を有する脂肪族樹脂を縮合させる際の縮合剤には、従来公知のものを使用することができる。縮合剤の具体例としては、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、エチル(ヒドロキシイミノ)シアノアセタート、ヒドロキシベンゾトリアゾール等が挙げられる。   A conventionally well-known thing can be used for the condensing agent at the time of condensing the aliphatic resin which has a carboxyl group at both ends with the aromatic polyimide resin which has an amino group at both ends. Specific examples of the condensing agent include dicyclohexylcarbodiimide, carbonyldiimidazole, ethyl (hydroxyimino) cyanoacetate, hydroxybenzotriazole and the like.

上記のゴム変性ポリイミド樹脂の製造方法は、先ず両末端がアミノ基の芳香族ポリイミド樹脂を合成し、次いで末端アミノ基に脂肪即ジカルボン酸を縮合させる方法であるが、先ず芳香族テトラカルボン酸二無水物類と芳香族ジアミン類からポリアミック酸を合成し、次いで該ポリアミック酸と脂肪族ジカルボン酸との縮合物を得た後に閉環反応(イミド化)を行う方法でも構わない。
しかしながら、芳香族ポリイミド樹脂は閉環反応時に無触媒では350℃以上の高温が、また、触媒を利用する場合でも少なくとも170℃以上の高温が必要となるため、閉環反応時に脂肪族樹脂が劣化してしまう恐れがある。そのため、芳香族ポリイミド樹脂の閉環反応を終えた後に、110℃以下に冷却してから脂肪族樹脂を加えて縮合させる合成方法がより好ましい。
The rubber-modified polyimide resin is produced by first synthesizing an aromatic polyimide resin having amino groups at both ends and then condensing a fatty dicarboxylic acid with the terminal amino group. A method of synthesizing a polyamic acid from anhydrides and aromatic diamines and then obtaining a condensate of the polyamic acid and an aliphatic dicarboxylic acid, followed by a ring-closing reaction (imidization) may be used.
However, aromatic polyimide resins require a high temperature of 350 ° C. or higher when no catalyst is used during the ring-closing reaction, and even when a catalyst is used, a high temperature of at least 170 ° C. is required. Therefore, the aliphatic resin deteriorates during the ring-closing reaction. There is a risk. Therefore, a synthesis method in which after completing the ring-closure reaction of the aromatic polyimide resin and cooling to 110 ° C. or lower, an aliphatic resin is added and condensed is more preferable.

本発明のゴム変性ポリイミド樹脂は有機溶剤への溶解性に優れるとの効果を奏する。よって、有機溶剤に溶解したポリイミド樹脂溶液として様々な用途に用いることは好ましい態様である。
本発明のポリイミド樹脂溶液に用い得る有機溶剤は特に限定されないが、例えばγ−ブチロラクトン及びγ−バレロラクトン等のラクトン類、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤等が挙げられる。
The rubber-modified polyimide resin of the present invention has an effect that it is excellent in solubility in an organic solvent. Therefore, it is a preferable aspect to use for various uses as a polyimide resin solution dissolved in an organic solvent.
The organic solvent that can be used in the polyimide resin solution of the present invention is not particularly limited. For example, lactones such as γ-butyrolactone and γ-valerolactone, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N Amide solvents such as N, N-dimethylacetamide, N, N-dimethylimidazolidinone, sulfones such as tetramethylene sulfone, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, Ether solvents such as propylene glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, Examples include aromatic solvents such as toluene and xylene.

これらのうち、メチルエチルケトン又はトルエン等の比較的沸点の低い有機溶剤を用いることにより、耐熱性に優れた本発明のゴム変性ポリイミド樹脂を170℃以下のプロセスにて様々な用途に用いることができる。
ポリイミド樹脂溶液中におけるゴム変性ポリイミドの含有量は通常5乃至90質量%、好ましくは10乃至80質量%である。
Among these, by using an organic solvent having a relatively low boiling point such as methyl ethyl ketone or toluene, the rubber-modified polyimide resin of the present invention having excellent heat resistance can be used in various applications at a process of 170 ° C. or lower.
The content of the rubber-modified polyimide in the polyimide resin solution is usually 5 to 90% by mass, preferably 10 to 80% by mass.

本発明のゴム変性ポリイミド樹脂が末端に反応性の置換基(例えばアミノ基やカルボキシル基)を有する場合は、該ポリイミド樹脂と反応し得る化合物を併用したポリイミド樹脂組成物として用いることが出来る。尚、本発明のゴム変性ポリイミド樹脂の末端がアミノ基又はカルボキシル基と反応し得る化合物で更に変性されている場合であって、かつ該変性部位が反応性の置換基を有している場合においては、該変性部位の反応性の置換基と反応し得る化合物を併用したポリイミド樹脂組成物とすることも出来る。
ゴム変性ポリイミド樹脂と併用し得る化合物は該ポリイミド樹脂が末端(若しくは変性部位)に有する反応性の置換基と反応し得る化合物でありさえすれば特に限定されないが、多官能エポキシ樹脂を併用することが好ましい。ゴム変性ポリイミド樹脂が末端(若しくは変性部位)に有する反応性の置換基を多官能エポキシ樹脂と反応させることにより、硬化物の機械強度や耐溶剤溶解性等が向上する効果が期待出来る。
ポリイミド樹脂組成物においてゴム変性ポリイミド樹脂と併用し得る多官能エポキシ樹脂としては芳香族環を有する含むものが好ましい。より具体的には、ベンゼン環、ビフェニル環又はナフタレン環のような芳香族環を有し、かつ1分子中にエポキシ基を二個以上有するエポキシ樹脂が好ましい。前記の条件を満たす多官能エポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。
When the rubber-modified polyimide resin of the present invention has a reactive substituent (for example, amino group or carboxyl group) at the terminal, it can be used as a polyimide resin composition in which a compound capable of reacting with the polyimide resin is used in combination. In the case where the end of the rubber-modified polyimide resin of the present invention is further modified with a compound capable of reacting with an amino group or a carboxyl group, and the modified site has a reactive substituent. Can also be used as a polyimide resin composition in combination with a compound capable of reacting with the reactive substituent at the modified site.
The compound that can be used in combination with the rubber-modified polyimide resin is not particularly limited as long as it is a compound that can react with a reactive substituent at the terminal (or modified site), but a polyfunctional epoxy resin should be used in combination. Is preferred. By reacting the reactive substituent which the rubber-modified polyimide resin has at the terminal (or modified site) with the polyfunctional epoxy resin, the effect of improving the mechanical strength and solvent resistance of the cured product can be expected.
The polyfunctional epoxy resin that can be used in combination with the rubber-modified polyimide resin in the polyimide resin composition is preferably one containing an aromatic ring. More specifically, an epoxy resin having an aromatic ring such as a benzene ring, a biphenyl ring or a naphthalene ring and having two or more epoxy groups in one molecule is preferable. Specific examples of the polyfunctional epoxy resin satisfying the above conditions include novolak type epoxy resin, xylylene skeleton-containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetra Examples thereof include, but are not limited to, methyl biphenol type epoxy resins.

ポリイミド樹脂組成物におけるゴム変性ポリイミド樹脂と反応し得る化合物の使用量は特に限定されないが、通常はゴム変性ポリイミド樹脂が末端(若しくは変性部位)に有する反応性の置換基とゴム変性ポリイミド樹脂と反応し得る化合物の有する反応性基が等当量乃至どちらかが小過剰当量程度である。   The amount of the compound capable of reacting with the rubber-modified polyimide resin in the polyimide resin composition is not particularly limited, but usually the reactive group that the rubber-modified polyimide resin has at the terminal (or modified site) reacts with the rubber-modified polyimide resin. The reactive group possessed by the compound which can be used is equivalent to one or a small excess equivalent.

ポリイミド樹脂組成物に硬化促進剤を用いることは、架橋反応を速やかに行う上で好ましい。
例えばエポキシ樹脂を併用する場合の硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール及び1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。
例えばエポキシ樹脂を併用する場合、硬化促進剤はエポキシ樹脂100質量部に対して好ましくは10質量部以下、より好ましくは0.1乃至5.0質量部が必要に応じ用いられる。
It is preferable to use a curing accelerator in the polyimide resin composition in order to quickly carry out a crosslinking reaction.
For example, specific examples of the curing accelerator in the case of using an epoxy resin together include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl. Imidazoles such as -4-methyl-5-hydroxymethylimidazole, tertiary amines such as 2- (dimethylaminomethyl) phenol and 1,8-diaza-bicyclo (5,4,0) undecene-7 And phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
For example, when an epoxy resin is used in combination, the curing accelerator is preferably 10 parts by mass or less, more preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the epoxy resin as necessary.

ポリイミド樹脂組成物には有機溶剤を併用してもよい。
併用し得る有機溶剤は特に限定されず、例えば上記したポリイミド樹脂溶液に用い得る有機溶剤と同じものが挙げられるが、沸点が140℃以下の有機溶剤を併用することが好ましく。沸点が110℃以下の有機溶剤を併用することがより好ましい。
ポリイミド樹脂組成物における有機溶剤の含有量は、ポリイミド樹脂組成物中に好ましくは90質量%以下、より好ましくは10乃至80質量%である。
An organic solvent may be used in combination with the polyimide resin composition.
The organic solvent that can be used in combination is not particularly limited, and examples thereof include the same organic solvents that can be used in the above-described polyimide resin solution. However, it is preferable to use an organic solvent having a boiling point of 140 ° C. or lower. More preferably, an organic solvent having a boiling point of 110 ° C. or lower is used in combination.
The content of the organic solvent in the polyimide resin composition is preferably 90% by mass or less, more preferably 10 to 80% by mass in the polyimide resin composition.

本発明のゴム変性ポリイミド樹脂又はポリイミド樹脂組成物の均質な塗膜またはフイルムは、例えば、前述の本発明のポリイミド樹脂溶液又は有機溶剤を含むポリイミド樹脂組成物をガラス等の基板にスピンコーター、アプリケーター等を用いて湿式被覆し、空気、窒素またはアルゴン等の乾燥気体中で加熱することにより溶剤を蒸発させた後、ポリイミド樹脂組成物を用いた場合は更に加熱硬化施した後に、基板から剥離させることで得られる。こうして得られる均質膜の厚さは5μm乃至1mmであることが好ましく、10乃至200μmであることがより好ましい。   The homogenous coating film or film of the rubber-modified polyimide resin or polyimide resin composition of the present invention can be obtained, for example, by applying the polyimide resin solution or the polyimide resin composition containing the organic solvent of the present invention to a substrate such as glass on a spin coater or applicator. Etc., and after evaporating the solvent by heating in a dry gas such as air, nitrogen or argon, if a polyimide resin composition is used, it is further cured by heating and then peeled off from the substrate. Can be obtained. The thickness of the homogeneous film thus obtained is preferably 5 μm to 1 mm, and more preferably 10 to 200 μm.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例中の記載における「部」は質量部を意味する。
尚、実施例における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、NMP溶媒に0.5Mの濃度の臭化リチウムを加えた溶媒を用いて分子量を測定し、標準ポリスチレンで作成した検量線から算出した値である。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. In addition, “parts” in the description in the examples means parts by mass.
In addition, the weight average molecular weight in an Example measured the molecular weight using the solvent which added the lithium bromide of the density | concentration of 0.5M to the NMP solvent by the gel permeation chromatography (GPC) method, and created it with standard polystyrene. This is a value calculated from a calibration curve.

実施例1(本発明のゴム変性ポリイミド樹脂の合成)
温度計、環流冷却器、ディーンスターク管、滴下ロート、窒素導入装置及び攪拌装置のついたガラス製反応器に、APB−N(1,3−ビス(3−アミノフェノキシ)ベンゼン、三井化学製、分子量292.33)5.85部及びODPA(3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、マナック製、分子量310.22)5.96部を仕込み、乾燥窒素を流しながらN−メチル−2−ピロリドン135部、トルエン10部及びピリジン1部を加えて撹拌した。反応で生成する水を除去しながら180℃で2時間反応させた後、乾燥窒素の流量を増やして系内のトルエンをディーンスターク管から抜出した。反応器内を95℃まで冷却した後、同温度で撹拌を継続しながら亜リン酸トリフェニル10部及びピリジン5部を加え、次いでカルボキシル末端ブタジエン・アクリロニトリル共重合体(HYPRO CTBN 1300×8 CVCサーモセットスペシャリスト製 カルボキシル当量=0.052EPHR、ガラス転移点:−52℃)12部をN−メチル−2−ピロリドン12部に溶解させた溶液全量を30分間で滴下した。滴下終了後さらに95℃で2時間反応させて芳香族ポリイミド樹脂と脂肪族樹脂のブロック共重合体(本発明のゴム変性ポリイミド樹脂)を含む溶液を得た。
この反応液を室温まで冷却した後、メタノール50部で希釈してからイオン交換水500部に滴下し、析出した紛体を濾取した。この紛体をイオン交換水で煮出してから濾取することを4回繰り返した後、70℃のオーブンで乾燥させて本発明のゴム変性ポリイミド樹脂(ポリイミド樹脂1)の粉末を19.3部得た。この樹脂粉末の重量平均分子量は52,200であった。
Example 1 (Synthesis of rubber-modified polyimide resin of the present invention)
To a glass reactor equipped with a thermometer, a reflux condenser, a Dean-Stark tube, a dropping funnel, a nitrogen introducing device and a stirring device, APB-N (1,3-bis (3-aminophenoxy) benzene, manufactured by Mitsui Chemicals, While charging 5.85 parts of molecular weight 292.33) and 5.96 parts of ODPA (3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, Manac, molecular weight 310.22), flowing dry nitrogen 135 parts of N-methyl-2-pyrrolidone, 10 parts of toluene and 1 part of pyridine were added and stirred. The reaction was carried out at 180 ° C. for 2 hours while removing water produced by the reaction, and then the flow rate of dry nitrogen was increased and toluene in the system was extracted from the Dean-Stark tube. After the reactor was cooled to 95 ° C., 10 parts of triphenyl phosphite and 5 parts of pyridine were added while continuing stirring at the same temperature, and then a carboxyl-terminated butadiene-acrylonitrile copolymer (HYPRO CTBN 1300 × 8 CVC thermo). The total amount of a solution obtained by dissolving 12 parts of N-methyl-2-pyrrolidone in 12 parts of N-methyl-2-pyrrolidone was added dropwise over 30 minutes. After completion of dropping, the reaction was further carried out at 95 ° C. for 2 hours to obtain a solution containing a block copolymer of an aromatic polyimide resin and an aliphatic resin (rubber-modified polyimide resin of the present invention).
After cooling this reaction liquid to room temperature, it was diluted with 50 parts of methanol and then added dropwise to 500 parts of ion-exchanged water, and the precipitated powder was collected by filtration. The powder was boiled with ion-exchanged water and filtered four times, and then dried in an oven at 70 ° C. to obtain 19.3 parts of powder of the rubber-modified polyimide resin (polyimide resin 1) of the present invention. . The weight average molecular weight of this resin powder was 52,200.

実施例2(本発明のゴム変性ポリイミド樹脂の合成)
温度計、環流冷却器、ディーンスターク管、滴下ロート、窒素導入装置及び攪拌装置のついたガラス製反応器に、APB−N(1,3−ビス(3−アミノフェノキシ)ベンゼン、三井化学製、分子量292.33)5.85部及びODPA(3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、マナック製、分子量310.22)5.74部を仕込み、乾燥窒素を流しながらN−メチル−2−ピロリドン134部、トルエン10部及びピリジン1部を加えて撹拌した。反応で生成する水を除去しながら180℃で2時間反応させた後、乾燥窒素の流量を増やくして系内のトルエンをディーンスターク管から抜出した。反応器内を95℃まで冷却した後、同温度で撹拌を継続しながら亜リン酸トリフェニル10部及びピリジン5部を加え、次いでカルボキシル末端ブタジエン・アクリロニトリル共重合体(HYPRO CTBN 1300×8 CVCサーモセットスペシャリスト製 カルボキシル当量=0.052EPHR、ガラス転移点:−52℃)12部をN−メチル−2−ピロリドン12部に溶解させた溶液全量を30分間で滴下した。滴下終了後さらに95℃で2時間反応させて芳香族ポリイミド樹脂と脂肪族樹脂のブロック共重合体(本発明のゴム変性ポリイミド樹脂)を含む溶液を得た。
この反応液を室温まで冷却した後、メタノール50部で希釈してからイオン交換水500部に滴下し、析出した紛体を濾取した。この紛体をイオン交換水で煮出してから濾取することを4回繰り返した後、70℃のオーブンで乾燥させて本発明のゴム変性ポリイミド樹脂(ポリイミド樹脂2)の粉末を21.1部得た。この樹脂粉末の重量平均分子量は47,800であった。
Example 2 (Synthesis of rubber-modified polyimide resin of the present invention)
To a glass reactor equipped with a thermometer, a reflux condenser, a Dean-Stark tube, a dropping funnel, a nitrogen introducing device and a stirring device, APB-N (1,3-bis (3-aminophenoxy) benzene, manufactured by Mitsui Chemicals, While charging 5.85 parts of molecular weight 292.33) and 5.74 parts of ODPA (3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, Manac, molecular weight 310.22), flowing dry nitrogen 134 parts of N-methyl-2-pyrrolidone, 10 parts of toluene and 1 part of pyridine were added and stirred. The reaction was carried out at 180 ° C. for 2 hours while removing water produced by the reaction, and then the flow rate of dry nitrogen was increased, and toluene in the system was extracted from the Dean-Stark tube. After the reactor was cooled to 95 ° C., 10 parts of triphenyl phosphite and 5 parts of pyridine were added while continuing stirring at the same temperature, and then a carboxyl-terminated butadiene-acrylonitrile copolymer (HYPRO CTBN 1300 × 8 CVC thermo). The total amount of a solution obtained by dissolving 12 parts of N-methyl-2-pyrrolidone in 12 parts of N-methyl-2-pyrrolidone was added dropwise over 30 minutes. After completion of dropping, the reaction was further carried out at 95 ° C. for 2 hours to obtain a solution containing a block copolymer of an aromatic polyimide resin and an aliphatic resin (rubber-modified polyimide resin of the present invention).
After cooling this reaction liquid to room temperature, it was diluted with 50 parts of methanol and then added dropwise to 500 parts of ion-exchanged water, and the precipitated powder was collected by filtration. The powder was boiled with ion-exchanged water and filtered four times, and then dried in an oven at 70 ° C. to obtain 21.1 parts of powder of rubber-modified polyimide resin (polyimide resin 2) of the present invention. . The weight average molecular weight of this resin powder was 47,800.

比較例1(比較用のポリイミド樹脂の合成)
温度計、環流冷却器、ディーンスターク管、滴下ロート、窒素導入装置及び攪拌装置のついたガラス製反応器に、APB−N(1,3−ビス(3−アミノフェノキシ)ベンゼン、三井化学製、分子量292.3)302.23部及びABPS(3,3’−ジアミノ−4,4’−ヒドロキシ−ジフェニルスルホン、日本化薬製、分子量280.3)4.97部、N−メチル−2−ピロリドン(NMP)1296部を仕込み、70℃で撹拌して溶解した後、ODPA(3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、マナック製、分子量310.22)313.7部を仕込み、乾燥窒素を流しながらNMP68.2部、トルエン198部及びピリジン16部を加えて撹拌した。反応で生成する水を除去しながら180℃で2時間反応させた後、乾燥窒素の流量を増やして系内のトルエンをディーンスターク管から抜出した。減圧して溶剤回収して固形分28%のポリイミド樹脂溶液を得た。このポリイミド樹脂溶液15部をN,N−ジメチルホルムアミドとアセトンで希釈した後、イオン交換水に滴下することによって粉状の樹脂を析出させた。析出した紛体を濾取し、イオン交換水で煮出してから濾取することを4回繰り返した後、70℃のオーブンで乾燥させて比較用のポリイミド樹脂(ポリイミド樹脂3)の粉末4部を得た。この樹脂粉末の重量平均分子量は58,800であった。
Comparative Example 1 (Synthesis of polyimide resin for comparison)
To a glass reactor equipped with a thermometer, a reflux condenser, a Dean-Stark tube, a dropping funnel, a nitrogen introducing device and a stirring device, APB-N (1,3-bis (3-aminophenoxy) benzene, manufactured by Mitsui Chemicals, Molecular weight 292.3) 302.23 parts and ABPS (3,3'-diamino-4,4'-hydroxy-diphenylsulfone, Nippon Kayaku, molecular weight 280.3) 4.97 parts, N-methyl-2- After charging 1296 parts of pyrrolidone (NMP), stirring and dissolving at 70 ° C., ODPA (3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, Manac, molecular weight 310.22) 313.7 Then, 68.2 parts of NMP, 198 parts of toluene and 16 parts of pyridine were added and stirred while flowing dry nitrogen. The reaction was carried out at 180 ° C. for 2 hours while removing the water produced by the reaction, and then the flow rate of dry nitrogen was increased to extract toluene in the system from the Dean-Stark tube. The solvent was recovered under reduced pressure to obtain a polyimide resin solution having a solid content of 28%. After diluting 15 parts of this polyimide resin solution with N, N-dimethylformamide and acetone, it was dropped into ion exchange water to precipitate a powdery resin. The precipitated powder was collected by filtration, boiled with ion-exchanged water and then filtered four times, followed by drying in an oven at 70 ° C. to obtain 4 parts of a comparative polyimide resin (polyimide resin 3) powder. It was. The weight average molecular weight of this resin powder was 58,800.

比較例2(比較用のゴム変性アラミド樹脂の合成)
温度計、環流冷却器、ディーンスターク管、滴下ロート、窒素導入装置及び攪拌装置のついたガラス製反応器に、3,4’−ODA(3,4’−オキシジアニリン、セイカ製、分子量200.24)79.8部、イソフタル酸50.6部、及び5−ヒドロキシイソフタル酸9.3部、塩化リチウム7.6部を仕込み、乾燥窒素を流しながらN−メチル−2−ピロリドン(NMP)897部及びピリジン90部を加えて撹拌した。95℃で溶解させた後、亜リン酸トリフェニル195部を滴下で仕込んで95℃で2時間撹拌した。
次に、反応器を95℃に保ち、カルボキシル末端ブタジエン・アクリロニトリル共重合体(HYPRO CTBN 1300X8 CVCサーモセットスペシャリスト製 カルボキシル当量=0.052EPHR)126部をNMP126部に溶解させた溶液全量を1時間で滴下し、さらに2時間撹拌した。
その後、反応器内を70℃以下に冷却し、イオン交換水を滴下して粉状の樹脂を析出させた。析出した紛体を濾取し、イオン交換水で煮出してから濾取することを4回繰り返した後、70℃のオーブンで乾燥させて比較用のアラミド樹脂(アラミド樹脂1)の粉末を246部得た。この樹脂粉末の重量平均分子量は96,700であった。
Comparative Example 2 (Synthesis of rubber-modified aramid resin for comparison)
A glass reactor equipped with a thermometer, a reflux condenser, a Dean-Stark tube, a dropping funnel, a nitrogen introducing device, and a stirring device was added to 3,4′-ODA (3,4′-oxydianiline, Seika, molecular weight 200). .24) 79.8 parts, 50.6 parts of isophthalic acid, 9.3 parts of 5-hydroxyisophthalic acid, and 7.6 parts of lithium chloride, and N-methyl-2-pyrrolidone (NMP) while flowing dry nitrogen 897 parts and 90 parts of pyridine were added and stirred. After dissolving at 95 ° C., 195 parts of triphenyl phosphite was added dropwise and stirred at 95 ° C. for 2 hours.
Next, the reactor was kept at 95 ° C., and a total amount of a solution in which 126 parts of a carboxyl-terminated butadiene / acrylonitrile copolymer (carboxyl equivalent = 0.052EPHR manufactured by HYPRO CTBN 1300X8 CVC Thermoset Specialist) was dissolved in 126 parts of NMP in 1 hour. The solution was added dropwise and stirred for another 2 hours.
Thereafter, the inside of the reactor was cooled to 70 ° C. or lower, and ion-exchanged water was dropped to deposit a powdery resin. The precipitated powder was collected by filtration, boiled with ion-exchanged water and then filtered four times, and then dried in an oven at 70 ° C. to obtain 246 parts of a comparative aramid resin (aramid resin 1) powder. It was. The weight average molecular weight of this resin powder was 96,700.

比較例3(比較用のアラミド樹脂の合成)
温度計、環流冷却器、ディーンスターク管、滴下ロート、窒素導入装置及び攪拌装置のついたガラス製反応器に、3,4’−ODA(3,4’−オキシジアニリン、セイカ製、分子量200.24)163.4部、イソフタル酸130.25部、及び5−ヒドロキシイソフタル酸2.91部を仕込み、乾燥窒素を流しながらN−メチル−2−ピロリドン(NMP)439部及びピリジン94.5部を加えて撹拌した。90℃で溶解させた後、亜リン酸トリフェニル409.6部を滴下で仕込んで90℃で6時間撹拌した。
この反応液にイオン交換水を滴下して樹脂を析出させて排水する洗浄を7回繰り返した後、γ−ブチロラクトン800部で希釈して減圧脱水することで固形分27%のアラミド樹脂溶液を720部得た。このアラミド樹脂溶液15部をN,N−ジメチルホルムアミドとアセトンで希釈した後、イオン交換水に滴下することによって粉状の樹脂を析出させた。析出した紛体を濾取し、イオン交換水で煮出してから濾取することを4回繰り返した後、70℃のオーブンで乾燥させて比較用のアラミド樹脂(アラミド樹脂2)の粉末4部を得た。この溶液中に含まれる樹脂の重量平均分子量は94,900であった。
Comparative Example 3 (synthesis of comparative aramid resin)
A glass reactor equipped with a thermometer, a reflux condenser, a Dean-Stark tube, a dropping funnel, a nitrogen introducing device, and a stirring device was added to 3,4′-ODA (3,4′-oxydianiline, Seika, molecular weight 200). .24) 163.4 parts, 130.25 parts isophthalic acid, and 2.91 parts 5-hydroxyisophthalic acid, 439 parts N-methyl-2-pyrrolidone (NMP) and 94.5 pyridine while flowing dry nitrogen Part was added and stirred. After dissolving at 90 ° C., 409.6 parts of triphenyl phosphite was added dropwise and stirred at 90 ° C. for 6 hours.
The reaction solution was dropped seven times with ion-exchanged water and the resin was precipitated and drained, and then diluted with 800 parts of γ-butyrolactone and dehydrated under reduced pressure to give 720 aramid resin solution having a solid content of 27%. I got a part. After diluting 15 parts of this aramid resin solution with N, N-dimethylformamide and acetone, the resin in a powder form was precipitated by adding dropwise to ion exchange water. The precipitated powder was collected by filtration, boiled with ion-exchanged water and then filtered four times, and then dried in an oven at 70 ° C. to obtain 4 parts of a comparative aramid resin (aramid resin 2) powder. It was. The weight average molecular weight of the resin contained in this solution was 94,900.

実施例3、4及び比較例4乃至6
(溶解性試験)
実施例1、2及び比較例1乃至3で得られた各樹脂と樹脂濃度が5質量%となる量の表1に記載した各有機溶剤をフタ付のガラス瓶に量りこみ、TUBE MIXER TRIO TM−1F(アズワン製)を用いて5分間振り混ぜてから70℃オーブンで3時間加熱処理した後の外観を目視により観察し、以下の評価基準で各樹脂の有機溶剤に対する溶解性を評価した。結果を表1に示した。
・評価基準
1;透明な均一溶液、流動性あり
2;不透明な均一溶液、流動性あり
3;膨潤した樹脂と溶剤が分離、樹脂の流動性あり
4;膨潤した樹脂と溶剤が分離、樹脂の流動性なし
5;膨潤していない樹脂と溶剤が分離、樹脂の流動性なし
Examples 3 and 4 and Comparative Examples 4 to 6
(Solubility test)
Each resin obtained in Examples 1 and 2 and Comparative Examples 1 to 3 and each organic solvent described in Table 1 in an amount such that the resin concentration is 5% by mass are weighed into a glass bottle with a lid, and TUBE MIXER TRIO TM- Using 1F (manufactured by ASONE), after 5 minutes of shaking, the appearance after heat treatment in a 70 ° C. oven for 3 hours was visually observed, and the solubility of each resin in an organic solvent was evaluated according to the following evaluation criteria. The results are shown in Table 1.
Evaluation criteria 1; Transparent uniform solution, fluidity 2; Opaque uniform solution, fluidity 3; Swelled resin and solvent separated, resin fluidity 4; Swelled resin and solvent separated, resin No fluidity 5; Non-swelled resin and solvent separated, no resin fluidity

(耐熱性評価)
実施例1、2及び比較例1乃至3で得られた各樹脂をシクロペンタノンに溶解して樹脂濃度30質量%の各樹脂溶液を調製し、離形PETフイルムに塗布した後、130℃のオーブンで10分間乾燥した。離形PETフイルムから樹脂膜を剥がし取って金枠に固定し、再度170℃のイナートオーブンで30分間乾燥することにより、厚さ10乃至30μmの各樹脂膜を得た。
得られた各樹脂膜から20mm×5mm×15μmの試験片を切り出し、動的粘弾性測定装置(DMA)を用いて、引張りモード、チャック間距離10mm、測定温度25乃至280℃、昇温速度5℃/分、測定周波数1Hzの条件でガラス転移点を測定した。結果を表1に示した。
(Heat resistance evaluation)
Each resin obtained in Examples 1 and 2 and Comparative Examples 1 to 3 was dissolved in cyclopentanone to prepare each resin solution having a resin concentration of 30% by mass, and applied to a release PET film. Dry in oven for 10 minutes. The resin film was peeled off from the release PET film, fixed to a metal frame, and dried again in an inert oven at 170 ° C. for 30 minutes to obtain each resin film having a thickness of 10 to 30 μm.
A test piece of 20 mm × 5 mm × 15 μm was cut out from each of the obtained resin films, and using a dynamic viscoelasticity measuring device (DMA), a tensile mode, a distance between chucks of 10 mm, a measurement temperature of 25 to 280 ° C., and a heating rate of 5 The glass transition point was measured under the conditions of ° C / min and a measurement frequency of 1 Hz. The results are shown in Table 1.

Figure 2019156862
Figure 2019156862

溶解性試験の評価結果が1又は2の溶解性であれば、流動性がある均一溶液であるため、そのままフイルムとしたり、コーティング処理に用いたりすることができるため様々な用途に応用可能である。   If the evaluation result of the solubility test is 1 or 2, it is a fluid uniform solution, so it can be used as a film as it is or in a coating process, so it can be applied to various applications. .

本発明のゴム変性ポリイミド樹脂は、ガラス転移点が170℃以上という高い耐熱性を有しながら、メチルエチルケトンやトルエン等の沸点の低い溶剤に可溶である。従って該ポリイミド樹脂の低沸点溶剤溶液は、170℃以下の低温処理プロセスで様々な用途に利用可能である。


The rubber-modified polyimide resin of the present invention is soluble in a solvent having a low boiling point such as methyl ethyl ketone and toluene while having a high heat resistance with a glass transition point of 170 ° C. or higher. Therefore, the low boiling point solvent solution of the polyimide resin can be used for various applications in a low temperature treatment process of 170 ° C. or lower.


Claims (5)

下記式(1)
Figure 2019156862
(式(1)中、m及びnは平均繰り返し数であって、0<m≦200及び0<n≦200の関係を満たす正数を表す。Qはそれぞれ独立に二価の芳香族基を、Qはそれぞれ独立に四価の芳香族基を、Rはそれぞれ独立に二価の脂肪族基を表す。)で表される繰り返し単位を有するゴム変性ポリイミド樹脂。
Following formula (1)
Figure 2019156862
(In the formula (1), m and n are average repeat numbers and represent positive numbers satisfying the relationship of 0 <m ≦ 200 and 0 <n ≦ 200. Q 1 is independently a divalent aromatic group. Wherein Q 2 is independently a tetravalent aromatic group, and R is each independently a divalent aliphatic group.) A rubber-modified polyimide resin having a repeating unit represented by:
下記式(1−1)又は(1−2)
Figure 2019156862
Figure 2019156862
(式(1−1)及び式(1−2)中、m、n、Q、Q及びRは請求項1に記載の式(1)におけるm、n、Q、Q及びRと同じ意味を表す。)で表される請求項1に記載のゴム変性ポリイミド樹脂。
Following formula (1-1) or (1-2)
Figure 2019156862
Figure 2019156862
(In the formula (1-1) and the formula (1-2), m, n, Q 1, Q 2 and R m in the formula (1) according to claim 1, n, Q 1, Q 2 and R The rubber-modified polyimide resin according to claim 1, which has the same meaning as
請求項1又は2に記載のゴム変性ポリイミド樹脂と有機溶剤を含むポリイミド樹脂溶液。 A polyimide resin solution comprising the rubber-modified polyimide resin according to claim 1 or 2 and an organic solvent. 沸点が140℃以下の有機溶剤を含む請求項3に記載のポリイミド樹脂溶液。 The polyimide resin solution according to claim 3, comprising an organic solvent having a boiling point of 140 ° C. or lower. 有機溶剤が、メチルエチルケトン又はトルエンの少なくとも一方を含む請求項4に記載のポリイミド樹脂溶液。


The polyimide resin solution according to claim 4, wherein the organic solvent contains at least one of methyl ethyl ketone and toluene.


JP2018040271A 2018-03-07 2018-03-07 Rubber modified polyimide resin and polyimide resin solution Pending JP2019156862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040271A JP2019156862A (en) 2018-03-07 2018-03-07 Rubber modified polyimide resin and polyimide resin solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040271A JP2019156862A (en) 2018-03-07 2018-03-07 Rubber modified polyimide resin and polyimide resin solution

Publications (1)

Publication Number Publication Date
JP2019156862A true JP2019156862A (en) 2019-09-19

Family

ID=67995758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040271A Pending JP2019156862A (en) 2018-03-07 2018-03-07 Rubber modified polyimide resin and polyimide resin solution

Country Status (1)

Country Link
JP (1) JP2019156862A (en)

Similar Documents

Publication Publication Date Title
JP5845911B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
WO2015083649A1 (en) Method for producing polyimide, and polyimide obtained using such production method
TW201026783A (en) Solvent-free polyimide silicone resin composition and cured product thereof
JP7203082B2 (en) Polyimide precursor resin composition
US20180105648A1 (en) Polyamide acid composition and polyimide composition
JP5985977B2 (en) Polyimide resin solution
WO2016148150A1 (en) Novel tetracarboxylic dianhydride, and polyimide and polyimide copolymer obtained from said acid dianhydride
JP2012251080A (en) Novel polyimide and its use
JP6496263B2 (en) Novel tetracarboxylic dianhydride and polyimide obtained from the acid dianhydride
JPH01121A (en) Polyimide resin composition and its manufacturing method
TWI432487B (en) Flammable polyimide silicone resin composition
CN105295374A (en) Polyimide precursor composition, method for preparing polyimide precursor, polyimide molded article, and method for preparing polyimide molded article
JP2009263654A (en) Polyimide, polyimide film, and methods for producing the same
JP6724992B2 (en) Polyimide block copolymer and polyimide film containing the same
JP4994672B2 (en) Aromatic polyamic acid and aromatic polyimide
JP2019156862A (en) Rubber modified polyimide resin and polyimide resin solution
Zhou et al. Preparation and Properties of Low Internal Stress Polyimide-b-Polysiloxane with a Hyperbranched Structure
JP5941429B2 (en) Polyamic acid and polyimide
JP2004315699A (en) Polyamide-imide resin, method for producing the same, polyamide-imide resin composition and film-forming material
JP3855327B2 (en) Polyimide coating material
JP2004315815A (en) Polyamic acid and soluble polyimide
JP5352527B2 (en) Novel polyimide and method for producing the same
JP6765093B2 (en) Polyimide
JPH0562893B2 (en)
JPH07242821A (en) Resin composition improved in physical property at high temperature