JP2019156738A - Production method of (meth)acrylic acid ester - Google Patents

Production method of (meth)acrylic acid ester Download PDF

Info

Publication number
JP2019156738A
JP2019156738A JP2018043133A JP2018043133A JP2019156738A JP 2019156738 A JP2019156738 A JP 2019156738A JP 2018043133 A JP2018043133 A JP 2018043133A JP 2018043133 A JP2018043133 A JP 2018043133A JP 2019156738 A JP2019156738 A JP 2019156738A
Authority
JP
Japan
Prior art keywords
heavy
meth
acrylic acid
decomposer
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018043133A
Other languages
Japanese (ja)
Inventor
大作 兼子
Daisaku Kaneko
大作 兼子
寧之 小川
Yasuyuki Ogawa
寧之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018043133A priority Critical patent/JP2019156738A/en
Publication of JP2019156738A publication Critical patent/JP2019156738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a method of producing (meth)acrylic acid ester stably and efficiently over a long term by separating (meth)acrylic acid ester and a heavy component from an esterification reaction liquid containing (meth)acrylic acid ester obtained by reacting (meth)acrylic acid and alcohol under the presence of an acid catalyst, by preventing formation of an origin of contamination at an operation start time of a heavy decomposer that recovers valuable matters by decomposing and causing an esterification reaction of the heavy component, and by effectively reflecting condition adjustment for contamination/closure during an operation thereafter.SOLUTION: When recovering valuable matters containing (meth)acrylic acid ester and alcohol by decomposing, and making esterification reaction by introducing a mixed liquid of the heavy component and an acid catalyst-containing liquid in the heavy decomposer, introduction of the heavy component into the heavy decomposer is started, and after an internal temperature has reached 80°C or higher by heating, the acid catalyst solution is supplied to the heavy decomposer.SELECTED DRAWING: Figure 1

Description

本発明は(メタ)アクリル酸エステルの製造方法に係り、特に、(メタ)アクリル酸とアルコールとを酸触媒の存在下に反応させて得られた(メタ)アクリル酸エステルを含むエステル化反応液から(メタ)アクリル酸エステルと重質分とを分離し、この重質分を重質分解器に送給して分解、エステル化反応させて有価物を回収するに当たり、重質分解器の運転開始時の汚れの起点の形成を防止し、その後の運転中における汚れ・閉塞防止のための条件調整を有効に反映させて、長期に亘り安定かつ効率的に(メタ)アクリル酸エステルを製造する方法に関する。   The present invention relates to a method for producing (meth) acrylic acid ester, and in particular, an esterification reaction liquid containing (meth) acrylic acid ester obtained by reacting (meth) acrylic acid and alcohol in the presence of an acid catalyst. The (meth) acrylic acid ester is separated from the heavy component, and the heavy component is sent to the heavy cracker for decomposition and esterification to recover valuable materials. (Meth) acrylic acid ester is produced stably and efficiently over a long period of time by preventing the formation of the starting point of dirt at the start and effectively reflecting the adjustment of conditions for preventing dirt and blockage during the subsequent operation. Regarding the method.

なお、本明細書において、(メタ)アクリル酸はアクリル酸とメタクリル酸との総称であり、そのいずれか一方でもよく双方でもよい。   In the present specification, (meth) acrylic acid is a general term for acrylic acid and methacrylic acid, and either one or both of them may be used.

(メタ)アクリル酸エステルは重合性を有する化合物であって、得られる重合体に優れた特性を付与することができることから、種々の用途、例えば塗料、接着剤、粘着剤、合成樹脂、繊維などの原料として幅広く用いられている。   (Meth) acrylic acid ester is a compound having polymerizability, and can give excellent properties to the resulting polymer, so that it can be used in various applications such as paints, adhesives, pressure-sensitive adhesives, synthetic resins, fibers, etc. It is widely used as a raw material.

(メタ)アクリル酸エステルの製造方法としては、酸触媒の存在下、(メタ)アクリル酸とアルコールとをエステル化反応させる方法が一般に広く用いられている。更に、得られたエステル化反応液から酸触媒及び未反応の(メタ)アクリル酸を除去するために、水で抽出後、アルカリ水溶液で処理し、その後、(メタ)アクリル酸エステルを含有する油層(有機層)と、このような洗浄、中和処理で生じる水及び中和塩を含有する水層とを静置槽で静置分離することが一般的に行われている(例えば特許文献1)。   As a method for producing (meth) acrylic acid ester, a method in which (meth) acrylic acid and an alcohol are esterified in the presence of an acid catalyst is generally widely used. Further, in order to remove the acid catalyst and unreacted (meth) acrylic acid from the obtained esterification reaction solution, the oil layer is extracted with water and then treated with an alkaline aqueous solution, and then contains (meth) acrylic acid ester. In general, the organic layer is separated from the aqueous layer containing water and neutralized salt generated by such washing and neutralization treatment in a stationary tank (for example, Patent Document 1). ).

図1は、従来の一般的なアクリル酸エステルの製造プロセスを示す系統図であって、アクリル酸、アルコールは、酸触媒の存在下、エステル化反応器1を経てエステル化反応し、エステル化反応で生成する水は、エステル化反応器1から系外へ排出される。エステル化反応液は、抽出塔(触媒回収塔)2で水と向流接触して酸触媒が抽出分離、回収され、回収された触媒の一部はエステル化反応器1へ循環されて再利用される。残部は後段の重質分解器7に送給され、重質分解器7における重質分の分解・回収に使用されることもある。抽出塔2からの反応液は、中和洗浄塔3でアルカリ水溶液が添加されて中和される。別途水を供給して洗浄される場合もある。中和洗浄塔3からの中和・洗浄処理液は、静置槽4で油水分離され、水相は系外へ排出され、油相は次の軽沸分離塔5に送給されて未反応のアルコール等の軽沸分が蒸留分離され、塔頂より抜き出される。軽沸分離塔5の塔底液は、次の精製塔6に送給されて重質分が蒸留分離され、製品の高純度アクリル酸エステルが塔頂より取り出される。精製塔6の塔底液は、重質分解器7に送給され、重質分の分解、蒸留でアクリル酸やアクリル酸エステルやアルコールを生成させ、これら有価物は反応器1、抽出塔2、中和洗浄塔3等の上流プロセスに循環される。この重質分解器7の塔底液は廃油として系外へ排出される。なお、図中、7Aは重質分解器7のリボイラーである。   FIG. 1 is a system diagram showing a conventional process for producing a typical acrylate ester. Acrylic acid and alcohol undergo an esterification reaction through an esterification reactor 1 in the presence of an acid catalyst, and an esterification reaction is performed. The water produced in is discharged from the esterification reactor 1 to the outside of the system. The esterification reaction liquid is countercurrently contacted with water in the extraction tower (catalyst recovery tower) 2 to extract, separate and recover the acid catalyst, and a part of the recovered catalyst is recycled to the esterification reactor 1 for reuse. Is done. The remaining portion is fed to the subsequent heavy cracker 7 and may be used for the decomposition and recovery of heavy components in the heavy cracker 7. The reaction solution from the extraction tower 2 is neutralized by adding an alkaline aqueous solution in the neutralization washing tower 3. In some cases, water may be supplied separately for cleaning. The neutralized and washed treatment liquid from the neutralization washing tower 3 is separated into oil and water in the stationary tank 4, the aqueous phase is discharged out of the system, and the oil phase is fed to the next light boiling separation tower 5 and unreacted. The light boiling components such as alcohol are distilled and separated from the top of the column. The bottom liquid of the light boiling separation tower 5 is fed to the next purification tower 6 where the heavy components are separated by distillation, and the high-purity acrylic ester of the product is taken out from the top of the tower. The bottom liquid of the purification tower 6 is fed to the heavy cracker 7, where acrylic acid, acrylic acid ester and alcohol are produced by decomposition and distillation of heavy components. , It is circulated to the upstream process such as the neutralization washing tower 3. The bottom liquid of the heavy cracker 7 is discharged out of the system as waste oil. In the figure, 7A is a reboiler of the heavy cracker 7.

即ち、精製塔6の塔底液には、アクリル酸とアルコールとのエステル化反応工程で副生したアルコキシプロピオン酸アルキル、ヒドロキシプロピオン酸アルキル、マレイン酸アルキル、アクリル酸の二量化物及びそのエステル等の重質分が含まれているため、この塔底液を重質分解器7に送給し、酸触媒溶液を添加してこれらを分解し、また、エステル化反応させると共に蒸留分離して、アルコール、アクリル酸アルキル、アクリル酸等の有価物を回収し、これらを反応器1、抽出塔2、中和洗浄塔3等に循環させる。なお、精製塔6の塔底液には上記成分の他にエステル化反応器1にて供給されたハイドロキノン、ハイドロキノンモノメチルエーテル等のフェノール類、フェノチアジン、ジフェニルアミン等のアミン類、ジブチルジチオカルバミン酸銅、酢酸マンガン等の重金属塩、ニトロソ化合物、ニトロ化合物、テトラメチルピペリジノオキシル誘導体等のアミノキシル類等から選択される1種類以上の重合防止剤が含まれる。また、この重質分解器7には、アクリル酸や製造プロセスのプロセス外抜き出し液(反応開始時の規格外プロセス液、反応停止時のプロセス抜き出し液、アクリル酸分離塔、静置槽の油水界面より抜き出される有機層及び/又は水層のうち有機層のみを分離したもの等)も導入されて処理される場合もある。   That is, the bottom liquid of the purification tower 6 contains alkyl alkoxypropionate, alkyl hydroxypropionate, alkyl maleate, dimerization product of acrylic acid, esters thereof, and the like, which are by-produced in the esterification reaction step of acrylic acid and alcohol. Therefore, the column bottom liquid is fed to the heavy cracker 7 and decomposed by adding an acid catalyst solution. Valuables such as alcohol, alkyl acrylate, and acrylic acid are collected and circulated through the reactor 1, the extraction tower 2, the neutralization washing tower 3, and the like. In addition to the above components, the bottom liquid of the purification tower 6 includes phenols such as hydroquinone and hydroquinone monomethyl ether, amines such as phenothiazine and diphenylamine, copper dibutyldithiocarbamate, acetic acid supplied in the esterification reactor 1. One or more polymerization inhibitors selected from heavy metal salts such as manganese, nitroso compounds, nitro compounds, aminoxyls such as tetramethylpiperidinooxyl derivatives and the like are included. In addition, the heavy decomposer 7 includes acrylic acid and a liquid extracted outside the process of the manufacturing process (a non-standard process liquid at the start of the reaction, a process liquid extracted when the reaction is stopped, an acrylic acid separation tower, and an oil / water interface of the stationary tank. In some cases, an organic layer and / or an aqueous layer from which only the organic layer is separated is also introduced and treated.

図2は、従来の一般的なアクリル酸エステルの製造プロセスを示す別の系統図であって、アクリル酸、アルコールは、固体酸触媒の存在下、エステル化反応器1を経てエステル化反応し、エステル化反応で生成する水は、エステル化反応器1から系外へ排出される。エステル化反応液は、中和洗浄塔3でアルカリ水溶液が添加されて中和される。別途水が供給されて洗浄される場合もある。中和洗浄塔3からの中和・洗浄処理液は、静置槽4で油水分離され、水相は系外へ排出され、油相は次の溶媒回収塔(溶媒分離塔)8に送給されて溶媒が蒸留分離され、その後軽沸分離塔5に送給されて未反応のアルコール等の軽沸分が蒸留分離され、塔頂より抜き出される。軽沸分離塔5の塔底液は、次の精製塔6に送給されて重質分が蒸留分離され、製品の高純度アクリル酸エステルが塔頂より取り出される。精製塔6の塔底液は、重質分解器7に送給され、重質分の分解、蒸留でアクリル酸やアクリル酸エステルやアルコールを生成させ、これら有価物は反応器1、抽出塔2、中和洗浄塔3等の上流プロセスに循環させ、この重質分解器7の塔底液は廃油として系外へ排出される。なお、図中、7Aは重質分解器7のリボイラーである。   FIG. 2 is another system diagram showing a conventional general process for producing an acrylate ester, in which acrylic acid and alcohol undergo an esterification reaction through an esterification reactor 1 in the presence of a solid acid catalyst, Water produced by the esterification reaction is discharged out of the system from the esterification reactor 1. The esterification reaction solution is neutralized by adding an alkaline aqueous solution in the neutralization washing tower 3. In some cases, water may be separately supplied to be washed. The neutralization and washing treatment liquid from the neutralization washing tower 3 is separated into oil and water in the stationary tank 4, the aqueous phase is discharged out of the system, and the oil phase is sent to the next solvent recovery tower (solvent separation tower) 8. Then, the solvent is separated by distillation, and then fed to the light boiling separation column 5 where light boiling components such as unreacted alcohol are distilled and separated from the top of the column. The bottom liquid of the light boiling separation tower 5 is fed to the next purification tower 6 where the heavy components are separated by distillation, and the high-purity acrylic ester of the product is taken out from the top of the tower. The bottom liquid of the purification tower 6 is fed to the heavy cracker 7, where acrylic acid, acrylic acid ester and alcohol are produced by decomposition and distillation of heavy components. Then, it is circulated to an upstream process such as the neutralization washing tower 3, and the bottom liquid of the heavy cracker 7 is discharged out of the system as waste oil. In the figure, 7A is a reboiler of the heavy cracker 7.

即ち、前述の如く、精製塔6の塔底液には、アクリル酸とアルコールとのエステル化反応工程で副生したマレイン酸アルキル、ダイマー酸アルキル、アルコキシプロピオン酸アルキル、ヒドロキシプロピオン酸アルキル等のミカエル付加物が含まれているため、この塔底液を重質分解器7に送給し、系外から酸触媒を添加してこれらを分解し、また、エステル化反応させると共に蒸留分離して、アルコール、アクリル酸アルキル、アクリル酸等の有価物を回収し、これらを反応器1、中和洗浄塔3等に循環させる。なお、精製塔6の塔底液には上記成分の他にエステル化反応器1にて供給されたハイドロキノン、ハイドロキノンモノメチルエーテル等のフェノール類、フェノチアジン、ジフェニルアミン等のアミン類、ジブチルジチオカルバミン酸銅、酢酸マンガン等の重金属塩、ニトロソ化合物、ニトロ化合物、テトラメチルピペリジノオキシル誘導体等のアミノキシル類等から選択される1種類以上の重合防止剤が含まれる。また、この重質分解器7には、前述の如く、アクリル酸や製造プロセスのプロセス外抜き出し液(反応開始時の規格外プロセス液、反応停止時のプロセス抜き出し液、アクリル酸分離塔、静置槽の油水界面より抜き出される有機層及び/又は水層のうち有機層のみを分離したもの等)が導入されて処理される場合もある。   That is, as described above, the bottom liquid of the purification tower 6 includes Michael such as alkyl maleate, alkyl dimer acid, alkyl alkoxypropionate, alkyl hydroxypropionate, etc., which are by-produced in the esterification reaction step of acrylic acid and alcohol. Since the adduct is contained, the bottom liquid is fed to the heavy cracker 7, acid catalysts are added from outside the system to decompose them, and the esterification reaction and distillation separation are performed. Valuables such as alcohol, alkyl acrylate, and acrylic acid are recovered and circulated through the reactor 1, the neutralization washing tower 3, and the like. In addition to the above components, the bottom liquid of the purification tower 6 includes phenols such as hydroquinone and hydroquinone monomethyl ether, amines such as phenothiazine and diphenylamine, copper dibutyldithiocarbamate, acetic acid supplied in the esterification reactor 1. One or more polymerization inhibitors selected from heavy metal salts such as manganese, nitroso compounds, nitro compounds, aminoxyls such as tetramethylpiperidinooxyl derivatives and the like are included. In addition, as described above, the heavy decomposer 7 includes acrylic acid and a liquid extracted from outside the process of the manufacturing process (a non-standard process liquid at the start of the reaction, a process liquid extracted at the time of stopping the reaction, an acrylic acid separation tower, In some cases, an organic layer extracted from the oil / water interface of the tank and / or an aqueous layer separated only from the organic layer) is introduced and treated.

このような(メタ)アクリル酸エステルの製造プロセスでは、重質分を分解して有価物を回収する重質分解器において、(メタ)アクリル酸や(メタ)アクリル酸エステルの重合物、酸触媒由来の析出物等の汚れ原因物質により、付帯される配管の閉塞やリボイラーの伝熱効率低下等の問題が発生し、安定運転の阻害要因となっていた。   In such a (meth) acrylic acid ester production process, in a heavy cracker that decomposes heavy components and recovers valuables, (meth) acrylic acid, (meth) acrylic ester polymer, acid catalyst Contaminant substances such as deposits from the origin caused problems such as blockage of the pipes attached and a decrease in the heat transfer efficiency of the reboiler, which hindered stable operation.

特許文献2には、重質分解器に供給される酸触媒含有液中の酸触媒濃度が28重量%以下で、重質分との混合液中の酸触媒濃度が1〜3重量%となるように運転することで、重質分解器運転中の汚れ原因物質の形成を抑制できることが示されている。
また、特許文献3には、重質分解器内に円周方向の液流動を発生させて配管閉塞の要因となる固形物を堆積させずに抜き出す方法が記載されている。
特許文献4には、軽沸分離塔における蒸留運転トラブルを防止する(メタ)アクリル酸エステルの製造方法として、軽沸分離塔の導入液中のポリマー濃度を、軽沸分離塔の運転期間のうち7割以上の期間において、200ppm以下とする方法や、反応器の昇温速度を全昇温温度の7割以上の温度範囲又は全昇温時間の7割以上の時間において、20℃/hr以下とすることが記載されている。
In Patent Document 2, the acid catalyst concentration in the acid catalyst-containing liquid supplied to the heavy cracker is 28% by weight or less, and the acid catalyst concentration in the liquid mixture with the heavy component is 1 to 3% by weight. It has been shown that by operating in this manner, the formation of soil-causing substances during heavy cracker operation can be suppressed.
Further, Patent Document 3 describes a method in which a liquid flow in the circumferential direction is generated in the heavy decomposer and the solid matter that causes the blockage of the pipe is extracted without being deposited.
In Patent Document 4, as a method for producing a (meth) acrylic acid ester that prevents troubles in distillation operation in a light boiling separation tower, the polymer concentration in the introduction liquid of the light boiling separation tower is set in the operation period of the light boiling separation tower. In a period of 70% or more, a method of 200 ppm or less, or a temperature increase rate of the reactor of 20 ° C./hr or less in a temperature range of 70% or more of the total temperature rise temperature or a time of 70% or more of the total temperature rise time It is described that.

特開2003−231665号公報JP 2003-231665 A 特開2014−162767号公報JP 2014-162767 A 特開2004−43451号公報Japanese Patent Laid-Open No. 2004-43451 特開2014−162763号公報JP 2014-162663 A

しかしながら、重質分解器に付帯される配管や熱交換器では、少量の(メタ)アクリル酸やそのエステルの重合物等が汚れの起点となることで加速度的に重合・析出が進行し、汚れ・閉塞を促進することがあり、そうした状態では、特許文献2〜4に記載の方法で運転中の条件調整を精密に行っても、汚れの進行を止めることは不可能であった。特に、運転開始・停止操作を繰り返すプロセスにおいて、毎回の運転において確実に汚れの進行を防止するためには、従来の運転中の条件調整では不十分であった。   However, in pipes and heat exchangers attached to heavy crackers, a small amount of (meth) acrylic acid or its ester polymer is the starting point of soiling, so that polymerization / precipitation proceeds at an accelerated rate. Occlusion may be promoted, and in such a state, it was impossible to stop the progress of dirt even if the condition adjustment during operation was precisely performed by the methods described in Patent Documents 2 to 4. In particular, in the process of repeating the operation start / stop operation, the conventional condition adjustment during operation is insufficient to reliably prevent the progress of dirt in each operation.

本発明は、(メタ)アクリル酸エステルの製造プロセスにおける重質分解器の運転開始時において、汚れ物質形成を抑制し、運転開始・停止を繰り返す連続プロセスにおいても毎回安定して汚れを抑制することができる(メタ)アクリル酸エステルの製造方法を提供することを課題とする。   The present invention suppresses the formation of dirt substances at the start of operation of the heavy cracker in the production process of (meth) acrylic acid ester, and stably suppresses dirt every time even in a continuous process in which the operation is started and stopped repeatedly. It is an object of the present invention to provide a method for producing a (meth) acrylic acid ester.

本発明者は、上記従来の問題を解決するためには、重質分解器の運転開始時に汚れの起点を形成させないことが重要であること、そのためには、酸触媒溶液を重質分解器内温が所定の温度以上となったときに供給すればよいことを見出した。
通常、(メタ)アクリル酸や(メタ)アクリル酸エステル等の重合性を有する化合物を処理する際には、急激な加熱を行うことは重合物生成による汚れ発生の観点から好ましくない。特に、酸は重合を促進する傾向があり、酸触媒存在下で加熱を行う(メタ)アクリル酸エステルの製造工程においては、重合の抑制に特段の注意を払う必要がある。
例えば、特許文献4には、(メタ)アクリル酸エステルの製造方法において、重合物の生成量を一定量以下とするために、酸触媒含有下で加熱を行うエステル化反応器において、運転開始時の昇温速度を一定速度以下とすることが示されている。
上記の事例を勘案すれば、重質分解器の運転においても、酸触媒溶液を供給した後、緩やかな熱負荷により加熱を行うことが好ましいと推定される。しかしながら、本発明者が検討を行った結果は予想を覆すものであり、むしろ事前に加熱して分解器内が高温になった状態で酸触媒溶液を供給し、酸触媒溶液を急速に昇温した方が汚れの防止に有効であることを見出した。
In order to solve the above-mentioned conventional problems, the present inventor is important not to form a starting point of dirt at the start of operation of the heavy decomposer, and for that purpose, the acid catalyst solution is contained in the heavy decomposer. It has been found that the temperature may be supplied when the temperature becomes a predetermined temperature or higher.
Usually, when treating a compound having polymerizability such as (meth) acrylic acid or (meth) acrylic acid ester, it is not preferable to perform rapid heating from the viewpoint of generation of contamination due to the formation of a polymer. In particular, acid tends to promote polymerization, and in the production process of (meth) acrylic acid ester that is heated in the presence of an acid catalyst, special attention must be paid to suppression of polymerization.
For example, in Patent Document 4, in a method for producing a (meth) acrylic acid ester, in an esterification reactor that performs heating under the presence of an acid catalyst in order to keep the amount of polymer produced to be a certain amount or less, It is shown that the rate of temperature rise is set to a certain rate or less.
Considering the above cases, it is presumed that, even in the operation of the heavy cracker, it is preferable to perform heating with a moderate heat load after supplying the acid catalyst solution. However, the results of the study conducted by the inventor are contrary to expectations. Rather, the acid catalyst solution is supplied in a state where the temperature inside the cracker is high by heating in advance, and the acid catalyst solution is rapidly heated. It was found that this is effective in preventing dirt.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] (メタ)アクリル酸とアルコールとを酸触媒の存在下に反応させて(メタ)アクリル酸エステルを含むエステル化反応液を得る反応工程と、該エステル化反応液から(メタ)アクリル酸エステルと重質分とを分離する精製工程と、重質分解器に酸触媒溶液と該重質分とを供給し、該重質分解器において該酸触媒溶液により該重質分を分解、エステル化反応させることにより(メタ)アクリル酸エステル及びアルコールを含む有価物を回収する回収工程とを含む(メタ)アクリル酸エステルの製造方法において、該重質分解器に該重質分の導入を開始し、加熱により内温が80℃以上に達したのちに、該重質分解器に該酸触媒溶液を供給する(メタ)アクリル酸エステルの製造方法。 [1] A reaction step in which (meth) acrylic acid and alcohol are reacted in the presence of an acid catalyst to obtain an esterification reaction liquid containing a (meth) acrylic acid ester, and (meth) acrylic acid from the esterification reaction liquid A purification step for separating the ester and the heavy component, supplying the acid catalyst solution and the heavy component to the heavy decomposer, and decomposing the heavy component with the acid catalyst solution in the heavy decomposer, Introducing the heavy component into the heavy decomposer in a method for producing a (meth) acrylic ester comprising a recovery step of recovering a valuable material including a (meth) acrylic ester and alcohol Then, after the internal temperature reaches 80 ° C. or higher by heating, the method for producing a (meth) acrylic acid ester, in which the acid catalyst solution is supplied to the heavy decomposer.

[2] 前記酸触媒溶液が水を溶媒として含む[1]に記載の(メタ)アクリル酸エステルの製造方法。 [2] The method for producing a (meth) acrylic acid ester according to [1], wherein the acid catalyst solution contains water as a solvent.

[3] 前記重質分解器内温が80℃以上のときに、該重質分解器に前記酸触媒溶液と(メタ)アクリル酸を供給する[1]又は[2]に記載の(メタ)アクリル酸エステルの製造方法。 [3] (Meta) according to [1] or [2], wherein when the internal temperature of the heavy decomposer is 80 ° C. or higher, the acid catalyst solution and (meth) acrylic acid are supplied to the heavy decomposer. A method for producing an acrylic ester.

本発明によれば、(メタ)アクリル酸エステル製造プロセスにおいて、(メタ)アクリル酸エステルと分離された重質分から有価物を回収するための重質分解器の運転開始時の汚れの起点の形成を防止し、その後の運転中における汚れ・閉塞のための条件調整を有効に反映させて、長期に亘り、安定かつ効率的な(メタ)アクリル酸エステルの製造を行える。   According to the present invention, in the (meth) acrylic acid ester manufacturing process, the formation of the starting point of dirt at the start of operation of the heavy decomposer for recovering valuable materials from the heavy component separated from the (meth) acrylic acid ester It is possible to effectively and stably reflect the adjustment of conditions for dirt and blockage during the subsequent operation, and to produce a (meth) acrylic acid ester stably and efficiently over a long period of time.

一般的なアクリル酸エステルの製造プロセスの一例を示す系統図である。It is a systematic diagram which shows an example of the manufacturing process of a general acrylic ester. 一般的なアクリル酸エステルの製造プロセスの別の例を示す系統図である。It is a systematic diagram which shows another example of the manufacturing process of a general acrylate ester.

以下に本発明の(メタ)アクリル酸エステルの製造方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for producing a (meth) acrylic acid ester of the present invention will be described in detail.

本発明の(メタ)アクリル酸エステルの製造方法は、(メタ)アクリル酸とアルコールとを酸触媒の存在下に反応させて(メタ)アクリル酸エステルを含むエステル化反応液を得る反応工程と、該エステル化反応液から(メタ)アクリル酸エステルと重質分とを分離する精製工程と、重質分解器に酸触媒溶液と該重質分とを供給し、該重質分解器において該酸触媒溶液により該重質分を分解、エステル化反応させることにより(メタ)アクリル酸エステル及びアルコールを含む有価物を回収する回収工程とを含む(メタ)アクリル酸エステルの製造方法において、該重質分解器に該重質分の導入を開始し、加熱により内温が80℃以上に達したのちに、該重質分解器に該酸触媒溶液を供給することを特徴とする。   The method for producing a (meth) acrylic acid ester of the present invention includes a reaction step of reacting (meth) acrylic acid and an alcohol in the presence of an acid catalyst to obtain an esterification reaction liquid containing a (meth) acrylic acid ester, A purification step for separating the (meth) acrylic acid ester and the heavy component from the esterification reaction solution, an acid catalyst solution and the heavy component are supplied to the heavy decomposer, and the acid decomposer is used in the heavy decomposer. A method for producing a (meth) acrylic acid ester comprising a recovery step of recovering a valuable material including a (meth) acrylic acid ester and an alcohol by decomposing and esterifying the heavy component with a catalyst solution. The introduction of the heavy component into the cracker is started, and after the internal temperature reaches 80 ° C. or higher by heating, the acid catalyst solution is supplied to the heavy cracker.

即ち、本発明者は、重質分解器における運転開始時の汚れの起点の形成を抑制するには、重質分解器内温が80℃以上に昇温された後に酸触媒溶液を供給すればよいことを見出した。
重質分解器内温が80℃以上に昇温された後に酸触媒含有液を供給することで、重質分解器の運転開始時の汚れの起点の形成を抑制し得るメカニズムについては、以下のように推定される。
重質分解器に供給される供給液、即ち重質分と酸触媒含有液、並びに(メタ)アクリル酸やプロセス外抜出液は、あらかじめ混合した後重質分解器に供給されても良いし、別々に供給されても良い。
重質分解器内の温度が150〜200℃となった定常状態においては、これらの供給液は重質分解器内で混合され、付帯される配管・熱交換器内でも均一な液組成となっており、各液中に含有される重合防止剤も均一に分布していると考えられる。
しかしながら、運転開始時の温度が低い状態でこれらの供給液を供給すると、供給比率や供給速度によっては、混合が不十分になると考えられる。供給液内には(メタ)アクリル酸や(メタ)アクリル酸エステル等の重合性を有する化合物に加え、重合を促進する酸触媒、重合を抑制する重合防止剤等が含まれているが、これらの各成分が偏在し、局所的に重合性の高い組成が形成されると、汚れの起点となる重合物を形成すると考えられる。
本発明の方法によれば、重質分解器内の温度が80℃以上の時に酸触媒溶液が供給されるため、酸触媒溶液に含まれる水等の溶媒が速やかに蒸発し、液の混合性を良くする効果が期待される。また、酸触媒は重合を促進するため偏在することは好ましくないが、分解器内が均一組成となった後に酸触媒を供給することにより、偏在を防止する効果も期待される。さらには80℃以上とすることで酸触媒の溶解度が高くなり、析出などにより偏在することも防止されると推定される。加えて、重質分に含まれる重合防止剤が分解器内に均一に分散した後に酸触媒を供給することで、重合促進を防止する効果も期待される。本発明によれば、これらの複合的な効果によって、汚れの起点生成を防止する結果が得られたと推定される。
That is, the present inventor can suppress the formation of the starting point of dirt at the start of operation in the heavy cracker by supplying the acid catalyst solution after the internal temperature of the heavy cracker is raised to 80 ° C. or higher. I found a good thing.
Regarding the mechanism that can suppress the formation of the starting point of dirt at the start of operation of the heavy decomposer by supplying the acid catalyst-containing liquid after the internal temperature of the heavy decomposer is raised to 80 ° C. or higher, Is estimated as follows.
The feed liquid supplied to the heavy cracker, that is, the heavy component and the acid catalyst-containing liquid, (meth) acrylic acid and the out-of-process discharge liquid may be mixed in advance and then supplied to the heavy cracker. May be supplied separately.
In a steady state where the temperature in the heavy cracker is 150 to 200 ° C., these feed liquids are mixed in the heavy cracker and have a uniform liquid composition in the accompanying piping and heat exchanger. It is considered that the polymerization inhibitor contained in each solution is also uniformly distributed.
However, if these supply liquids are supplied in a state where the temperature at the start of operation is low, mixing is considered to be insufficient depending on the supply ratio and supply speed. In addition to the polymerizable compounds such as (meth) acrylic acid and (meth) acrylic acid ester, the supply liquid contains an acid catalyst that promotes polymerization, a polymerization inhibitor that inhibits polymerization, and the like. It is considered that when each of the above components is unevenly distributed and a composition having high polymerizability is locally formed, a polymer serving as a starting point of dirt is formed.
According to the method of the present invention, since the acid catalyst solution is supplied when the temperature in the heavy cracker is 80 ° C. or higher, the solvent such as water contained in the acid catalyst solution evaporates quickly, and the liquid mixing property Expected to improve the effect. Further, although it is not preferable that the acid catalyst is unevenly distributed to promote polymerization, an effect of preventing the uneven distribution is also expected by supplying the acid catalyst after the inside of the cracker has a uniform composition. Furthermore, it is presumed that the solubility of the acid catalyst is increased by setting the temperature to 80 ° C. or higher, and uneven distribution due to precipitation or the like is prevented. In addition, an effect of preventing polymerization acceleration is expected by supplying the acid catalyst after the polymerization inhibitor contained in the heavy component is uniformly dispersed in the decomposer. According to the present invention, it is presumed that the result of preventing the generation of the starting point of dirt was obtained by these combined effects.

本発明において、酸触媒溶液とは、重質分解器7に導入される液のうち、酸触媒を含む液を指し、図1及び図2における18の液が該当する。この酸触媒溶液は、図1においては抽出塔2の塔底から抜き出される12の酸触媒回収液の一部を用いても良いし、別途調合して供給しても良い。酸触媒溶液は通常、10〜30重量%程度の濃度の酸触媒の水溶液である。重質分とは、(メタ)アクリル酸エステルと蒸留分離された重質分であり、図1,2における精製塔6の塔底液が該当する。重質分解器7へは、この重質分と、酸触媒溶液、更に場合により(メタ)アクリル酸やプロセス外抜き出し液が導入される。   In this invention, an acid catalyst solution refers to the liquid containing an acid catalyst among the liquid introduce | transduced into the heavy decomposer 7, and 18 liquid in FIG.1 and FIG.2 corresponds. In FIG. 1, the acid catalyst solution may be a part of the 12 acid catalyst recovery liquids extracted from the bottom of the extraction tower 2 or may be separately prepared and supplied. The acid catalyst solution is usually an aqueous solution of an acid catalyst having a concentration of about 10 to 30% by weight. The heavy component is a heavy component distilled and separated from (meth) acrylic acid ester, and corresponds to the bottom liquid of the purification column 6 in FIGS. The heavy decomposer 7 is introduced with this heavy component, an acid catalyst solution, and (meth) acrylic acid or a liquid extracted outside the process.

本発明では、重質分解器の運転開始時に重質分解器内を昇温し、重質分解器内温が80℃以上となった後に酸触媒溶液を導入する。通常の場合、重質分を、この酸触媒溶液の導入以前に重質分解器に導入し、重質分解器内液をリボイラーと重質分解器間とを循環させることで重質分解器内温を昇温する。本発明では、このように重質分解器のリボイラーによる加熱で重質分解器内温が80℃以上になった時点で酸触媒溶液の導入を開始する。   In the present invention, the temperature in the heavy cracker is raised at the start of operation of the heavy cracker, and the acid catalyst solution is introduced after the temperature in the heavy cracker reaches 80 ° C. or higher. In normal cases, the heavy component is introduced into the heavy decomposer prior to the introduction of the acid catalyst solution, and the heavy decomposer solution is circulated between the reboiler and the heavy decomposer. Raise the temperature. In the present invention, introduction of the acid catalyst solution is started when the internal temperature of the heavy decomposer becomes 80 ° C. or higher by heating with the reboiler of the heavy decomposer.

重質分解器内温が80℃未満のときに重質分解器への酸触媒溶液の導入を行うと、前述の通り、局所的に重合性の高い組成が形成されることで汚れの起点となる物質が形成される。
重質分解器への酸触媒溶液供給時の重質分解器内温は、80℃以上で高い程汚れ物質の形成を抑制し易いため、重質分解器内温が100℃以上、特に130℃以上となったときに、重質分解器への酸触媒溶液の導入を開始することが好ましい。
ただし、この重質分解器内温が過度に高いと、分解反応に必要な酸触媒が存在しない状態で(メタ)アクリル酸、(メタ)アクリル酸エステル等の易重合性化合物を過度に加熱することとなり、重合反応が優位となって逆に汚れ物質の形成を促すこととなる。また、通常運転時の重質分解器内温は後述の通り150〜200℃程度であるため、重質分解器への酸触媒溶液の導入開始時の重質分解器内温は200℃以下、特に170℃以下とすることが好ましい。
When the acid catalyst solution is introduced into the heavy cracker when the internal temperature of the heavy cracker is less than 80 ° C., as described above, a highly polymerizable composition is locally formed, and the origin of contamination A material is formed.
The higher the internal temperature of the heavy decomposer when the acid catalyst solution is supplied to the heavy decomposer, the higher the temperature is 80 ° C. or higher, the easier it is to suppress the formation of dirt substances, so the internal temperature of the heavy decomposer is 100 ° C. or higher, particularly 130 ° C. When it becomes above, it is preferable to start introduction of the acid catalyst solution into the heavy cracker.
However, if the internal temperature of the heavy decomposer is excessively high, easily polymerizable compounds such as (meth) acrylic acid and (meth) acrylic acid ester are excessively heated in the absence of an acid catalyst necessary for the decomposition reaction. As a result, the polymerization reaction becomes dominant and conversely promotes the formation of a soiling substance. In addition, since the internal temperature of the heavy decomposer during normal operation is about 150 to 200 ° C. as described later, the internal temperature of the heavy decomposer at the start of introduction of the acid catalyst solution into the heavy decomposer is 200 ° C. or less, In particular, the temperature is preferably 170 ° C. or lower.

本発明においては、重質分解器への酸触媒溶液の供給時に併せて(メタ)アクリル酸を供給してもよい。即ち、(メタ)アクリル酸についても、重質分解器内温が80℃以上、好ましくは100℃以上、特に好ましくは130〜170℃となったときに酸触媒溶液と共に導入を開始することで、局所的に重合性の高い組成が形成されることを防ぎ、より一層汚れ物質の形成を抑制することができる。   In the present invention, (meth) acrylic acid may be supplied together with the supply of the acid catalyst solution to the heavy cracker. That is, by introducing (meth) acrylic acid together with the acid catalyst solution when the internal temperature of the heavy cracker reaches 80 ° C or higher, preferably 100 ° C or higher, particularly preferably 130 to 170 ° C, A locally highly polymerizable composition can be prevented from being formed, and the formation of a soiling substance can be further suppressed.

いずれの場合も、酸触媒溶液が低温の重質分解器内に存在しないようにすることで、重質分解器及びその付帯設備で局所的に重合性の高い組成が形成されることを防止して、汚れ物質の形成を抑制することができる。   In any case, by preventing the acid catalyst solution from being present in the low-temperature heavy cracker, it is possible to prevent the formation of a locally highly polymerizable composition in the heavy cracker and its associated equipment. Thus, the formation of dirt substances can be suppressed.

本発明は、重質分解器への酸触媒溶液の供給開始時の重質分解器内温を上記の通り所定温度以上とすること以外は常法に従って行うことができる。   The present invention can be carried out according to a conventional method except that the internal temperature of the heavy cracker at the start of the supply of the acid catalyst solution to the heavy cracker is set to a predetermined temperature or higher as described above.

以下に、(メタ)アクリル酸エステルの一般的な製造方法について、図1を参照して説明するが、本発明の(メタ)アクリル酸エステルの製造方法は、図1に示す製造プロセスに限らず、図2に示す製造プロセス、その他、(メタ)アクリル酸とアルコールとを酸触媒の存在下に反応させて得られた(メタ)アクリル酸エステルを含むエステル化反応液から(メタ)アクリル酸エステルと重質分とを蒸留分離し、この重質分を重質分解器に送給して分解、エステル化反応させて有価物を回収する方法に適用することができる。   Below, the general manufacturing method of (meth) acrylic acid ester is demonstrated with reference to FIG. 1, but the manufacturing method of (meth) acrylic acid ester of this invention is not restricted to the manufacturing process shown in FIG. 2, (meth) acrylic acid ester from an esterification reaction solution containing (meth) acrylic acid ester obtained by reacting (meth) acrylic acid and alcohol in the presence of an acid catalyst. And the heavy component can be distilled and separated, and the heavy component can be fed to a heavy decomposer to be decomposed and esterified to recover valuable materials.

本発明で製造される(メタ)アクリル酸エステルとしては、特に限定されず、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル等が挙げられる。これらの中でも(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシルなどのアルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルが好ましい。   The (meth) acrylic acid ester produced in the present invention is not particularly limited, and is methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic acid n-. Examples include hexyl, n-octyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Among these, (meth) acrylic acid alkyl esters having 4 or more carbon atoms in the alkyl group such as n-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.

(メタ)アクリル酸エステルの製造では、一般的には(メタ)アクリル酸とアルコールとから酸触媒の存在下、エステル化反応器1を経てエステル化反応させて対応するエステルを製造する。通常原料である(メタ)アクリル酸とアルコールとは、モル比1.0:0.5〜1.0:2.0の割合で反応器に供給される。酸触媒としては、p−トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、あるいは、メタンスルホン酸等の有機酸や硫酸、塩酸等の鉱酸が用いられる。酸触媒は反応液に対し、0.1〜5.0重量%、好ましくは1.0〜3.0重量%の割合で添加される。反応は70〜140℃の温度で、蒸留や共沸蒸留によりエステル化反応で生成する反応生成水を除去しながら行われる(反応蒸留方式)。生成水の除去を容易にするために、反応に不活性な共沸剤が添加されることがある。共沸剤としては、ベンゼン、トルエン、シクロヘキサン等の炭化水素が用いられることが多い。反応生成水は蒸気分離膜、ベーパーレイション膜などの膜分離や、蒸留以外の方法で除去される場合もある。   In the production of a (meth) acrylic acid ester, the corresponding ester is generally produced from (meth) acrylic acid and an alcohol through an esterification reactor 1 in the presence of an acid catalyst. Usually, (meth) acrylic acid and alcohol as raw materials are supplied to the reactor at a molar ratio of 1.0: 0.5 to 1.0: 2.0. As the acid catalyst, p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, organic acids such as methanesulfonic acid, and mineral acids such as sulfuric acid and hydrochloric acid are used. The acid catalyst is added in an amount of 0.1 to 5.0% by weight, preferably 1.0 to 3.0% by weight, based on the reaction solution. The reaction is carried out at a temperature of 70 to 140 ° C. while removing the reaction product water produced by the esterification reaction by distillation or azeotropic distillation (reactive distillation method). An azeotropic agent inert to the reaction may be added to facilitate removal of product water. As the azeotropic agent, hydrocarbons such as benzene, toluene and cyclohexane are often used. The reaction product water may be removed by a method other than membrane separation such as a vapor separation membrane or a vaporization membrane, or distillation.

また、反応系には、通常、ポリマーの生成を防止するために、重合防止剤が添加される。重合防止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル等のフェノール類、フェノチアジン、ジフェニルアミン等のアミン類、ジブチルジチオカルバミン酸銅、酢酸マンガン等の重金属塩、ニトロソ化合物、ニトロ化合物、テトラメチルピペリジノオキシル誘導体等のアミノキシル類が知られている。重合防止剤の添加量は、エステル化反応液中の重合防止剤濃度が20〜1000ppm程度となる量とすることが好ましい。   In addition, a polymerization inhibitor is usually added to the reaction system in order to prevent the formation of a polymer. Examples of polymerization inhibitors include phenols such as hydroquinone and hydroquinone monomethyl ether, amines such as phenothiazine and diphenylamine, heavy metal salts such as copper dibutyldithiocarbamate and manganese acetate, nitroso compounds, nitro compounds, tetramethylpiperidinooxyl derivatives, etc. The aminoxyls are known. The addition amount of the polymerization inhibitor is preferably such that the concentration of the polymerization inhibitor in the esterification reaction solution is about 20 to 1000 ppm.

エステル化反応液は、抽出塔(触媒回収塔)2で水と向流接触して酸触媒が抽出分離、回収され、回収された酸触媒の一部はエステル化反応器1へ循環され再利用される。残部は後段の重質分解器7に送給され、重質分解器7における重質分の分解に使用されることもある。抽出塔2からの反応液は、中和洗浄塔3でアルカリ水溶液が添加されて中和されると共に、水で洗浄された後、中和洗浄塔3の塔頂から静置槽4に送給されて油水分離される。   The esterification reaction liquid is countercurrently contacted with water in the extraction tower (catalyst recovery tower) 2 to extract and recover the acid catalyst, and a part of the recovered acid catalyst is recycled to the esterification reactor 1 for reuse. Is done. The remainder is fed to the subsequent heavy decomposer 7 and may be used for heavy component decomposition in the heavy decomposer 7. The reaction solution from the extraction tower 2 is neutralized by adding an alkaline aqueous solution in the neutralization washing tower 3 and washed with water, and then sent to the stationary tank 4 from the top of the neutralization washing tower 3. The oil and water are separated.

抽出塔2でエステル化反応液と向流接触させる水の比率は、エステル化反応液に対して0.5(重量比)以下が好ましく、最適には0.05〜0.2(重量比)である。水は、新しく添加されても良いが、エステル化反応器1から得られる反応生成水を用いることもでき、この場合には、排水量を少なくすることができる利点がある。   The ratio of water counter-contacted with the esterification reaction liquid in the extraction tower 2 is preferably 0.5 (weight ratio) or less with respect to the esterification reaction liquid, and optimally 0.05 to 0.2 (weight ratio). It is. Although water may be newly added, the reaction product water obtained from the esterification reactor 1 can also be used. In this case, there is an advantage that the amount of waste water can be reduced.

抽出塔2の形式としては、通常のものを用いることができる。一般的な抽出塔は、塔下部よりエステル化反応液、塔上部より抽出用の水を供給し、塔頂より酸触媒などが抽出除去された反応液を、塔底より酸触媒、(メタ)アクリル酸等を含む水溶液を得る型式のものであるが、特に制限されるものではない。抽出塔としては、充填塔、棚段塔などが一般的に用いられるが、液液接触効率の高い装置が好ましい。抽出塔は、一段でも多段に設けてもよい。   As the form of the extraction tower 2, a normal one can be used. A general extraction tower supplies an esterification reaction liquid from the bottom of the tower, extraction water from the top of the tower, and a reaction liquid from which the acid catalyst has been extracted and removed from the top of the tower. Although it is a type which obtains the aqueous solution containing acrylic acid etc., it does not restrict | limit in particular. As the extraction tower, a packed tower, a plate tower and the like are generally used, but an apparatus with high liquid-liquid contact efficiency is preferable. The extraction tower may be provided in a single stage or multiple stages.

中和洗浄塔3としては抽出塔2と同様のものを用いることができる。中和に用いるアルカリ水溶液としては、通常、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を挙げることができる。酸性の水溶性不純物を含有するエステル化反応液を中和してこれらの不純物を完全に除去するために、中和後のアクリル酸含有液のpHが9以上となるようにアルカリ水溶液を供給することが好ましい。   As the neutralization washing tower 3, the same thing as the extraction tower 2 can be used. Examples of the aqueous alkali solution used for neutralization include aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. In order to neutralize the esterification reaction liquid containing acidic water-soluble impurities and completely remove these impurities, an alkaline aqueous solution is supplied so that the pH of the neutralized acrylic acid-containing liquid is 9 or more It is preferable.

中和洗浄塔3で中和、洗浄して(メタ)アクリル酸等の酸性の水溶性不純物を除去した後のエステル化反応液(以下、「中和・洗浄処理液」と称す場合がある。)は、中和洗浄塔3の塔頂から抜き出され、中和、洗浄に用いた水は塔底より排水として系外へ排出される。中和洗浄塔3からの中和・洗浄処理液には、中和・洗浄処理液中のアルカリ金属の除去効率を高めるために、更に水が添加される場合もあり、その後静置槽4に送給される。この中和・洗浄処理液への水の添加量は、少な過ぎるとアルカリ金属の除去効率の向上効果を十分に得ることができず、多過ぎてもそれ以上の効果の向上は望めず、徒に液量が増大して工業的に不利である。従って、添加する水の量は、中和・洗浄処理液に対して通常、0〜100重量%、好ましくは1〜10重量%、更に好ましくは2〜6重量%である。   An esterification reaction liquid (hereinafter referred to as “neutralization / washing treatment liquid”) after neutralization and washing in the neutralization washing tower 3 to remove acidic water-soluble impurities such as (meth) acrylic acid. ) Is extracted from the top of the neutralization washing tower 3, and the water used for neutralization and washing is discharged out of the system as waste water from the bottom of the tower. Water may be further added to the neutralization / washing treatment liquid from the neutralization washing tower 3 in order to increase the removal efficiency of alkali metals in the neutralization / washing treatment liquid. Be sent. If the amount of water added to the neutralization / cleaning solution is too small, the effect of improving the alkali metal removal efficiency cannot be sufficiently obtained, and if it is too large, no further improvement in effect can be expected. However, it is industrially disadvantageous because the liquid volume increases. Accordingly, the amount of water to be added is usually 0 to 100% by weight, preferably 1 to 10% by weight, and more preferably 2 to 6% by weight with respect to the neutralization / cleaning treatment liquid.

中和・洗浄処理液に添加する水は、金属成分などの新たな汚染源となるものを高濃度に含まないものであれば良く、工水、純水、蒸気凝縮水などを用いることができる。   The water to be added to the neutralization / cleaning treatment liquid may be any water that does not contain a high concentration of a new contamination source such as a metal component, and industrial water, pure water, steam condensed water, or the like can be used.

必要に応じて水が添加された中和・洗浄処理液は、次いで静置槽4で静置されて油水分離され、水相は排水として系外へ排出され、油相は軽沸分離塔5に送給されてアルコール等の軽沸分が塔頂より蒸留分離され、塔頂留出物は反応器1へ循環される。一方、塔底液は更に精製塔6で高沸分が蒸留分離され、塔頂より製品のアクリル酸エステルが分離される。   The neutralization / cleaning treatment liquid to which water is added as necessary is then left in the stationary tank 4 to be separated into oil and water, the aqueous phase is discharged out of the system as waste water, and the oil phase is light boiling separation tower 5 The light boiling components such as alcohol are distilled and separated from the top of the column, and the top distillate is circulated to the reactor 1. On the other hand, the high-boiling fraction of the column bottom liquid is further separated by distillation in the purification column 6, and the product acrylic acid ester is separated from the column top.

精製塔6の塔底液は、酸触媒溶液(好適には抽出塔2からの酸触媒回収液が用いられる)、原料タンクからのアクリル酸、必要に応じてプロセス外抜き出し液とともに重質分解器7に供給される。これらの供給液は同じ供給配管を用いて重質分解器7に供給されても良いし、重質分解器7に付帯される別々の配管を用いて供給されても良い。供給液は重質分解器7に導入された後、重質分中のミカエル付加物等が分解、エステル化反応される。酸触媒溶液の供給量は精製塔6の塔底液の供給量に対し5〜20重量%が好ましい。酸触媒溶液中の酸触媒濃度は10〜40重量%が好ましく、10〜30重量%が特に好ましい。アクリル酸の供給量は精製塔6の塔底液の供給量に対し0〜20重量%が好ましく、プロセス外抜き出し液の供給量は精製塔6の塔底液の供給量に対し0〜50重量%が好ましい。本発明では、この重質分解器7の運転開始時において、前述の通り、酸触媒溶液、或いは酸触媒溶液とアクリル酸については、重質分解器7の昇温後に供給する。この重質分解器7におけるエステル化反応で生成したアクリル酸アルキル、アルコール、アクリル酸等を含む有価物は塔頂より抜き出される。この有価物はエステル化反応器1、抽出塔2又は中和洗浄塔3に返送される。一方、重質分解器7の塔底液は廃油として系外へ排出される。なお、プロセス外抜き出し液については、酸触媒溶液とは異なる組成を有するため、重質分解器への供給時の重質分解器内温には特に制限はない。   The bottom liquid of the purification tower 6 is a heavy cracker together with an acid catalyst solution (preferably an acid catalyst recovery liquid from the extraction tower 2 is used), acrylic acid from the raw material tank, and if necessary, a liquid extracted outside the process. 7 is supplied. These supply liquids may be supplied to the heavy decomposer 7 using the same supply pipe, or may be supplied using separate pipes attached to the heavy decomposer 7. After the feed liquid is introduced into the heavy decomposer 7, the Michael adducts and the like in the heavy component are decomposed and esterified. The supply amount of the acid catalyst solution is preferably 5 to 20% by weight with respect to the supply amount of the bottom liquid of the purification tower 6. The acid catalyst concentration in the acid catalyst solution is preferably 10 to 40% by weight, particularly preferably 10 to 30% by weight. The amount of acrylic acid supplied is preferably 0 to 20% by weight with respect to the amount of the bottom liquid supplied to the purification tower 6, and the amount of liquid extracted outside the process is 0 to 50% with respect to the amount of the bottom liquid supplied to the purification tower 6. % Is preferred. In the present invention, at the start of operation of the heavy decomposer 7, as described above, the acid catalyst solution or the acid catalyst solution and acrylic acid are supplied after the temperature of the heavy decomposer 7 is increased. Valuables including alkyl acrylate, alcohol, acrylic acid and the like produced by the esterification reaction in the heavy cracker 7 are extracted from the top of the column. This valuable material is returned to the esterification reactor 1, the extraction tower 2, or the neutralization washing tower 3. On the other hand, the bottom liquid of the heavy cracker 7 is discharged out of the system as waste oil. In addition, since the extracted liquid outside the process has a composition different from that of the acid catalyst solution, there is no particular limitation on the internal temperature of the heavy decomposer when it is supplied to the heavy decomposer.

この重質分解器7の運転条件については特に制限はないが、通常、反応温度150〜200℃、反応圧力90〜100kPaが採用される。重質分解器7の内液を加熱する方法については、内液をリボイラーに循環して加熱する方法、外部にジャケット式のヒーターを設置する方法、分解器内部にヒーターを挿入する方法など任意の方法を採用することができるが、局所的な加熱を防止して液組成を均一とするために、内液をリボイラーに循環して加熱する方法が特に好ましい。また、廃油として抜き出す塔底液の量にも特に制限はないが、通常、重質分解器7に導入される混合液に対して10〜40重量%程度の条件とすることが好ましい。なお、(重質分解器内・リボイラー及び付帯される配管等における液の保持量)÷(塔底液の量)により算出される重質分解器内の滞留時間は5〜15時間が好ましい。また、本条件によれば重質分解器の内液は水の濃度が1重量%以下であり、これにより内液組成が均一になることを補助する効果がある。また、内液には、ハイドロキノン、ハイドロキノンモノメチルエーテル等のフェノール類、フェノチアジン、ジフェニルアミン等のアミン類、ジブチルジチオカルバミン酸銅、酢酸マンガン等の重金属塩、ニトロソ化合物、ニトロ化合物、テトラメチルピペリジノオキシル誘導体等のアミノキシル類等の重合防止剤が含有されており、重合防止剤濃度は0.1〜10重量%とすることが好ましい。重合防止剤は供給液に含有された状態で供給されても良いし、別途追加しても良い。これら重質分解器内液の組成は、塔底液を抜き出して分析することにより求められる。   Although there is no restriction | limiting in particular about the operating conditions of this heavy decomposer 7, Usually, reaction temperature 150-200 degreeC and reaction pressure 90-100 kPa are employ | adopted. Regarding the method of heating the internal solution of the heavy cracker 7, any method such as a method of circulating the internal solution to the reboiler and heating, a method of installing a jacket type heater outside, a method of inserting a heater inside the decomposer, etc. Although a method can be adopted, in order to prevent local heating and make the liquid composition uniform, a method in which the internal liquid is circulated through the reboiler and heated is particularly preferable. Moreover, although there is no restriction | limiting in particular in the quantity of the tower bottom liquid extracted as waste oil, Usually, it is preferable to set it as about 10-40 weight% conditions with respect to the liquid mixture introduce | transduced into the heavy cracker 7. FIG. The residence time in the heavy decomposer calculated from (the amount of liquid retained in the heavy decomposer / reboiler and associated piping) / (amount of column bottom liquid) is preferably 5 to 15 hours. In addition, according to this condition, the concentration of water in the heavy cracker internal solution is 1% by weight or less, and this has the effect of assisting the uniform internal liquid composition. Internal liquids include phenols such as hydroquinone and hydroquinone monomethyl ether, amines such as phenothiazine and diphenylamine, heavy metal salts such as copper dibutyldithiocarbamate and manganese acetate, nitroso compounds, nitro compounds and tetramethylpiperidinooxyl derivatives It is preferable that the polymerization inhibitor concentration is 0.1 to 10% by weight. The polymerization inhibitor may be supplied in a state of being contained in the supply liquid, or may be added separately. The composition of the heavy cracker internal solution is obtained by extracting the column bottom liquid and analyzing it.

なお、図1では、エステル化反応液を抽出塔2、中和洗浄塔3、静置槽4、軽沸分離塔5、精製塔6で順次処理して得られた精製塔6の塔底液である重質分を重質分解器7で分解しているが、本発明で重質分解器において分解する重質分は、エステル化反応液から(メタ)アクリル酸エステルと蒸留分離された重質分であればよく、何ら図1に示される処理を経たものに限定されない。   In FIG. 1, the bottom liquid of the purification tower 6 obtained by sequentially treating the esterification reaction liquid in the extraction tower 2, the neutralization washing tower 3, the stationary tank 4, the light boiling separation tower 5, and the purification tower 6 is obtained. Is decomposed by the heavy decomposer 7, but the heavy component decomposed in the heavy decomposer in the present invention is separated from the (meth) acrylic acid ester by distillation from the esterification reaction solution. What is necessary is just a mass, and it is not limited to what passed through the process shown by FIG.

以下に実施例を挙げて本発明をより具体的に説明する。なお、実施例中に記載される各化合物の濃度は、重質分の各成分はガスクロマトグラフィーで、酸触媒溶液は液体クロマトグラフィーで分析することにより定量されたものである。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the density | concentration of each compound described in an Example is quantified by analyzing each component of a heavy part by gas chromatography, and an acid catalyst solution by liquid chromatography.

[実施例1]
アクリル酸とブタノールからアクリル酸ブチルを製造する図1に示すアクリル酸ブチルの製造プロセスにおいて、精製塔6の塔底より抜き出された重質分を重質分解器7に導入し、重質分解器7の缶出液の一部をリボイラー7Aにより加熱して重質分解器7に循環することで加熱を実施した。該加熱により重質分解器7の内温が130℃〜140℃となった時、原料タンクからのアクリル酸と、抽出塔2の塔底より抜き出された酸触媒回収液を酸触媒溶液として重質分解器7にそれぞれ送給して連続的に重質分の分解、エステル化反応、及び蒸留分離を行った。なお、重質分解器7に送給したアクリル酸及び酸触媒溶液の量は、重質分解器7Aに供給された重質分に対しそれぞれ重量比で1/8量ずつであった。重質分は、45重量%のβ-ブトキシプロピオン酸ブチル、43重量%のアクリル酸ブチル、5重量%のダイマー酸ブチル(アクリル酸2量化物のブチルエステル化物)が含まれていた。また、酸触媒溶液は15重量%のp−トルエンスルホン酸水溶液であった。
その後内温は170℃まで昇温した後定温に維持され、アクリル酸及び酸触媒溶液の送給開始時から15時間の連続運転が実施された。運転中の重質分解器塔頂圧力は100kPaであり、重質分解器内の滞留時間は6時間であった。また、缶出液中の水濃度は1重量%以下であった。運転後にリボイラー7A内を点検したところ、付着した汚れの量は5mg未満であった。
[Example 1]
In the butyl acrylate production process shown in FIG. 1 for producing butyl acrylate from acrylic acid and butanol, the heavy fraction extracted from the bottom of the purification tower 6 is introduced into the heavy cracker 7 for heavy decomposition. A portion of the bottoms of the vessel 7 was heated by the reboiler 7A and circulated to the heavy cracker 7 to carry out heating. When the internal temperature of the heavy cracker 7 becomes 130 ° C. to 140 ° C. by the heating, acrylic acid from the raw material tank and the acid catalyst recovery liquid extracted from the bottom of the extraction tower 2 are used as the acid catalyst solution. Each was sent to the heavy cracker 7 to continuously perform heavy decomposition, esterification reaction, and distillation separation. The amount of acrylic acid and the acid catalyst solution fed to the heavy cracker 7 was 1/8 by weight with respect to the heavy content fed to the heavy cracker 7A. The heavy content contained 45 wt% butyl β-butoxypropionate, 43 wt% butyl acrylate, 5 wt% butyl dimer (butyl ester of acrylic acid dimer). The acid catalyst solution was a 15% by weight p-toluenesulfonic acid aqueous solution.
Thereafter, the internal temperature was raised to 170 ° C. and maintained at a constant temperature, and continuous operation was carried out for 15 hours from the start of feeding of acrylic acid and the acid catalyst solution. The heavy cracker top pressure during operation was 100 kPa, and the residence time in the heavy cracker was 6 hours. The water concentration in the bottoms was 1% by weight or less. When the inside of the reboiler 7A was inspected after the operation, the amount of adhered dirt was less than 5 mg.

[実施例2]
重質分解器7への重質分の送給、及びリボイラー7Aによる加熱を実施して重質分解器7の内温が130℃〜140℃となった時、重質分解器7に酸触媒回収液のみを重質分に対し重量比で1/8量供給開始した以外は実施例1と同様にして実施した。
15時間の運転後にリボイラー内を点検したところ、付着した汚れの量は5mg未満であった。
[Example 2]
When the internal temperature of the heavy cracker 7 reaches 130 ° C. to 140 ° C. by supplying heavy components to the heavy cracker 7 and heating by the reboiler 7A, an acid catalyst is supplied to the heavy cracker 7. This was carried out in the same manner as in Example 1 except that the supply of only 1/8 of the recovered liquid by weight to the heavy component was started.
When the inside of the reboiler was inspected after 15 hours of operation, the amount of attached dirt was less than 5 mg.

[比較例1]
重質分解器7の内温が40℃のときにアクリル酸及び酸触媒回収液を供給開始した以外は実施例1と同様に実施した。
15時間の運転後にリボイラー内を点検したところ、付着した汚れの量は100mgであった。
[Comparative Example 1]
This was carried out in the same manner as in Example 1 except that the supply of acrylic acid and the acid catalyst recovery liquid was started when the internal temperature of the heavy cracker 7 was 40 ° C.
When the inside of the reboiler was inspected after 15 hours of operation, the amount of attached dirt was 100 mg.

[比較例2]
重質分解器7の内温が40℃のときに酸触媒回収液のみを供給開始した以外は実施例2と同様に実施した。
15時間の運転後にリボイラー内を点検したところ、付着した汚れの量は40mgであった。
[Comparative Example 2]
This was carried out in the same manner as in Example 2 except that the supply of only the acid catalyst recovery liquid was started when the internal temperature of the heavy cracker 7 was 40 ° C.
When the inside of the reboiler was inspected after 15 hours of operation, the amount of attached dirt was 40 mg.

以上の実施例1,2及び比較例1,2の結果から、重質分解器7への酸触媒溶液、或いは酸触媒溶液及び(メタ)アクリル酸の供給を、重質分解器7内温を80℃以上に昇温した後に行うことで、重質分解器7のリボイラー7Aの汚れ物質の形成を抑制することができることが分かる。   From the results of Examples 1 and 2 and Comparative Examples 1 and 2 above, the supply of the acid catalyst solution, or the acid catalyst solution and (meth) acrylic acid to the heavy cracker 7, It can be seen that by performing the heating after raising the temperature to 80 ° C. or higher, it is possible to suppress the formation of dirt substances on the reboiler 7A of the heavy cracker 7.

1 エステル化反応器
2 抽出塔
3 中和洗浄塔
4 静置槽
5 軽沸分離塔
6 精製塔
7 重質分解器
7A リボイラー
8 溶媒回収塔
9 (メタ)アクリル酸
10 アルコール
11 酸触媒
12 酸触媒回収液
13 アルカリ性水溶液
14、15 洗浄水
16 軽沸分離成分
17 精製(メタ)アクリル酸エステル
18 酸触媒溶液
19 (メタ)アクリル酸
20 プロセス外抜き出し液
21 分解回収成分
22 重質分解残渣
23 溶媒回収成分
DESCRIPTION OF SYMBOLS 1 Esterification reactor 2 Extraction tower 3 Neutralization washing tower 4 Standing tank 5 Light boiling separation tower 6 Purification tower 7 Heavy cracker 7A Reboiler 8 Solvent recovery tower 9 (Meth) acrylic acid 10 Alcohol 11 Acid catalyst 12 Acid catalyst Recovery liquid 13 Alkaline aqueous solution 14, 15 Wash water 16 Light boiling separation component 17 Purified (meth) acrylic acid ester 18 Acid catalyst solution 19 (Meth) acrylic acid 20 Extracted liquid outside process 21 Decomposition recovery component 22 Heavy decomposition residue 23 Solvent recovery component

Claims (3)

(メタ)アクリル酸とアルコールとを酸触媒の存在下に反応させて(メタ)アクリル酸エステルを含むエステル化反応液を得る反応工程と、該エステル化反応液から(メタ)アクリル酸エステルと重質分とを分離する精製工程と、重質分解器に酸触媒溶液と該重質分とを供給し、該重質分解器において該酸触媒溶液により該重質分を分解、エステル化反応させることにより(メタ)アクリル酸エステル及びアルコールを含む有価物を回収する回収工程とを含む(メタ)アクリル酸エステルの製造方法において、該重質分解器に該重質分の導入を開始し、加熱により内温が80℃以上に達したのちに、該重質分解器に該酸触媒溶液を供給する(メタ)アクリル酸エステルの製造方法。   A reaction step of reacting (meth) acrylic acid and alcohol in the presence of an acid catalyst to obtain an esterification reaction liquid containing (meth) acrylic acid ester; and (meth) acrylic acid ester and A purification step for separating the mass, and supplying the acid catalyst solution and the heavy fraction to the heavy cracker, and the heavy catalyst is decomposed and esterified by the acid catalyst solution in the heavy cracker In the method for producing a (meth) acrylic acid ester, which includes a recovery step of recovering a valuable material containing a (meth) acrylic acid ester and an alcohol, the introduction of the heavy content into the heavy decomposer is started and heated. (Meth) acrylic acid ester manufacturing method of supplying the acid catalyst solution to the heavy decomposer after the internal temperature reaches 80 ° C. or higher. 前記酸触媒溶液が水を溶媒として含む請求項1に記載の(メタ)アクリル酸エステルの製造方法。   The method for producing a (meth) acrylic acid ester according to claim 1, wherein the acid catalyst solution contains water as a solvent. 前記重質分解器内温が80℃以上のときに、該重質分解器に前記酸触媒溶液と(メタ)アクリル酸を供給する請求項1又は2に記載の(メタ)アクリル酸エステルの製造方法。   The production of a (meth) acrylic acid ester according to claim 1 or 2, wherein the acid catalyst solution and (meth) acrylic acid are supplied to the heavy decomposer when the internal temperature of the heavy decomposer is 80 ° C or higher. Method.
JP2018043133A 2018-03-09 2018-03-09 Production method of (meth)acrylic acid ester Pending JP2019156738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043133A JP2019156738A (en) 2018-03-09 2018-03-09 Production method of (meth)acrylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043133A JP2019156738A (en) 2018-03-09 2018-03-09 Production method of (meth)acrylic acid ester

Publications (1)

Publication Number Publication Date
JP2019156738A true JP2019156738A (en) 2019-09-19

Family

ID=67993090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043133A Pending JP2019156738A (en) 2018-03-09 2018-03-09 Production method of (meth)acrylic acid ester

Country Status (1)

Country Link
JP (1) JP2019156738A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208520A (en) * 1995-12-15 1997-08-12 Rohm & Haas Co Production of butyl acrylate
JP2003226667A (en) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp Method for decomposing by-product in producing (meth) acrylic acids
JP2003226668A (en) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp Method for decomposing by-product of process for producing (meth)acrylic acid ester
JP2003231665A (en) * 2001-12-03 2003-08-19 Mitsubishi Chemicals Corp Method for purifying organic liquid
JP2004043451A (en) * 2002-05-16 2004-02-12 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acids
JP2014162767A (en) * 2013-02-26 2014-09-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid ester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208520A (en) * 1995-12-15 1997-08-12 Rohm & Haas Co Production of butyl acrylate
JP2003226667A (en) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp Method for decomposing by-product in producing (meth) acrylic acids
JP2003226668A (en) * 2001-11-28 2003-08-12 Mitsubishi Chemicals Corp Method for decomposing by-product of process for producing (meth)acrylic acid ester
JP2003231665A (en) * 2001-12-03 2003-08-19 Mitsubishi Chemicals Corp Method for purifying organic liquid
JP2004043451A (en) * 2002-05-16 2004-02-12 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acids
JP2014162767A (en) * 2013-02-26 2014-09-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid ester

Similar Documents

Publication Publication Date Title
KR101299267B1 (en) Removal of permanganate reducing compounds from methanol carbonylation process stream
JP4512608B2 (en) Removal of permanganate reducing compounds and alkyl iodides from carbonylation process streams.
JP5837576B2 (en) Method for purifying an acetic acid stream by removing permanganate reducing compounds
JP2663413B2 (en) Method for recovering light valuables present in distillation bottoms from the production process of acrylic acid and its esters
JP4558870B2 (en) Tower-type processing method and apparatus
JP6043800B2 (en) Process for producing 2-octyl acrylate by direct esterification
JPH09110789A (en) Method and apparatus for continuously producing alkyl(meth) acrylate
JP6595467B2 (en) Process for the continuous production of light acrylates by esterification of unpurified ester grade acrylic acid
JP2002507194A (en) Purification method of butyl acrylate
JP4718564B2 (en) Continuous process for the production of cyclohexyl (meth) acrylate
JP2010095467A (en) Method for continuously producing (meth)acrylate
JP6036400B2 (en) Method for producing (meth) acrylic acid ester
JP6036402B2 (en) Method for producing (meth) acrylic acid ester
JP6094258B2 (en) Method for producing (meth) acrylic acid ester
JP6287269B2 (en) Method for producing butyl acrylate
TW438766B (en) Sulfur removal process from an acrylate stream
JP2003520184A (en) Method for separating sulfur from acrylate waste stream
JP2019156738A (en) Production method of (meth)acrylic acid ester
JP2003226672A (en) Method for producing (meth)acrylic acid ester
JP5059400B2 (en) Equilibrium limiting reaction method
JP2014162763A (en) Method for producing (meth)acrylic acid ester
JP6036401B2 (en) Method for producing (meth) acrylic acid ester
JP2016172775A (en) Method for producing (meth)acrylic acid ester
KR101513942B1 (en) Method of distilling liquid containing easily polymerizable compound
JP2003321419A (en) Method for producing high-purity (meth)acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211214