JP2019154277A - Cell culture vessel - Google Patents

Cell culture vessel Download PDF

Info

Publication number
JP2019154277A
JP2019154277A JP2018042896A JP2018042896A JP2019154277A JP 2019154277 A JP2019154277 A JP 2019154277A JP 2018042896 A JP2018042896 A JP 2018042896A JP 2018042896 A JP2018042896 A JP 2018042896A JP 2019154277 A JP2019154277 A JP 2019154277A
Authority
JP
Japan
Prior art keywords
cells
cell
cell culture
porous body
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018042896A
Other languages
Japanese (ja)
Inventor
達哉 山口
Tatsuya Yamaguchi
達哉 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2018042896A priority Critical patent/JP2019154277A/en
Publication of JP2019154277A publication Critical patent/JP2019154277A/en
Pending legal-status Critical Current

Links

Abstract

To provide a cell culture vessel that performs efficiently culture, clean, and recover cells.SOLUTION: A cell culture vessel contains a porous body having one or more through holes in longitudinal direction.SELECTED DRAWING: None

Description

本発明は、1以上の貫通孔を有する多孔質体を含む細胞培養容器に関する。   The present invention relates to a cell culture container including a porous body having one or more through holes.

外科手術、化学療法、放射線療法に次ぐ第4のがんの治療法として、がん免疫療法が近年注目を集めている。がん免疫療法は、本来ヒトが持っている免疫の力を利用した、がんに対する治療法の総称であるが、その一つに免疫細胞療法がある。これは、がん患者の血液中のリンパ球や、リンパ球にがん細胞の抗原を提示する樹状細胞といった免疫系細胞を体外に取り出し、培養・強化した後に体の中に戻し、免疫力を高めることによりがんを治療しようとする方法である。近年、免疫チェックポイント阻害剤が登場したことにより、改めてがんに対する免疫細胞療法の重要性が高まってきたといえる。   In recent years, cancer immunotherapy has attracted attention as a fourth cancer treatment method after surgery, chemotherapy, and radiation therapy. Cancer immunotherapy is a general term for cancer treatments that utilize the power of immunity inherently in humans, and one of them is immune cell therapy. This is because immune system cells such as lymphocytes in the blood of cancer patients and dendritic cells that present antigens of cancer cells to lymphocytes are taken out of the body, cultured and strengthened, and then returned to the body. It is a way to try to treat cancer by increasing In recent years, with the advent of immune checkpoint inhibitors, it can be said that the importance of immune cell therapy for cancer has increased again.

現在、免疫細胞療法に用いる細胞、例えばTリンパ球の培養は、フラスコやフラスコを模した培養バッグで行われている。フラスコや培養バッグを用いる細胞培養は、操作が単純、簡便であるという反面、面積や容積を大きくする必要があり、多くの培養スペースが必要であり、また自動培養装置などにおいては装置が大型化するといった問題がある。   Currently, cells used for immune cell therapy, such as T lymphocytes, are cultured in flasks or culture bags that simulate flasks. Cell culture using flasks and culture bags is simple and easy to operate, but requires a large area and volume, requires a large amount of culture space, and increases the size of automatic culture devices. There is a problem such as.

特許文献1には、細胞の増殖及び成長用の中空糸膜型バイオリアクターであって、細胞空間(中空糸中空部)および無細胞空間(中空糸外側)にそれぞれ異なる培地を循環するための流路を有するバイオリアクタシステムが開示されている。しかし、中空糸膜をモジュール化するには煩雑な工程を経る必要があり、簡便・低コスト化することは困難である。   Patent Document 1 discloses a hollow fiber membrane type bioreactor for cell proliferation and growth, which is a flow for circulating different media in a cell space (hollow fiber hollow part) and a cell-free space (hollow fiber outer side). A bioreactor system having a channel is disclosed. However, in order to modularize the hollow fiber membrane, it is necessary to go through complicated steps, and it is difficult to simplify and reduce the cost.

特表2003−510068号公報Special table 2003-510068 gazette

本発明は、効率よく細胞の培養を行い、洗浄し、回収することが可能な細胞培養容器を提供することを課題とする。   An object of the present invention is to provide a cell culture container capable of efficiently culturing, washing, and collecting cells.

本発明者は、上記課題を解決するために鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by the following means, and has reached the present invention.

すなわち、本発明は、以下の構成からなる。
1.長手方向に1以上の貫通孔を有する多孔質体を含む細胞培養容器。
2.前記多孔質体は、酸化アルミニウム、酸化チタン、酸化ジルコニウムからなる群から選ばれる材料からなる、1に記載の細胞培養容器。
3.前記多孔質体は、マルチキャピラリー型のフィルタである、1または2に記載の細胞培養容器。
4.前記多孔質体は、細孔径が0.1μm〜1.5μmである分離層を有する、1〜3のいずれかに記載の細胞培養容器。
That is, this invention consists of the following structures.
1. A cell culture vessel comprising a porous body having one or more through-holes in the longitudinal direction.
2. 2. The cell culture container according to 1, wherein the porous body is made of a material selected from the group consisting of aluminum oxide, titanium oxide, and zirconium oxide.
3. 3. The cell culture container according to 1 or 2, wherein the porous body is a multi-capillary filter.
4). The cell culture container according to any one of 1 to 3, wherein the porous body has a separation layer having a pore diameter of 0.1 μm to 1.5 μm.

本発明により、効率良い細胞の培養実施及び簡便な培養液除去が可能となるため、免疫細胞療法への応用が期待できる。   According to the present invention, efficient cell culture and simple removal of a culture solution are possible, and therefore, application to immune cell therapy can be expected.

貫通孔(キャピラリー)を有する多孔質体の一例を示す模式図である。It is a schematic diagram which shows an example of the porous body which has a through-hole (capillary). 多孔質体の貫通孔周辺の構造を示す模式図である。It is a schematic diagram which shows the structure around the through-hole of a porous body. 細胞培養容器の一例を示す模式図である。It is a schematic diagram which shows an example of a cell culture container. 本発明の細胞培養容器を用いた細胞培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the cell culture apparatus using the cell culture container of this invention.

(多孔質体)
本発明において、細胞培養基材として用いる多孔質体は、細胞を多孔質体の内腔(キャピラリー)に保持でき、溶液や低分子の物質を透過できるものであれば、特に限定されるものではなく、例えば、酸化チタンや酸化ジルコニウムなどのセラミクス、2−ヒドロキシエチルメタクリレート、ポリウレタン、ポリメタクリル酸メチル、ポリ乳酸、ポリヒドロキシアルカノエート、ポリアクリロニトリル、ポリフッ化ビニリデン、シルクフィブロインなどからなるものが挙げられる。また、これらの誘導体が主成分であっても良い。また、液浸透性の多孔質体はこれらの素材に化学的に修飾を加えたものであっても良く、例えば、親水化処理されたものでもよい。親水化処理することにより、培養細胞への培養液等の液体成分の供給が容易になる。多孔質体表面を親水化処理する方法としては、例えば、多孔質体をポリビニルピロリドンやエチレン−ビニルアルコール共重合体等の親水性高分子や、グリセリン、エタノールで処理する方法が挙げられる。また、用途に応じて、細胞の多孔質体へ対する軽い接着性を付与するため、コラーゲンやフィブロネクチン等のコーティング剤を使用しても構わない。
(Porous body)
In the present invention, the porous body used as the cell culture substrate is not particularly limited as long as the cells can be held in the lumen (capillary) of the porous body and can penetrate a solution or a low-molecular substance. Examples thereof include ceramics such as titanium oxide and zirconium oxide, 2-hydroxyethyl methacrylate, polyurethane, polymethyl methacrylate, polylactic acid, polyhydroxyalkanoate, polyacrylonitrile, polyvinylidene fluoride, silk fibroin and the like. . These derivatives may be the main component. Further, the liquid-permeable porous material may be a material obtained by chemically modifying these materials, for example, a material subjected to a hydrophilic treatment. By performing the hydrophilic treatment, it becomes easy to supply a liquid component such as a culture solution to the cultured cells. Examples of the method for hydrophilizing the surface of the porous body include a method of treating the porous body with a hydrophilic polymer such as polyvinyl pyrrolidone or ethylene-vinyl alcohol copolymer, glycerin or ethanol. In addition, a coating agent such as collagen or fibronectin may be used in order to give light adhesion to the porous body of cells depending on the application.

本発明において、多孔質体は、円柱状であるのが好ましいが、楕円柱や多角柱の形状であっても構わない。また、多孔質体は、複数の貫通孔を有するマルチキャピラリー型のものが好ましい。貫通孔の断面形状は、特に限定されず、例えば表1に示されるような種々の断面形状を有する多孔質体が入手可能であり、いずれを用いてもよい。また、各貫通孔の径は、培養する細胞凝集体の移動が自由に行われるスペースが確保できればよく、1mm〜6mmあればよい。表1は、外径が25mmφのマルチキャピラリー型の多孔質体の断面模式図を示したものであるが、例えば表1の(a)は、長手方向にほぼ平行に円柱状の貫通孔が7個設けられた多孔質体であり、貫通孔の平均径はおよそ6mmである。また、表1の(g)は、長手方向にほぼ平行に93個の貫通孔が設けられた多孔質体であり、その平均径はおよそ1.6mmである。なお、多孔質体は、取扱い性の面から、外径は10mm〜50mm、長さは50mm〜300mmが好ましい。   In the present invention, the porous body is preferably cylindrical, but may be in the shape of an elliptical cylinder or a polygonal cylinder. The porous body is preferably a multi-capillary type having a plurality of through holes. The cross-sectional shape of the through hole is not particularly limited, and for example, porous bodies having various cross-sectional shapes as shown in Table 1 are available, and any of them may be used. Moreover, the diameter of each through-hole should just ensure the space where the movement of the cell aggregate to culture | cultivate is performed freely, and should just be 1 mm-6 mm. Table 1 shows a schematic cross-sectional view of a multi-capillary porous body having an outer diameter of 25 mmφ. For example, (a) in Table 1 has 7 cylindrical through-holes substantially parallel to the longitudinal direction. Each of the porous bodies is provided, and the average diameter of the through holes is about 6 mm. Moreover, (g) of Table 1 is a porous body provided with 93 through-holes substantially parallel to the longitudinal direction, and its average diameter is about 1.6 mm. The porous body preferably has an outer diameter of 10 mm to 50 mm and a length of 50 mm to 300 mm from the viewpoint of handleability.

本発明において、多孔質体は、分離層および支持層からなる構造のものが好ましく、分離層と支持層の間に中間層を有するものでもよい。また、分離層と支持層は、同一の素材からなるものであっても良いし、異なる素材の組合わせでもよい。分離層の平均孔径は0.1μm〜1.5μmである共連続構造を有することが好ましい。図1は、本発明の細胞培養容器に用いる細胞培養基材(多孔質体)の一例を示す模式図である。2は支持層、3は貫通孔、4は分離層である。また、図2は、貫通孔周辺部の拡大図である。図に示される支持層は、酸化チタン(チタニア)からなり、孔径4.5μmの共連続構造を有している。また、分離層は、酸化チタン(チタニア)+酸化ジルコニウム(ジルコニア)からなり、孔径0.1μmの共連続構造を有している。このような共連続構造、すなわち多孔質体の断面方向に貫通しない空隙(気泡)が存在しない構造を有する多孔質体を細胞培養基材として用いることにより、多孔質体を介した培養液成分と細胞代謝物(老廃物)などの物質交換をよりスムーズに行うことが可能となる。また、貫通孔側に比較的小孔径の分離層を設けることにより、貫通孔内で細胞を培養する際に、細孔内への細胞の落込みや細胞の損傷を防止することができる。   In the present invention, the porous body preferably has a structure composed of a separation layer and a support layer, and may have an intermediate layer between the separation layer and the support layer. Further, the separation layer and the support layer may be made of the same material, or may be a combination of different materials. The separation layer preferably has a co-continuous structure with an average pore size of 0.1 μm to 1.5 μm. FIG. 1 is a schematic view showing an example of a cell culture substrate (porous body) used in the cell culture container of the present invention. 2 is a support layer, 3 is a through-hole, and 4 is a separation layer. FIG. 2 is an enlarged view of the periphery of the through hole. The support layer shown in the figure is made of titanium oxide (titania) and has a co-continuous structure with a pore diameter of 4.5 μm. The separation layer is made of titanium oxide (titania) + zirconium oxide (zirconia) and has a co-continuous structure with a pore diameter of 0.1 μm. By using a porous body having such a co-continuous structure, that is, a structure that does not have voids (bubbles) that do not penetrate in the cross-sectional direction of the porous body as a cell culture substrate, Substance exchange such as cell metabolites (waste products) can be performed more smoothly. Further, by providing a separation layer having a relatively small pore diameter on the through-hole side, it is possible to prevent cells from dropping into the pores and damaging the cells when culturing the cells in the through-holes.

(細胞培養容器)
本発明において、細胞培養容器は、多孔質体により内部が第1室および第2室に区画された構成のものであればよく、例えば、図3に示すような貫通孔(キャピラリー)を有する多孔質体により容器6の内部空間が仕切られており、一方の空間が第1室を構成し、他方の空間が第2室を構成しているものが挙げられる。この場合、多孔質体1の貫通孔を第1室とし、多孔質体の外部空間を第2室としてもよいし、逆に外部空間を第1室とし、貫通孔を第2室としてもよい。なお、貫通孔側に分離層を有する多孔質体を用いる際には、貫通孔を第1室とするのが好ましい。なお、図3において、細胞培養容器は、第1室および第2室にそれぞれ連通する導入口7a、8aおよび排出口7b、8bを供えている。
(Cell culture vessel)
In the present invention, the cell culture container may be of a configuration in which the inside is partitioned into a first chamber and a second chamber by a porous body. For example, the cell culture vessel has a porous structure having a through-hole (capillary) as shown in FIG. An example is one in which the internal space of the container 6 is partitioned by the material, and one space constitutes the first chamber and the other space constitutes the second chamber. In this case, the through hole of the porous body 1 may be the first chamber, the external space of the porous body may be the second chamber, and conversely, the external space may be the first chamber and the through hole may be the second chamber. . In addition, when using the porous body which has a separation layer in the through-hole side, it is preferable to make a through-hole into a 1st chamber. In FIG. 3, the cell culture container is provided with inlets 7a and 8a and outlets 7b and 8b communicating with the first chamber and the second chamber, respectively.

前記細胞培養容器を用いる場合、例えば、貫通孔内にて細胞を培養する際は、細胞縣濁液を端部導管より注入することにより細胞を播種する。細胞播種後、培地を側部導管より導入し灌流させることにより培養を行うことが好ましい。このような細胞培養容器を用いることにより、細胞へ常に新鮮な培地を供給することができ、培養基材にシャーレやフラスコ等を用いる際に必要な交換作業は不要となり、作業者の拘束時間を減らすことができる。   When the cell culture vessel is used, for example, when culturing cells in the through-hole, the cells are seeded by injecting a cell suspension from the end conduit. After cell seeding, culture is preferably performed by introducing a medium from the side conduit and perfusing. By using such a cell culture container, a fresh medium can be always supplied to the cells, and the replacement work required when using a petri dish or a flask as a culture substrate becomes unnecessary, and the operator's restraint time is reduced. Can be reduced.

(細胞培養装置)
図4は、本発明の細胞培養容器を用いる細胞培養装置の一例を示している。図4には、図1に示すマルチキャピラリー型の多孔質体を収納した細胞培養容器を例示している。細胞培養容器の貫通孔(第1室)に連通する導入口7aには、導入口40から浮遊性細胞を含む細胞懸濁液を送液するための流路および細胞洗浄液容器10から細胞洗浄液を送液するための流路が接続されている。また、細胞懸濁液と細胞洗浄液の流路を切替えられるように流路の途中にバルブ20が設けられている。また、前記細胞培養容器の貫通孔(第1室)に連通する排出口7bには、培養後の細胞回収液を排出するための流路が接続されており、流路の途中には流量調整用のバルブ21および送液ポンプ31、細胞回収容器12または排出口50への流路を切替えるためのバルブ22が設けられている。一方、細胞培養容器の多孔質体外部(第2室)に連通する導入口8aには、培養液貯留容器9から培養液を多孔質体外部(第2室)に送液するための流路が接続されている。また、第2室に連通する排出口8bには、細胞培養液または細胞洗浄液を排出するための流路が接続されており、流路の途中には送液ポンプ30が設けられており、排出された培養液または洗浄液を回収するための回収容器11に接続されている。
(Cell culture device)
FIG. 4 shows an example of a cell culture apparatus using the cell culture container of the present invention. FIG. 4 exemplifies a cell culture container that houses the multi-capillary porous body shown in FIG. Into the introduction port 7a communicating with the through hole (first chamber) of the cell culture container, the cell washing solution is supplied from the introduction port 40 and the cell washing solution container 10 through the flow path for feeding a cell suspension containing floating cells. A flow path for feeding liquid is connected. A valve 20 is provided in the middle of the flow path so that the flow path of the cell suspension and the cell washing solution can be switched. In addition, a flow path for discharging the cell recovery liquid after culturing is connected to the discharge port 7b communicating with the through hole (first chamber) of the cell culture container, and the flow rate is adjusted in the middle of the flow path. And a valve 22 for switching the flow path to the liquid delivery pump 31, the cell collection container 12, or the discharge port 50. On the other hand, a flow path for feeding the culture solution from the culture solution storage container 9 to the outside of the porous body (second chamber) is introduced into the introduction port 8a communicating with the outside of the porous body of the cell culture vessel (second chamber). Is connected. The discharge port 8b communicating with the second chamber is connected to a flow path for discharging the cell culture solution or the cell washing solution, and a liquid feed pump 30 is provided in the middle of the flow path. The collected culture solution or washing solution is connected to a collection container 11 for collecting.

(培養の対象となる細胞)
本発明において、培養の対象となる細胞としては、特に限定されるものではないが、浮遊性/非接着性の動物細胞が好適である。細胞の由来も特に限定されず、ヒト、ブタ、イヌ、マウス等のいずれの動物由来のものも使用できる。また、浮遊性の動物細胞は、初代培養細胞及び株化細胞の双方を対象とすることができる。血液幹細胞などの幹細胞、前駆細胞、あるいは、血球系のTリンパ球やナチュラルキラー細胞などでもよい。また、これらの細胞は、培養前に外来遺伝子を導入した細胞であってもよいし、抗体やリガンドなどの刺激因子などで予め刺激、加工されている細胞であっても良い。
(Cells to be cultured)
In the present invention, the cells to be cultured are not particularly limited, but floating / non-adhesive animal cells are preferable. The origin of the cells is not particularly limited, and those derived from any animal such as humans, pigs, dogs and mice can be used. In addition, floating animal cells can target both primary cultured cells and established cells. Stem cells such as blood stem cells, progenitor cells, blood cell T lymphocytes, natural killer cells, and the like may be used. In addition, these cells may be cells into which a foreign gene has been introduced before culturing, or may be cells that have been previously stimulated and processed with stimulating factors such as antibodies and ligands.

(細胞の培養)
細胞を培養する場合、細胞培養容器の貫通孔(第1室)に充填した細胞懸濁液と多孔質体外部(第2室)を流動する細胞培養液とを多孔質体を介して接触させることで、拡散現象を利用して細胞培養液から培養液成分を第1室に移動(透過)させ、また培養に伴う細胞代謝物(老廃物)を第2室に移動(透過)させることにより培養環境を整えながら細胞を培養する。
(Cell culture)
When culturing cells, the cell suspension filled in the through-hole (first chamber) of the cell culture container is brought into contact with the cell culture fluid flowing outside the porous body (second chamber) via the porous body. By using the diffusion phenomenon, the culture solution components are transferred (permeated) from the cell culture solution to the first chamber, and cell metabolites (waste products) accompanying the culture are transferred (permeated) to the second chamber. The cells are cultured while preparing the culture environment.

図4を参照して、バルブ21を閉の状態にして導入口40より細胞を懸濁した細胞懸濁液を送液し、貫通孔(第1室)内に細胞懸濁液を充填する。細胞懸濁液が充填された後、バルブ20を閉の状態とする。貫通孔(第1室)に細胞懸濁液を充填すると同時または前後においてポンプ30を起動して培養液貯留容器9から多孔質外部(第2室)を経由して回収容器11に向かって培養液を送液する。このとき、培養液の流量は、細胞増殖度合いや環境に応じて調整することが好ましい。また、少なくとも細胞培養容器、培養液貯留容器およびそれらを繋ぐ流路は、温度およびCO濃度の制御機構を備えたインキュベータ内に設置することが好ましい。 Referring to FIG. 4, cell suspension in which cells are suspended is introduced from inlet 40 with valve 21 closed, and the cell suspension is filled into the through-hole (first chamber). After the cell suspension is filled, the valve 20 is closed. When the cell suspension is filled into the through-hole (first chamber), the pump 30 is started at the same time or before and after, and the culture medium is cultured from the culture solution storage container 9 toward the collection container 11 via the porous exterior (second chamber). Pump the liquid. At this time, the flow rate of the culture solution is preferably adjusted according to the degree of cell growth and the environment. Moreover, it is preferable to install at least the cell culture container, the culture solution storage container, and the flow path connecting them in an incubator equipped with a temperature and CO 2 concentration control mechanism.

本発明において、細胞懸濁液は、浮遊性細胞を1×10〜1×10個/mLになるように細胞培養液に懸濁したものを指す。 In the present invention, the cell suspension refers to a suspension of suspension cells in a cell culture solution so as to be 1 × 10 5 to 1 × 10 7 cells / mL.

(細胞培養液)
本発明において、培養液(培地)は、細胞を生育および増殖させるためのものであり、栄養素としてアミノ酸、ビタミン、無機塩および糖などが含まれている、いわゆる基礎培地を指す。このような培地としては、例えば、Minimum Essential Medium(MEM)、Basal Medium Eagle(BME)、Media199、Dulbecco’s Modified Eagle Medium(D-MEM)、α−Minimum Essential Medium(α-MEM)、Ham's F-10 Nutrient Mixture(Ham’s F-10)、Ham's F-12 Nutrient Mixture(Ham’s F-12)、RPMI 1640、L-15、Iscove’s Modified Dulbecco’s Medium(IMDM)、ES medium、MCDB 131 Medium、CMRL 1066 Media、DM-160 Medium、Fisher’s Medium、StemSpan Medium、StemPro Medium、Hybridoma Serum Free Medium(Hybridoma SFM)、mTeSR1(modified Tenneille Serum Replacer 1)、Essential 8、Repro FF/FF2/XF、StemSure(登録商標)、CELRENA、S-Medium、ヒトリンパ球用無血清培養液など、市販の細胞培養液およびこれらの混合物を挙げることができるが、これらに限定されない。
(Cell culture medium)
In the present invention, the culture medium (medium) is a so-called basal medium for growing and proliferating cells and containing amino acids, vitamins, inorganic salts, sugars and the like as nutrients. Examples of such a medium include Minimum Essential Medium (MEM), Basal Medium Eagle (BME), Media199, Dulbecco's Modified Eagle Medium (D-MEM), α-Minimum Essential Medium (α-MEM), and Ham's F-10. Nutrient Mixture (Ham's F-10), Ham's F-12 Nutrient Mixture (Ham's F-12), RPMI 1640, L-15, Iscove's Modified Dulbecco's Medium (IMDM), ES medium, MCDB 131 Medium, CMRL 1066 Media, DM- 160 Medium, Fisher's Medium, StemSpan Medium, StemPro Medium, Hybridoma Serum Free Medium (Hybridoma SFM), mTeSR1 (modified Tenneille Serum Replacer 1), Essential 8, Repro FF / FF2 / XF, StemSure (registered trademark), CELRENA, S- Examples include, but are not limited to, commercially available cell culture media such as Medium and serum-free culture media for human lymphocytes, and mixtures thereof.

(浮遊性細胞の洗浄工程)
浮遊性細胞の洗浄工程は、培養を終了した後の浮遊性細胞を貫通孔(第1室)内に保持した状態で細胞洗浄液により洗浄する工程である。
(Floating cell washing process)
The floating cell washing step is a step of washing with a cell washing solution in a state where the floating cells after culturing are held in the through hole (first chamber).

図4を参照して、培養を終了した後、バルブ23を閉止し、次に細胞洗浄液容器10から細胞洗浄液を細胞培養容器の貫通孔(第1室)に送液できるようにバルブ23を操作し、ポンプ30を起動する。多孔質体1は、培養液成分や細胞代謝物(老廃物)は透過するが、細胞は透過しない孔径を有するため、前記培養液成分や代謝物(老廃物)は洗浄液とともに多孔質体を透過して(ろ過されて)回収容器11に回収される。なお、ろ過圧力が高すぎると、細胞にダメージを与えることがあるので、ポンプ出力は適宜調整する必要がある。   Referring to FIG. 4, after culturing is completed, valve 23 is closed, and then valve 23 is operated so that the cell washing solution can be sent from cell washing solution container 10 to the through-hole (first chamber) of the cell culture vessel. Then, the pump 30 is started. Since the porous body 1 has a pore size that allows the culture solution components and cell metabolites (waste products) to permeate but does not permeate the cells, the culture solution components and metabolites (waste products) pass through the porous body together with the washing solution. (Filtered) and collected in the collection container 11. Note that if the filtration pressure is too high, the cells may be damaged, so the pump output must be adjusted accordingly.

本発明において、細胞洗浄液としては、生理食塩水やリン酸緩衝生理食塩水(PBS)を用いるのが好ましい。   In the present invention, it is preferable to use physiological saline or phosphate buffered saline (PBS) as the cell washing solution.

(細胞の回収)
細胞の回収は、洗浄を終了した培養細胞を洗浄液や培養液とともに貫通孔(第1室)内より排出し、細胞回収容器12に回収する。
(Recovery of cells)
For cell collection, the cultured cells that have been washed are discharged from the through-hole (first chamber) together with the washing solution and the culture solution and collected in the cell collection container 12.

図4を参照して、細胞の洗浄が終了した後、細胞培養容器の貫通孔(第1室)内より細胞を細胞回収容器12に回収するために、バルブ21および22を操作して流路を連通させる。その後、ポンプ31を起動することにより、細胞を含む洗浄液を回収容器12に回収することができる。なお、細胞が接着性細胞の場合は、培養液の灌流を停止した後、または細胞の洗浄を終了した後、二価陽イオンフリーのリン酸緩衝生理食塩水(PBS)を一定時間灌流させる。次に、PBSを除去し、トリプシン等のプロテアーゼを貫通孔および多孔質体外部へ充填して一定時間インキュベートする。細胞を多孔質体より剥離させた後、回収容器12に細胞懸濁液を回収する。   Referring to FIG. 4, after the cells are washed, in order to collect the cells into the cell collection container 12 from the through-hole (first chamber) of the cell culture container, the valves 21 and 22 are operated to operate the flow path. To communicate. Thereafter, the cleaning liquid containing cells can be collected in the collection container 12 by starting the pump 31. In the case where the cells are adherent cells, after the perfusion of the culture solution is stopped or after the washing of the cells is completed, a divalent cation-free phosphate buffered saline (PBS) is perfused for a certain period of time. Next, PBS is removed, protease such as trypsin is filled outside the through-hole and the porous body, and incubated for a certain time. After the cells are detached from the porous body, the cell suspension is collected in the collection container 12.

(培養液の流量)
本発明において、培養液は連続的に流しても良いし、断続的に流しても構わないが、流量が少なすぎると、細胞への栄養供給が十分になされず、細胞が増殖しにくくなる。逆に、流量が多すぎても、細胞周囲の環境変化が激しく、細胞が周りの環境に馴染めず、細胞が増殖しにくくなる。このように、細胞培養容器内を流れる、あるいは循環する培養液の流量は、細胞増殖度合いや環境に応じて、調整することが好ましい。細胞増殖度合いを調べる方法は、特に限定されないが、培養液中のグルコースや乳酸塩の濃度等の測定結果をもとに行うことが出来る。
(Flow rate of culture solution)
In the present invention, the culture solution may flow continuously or intermittently. However, if the flow rate is too small, the nutrient supply to the cells is not sufficient, and the cells are difficult to grow. On the other hand, even if the flow rate is too high, the environmental change around the cell is drastic, the cell is not adapted to the surrounding environment, and the cell is difficult to proliferate. Thus, it is preferable to adjust the flow rate of the culture solution flowing or circulating in the cell culture vessel according to the degree of cell growth and the environment. The method for examining the degree of cell proliferation is not particularly limited, but can be performed based on the measurement results such as the concentration of glucose and lactate in the culture solution.

以下、本発明の有効性について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。以下に代表的な本発明の細胞培養方法の実施について記載する。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. The following describes a typical implementation of the cell culture method of the present invention.

[実施例1]
(貫通孔を有する多孔質体)
貫通孔を有する多孔質体として、セラミックフィルタを以下の通り準備した。即ち、表1に示す(a)の多孔質体(テクノアルファ社、外径25mm、貫通孔数7、貫通孔径6mm、貫通孔容積49.5cm、支持層:チタニア、分離層:チタニア+ジルコニア)を250mmの長さに切り、超純水でよく洗浄した後、オートクレーブにて滅菌した。なお、分離層の細孔径は0.1μm、支持層の細孔径は4.5μmであった。
[Example 1]
(Porous material having through holes)
As a porous body having through holes, a ceramic filter was prepared as follows. That is, the porous body of (a) shown in Table 1 (Techno Alpha Co., Ltd., outer diameter 25 mm, number of through-holes 7, through-hole diameter 6 mm, through-hole volume 49.5 cm 3 , support layer: titania, separation layer: titania + zirconia ) Was cut to a length of 250 mm, thoroughly washed with ultrapure water, and then sterilized in an autoclave. The pore size of the separation layer was 0.1 μm, and the pore size of the support layer was 4.5 μm.

(細胞培養容器の作製)
試験用の細胞培養容器を以下のように作製した。内径34mm、長さ254mmの円筒状のポリカーボネート製のケース内に、前記多孔質体を設置し、貫通孔を閉塞しないように両末端をケース端部に固定し、図4に示すような形状の細胞培養容器を作製した。
(Preparation of cell culture container)
A test cell culture vessel was prepared as follows. The porous body is placed in a cylindrical polycarbonate case having an inner diameter of 34 mm and a length of 254 mm, and both ends are fixed to the end of the case so as not to block the through holes. A cell culture vessel was prepared.

(リンパ球の分離)
ヒト血液をヘパリンを含んだチューブに採取し、これを等量のPBSと混和して調製した血液溶液を15ml遠心チューブに3ml分注した。次に、この分注した血液溶液の上に、液面が乱れないように注意しながら密度勾配分離媒体(Lympholyte(登録商標)、コスモバイオ、型番:CL5010)6mlを静かに重層した。これを800×gで20分間、遠心分離を行って出来たリンパ球層を採取し、PBSに懸濁した。再度、800×gで20分間の遠心分離を行い、リンパ球のペレットを得た。上記操作を繰り返し、約2.0×10個のリンパ球を得た。
(Separation of lymphocytes)
Human blood was collected in a tube containing heparin, and 3 ml of a blood solution prepared by mixing this with an equal volume of PBS was dispensed into a 15 ml centrifuge tube. Next, 6 ml of a density gradient separation medium (Lymphoryte (registered trademark), Cosmo Bio, model number: CL5010) was gently layered on the dispensed blood solution, taking care not to disturb the liquid level. A lymphocyte layer formed by centrifugation at 800 × g for 20 minutes was collected and suspended in PBS. Again, centrifugation was performed at 800 × g for 20 minutes to obtain a lymphocyte pellet. The above operation was repeated to obtain about 2.0 × 10 7 lymphocytes.

(細胞培養実験)
細胞培養実験は、図4に示す細胞培養装置を用いて行った。なお、細胞培養容器において、多孔質体の貫通孔を第1室とし、多孔質体の外部を第2室とした。前記得られたリンパ球の3×10個をヒトリンパ球用無血清培養液(株式会社細胞科学研究所、コード:1020P10)100mLに懸濁した細胞懸濁液を細胞培養装置の導入口40より送液し、多孔質体の第1室に充填した。充填後、バルブ20および21を閉止し、ポンプ30を起動して多孔質体の外部(第2室)に前記培養液を流しながらCOインキュベーター内で37℃、4日間培養を行った。培養液の流量は0.5mL/minとした。
(Cell culture experiment)
The cell culture experiment was performed using the cell culture apparatus shown in FIG. In the cell culture container, the through hole of the porous body was the first chamber, and the outside of the porous body was the second chamber. A cell suspension obtained by suspending 3 × 10 6 of the obtained lymphocytes in 100 mL of a serum-free culture solution for human lymphocytes (Cell Science Laboratory Co., Ltd., code: 1020P10) is introduced from the inlet 40 of the cell culture apparatus. The solution was fed and filled into the first chamber of the porous body. After filling, the valves 20 and 21 were closed, the pump 30 was started, and the culture solution was allowed to flow outside the porous body (second chamber), and then cultured at 37 ° C. for 4 days in a CO 2 incubator. The flow rate of the culture solution was 0.5 mL / min.

(細胞の洗浄)
4日間培養後、培養液灌流を停止し、バルブ20を切替えて細胞洗浄液としてリン酸緩衝生理食塩水(PBS)を用いて細胞を洗浄した。
(Cell washing)
After culturing for 4 days, the culture medium perfusion was stopped, the valve 20 was switched, and the cells were washed using phosphate buffered saline (PBS) as a cell washing solution.

(細胞の回収)
培養した細胞を洗浄した後、ポンプ30を停止するとともにバルブ20を閉止した。続いて、バルブ21、22を切替えて細胞培養容器5の排出口7bと細胞回収容器12を連通させた後、ポンプ31を起動し、培養した細胞を細胞培養液とともに細胞回収容器12に回収した。回収した細胞について、細胞数を計測した。結果を表2に示す。
(Recovery of cells)
After washing the cultured cells, the pump 30 was stopped and the valve 20 was closed. Subsequently, after switching the valves 21 and 22 to connect the discharge port 7b of the cell culture container 5 and the cell collection container 12, the pump 31 was started and the cultured cells were collected in the cell collection container 12 together with the cell culture solution. . The number of cells was counted for the collected cells. The results are shown in Table 2.

(細胞回収数の測定)
細胞培養容器からの細胞を含む回収液は、遠心分離操作により最終的に10mlの培養液に懸濁した。この懸濁液とトリパンブルー染色液を1:1で混和した液を血球計算盤に添加し、以下の手順により顕微鏡下で細胞数(個)および細胞生存率(%)の計測を行った。
1.血球計算盤およびカバーガラスの表面を70%イソプロパノールで洗浄し、余分なイソプロパノールをふき取り風乾した。
2.Reagent grade waterでカバーガラスの側面を濡らし、血球計算盤に貼りつけた。
3.細胞懸濁液をパスツールピペット等でよく撹拌後、すぐに血球計算盤に流し込み、溝の上まで満たした。
4.1〜3の操作を別の血球計算盤を使用して行った(2回測定し平均をとる)。
5.顕微鏡に血球計算盤を置き、グリッドラインに焦点を合わせた(10×対物レンズ)。
6.カウンターを用いて1mmエリアの細胞数を速やかに計測した。
※誤差が生じやすいので正確に数えるためには少なくとも100〜500細胞を計測する。
計算法:
C=N×10
C:1ml当たりの細胞数
N:計測した細胞数の平均
10:1mmに対する容量の変換値
全体の数=C×V
V=細胞を懸濁した液体の容量
(Measurement of cell recovery)
The collected liquid containing the cells from the cell culture container was finally suspended in 10 ml of the culture liquid by centrifugation. A solution obtained by mixing the suspension and trypan blue staining solution at 1: 1 was added to a hemocytometer, and the number of cells (cells) and cell viability (%) were measured under a microscope according to the following procedure.
1. The surface of the hemocytometer and cover glass was washed with 70% isopropanol, and excess isopropanol was wiped off and air-dried.
2. The side surface of the cover glass was wetted with a reagent grade water and attached to a hemocytometer.
3. The cell suspension was thoroughly stirred with a Pasteur pipette or the like, and immediately poured into a hemocytometer to fill the groove.
4.1 to 3 were performed using another hemocytometer (measured twice and averaged).
5). A hemocytometer was placed on the microscope and focused on the grid lines (10 × objective).
6). Using a counter, the number of cells in 1 mm 2 area was quickly measured.
* Since errors are likely to occur, at least 100-500 cells are counted for accurate counting.
Calculation method:
C = N × 10 4
C: Number of cells per ml N: Average number of measured cells 10 4 : Conversion value of volume for 1 mm 2 Total number = C × V
V = volume of the liquid in which the cells are suspended

[実施例2]
多孔質体として表1の(d)を用いた以外は、実施例1と同様にして細胞培養を行った。結果を表2に示す。なお、分離層の細孔径は0.8μm、支持層の細孔径は4.5μmであった。
[Example 2]
Cell culture was performed in the same manner as in Example 1 except that (d) in Table 1 was used as the porous body. The results are shown in Table 2. The pore size of the separation layer was 0.8 μm, and the pore size of the support layer was 4.5 μm.

[実施例3]
多孔質体として表1の(g)を用いた以外は、実施例1と同様にして細胞培養を行った。結果を表2に示す。なお、分離層の細孔径は1.4μm、支持層の細孔径は4.5μmであった。
[Example 3]
Cell culture was performed in the same manner as in Example 1 except that (g) in Table 1 was used as the porous body. The results are shown in Table 2. The pore size of the separation layer was 1.4 μm, and the pore size of the support layer was 4.5 μm.

[比較例1]
T−225フラスコ(細胞培養面積225cm)5本に、ヒトリンパ球を0.6×10個/フラスコずつ播種(計3.0×10個)し、実施例1と同様にヒトリンパ球用無血清培養液(株式会社細胞科学研究所、コード:1020P10)を用いて、COインキュベーター内にて37℃、4日間培養した。培養終了後、培養液とともにすべてのフラスコから細胞を回収した。回収した細胞は、50ml遠心チューブに分注し、1000rpmで10分間遠心分離した後、上清の培養液を吸引除去し、細胞を20mlのPBSに懸濁した。この操作を計4回繰り返し、最終的に10mlのPBSに懸濁し、細胞数および細胞生存率を測定した。
[Comparative Example 1]
Five T-225 flasks (cell culture area: 225 cm 2 ) were seeded with 0.6 × 10 6 human lymphocytes per flask (total of 3.0 × 10 6 ), and for human lymphocytes as in Example 1. Using a serum-free culture solution (Cell Science Laboratory Co., Ltd., code: 1020P10), the cells were cultured at 37 ° C. for 4 days in a CO 2 incubator. After completion of the culture, cells were collected from all flasks together with the culture solution. The collected cells were dispensed into a 50 ml centrifuge tube and centrifuged at 1000 rpm for 10 minutes, and then the supernatant culture was aspirated and the cells were suspended in 20 ml of PBS. This operation was repeated 4 times in total and finally suspended in 10 ml of PBS, and the number of cells and the cell viability were measured.

実施例および比較例について、同じ実験をそれぞれ8回繰り返し、回収された細胞数および細胞生存率を求めた(表1)。この結果、実施例は、回収細胞数および細胞生存率のいずれにおいても良好な結果であった。一方、比較例では、回収細胞数および細胞生存率のいずれにおいても実施例より低い結果となった。また、実験間の誤差が大きくなっており、再現性に問題があることがわかった。このことから、本発明では細胞を高密度で効率よく培養できるだけでなく、細胞にダメージを与えず、細胞回収のロスも少ない細胞培養容器を提供できるといえる。   For the examples and comparative examples, the same experiment was repeated 8 times, and the number of recovered cells and the cell viability were determined (Table 1). As a result, the Example showed good results in both the number of recovered cells and the cell viability. On the other hand, in the comparative example, both the number of recovered cells and the cell viability were lower than in the example. Moreover, the error between experiments was large, and it was found that there was a problem in reproducibility. From this, it can be said that the present invention can provide a cell culture vessel that can not only cultivate cells efficiently at high density, but also does not damage the cells and causes little loss of cell recovery.


*細胞数(×10)個

* Number of cells (× 10 6 )

本発明により、効率良い浮遊性細胞の培養実施及び簡便な培養液除去が可能となり、免疫細胞療法への応用が期待できる。   The present invention enables efficient suspension cell culture and simple removal of the culture solution, and can be expected to be applied to immune cell therapy.

1 多孔質体
2 貫通孔(キャピラリー)
3 支持層
4 分離層
5 細胞培養容器
6 筒状容器
7a、8a 導入口
7b、8b 排出口
9 培養液容器
10 洗浄液容器
11 回収容器
12 細胞回収容器
20、21、22、23 バルブ
30、31 送液ポンプ
1 Porous body 2 Through hole (capillary)
3 Support layer 4 Separation layer 5 Cell culture container 6 Cylindrical containers 7a, 8a Inlet 7b, 8b Discharge port 9 Culture liquid container 10 Washing liquid container 11 Recovery container 12 Cell recovery container 20, 21, 22, 23 Valve 30, 31 Liquid pump

Claims (4)

長手方向に1以上の貫通孔を有する多孔質体を含む細胞培養容器。   A cell culture vessel comprising a porous body having one or more through-holes in the longitudinal direction. 前記多孔質体は、酸化アルミニウム、酸化チタン、酸化ジルコニウムからなる群から選ばれる材料からなる、請求項1に記載の細胞培養容器。   The cell culture container according to claim 1, wherein the porous body is made of a material selected from the group consisting of aluminum oxide, titanium oxide, and zirconium oxide. 前記多孔質体は、マルチキャピラリー型のフィルタである、請求項1または2に記載の細胞培養容器。   The cell culture container according to claim 1 or 2, wherein the porous body is a multi-capillary filter. 前記多孔質体は、細孔径が0.1μm〜1.5μmである、請求項1〜3のいずれかに記載の細胞培養容器。   The cell culture container according to claim 1, wherein the porous body has a pore diameter of 0.1 μm to 1.5 μm.
JP2018042896A 2018-03-09 2018-03-09 Cell culture vessel Pending JP2019154277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018042896A JP2019154277A (en) 2018-03-09 2018-03-09 Cell culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042896A JP2019154277A (en) 2018-03-09 2018-03-09 Cell culture vessel

Publications (1)

Publication Number Publication Date
JP2019154277A true JP2019154277A (en) 2019-09-19

Family

ID=67992452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042896A Pending JP2019154277A (en) 2018-03-09 2018-03-09 Cell culture vessel

Country Status (1)

Country Link
JP (1) JP2019154277A (en)

Similar Documents

Publication Publication Date Title
JP6696206B2 (en) Cell culture device using gas impermeable tube and cell culture method
US6875605B1 (en) Modular cell culture bioreactor and associated methods
CN103328625A (en) Bioreactor
US20180291336A1 (en) Method of manufacturing and purifying exosomes from non-terminally differentiated cells
JP2017158488A (en) Cell recovery method
JP2018537073A (en) Method for producing cells using hollow fiber bioreactor
JP5727174B2 (en) Hollow fiber module for cell culture and cell culture method
JP5155530B2 (en) Adult stem cell separation and culture system
JP6382938B2 (en) Cell culture jig and cell culture method using the cell culture jig
JP6930068B2 (en) Cell culture method using a hollow fiber module
JP6848273B2 (en) Cell culture device
WO2016140213A1 (en) Cell culture method using hollow fiber module
JP2014060991A (en) Method of culturing stem cells using inner lumen of porous hollow fiber
JP6958350B2 (en) Method for producing stem cell culture supernatant
JP6323702B2 (en) Hollow fiber membrane and hollow fiber module for cell culture
JP2019154277A (en) Cell culture vessel
WO2017104558A1 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
JP6422221B2 (en) Cell mass production method comprising pluripotent stem cells
JP2020078282A (en) Method of preserving synovial membrane tissue and method of separating and culturing stem cells from preserved synovial membrane tissue
JP2018078862A (en) Adipose tissue preservation method and method of isolating and culturing stem cells from frozen adipose tissue
US20120094372A1 (en) Ex Vivo Cell Culture: Enabling Process and Devices
JP2017209081A (en) Cell culture carrier and cell culture module
JP2018014947A (en) Cell culture method using hollow fiber membrane module
CN109153963B (en) Method for changing cell culture in adhesion state
JP2018064486A (en) Method of culturing dental pulp stem cells