JP2018093782A - Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue - Google Patents

Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue Download PDF

Info

Publication number
JP2018093782A
JP2018093782A JP2016240992A JP2016240992A JP2018093782A JP 2018093782 A JP2018093782 A JP 2018093782A JP 2016240992 A JP2016240992 A JP 2016240992A JP 2016240992 A JP2016240992 A JP 2016240992A JP 2018093782 A JP2018093782 A JP 2018093782A
Authority
JP
Japan
Prior art keywords
placental tissue
stem cells
tissue
solution
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016240992A
Other languages
Japanese (ja)
Inventor
達哉 山口
Tatsuya Yamaguchi
達哉 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016240992A priority Critical patent/JP2018093782A/en
Publication of JP2018093782A publication Critical patent/JP2018093782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple long-term storage method for placental tissue and an effective means of culturing isolated stem cells such as MSC from stored placental tissue.SOLUTION: A method of preserving placental tissue comprises: a step of slicing placental tissue collected from a living organism so as to have a maximum diameter of 6 mm; a step of soaking the sliced placental tissue in cryoprotectant such that the weight of placental tissue/(weight of placental tissue+weight of cryoprotectant) is 10 to less than 50 wt.%; and a step of cryopreserving the placental tissue in a container with the cryoprotectant in an environment at -80°C or less. Further, a method for preparing stem cells derived from frozen placenta comprises: a step of washing the preserved placental tissue with a culture liquid after thawing; a step of washing with a protease solution; and a step of digesting the placental tissue in the protease solution. Further provided are a method for culturing stem cells from the prepared placental tissue, and a method in which the stem cells are mesenchymal cells.SELECTED DRAWING: None

Description

本発明は、胎盤組織の保存方法および凍結保存した胎盤組織から幹細胞を効率よく調製し、培養する方法に関する。   The present invention relates to a method for preserving placental tissue and a method for efficiently preparing and culturing stem cells from cryopreserved placental tissue.

骨髄液等に含まれている間葉系幹細胞(MSC=Mesenchymal Stem Cell)は、増殖能が高く、骨、軟骨、筋肉、脂肪、肝細胞、神経細胞、心筋細胞、血管内皮細胞等、種々の細胞に分化することが知られており、再生医療、とくに細胞移植治療用の細胞源として有用性が多く報告され、一部では既に実用化されており、臨床応用が進められている。   Mesenchymal stem cells (MSC = Mesenchymal Stem Cell) contained in bone marrow fluid have high proliferative ability, such as bone, cartilage, muscle, fat, hepatocytes, nerve cells, cardiomyocytes, vascular endothelial cells, etc. It has been known to differentiate into cells, and many usefulness has been reported as a cell source for regenerative medicine, particularly cell transplantation treatment. Some of them have already been put into practical use and clinical applications are being promoted.

MSCは、従来は主に骨髄液から培養し調製されていた。しかし近年、MSCの細胞源として骨髄以外の組織が脚光を浴びている。例えば、羊膜は、外胚葉由来の上皮細胞と中胚葉由来の間葉系細胞から構成される胚体外組織であり、多能性幹細胞としての特性を有する細胞群を含有することが確認されており、例えば、ヒト羊膜上皮由来幹細胞の肝細胞やインスリン産生細胞への分化、ヒト羊膜由来間葉系幹細胞の軟骨細胞や心筋細胞への分化が知られている(特許文献1)。また、臍帯は、外層を取り囲む羊膜とワルトンのゼリーと呼ばれる膠様組織及び臍動脈、臍静脈で構成される組織であり、ワルトンのゼリーには間葉系幹細胞が存在し、軟骨細胞、脂肪組織、骨に分化することが知られている(非特許文献1)。さらに、胎盤は、合胞体栄養細胞、Langhans細胞、線維芽細胞、組織球、脱落膜細胞など多数の細胞が含まれ、これらの中でCD59陽性を示す細胞が幹細胞として有望である。   Conventionally, MSC has been prepared mainly by culturing from bone marrow fluid. However, in recent years, tissues other than bone marrow have been spotlighted as cell sources of MSC. For example, amniotic membrane is an extraembryonic tissue composed of ectoderm-derived epithelial cells and mesoderm-derived mesenchymal cells, and has been confirmed to contain a group of cells having characteristics as pluripotent stem cells. For example, differentiation of human amniotic epithelium-derived stem cells into hepatocytes and insulin-producing cells, and differentiation of human amnion-derived mesenchymal stem cells into chondrocytes and cardiomyocytes are known (Patent Document 1). The umbilical cord is composed of an amnion surrounding the outer layer, a collagenous tissue called Walton's jelly, umbilical arteries, and umbilical veins, and mesenchymal stem cells are present in Walton's jelly, chondrocytes, adipose tissue It is known to differentiate into bone (Non-patent Document 1). Furthermore, the placenta includes a large number of cells such as syncytiotrophoblast cells, Langhans cells, fibroblasts, histiospheres, and decidual cells. Among them, cells showing CD59 positivity are promising as stem cells.

このように、臍帯、胎盤、羊膜など、胎児育成に関わる組織は、従来は分娩後に廃棄されていたが、幹細胞の豊富な組織であり、再生医療への応用が期待されている。   Thus, tissues related to fetal growth such as the umbilical cord, placenta, and amniotic membrane were conventionally discarded after delivery, but are rich in stem cells and are expected to be applied to regenerative medicine.

中でも胎盤は、大量のMSCが調製可能であり、また胎盤由来MSCは、骨髄由来MSCよりも増殖性や免疫調整作用に優れているとされ、良質の幹細胞源として大いに有効利用が期待される。   Among them, a large amount of placental MSCs can be prepared, and placenta-derived MSCs are considered to be more proliferative and immunomodulating than bone marrow-derived MSCs, and are expected to be used effectively as a high-quality stem cell source.

胎盤からMSCなどの幹細胞を調製する際は、専ら新鮮な組織を使用する。例えば、MSCの分離培養は、胎盤の洗浄(付着した血液、悪露等の除去)、細切、プロテアーゼ等による酵素処理、フィルターろ過、遠心操作、細胞播種操作等の一連の工程を連続して行い、速やかに細胞の培養工程へと移行する必要がある。   When preparing stem cells such as MSCs from the placenta, fresh tissue is used exclusively. For example, MSC separation culture is a series of steps such as washing the placenta (removing attached blood, dew, etc.), chopping, enzyme treatment with protease, filter filtration, centrifugation, cell seeding, etc. It is necessary to proceed to the cell culture process promptly.

従って、入手した新鮮な胎盤組織が多量の場合、人手や時間が充分に無い場合、または培養の準備が出来ていない場合など、様々な理由により、得られた胎盤を細胞培養工程までの処理を終えることが出来ず、せっかく入手した新鮮な組織が充分利用されずに廃棄せざるを得ないケースが度々発生する。   Therefore, if the obtained placental tissue is abundant, if there is not enough manpower or time, or if the culture is not ready, the obtained placenta can be processed up to the cell culture process for various reasons. In many cases, it is impossible to finish the process, and the freshly obtained tissue must be discarded without being fully utilized.

このため、簡便な方法で胎盤を凍結、長期保存しておき、凍結保存した胎盤組織からもMSCなどの幹細胞を分離培養出来る有効な手段が求められている。   For this reason, there is a need for an effective means that allows the placenta to be frozen and stored for a long period of time by a simple method, and that stem cells such as MSC can be separated and cultured from the frozen placenta tissue.

特開2003−231639号公報JP 2003-231039 A

Cellular Reprograming, 14(5), 448−455(2012)Cellular Reprogramming, 14 (5), 448-455 (2012)

本発明の課題は、簡便な方法で胎盤組織を長期保存することができ、保存した胎盤組織からMSCなどの幹細胞を分離培養可能な有効手段を提供することにある。   An object of the present invention is to provide an effective means capable of preserving placental tissue for a long period of time by a simple method and capable of separating and culturing stem cells such as MSC from the preserved placental tissue.

本発明者は、上記課題を解決するために鋭意検討した結果、以下に示す方法により、上記課題を解決できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor found that the above problems can be solved by the following method, and completed the present invention.

すなわち、本発明は、以下の構成からなる。
1. i)生体より採取された胎盤組織を最大径が6mm以下になるように細切する工程
ii)細切した前記胎盤組織を、凍結保護液に、胎盤組織重量/(胎盤組織重量+凍結保護液重量)が10wt%以上50wt%未満になるように浸漬する工程
iii)胎盤組織と凍結保護液を容器に入れ、−80℃以下の環境で凍結保存する工程
を含む胎盤組織の保存方法。
2. iv)(1)に記載の方法で得られた凍結胎盤組織を融解後、培養液で洗浄する工程
v)プロテアーゼ溶液で洗浄する工程
vi)プロテアーゼ溶液中で胎盤組織を消化する工程
を含む、凍結胎盤組織由来の幹細胞を調製する方法。
3.前記プロテアーゼが、コラゲナーゼおよび/またはディスパーゼを含む(2)に記載の方法。
4.前記幹細胞が間葉系幹細胞である(2)または(3)に記載の方法。
5.(2)〜(4)のいずれかに記載の方法により得られた細胞懸濁液を培養基材に播種し、接着した幹細胞を培養することを特徴とする凍結胎盤組織由来の幹細胞の培養方法。
6.前記培養基材が中空糸膜であることを特徴とする(5)に記載の培養方法。
That is, this invention consists of the following structures.
1. i) Step of slicing placenta tissue collected from a living body so that the maximum diameter is 6 mm or less ii) Placenta tissue weight / (placenta tissue weight + cryoprotection solution) into the cryoprotection solution A step of immersing so that the weight) is 10 wt% or more and less than 50 wt%.
2. iv) a step of thawing the frozen placental tissue obtained by the method described in (1) and then washing with a culture solution v) a step of washing with a protease solution vi) a step of digesting the placental tissue in the protease solution A method of preparing placental tissue-derived stem cells.
3. The method according to (2), wherein the protease comprises collagenase and / or dispase.
4). The method according to (2) or (3), wherein the stem cell is a mesenchymal stem cell.
5. (2) A method for culturing stem cells derived from frozen placental tissue, comprising seeding a cell suspension obtained by the method according to any one of (4) on a culture substrate and culturing the adhered stem cells. .
6). The culture method according to (5), wherein the culture substrate is a hollow fiber membrane.

本発明により、胎盤組織を安定して長期保存することができ、また凍結保存した胎盤組織から胎盤由来の幹細胞を高効率に分離培養することが可能となる。   According to the present invention, placental tissue can be stably stored for a long time, and placenta-derived stem cells can be separated and cultured with high efficiency from cryopreserved placental tissue.

細胞培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of a cell culture apparatus.

本発明において、胎盤組織(たいばんそしき)とは、胎児と母体の複合組織である胎盤を指す。胎盤は、胚および胎児の組織と母体の組織とが緊密に接着した複合組織であり、両者の間で物質の交換や細胞レベルの相互作用などの生理的に重要な役割を果たしている。   In the present invention, placental tissue refers to a placenta that is a composite tissue of a fetus and a mother. The placenta is a complex tissue in which embryonic and fetal tissues and maternal tissues are closely adhered, and plays a physiologically important role such as exchange of substances and interaction at the cellular level between them.

本発明において、生体より採取した胎盤組織は、リン酸緩衝液(PBS)等を用いて洗浄した後、血管や結合組織を除去する。その後、前記胎盤組織を適度に細切れにする。細切れにする大きさは、取扱い性や冷却速度の均一化が図れるように全体の大きさを合わせるのが好ましく、本発明においては、最大径が6mm以下になるように鋏や鉗子を用いて細切れにする。より好ましくは、2〜5mmである。   In the present invention, placental tissue collected from a living body is washed with a phosphate buffer (PBS) or the like, and then blood vessels and connective tissue are removed. Thereafter, the placental tissue is appropriately minced. The size to be chopped is preferably adjusted so that the handleability and the cooling rate can be made uniform. In the present invention, the size is chopped by using a scissors or forceps so that the maximum diameter is 6 mm or less. To. More preferably, it is 2-5 mm.

本発明において、胎盤組織の保存は、細分化した胎盤組織に凍結保護液を加えて凍結保存するのが好ましい。凍結保護液としては、市販のものを使用するのが簡便だが、ジメチルスルフォキシド(DMSO)やグリセリン、血清などを用いることも可能である。本発明においては、5wt%以上20wt%未満のDMSOを含む培養液を用いるのが安価であり好ましい。DMSOの添加量は、細胞種等に応じて前記範囲で調整すればよい。DMSOは、滅菌済みのものを使用する必要がある。また、凍結保護液には、さらに血清を添加してもよい。胎盤組織と凍結保護液は、胎盤組織重量/(胎盤組織重量+凍結保護液重量)が10wt%以上50wt%未満となるように混合するのが好ましい。また、凍結保護液は、胎盤組織に加える前に4℃前後に冷却しておくのが好ましい。   In the present invention, the placental tissue is preferably preserved by cryopreserving a segmented placental tissue by adding a cryoprotective solution. As a cryoprotective solution, it is easy to use a commercially available solution, but dimethyl sulfoxide (DMSO), glycerin, serum, etc. can also be used. In the present invention, it is inexpensive and preferable to use a culture solution containing DMSO of 5 wt% or more and less than 20 wt%. The amount of DMSO added may be adjusted in the above range depending on the cell type and the like. DMSO must be sterilized. Further, serum may be added to the cryoprotective solution. The placental tissue and the cryoprotective solution are preferably mixed so that the weight of placental tissue / (weight of placental tissue + weight of cryoprotective solution) is 10 wt% or more and less than 50 wt%. The cryoprotectant is preferably cooled to around 4 ° C. before being added to the placental tissue.

前記調製した凍結保護液を胎盤組織に加えて軽く懸濁した後、バイアル等の容器に移し、冷却を開始する。冷却温度(胎盤組織の保存温度)は、細胞の生存率が高くなるため低い方が好ましいが、設備やコストの面より−80℃〜−196℃が好ましい。冷却速度は特に限定されないが、一例として、下記のような条件が例示される。冷却速度を適性に制御することにより、解凍後の細胞の生存率が高まるため好ましい。
(1)必要により、−2℃/minの速度で4℃まで冷却する。
(2)5〜15分間、4℃で保持した後、−1℃/minの速度で−30℃まで冷却する。
(3)5〜15分間、−30℃で保持した後、−5℃/minの速度で−80℃まで冷却する。
(4)−80℃まで冷却した後、−80℃のフリーザーまたは液体窒素中で保存する。
The prepared cryoprotective solution is added to the placental tissue and suspended briefly, and then transferred to a container such as a vial, and cooling is started. The cooling temperature (preservation temperature of placental tissue) is preferably low because the cell survival rate is high, but is preferably −80 ° C. to −196 ° C. in terms of equipment and cost. Although a cooling rate is not specifically limited, The following conditions are illustrated as an example. It is preferable to appropriately control the cooling rate because the viability of the cells after thawing is increased.
(1) If necessary, cool to 4 ° C. at a rate of −2 ° C./min.
(2) After holding at 4 ° C. for 5 to 15 minutes, cool to −30 ° C. at a rate of −1 ° C./min.
(3) After holding at −30 ° C. for 5 to 15 minutes, cool to −80 ° C. at a rate of −5 ° C./min.
(4) After cooling to −80 ° C., store in a −80 ° C. freezer or liquid nitrogen.

このようにして保存された凍結胎盤組織は、必要に応じて解凍し、細胞培養を行い増殖を図ることができる。すなわち、フリーザー等から取り出した容器を予め37℃前後の恒温槽に浸漬するなどして解凍する。凍結した内容物が溶けたら、恒温槽より取出し、内容物を予め4℃前後に冷却した培養液の入ったシャーレ等の容器に移す。容器を軽く揺すってすすいだ後、アスピレータ等を用いて上清を除去する。再度、容器に培養液を添加し、前記操作を繰返すことにより胎盤組織を洗浄する。なお、解凍操作が遅いと細胞の生存率が低下する原因となるため、前記操作は迅速に行うのが重要である。   The frozen placental tissue thus preserved can be thawed as necessary and cultured for cell culture to proliferate. That is, the container taken out from the freezer or the like is thawed by immersing it in a constant temperature bath at around 37 ° C. in advance. When the frozen contents are melted, the contents are taken out from the thermostatic bath, and the contents are transferred to a container such as a petri dish containing a culture solution previously cooled to about 4 ° C. After rinsing the container lightly, remove the supernatant using an aspirator or the like. Again, the culture medium is added to the container, and the placenta tissue is washed by repeating the above operation. It should be noted that if the thawing operation is slow, the viability of the cells decreases, so it is important to perform the operation quickly.

続いて、洗浄後の胎盤組織にプロテアーゼ溶液を加えて、容器を軽く揺すってすすいだ後、アスピレータ等を用いて上清を除去する。洗浄した胎盤組織にプロテアーゼ溶液を添加した後、遠心チューブ等に移し、恒温槽中で振盪して胎盤組織を消化する。消化条件としては、35〜38℃で30〜90分間処理するのが好ましい。   Subsequently, a protease solution is added to the placental tissue after washing, and the container is gently shaken to rinse, and then the supernatant is removed using an aspirator or the like. After adding a protease solution to the washed placental tissue, the protease solution is transferred to a centrifuge tube or the like and shaken in a thermostatic bath to digest the placental tissue. As digestion conditions, it is preferable to treat at 35 to 38 ° C. for 30 to 90 minutes.

本発明において、プロテアーゼ(タンパク質分解酵素)は、好ましくは、コラゲナーゼタイプIIまたはディスパーゼ、またはコラゲナーゼとディスパーゼの混合液であり、その濃度はそれぞれ、好ましくは1〜2mg/mLと3000〜7000単位/mL、より好ましくは1.3〜1.8mg/mLと4000〜6000単位/mLである。また、プロテアーゼによる処理温度は、好ましくは35〜37℃、処理時間は1〜3時間である。   In the present invention, the protease (proteolytic enzyme) is preferably collagenase type II or dispase, or a mixed solution of collagenase and dispase, and the concentrations thereof are preferably 1-2 mg / mL and 3000-7000 units / mL, respectively. More preferably, they are 1.3-1.8 mg / mL and 4000-6000 units / mL. The treatment temperature with protease is preferably 35 to 37 ° C., and the treatment time is 1 to 3 hours.

前記消化して得られた組織懸濁液は、ガーゼろ過またはセルストレーナ(100μmメッシュ)を通過させ、夾雑成分を除去する。これを遠沈管に移し、100〜3000rpmで1〜10分間遠心分離を行う。アスピレータ等を用いて上清(プロテアーゼ)を除去した後、残渣にウシ胎児血清(FBS)を添加した培養液を注いで細胞を浮遊させる。添加するFBS濃度は、1〜20vol%が好ましい。FBS濃度が低すぎると、細胞の生育(増殖)不良が発生し易いため5vol%以上添加するのが好ましい。また、FBS濃度が高すぎて問題となることは少ないが、過剰添加はコストアップに繋がるので、15vol%以下がより好ましい。   The tissue suspension obtained by digestion is passed through gauze filtration or a cell strainer (100 μm mesh) to remove contaminant components. This is transferred to a centrifuge tube and centrifuged at 100 to 3000 rpm for 1 to 10 minutes. After removing the supernatant (protease) using an aspirator or the like, the culture medium added with fetal bovine serum (FBS) is poured into the residue to float the cells. The FBS concentration to be added is preferably 1 to 20 vol%. If the FBS concentration is too low, cell growth (proliferation) defects are likely to occur, so it is preferable to add 5 vol% or more. Further, although the FBS concentration is too high, there is little problem, but excessive addition leads to cost increase, so 15 vol% or less is more preferable.

これを培養プレートやシャーレ、中空糸膜等の培養基材に播種した後、接着した胎盤組織由来の幹細胞を定法により平面(2次元)培養し、増殖させる。培養基材としては、培養液交換の手間やコンタミのリスクを考慮すると、中空糸膜を用いるのが好ましい。   This is seeded on a culture substrate such as a culture plate, a petri dish or a hollow fiber membrane, and then the adherent placental tissue-derived stem cells are cultured in a planar (two-dimensional) manner by a conventional method to proliferate. As a culture substrate, it is preferable to use a hollow fiber membrane in view of the trouble of exchanging the culture medium and the risk of contamination.

本発明において、培養液(培地)は、細胞を生育および増殖させるためのものであり、栄養素としてアミノ酸、ビタミン、無機塩および糖などが含まれている、いわゆる基礎培地を指す。このような培地としては、例えば、Minimum Essential Medium(MEM)、Basal Medium Eagle(BME)、Media199、Dulbecco’s Modified Eagle Medium(DMEM)、α−Minimum Essential Medium(α-MEM)、Ham's F-10 Nutrient Mixture(Ham’s F-10)、Ham's F-12 Nutrient Mixture(Ham’s F-12)、RPMI 1640、L-15、Iscove’s Modified Dulbecco’s Medium(IMDM)、ES medium、MCDB 131 Medium、CMRL 1066 Media、DM-160 Medium、Fisher’s Medium、StemSpan Medium、StemPro Medium、Hybridoma Serum Free Medium(Hybridoma SFM)、mTeSR1(modified Tenneille Serum Replacer 1)、Essential 8、Repro FF/FF2/XF、StemSure(登録商標)、CELRENA、S-Mediumなど、市販の細胞培養液およびこれらの混合物を用いることができるが、これらに限定されない。   In the present invention, the culture medium (medium) is a so-called basal medium for growing and proliferating cells and containing amino acids, vitamins, inorganic salts, sugars and the like as nutrients. Examples of such a medium include Minimum Essential Medium (MEM), Basal Medium Eagle (BME), Media199, Dulbecco's Modified Eagle Medium (DMEM), α-Minimum Essential Medium (α-MEM), and Ham's F-10 Nutrient Mixture. (Ham's F-10), Ham's F-12 Nutrient Mixture (Ham's F-12), RPMI 1640, L-15, Iscove's Modified Dulbecco's Medium (IMDM), ES medium, MCDB 131 Medium, CMRL 1066 Media, DM-160 Medium , Fisher's Medium, StemSpan Medium, StemPro Medium, Hybridoma Serum Free Medium (Hybridoma SFM), mTeSR1 (modified Tenneille Serum Replacer 1), Essential 8, Repro FF / FF2 / XF, StemSure (registered trademark), CELRENA, S-Medium, etc. Commercially available cell culture media and mixtures thereof can be used, but are not limited thereto.

また、培養液には、血清を添加してもよい。血清は、ウシ血清、ウシ胎児血清(FBS)、ウマ血清、ヒト血清などの血清を用いるのが好ましい。添加量としては、基礎培地に対して1vol%以上が好ましい。添加量が少なすぎると、細胞が生育および増殖しないので、5vol%以上添加するのがより好ましく、10vol%以上添加するのがさらに好ましい。添加量を必要以上に増やしても培養コストが上昇するだけであり、20vol%程度を上限とするのが好ましい。   In addition, serum may be added to the culture solution. As the serum, serum such as bovine serum, fetal bovine serum (FBS), horse serum, human serum is preferably used. The amount added is preferably 1 vol% or more with respect to the basal medium. If the amount added is too small, the cells will not grow and proliferate, so it is more preferred to add 5 vol% or more, and even more preferred to add 10 vol% or more. Even if the addition amount is increased more than necessary, the culture cost only rises, and it is preferable that the upper limit is about 20 vol%.

本発明において、培養基材として用いる中空糸膜の材料は、細胞を膜表面に保持でき、溶液や低分子の物質を透過できるものであれば特に限定されず、例えば、酢酸セルロース、再生セルロース、ポリスルホン、ポリエーテルスルホン、エチレンビニルアルコール、ポリメチルメタクリレート、ポリアクリロニトリル等が挙げられる。また、細胞の接着性や培養液との馴染みを改善するために、ポリビニルピロリドンやヒドロキシアルキルセルロース等の親水性高分子や、コラーゲンやフィブロネクチン等の細胞接着因子を併用しても良い。   In the present invention, the material of the hollow fiber membrane used as a culture substrate is not particularly limited as long as it can hold cells on the membrane surface and can pass through a solution or a low-molecular substance. For example, cellulose acetate, regenerated cellulose, Polysulfone, polyethersulfone, ethylene vinyl alcohol, polymethyl methacrylate, polyacrylonitrile and the like can be mentioned. In order to improve cell adhesion and familiarity with the culture solution, hydrophilic polymers such as polyvinylpyrrolidone and hydroxyalkylcellulose, and cell adhesion factors such as collagen and fibronectin may be used in combination.

培養基材として中空糸膜を用いる他のメリットとして、培養の省スペース化が挙げられる。そのため、中空糸膜の内径は100〜1000μmが好ましく、膜厚は10〜150μm程度が好ましい。   Another advantage of using a hollow fiber membrane as a culture substrate is space saving of culture. Therefore, the inner diameter of the hollow fiber membrane is preferably 100 to 1000 μm, and the film thickness is preferably about 10 to 150 μm.

中空糸膜の孔径は、細胞は通過させないが、水、塩類、タンパク質などの培養液成分は通過させる孔径であればよく、培養という面を考慮すると物質交換の効率のよい比較的大きな孔径を有する方が好ましい。具体的には、平均孔径が0.001〜0.5μm程度であることが好ましい。透水性は、好ましくは10〜5000mL/m/hr/mmHgである。なお、本発明において、中空糸膜の構造は、特に限定されるものではなく、均質構造でもよいし、不均質(非対称)構造でもよい。 The pore diameter of the hollow fiber membrane does not allow cells to pass through, but it is sufficient that the culture solution components such as water, salts, and proteins pass therethrough. Is preferred. Specifically, the average pore size is preferably about 0.001 to 0.5 μm. The water permeability is preferably 10 to 5000 mL / m 2 / hr / mmHg. In the present invention, the structure of the hollow fiber membrane is not particularly limited, and may be a homogeneous structure or a heterogeneous (asymmetric) structure.

以下、本発明の有効性について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto.

(細胞数の計測)
細胞を含む懸濁液を遠心分離操作により最終的に1mlの培養液に懸濁した。この懸濁液とトリパンブルー染色液を1:1で混和した液を血球計算盤に添加し、顕微鏡下で細胞数の計測を行った。
1.血球計算盤およびカバーガラスの表面を70%イソプロパノールで洗浄し、余分なイソプロパノールをふき取り風乾する。
2.Reagent grade waterでカバーガラスの側面を濡らし、血球計算盤に貼りつける。
3.細胞懸濁液をパスツールピペット等でよく撹拌後、すぐに血球計算盤に流し込み、溝の上まで満たす。
4.前記1〜3の操作を別の血球計算盤を使用して行う(2回測定し平均をとる)。
5.顕微鏡に血球計算盤を置き、グリッドラインに焦点を合わせる(10×対物レンズ)。
6.カウンターを用いて1mmエリアの細胞数を速やかに計測する。
※誤差が生じやすいので正確に数えるために100〜500細胞になるように懸濁液を調製する。
計算方法:
C=N×10
C:1ml当たりの細胞数
N:計測した細胞数の平均
10:1mmに対する容量の変換値
全体の数=C×V
V=細胞を懸濁した液体の容量
(Counting the number of cells)
The suspension containing the cells was finally suspended in 1 ml of culture solution by centrifugation. A solution obtained by mixing this suspension and trypan blue staining solution at a ratio of 1: 1 was added to a hemocytometer, and the number of cells was measured under a microscope.
1. The surface of the hemocytometer and cover glass is washed with 70% isopropanol, excess isopropanol is wiped off and air-dried.
2. Wet the side of the cover glass with Reagent grade water and attach it to the hemocytometer.
3. After thoroughly agitating the cell suspension with a Pasteur pipette, immediately pour it into a hemocytometer and fill the groove.
4). The above operations 1 to 3 are performed using another hemocytometer (measured twice and averaged).
5. Place a hemocytometer on the microscope and focus on the grid lines (10 × objective).
6). Using a counter, rapidly measure the number of cells in a 1 mm 2 area.
* Since errors are likely to occur, prepare a suspension so that there are 100-500 cells for accurate counting.
Method of calculation:
C = N × 10 4
C: Number of cells per ml N: Average number of measured cells 10 4 : Conversion value of volume for 1 mm 2 Total number = C × V
V = volume of the liquid in which the cells are suspended

(細胞増殖率の測定)
培養終了後の細胞培養容器(中空糸膜モジュール)より回収した生細胞数と初期の播種細胞数(1.05×10)を用いて以下の式により細胞増殖率を算出した。
細胞増殖率(%)=(回収した生細胞数−播種細胞数)/播種細胞数×100
(Measurement of cell growth rate)
The cell proliferation rate was calculated by the following formula using the number of viable cells collected from the cell culture container (hollow fiber membrane module) after completion of the culture and the initial number of seeded cells (1.05 × 10 5 ).
Cell proliferation rate (%) = (number of viable cells recovered−number of seeded cells) / number of seeded cells × 100

[実施例1]
(胎盤組織の凍結)
1.血液や余分な組織を取り除いた胎盤組織3gを、予め4℃に冷却した凍結保護液(10wt%DMSO+DMEM)10mlが入ったφ100mmのディッシュに入れた。
2.次に、すばやく胎盤組織をハサミで3〜5mm程度の大きさに細切にした。
3.25mlのディスポーザブルピペットで胎盤組織が浮遊した凍結保護液を吸引し、凍結保存用チューブ10本に約1.5mlずつ分注した。このとき、胎盤組織重量/(胎盤組織重量+凍結保護液重量)は、22.4wt%であった。
4.5〜15分間、4℃で保持した後、−1℃/minの速度で−30℃まで冷却した。
5.5〜15分間、−30℃で保持した後、−5℃/minの速度で−80℃まで冷却した。
6.−80℃のディープフリーザーに入れ、凍結保存した。
[Example 1]
(Freezing placental tissue)
1. 3 g of placental tissue from which blood and excess tissue had been removed was placed in a φ100 mm dish containing 10 ml of a cryoprotective solution (10 wt% DMSO + DMEM) previously cooled to 4 ° C.
2. Next, the placenta tissue was quickly chopped to a size of about 3 to 5 mm with scissors.
3. The cryoprotectant in which the placenta tissue was suspended was aspirated with a 25 ml disposable pipette, and about 1.5 ml was dispensed into 10 cryopreservation tubes. At this time, the placental tissue weight / (placental tissue weight + cryoprotective solution weight) was 22.4 wt%.
After holding at 4 ° C. for 4.5 to 15 minutes, it was cooled to −30 ° C. at a rate of −1 ° C./min.
After maintaining at −30 ° C. for 5.5 to 15 minutes, it was cooled to −80 ° C. at a rate of −5 ° C./min.
6). Placed in a deep freezer at −80 ° C. and stored frozen.

(凍結胎盤組織の融解、洗浄)
1.凍結保存チューブを−80℃のディープフリーザーから取り出し、37℃に温めた温水中ですばやく解凍した。
2.解凍した胎盤組織および凍結保護液を、予め4℃に冷却したDMEM10mlを入れたφ100mmのディッシュに入れた。ディッシュを軽く揺すってすすいだ後、アスピレータで培地を吸引除去し、組織を洗浄した。
3.もう一度、4℃に冷却した10mlのDMEMを添加し、ディッシュを軽く揺すってすすいだ後、アスピレータで培地を吸引除去し、組織を洗浄した。
(Thawing and washing frozen placental tissue)
1. The cryopreservation tube was removed from the -80 ° C deep freezer and quickly thawed in warm water warmed to 37 ° C.
2. The thawed placental tissue and cryoprotective solution were placed in a φ100 mm dish containing 10 ml of DMEM previously cooled to 4 ° C. After the dish was lightly shaken and rinsed, the medium was aspirated and removed with an aspirator, and the tissue was washed.
3. Once again, 10 ml of DMEM cooled to 4 ° C. was added, the dish was lightly shaken and rinsed, and then the medium was aspirated and removed with an aspirator, and the tissue was washed.

(凍結胎盤組織の消化)
1.前記洗浄操作に続き、1.5mg/ml濃度のコラゲナーゼタイプIIを含む5mlのDMEMをディッシュに添加した。
2.ディッシュを軽く揺すってすすいだ後、アスピレータで培地を吸引除去した。
3.もう一度、1.5mg/ml濃度のコラゲナーゼタイプIIを含む5mlのDMEMをディッシュに添加した。
4.得られた胎盤組織浮遊液を50ml遠心チューブに移し、37℃温浴中で60分振盪し、胎盤組織を消化した。
(Digestion of frozen placental tissue)
1. Following the washing operation, 5 ml of DMEM containing collagenase type II at a concentration of 1.5 mg / ml was added to the dish.
2. After the dish was lightly shaken and rinsed, the medium was removed by suction with an aspirator.
3. Once again, 5 ml of DMEM containing collagenase type II at a concentration of 1.5 mg / ml was added to the dish.
4). The obtained placental tissue suspension was transferred to a 50 ml centrifuge tube and shaken in a 37 ° C. warm bath for 60 minutes to digest the placental tissue.

(間葉系幹細胞の分離培養)
1.前記消化した胎盤組織液を100μmメッシュでろ過し、未消化の大きな組織を取り除き50mlチューブに入れた。
2.1000rpmで5分間、遠心した。
3.上清を吸引除去し、沈渣を10vol%になるようにFBSを添加したDMEMに懸濁し、コラーゲンコートしたφ60mmのディッシュに播種し、7日間幹細胞を培養した。
(Separation culture of mesenchymal stem cells)
1. The digested placental tissue fluid was filtered through a 100 μm mesh to remove large undigested tissue and placed in a 50 ml tube.
2. Centrifuged at 1000 rpm for 5 minutes.
3. The supernatant was removed by aspiration, the precipitate was suspended in DMEM to which FBS was added to 10 vol%, and seeded on a collagen-coated φ60 mm dish, and stem cells were cultured for 7 days.

[実施例2]
(中空糸膜の作製)
ポリエーテルスルホン(4800P、住友化学社製)20wt%、Nメチルピロリドン(三菱化学社製)36wt%、トリエチレングリコール(三井化学社製)44wt%を均一に溶解し、製膜原液を作製した。この原液を、70℃に加温した円筒2重管ノズルから、中空形成剤としてNメチルピロリドン13.5wt%、トリエチレングリコール16.5wt%、水70wt%の水溶液とともに同時に吐出し、300mmの乾式部を通過させた後、75℃の水中に浸漬し凝固させ、十分な水洗浄を実施した後に束に巻き取った。糸束は切断後、50℃、50%グリセリン水溶液に浸漬した後、過剰のグリセリン液を除き、60℃にて通風乾燥させた。中空糸膜は、概ね内径200μm、外径300μm、膜厚50μmとなるように製膜原液および中空形成剤の吐出量を調整した。
[Example 2]
(Production of hollow fiber membrane)
Polyethersulfone (4800P, manufactured by Sumitomo Chemical Co., Ltd.) 20 wt%, N methylpyrrolidone (Mitsubishi Chemical Co., Ltd.) 36 wt%, and triethylene glycol (Mitsui Chemicals Co., Ltd.) 44 wt% were uniformly dissolved to prepare a membrane forming stock solution. This stock solution was simultaneously discharged from a cylindrical double tube nozzle heated to 70 ° C. together with an aqueous solution of 13.5 wt% N-methylpyrrolidone, 16.5 wt% triethylene glycol and 70 wt% water as a hollow forming agent. After passing through the part, it was immersed in 75 ° C. water and solidified, and after sufficient water washing, it was wound into a bundle. After cutting, the yarn bundle was immersed in a 50% aqueous glycerin solution at 50 ° C., and then excess glycerin solution was removed and dried by ventilation at 60 ° C. The discharge amount of the membrane forming solution and the hollow forming agent was adjusted so that the hollow fiber membrane had an inner diameter of 200 μm, an outer diameter of 300 μm, and a film thickness of 50 μm.

(中空糸膜モジュールの作製)
試験用の中空糸膜モジュールを以下のように作製した。内径4mm、長さ10cmの円筒状のアクリル製モジュールケース内に、前記作製したポリエーテルスルホン製中空糸膜(培養基材)を10本挿入した後、中空糸膜の中空部を閉塞しないようにポリウレタン系ポッティング剤で両末端をモジュールケースに固定し、中空糸膜モジュール(培養容器)を作製した。
(Production of hollow fiber membrane module)
A hollow fiber membrane module for testing was produced as follows. After inserting 10 prepared polyethersulfone hollow fiber membranes (culture substrate) into a cylindrical acrylic module case with an inner diameter of 4 mm and a length of 10 cm, do not block the hollow portion of the hollow fiber membrane. Both ends were fixed to the module case with a polyurethane potting agent to prepare a hollow fiber membrane module (culture vessel).

(細胞培養の準備)
得られた中空糸膜モジュールを細胞培養容器として用い、図1に示すような細胞培養装置を構成した。まず、中空糸膜に付着しているグリセリンを除去するために、培養液貯留容器4、5に滅菌した注射用蒸留水を入れ、ポンプ6、7を起動し、中空糸膜モジュール内に充分量流して洗浄した。その後、培養液貯留容器4を、FBSを10vol%になるように添加したDMEMが入ったものに交換した。また、培養液貯留容器5を、血清無添加でインスリン0.5μM、セレン10nM、グルタミン酸250μMを添加したDMEMが入ったものに交換した。この後、ポンプ6、7を起動してプライミング処理を行い、中空糸膜モジュール3内の水を培養液に置換した。
(Preparation for cell culture)
Using the obtained hollow fiber membrane module as a cell culture container, a cell culture apparatus as shown in FIG. 1 was constructed. First, in order to remove glycerin adhering to the hollow fiber membrane, sterilized distilled water for injection is put into the culture solution storage containers 4 and 5, the pumps 6 and 7 are started, and a sufficient amount is put in the hollow fiber membrane module. Rinse and wash. Thereafter, the culture medium storage container 4 was replaced with one containing DMEM to which FBS was added at 10 vol%. In addition, the culture medium storage container 5 was replaced with a serum-free DMEM containing 0.5 μM insulin, 10 nM selenium, and 250 μM glutamic acid. Thereafter, the pumps 6 and 7 were activated to perform priming, and the water in the hollow fiber membrane module 3 was replaced with the culture solution.

(細胞培養実験)
実施例1と同様にして得た細胞懸濁液を、中空糸膜の中空部側に充填して1晩放置し、中空糸膜内表面に細胞を接着させた。培養液貯留容器4を培養液のみの容器に交換した後、中空糸膜の中空部側の流速0.33mm/min、中空糸膜の外側の流速3.46mm/minで送液を開始した。この時、中空糸膜の中空部側に通液する培養液は、FBSを10vol%になるように添加したDMEMを用い、中空糸膜の外側に通液する培養液は、血清無添加でインスリン0.5μM、セレン10nM、グルタミン酸250μMを添加したDMEMを用いた。なお、本細胞培養実験は、COインキュベータ内で37℃、7日間行った。
(Cell culture experiment)
The cell suspension obtained in the same manner as in Example 1 was filled in the hollow part side of the hollow fiber membrane and allowed to stand overnight to adhere the cells to the inner surface of the hollow fiber membrane. After exchanging the culture solution storage container 4 with a vessel containing only the culture solution, liquid feeding was started at a flow rate of 0.33 mm / min on the hollow part side of the hollow fiber membrane and at a flow rate of 3.46 mm / min on the outside of the hollow fiber membrane. At this time, the culture solution to be passed through the hollow portion side of the hollow fiber membrane was DMEM to which FBS was added at 10 vol%, and the culture solution to be passed to the outside of the hollow fiber membrane was insulin-free without addition of serum. DMEM to which 0.5 μM, selenium 10 nM and glutamic acid 250 μM were added was used. This cell culture experiment was conducted at 37 ° C. for 7 days in a CO 2 incubator.

(中空糸膜モジュールからの細胞回収)
7日間培養後、培養液の潅流を停止し、中空糸膜モジュール内にて増殖した細胞を回収した。即ち、培養液の潅流を停止した後、中空糸膜の中空部側および外側に存在する培養液を除去するため、リン酸緩衝生理食塩水(PBS)を一定時間潅流させ、培養液を十分PBSに置換した。次に、PBSを除去し、0.25%トリプシン溶液(ライフテクノロジーズ社製)を中空糸膜の中空部側と外側へ静かに充填し、室温で15分間インキュベートした。この後、培養液を中空糸膜の中空部側へ流し入れ、流し出した細胞を回収した。
(Cell recovery from hollow fiber membrane module)
After culturing for 7 days, the perfusion of the culture solution was stopped, and the cells grown in the hollow fiber membrane module were collected. That is, after stopping the perfusion of the culture solution, in order to remove the culture solution existing on the hollow part side and the outside of the hollow fiber membrane, phosphate buffered saline (PBS) was perfused for a certain period of time, and the culture solution was sufficiently PBS Replaced with Next, PBS was removed, and a 0.25% trypsin solution (manufactured by Life Technologies) was gently filled into the hollow portion side and the outside of the hollow fiber membrane, and incubated at room temperature for 15 minutes. Then, the culture solution was poured into the hollow part side of the hollow fiber membrane, and the cells that had flowed out were collected.

(脂肪細胞への分化)
脂肪細胞への分化は、Gimble JM., et al., J Cell Biochem. 58. 393−402(1995)の記載を参考にして、下記の方法で調べた。
(Differentiation into adipocytes)
Differentiation into adipocytes was examined by the following method with reference to the description of Gimble JM., Et al., J Cell Biochem. 58. 393-402 (1995).

凍結胎盤組織から分離培養した間葉系幹細胞をDMEM(10vol%FBS添加)に細胞密度(5000〜10000細胞/cm)で24ウェル培養プレートに播種して1晩培養し、細胞をプレートに接着させた。細胞を2群に分け、一方の群の培地を脂肪細胞誘導用基礎培地(Lonza社)にインドメタシン(最終濃度60μM)、IBMX(3−Isobutyl 1−methylxanthine、最終濃度0.5mM)、ヒドロコルチゾン(最終濃度0.5μM)を添加した脂肪細胞分化誘導培地に入れ換え、3〜4日毎に培地交換をしながら5週間培養を行った。この群を脂肪細胞誘導群とした。もう一方の群については、培地を新しいDMEM(10vol%FBS添加)に入れ換え、3〜4日毎に培地交換しながら5週間培養を行った。この群をコントロール群とした。 Mesenchymal stem cells separated and cultured from frozen placental tissue are seeded in DMEM (10 vol% FBS added) at a cell density (5000 to 10,000 cells / cm 2 ) in a 24-well culture plate and cultured overnight, and the cells adhere to the plate I let you. The cells were divided into two groups, and one group of media was changed to indomethacin (final concentration 60 μM), IBMX (3-Isobutyl 1-methylxanthine, final concentration 0.5 mM), hydrocortisone (final concentration) in basal medium for adipocyte induction (Lonza). The medium was replaced with an adipocyte differentiation induction medium supplemented with a concentration of 0.5 μM, and cultured for 5 weeks while changing the medium every 3 to 4 days. This group was designated as an adipocyte induction group. In the other group, the medium was replaced with fresh DMEM (10 vol% FBS added), and cultured for 5 weeks while changing the medium every 3 to 4 days. This group was used as a control group.

脂肪細胞に分化した細胞は、細胞内に脂肪滴が観察される。そこで、培養後、両群の細胞をオイルレッドO染色(リピットアッセイキット,プライマリーセル社)によって染色して中性脂肪の有無を確認した。しかし、いずれの群においても中性脂肪の染色は認められなかった。また、染色後、抽出液(リピットアッセイキット,プライマリーセル社)を用いてオイルレッドO色素を抽出し、抽出液の540nmにおける吸光度を両群で比較したが、両群間で有意な差は認められなかった。   Lipid droplets are observed in cells differentiated into fat cells. Therefore, after culturing, the cells of both groups were stained with Oil Red O (Repit Assay Kit, Primary Cell) to confirm the presence or absence of neutral fat. However, neutral fat staining was not observed in any group. In addition, after staining, oil red O dye was extracted using an extract (Rippit Assay Kit, Primary Cell), and the absorbance at 540 nm of the extract was compared between the two groups. I was not able to admit.

次いで、脂肪細胞分化マーカーの1つであるLipo Protein Lipaseの発現量の変化を調べた。RNeasy Plus Mini Kit(QIAGEN社)により各群の細胞から全RNAを抽出して全RNA抽出液を調製し、次いでマルチモードプレートリーダー(モレキュラーデバイス社)を用いて全RNA抽出液に含まれるRNA濃度を測定した。RNA濃度測定後、TaqManTM RNA−to−CTTM 1−Stepキット(Life Technologies社)を用いてPCR反応液を調製し、各群の全RNA25ngを鋳型とし、〔(48℃/15min)×1サイクル、(95℃/10min)×1サイクル、(95℃/15sec、60℃/1min)×40サイクル〕のPCR条件下でリアルタイムPCRを行い、Lipo Protein Lipase遺伝子とβアクチン遺伝子を増幅させた。PCRプライマーには、Lipo Protein Lipaseプローブ(Applied Biosystems社/Assay ID:Hs00173425_m1)及びβアクチンプローブ(Applied Biosystems社/Assay ID:Hs99999903_m1)をそれぞれ用いた。   Next, changes in the expression level of Lipo Protein Lipase, one of the adipocyte differentiation markers, were examined. Total RNA was extracted from each group of cells using RNeasy Plus Mini Kit (QIAGEN) to prepare a total RNA extract, and then the RNA concentration contained in the total RNA extract using a multimode plate reader (Molecular Device) Was measured. After measuring the RNA concentration, a PCR reaction solution was prepared using TaqMan ™ RNA-to-CTTM 1-Step kit (Life Technologies), and 25 ng of total RNA of each group was used as a template, [(48 ° C./15 min) × 1 cycle, Real-time PCR was performed under PCR conditions of (95 ° C./10 min) × 1 cycle and (95 ° C./15 sec, 60 ° C./1 min) × 40 cycles] to amplify the Lipo Protein Lipase gene and the β-actin gene. Lipo Protein Lipase probe (Applied Biosystems / Assay ID: Hs00173425_m1) and β-actin probe (Applied Biosystems / Assay ID: Hs99999993_m1) were used as PCR primers, respectively.

その結果、Lipo Protein LipaseのCt値(Threashold cycle)は、コントロール群では39.3、脂肪分化誘導群では36.0であり、脂肪分化誘導群ではコントロール群と比較してLPLのCt値が若干低いことが判明した。これらの結果は、脂肪分化誘導群において、細胞内に中性脂肪を蓄積した脂肪球の存在は確認できないものの、脂肪細胞分化マーカーの1つであるLipo Protein Lipaseの発現量が増加したことを示すものであり、胎盤組織由来の幹細胞(MSC)が、脂肪細胞への分化能を弱いながらも有することを示すものである。   As a result, the Ct value (Threhold cycle) of Lipo Protein Lipase was 39.3 in the control group and 36.0 in the fat differentiation induction group, and the Ct value of LPL was slightly higher in the fat differentiation induction group than in the control group. It turned out to be low. These results indicate that the expression level of Lipo Protein Lipase, one of the adipocyte differentiation markers, was increased in the fat differentiation induction group, although the presence of fat globules that accumulated neutral fat in the cells could not be confirmed. This shows that placental tissue-derived stem cells (MSC) have a weak ability to differentiate into adipocytes.

(骨芽細胞への分化)
骨芽分化能は、Pittenger MF.,et al., Science. 284,143−7(1999),Colter Dc.,et al., Proc Natl Acad Sci USA. 98,7841−5(2001)の記載を参考にして下記の方法で調べた。
(Differentiation into osteoblasts)
Osteoblast differentiation ability was determined by Pittenger MF. , Et al. , Science. 284, 143-7 (1999), Colter Dc. , Et al. , Proc Natl Acad Sci USA. 98, 7841-5 (2001), was examined by the following method.

上記軟骨分化能の測定で使用したのと同じ手法で調製した凍結胎盤組織から分離培養した間葉系幹細胞を、DMEM(10vol%FBS添加)に細胞密度(5000〜10000細胞/cm)で48ウェル培養プレートに播種して1晩培養した。細胞を2群に分け、一方の群の培地を、骨芽細胞分化用基礎培地(Lonza社)にデキサメタゾン、L−グルタミン、アスコルビン酸塩、ペニシリン/ストレプトマイシン、MCGS、β−グリセロフォスフェートを含む骨芽細胞分化用添加因子セット(Lonza社)を添加した骨芽細胞分化誘導培地に入れ換え、3〜4日毎に培地交換しながら3週間分化培養を行った。この群を骨芽細胞誘導群とした。もう一方の群については、培地を新しいDMEM(10vol%FBS添加)に入れ換え、3〜4日毎に培地交換しながら3週間培養を行った。この群をコントロール群とした。培養後、細胞をPBSで1回洗浄した後、各ウェルに0.2mLのPBSと0.2mLの2M塩酸を添加し37℃で1時間静置して細胞内に蓄積したカルシウムを細胞から遊離させた。遊離したカルシウム濃度を、カルシウムE−テストワコー(和光純薬社)を用いて定量した。その結果、遊離カルシウム濃度は、コントロール群が1.53mg/dLであるのに対し、骨芽分化誘導群では24.88mg/dLと高値を示した。 Mesenchymal stem cells separated and cultured from frozen placental tissue prepared by the same technique as used in the above-described measurement of cartilage differentiation ability were added to DMEM (10 vol% FBS added) at a cell density (5000 to 10,000 cells / cm 2 ). The cells were seeded in a well culture plate and cultured overnight. The cells are divided into two groups, and one group of media is a bone medium containing dexamethasone, L-glutamine, ascorbate, penicillin / streptomycin, MCGS, β-glycerophosphate in a basic medium for osteoblast differentiation (Lonza). It was replaced with an osteoblast differentiation induction medium supplemented with an additive factor set for blast differentiation (Lonza), and differentiation culture was performed for 3 weeks while changing the medium every 3 to 4 days. This group was designated as an osteoblast induction group. In the other group, the medium was replaced with fresh DMEM (10 vol% FBS added), and cultured for 3 weeks while changing the medium every 3 to 4 days. This group was used as a control group. After culturing, the cells were washed once with PBS, 0.2 mL of PBS and 0.2 mL of 2M hydrochloric acid were added to each well, and left at 37 ° C. for 1 hour to release calcium accumulated in the cells from the cells. I let you. The released calcium concentration was quantified using Calcium E-Test Wako (Wako Pure Chemical Industries). As a result, the free calcium concentration was 1.53 mg / dL in the control group, whereas it was as high as 24.88 mg / dL in the osteoblast differentiation induction group.

この結果は、凍結胎盤組織から分離培養した間葉系幹細胞が、骨芽細胞分化誘導培地で培養することにより骨芽細胞へ分化して、細胞内にカルシウムが蓄積することを示すものであり、凍結胎盤組織から分離培養した間葉系幹細胞が骨芽細胞への分化能を有することを示すものである。   This result shows that mesenchymal stem cells separated and cultured from frozen placental tissue are differentiated into osteoblasts by culturing in an osteoblast differentiation-inducing medium, and calcium accumulates in the cells. It shows that mesenchymal stem cells separated and cultured from frozen placental tissue have the ability to differentiate into osteoblasts.

本発明により、簡便な方法で胎盤組織を長期保存しておき、保存した胎盤組織から間葉系幹細胞などの幹細胞が効率よく分離培養可能となる。これにより、再生医療に用いる細胞源として胎盤組織を有効活用することが可能となる。   According to the present invention, placental tissue can be stored for a long time by a simple method, and stem cells such as mesenchymal stem cells can be efficiently separated and cultured from the stored placental tissue. This makes it possible to effectively use placental tissue as a cell source used in regenerative medicine.

1a、1b 出入口(中空部側)
2a、2b 出入口(外腔側)
3 細胞培養容器(中空糸膜モジュール)
4、5 培養液貯留容器
6、7 送液ポンプ
8、9 廃液回収容器(細胞回収容器)
1a, 1b Entrance / exit (hollow part side)
2a, 2b Entrance / exit (external side)
3 Cell culture vessel (hollow fiber membrane module)
4, 5 Culture solution storage container 6, 7 Liquid feed pump 8, 9 Waste liquid collection container (cell collection container)

Claims (6)

i)生体より採取した胎盤組織を最大径が6mm以下になるように細切する工程
ii)細切した前記胎盤組織を、凍結保護液に、胎盤組織重量/(胎盤組織重量+凍結保護液重量)が10wt%以上50wt%未満になるように浸漬する工程
iii)胎盤組織と凍結保護液を容器に入れ、−80℃以下の環境で凍結保存する工程
を含む胎盤組織の保存方法。
i) Step of slicing placenta tissue collected from living body so that maximum diameter is 6 mm or less ii) Placenta tissue weight / (placenta tissue weight + cryoprotection solution weight) Iii) A placental tissue storage method comprising a step of placing a placental tissue and a cryoprotective solution in a container and cryopreserving in an environment of −80 ° C. or lower.
iv)請求項1に記載の方法で得られた凍結胎盤組織を融解後、培養液で洗浄する工程
v)プロテアーゼ溶液で洗浄する工程
vi)プロテアーゼ溶液中で胎盤組織を消化する工程
を含む、凍結胎盤組織由来の幹細胞を調製する方法。
iv) a step of thawing the frozen placental tissue obtained by the method according to claim 1 and then washing with a culture solution v) a step of washing with a protease solution vi) a step of digesting the placental tissue in the protease solution A method of preparing placental tissue-derived stem cells.
プロテアーゼが、コラゲナーゼおよび/またはディスパーゼを含む請求項2に記載の方法。   The method according to claim 2, wherein the protease comprises collagenase and / or dispase. 幹細胞が間葉系幹細胞である請求項2または3に記載の方法。   The method according to claim 2 or 3, wherein the stem cell is a mesenchymal stem cell. 請求項2〜4のいずれかに記載の方法により得られた細胞懸濁液を培養基材に播種し、接着した幹細胞を培養することを特徴とする凍結胎盤組織由来の幹細胞の培養方法。   A method for culturing frozen placental tissue-derived stem cells, comprising seeding a cell suspension obtained by the method according to any one of claims 2 to 4 on a culture substrate and culturing the adhered stem cells. 前記培養基材が中空糸膜であることを特徴とする請求項5に記載の培養方法。   The culture method according to claim 5, wherein the culture substrate is a hollow fiber membrane.
JP2016240992A 2016-12-13 2016-12-13 Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue Pending JP2018093782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240992A JP2018093782A (en) 2016-12-13 2016-12-13 Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240992A JP2018093782A (en) 2016-12-13 2016-12-13 Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue

Publications (1)

Publication Number Publication Date
JP2018093782A true JP2018093782A (en) 2018-06-21

Family

ID=62631861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240992A Pending JP2018093782A (en) 2016-12-13 2016-12-13 Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue

Country Status (1)

Country Link
JP (1) JP2018093782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736727A (en) * 2021-08-11 2021-12-03 李琴 Method for extracting multiple stem cells of placenta
CN115505566A (en) * 2022-09-30 2022-12-23 国家卫生健康委科学技术研究所 Acellular matrix material based on human-derived mesenchymal stem cells and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736727A (en) * 2021-08-11 2021-12-03 李琴 Method for extracting multiple stem cells of placenta
CN115505566A (en) * 2022-09-30 2022-12-23 国家卫生健康委科学技术研究所 Acellular matrix material based on human-derived mesenchymal stem cells and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102491558B1 (en) Method for isolating mesenchymal stem cells from umbilical cord amniotic membrane using cell culture medium
JP6948261B2 (en) Method for cryopreserving pluripotent stem cells or cardiomyocytes derived from adipose tissue or bone marrow-derived mesenchymal stem cells
TWI535377B (en) Storage, culture and application of umbilical cord tissue and its derived cells
KR20200143399A (en) Method for inducing or improving wound healing properties of mesenchymal stem cells
JP2020078282A (en) Method of preserving synovial membrane tissue and method of separating and culturing stem cells from preserved synovial membrane tissue
CN114867347A (en) Storage or transportation preparation of mesenchymal stem cells and preparation and use method thereof
Guo et al. Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture
JP2018078862A (en) Adipose tissue preservation method and method of isolating and culturing stem cells from frozen adipose tissue
JP2018093782A (en) Preservation method of placental tissue, and method of culturing isolated stem cells from placental tissue
JP2018113903A (en) Method for preserving umbilical cord tissue and method of culturing stem cells isolated from preserved umbilical cord tissue
JP2018201340A (en) Method for storing dental pulp tissue and method for culturing stem cells from stored dental pulp tissue
JP2018108068A (en) Storage method of amniotic membrane tissue, and isolation culture method of stem cells from stored amniotic membrane tissue
WO2020067435A1 (en) Sheeting method for pluripotent stem cell-derived cells
WO2020067436A1 (en) Method for forming graft of pluripotent stem cell-derived cells
JP2021052663A (en) Method for producing sheet-like substance comprising differentiation-inducing cells derived from pluripotent stem cells
JP2020080661A (en) Preservation method of periodontal ligament and separation and culture method of stem cell from preserved periodontal ligament
JP2019154277A (en) Cell culture vessel
Miyoshi et al. Expansion of mouse primitive hematopoietic cells in three-dimensional cultures on chemically fixed stromal cell layers
RU2783992C2 (en) Method for isolation of mesenchymal stem cells from amniotic membrane of umbilical cord, using cell cultural medium
JP2018014947A (en) Cell culture method using hollow fiber membrane module
US20190357524A1 (en) Preservative solution for human stem cells, human stem cell suspension, and method for preserving human stem cells
WO2020067438A1 (en) Sheeting method for pluripotent stem cell-derived cells
JP6582044B2 (en) Method for producing frozen mesenchymal cells and method for producing therapeutic material for transplantation
JP2018064486A (en) Method of culturing dental pulp stem cells