JP2019154213A - Solar power generation amount prediction device and solar power generation amount prediction system - Google Patents

Solar power generation amount prediction device and solar power generation amount prediction system Download PDF

Info

Publication number
JP2019154213A
JP2019154213A JP2018040196A JP2018040196A JP2019154213A JP 2019154213 A JP2019154213 A JP 2019154213A JP 2018040196 A JP2018040196 A JP 2018040196A JP 2018040196 A JP2018040196 A JP 2018040196A JP 2019154213 A JP2019154213 A JP 2019154213A
Authority
JP
Japan
Prior art keywords
power generation
generation amount
prediction
photovoltaic power
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018040196A
Other languages
Japanese (ja)
Inventor
匠 西井
Takumi Nishii
匠 西井
梓 宮崎
Azusa Miyazaki
梓 宮崎
直也 松本
Naoya Matsumoto
直也 松本
信 稲垣
Makoto Inagaki
信 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2018040196A priority Critical patent/JP2019154213A/en
Publication of JP2019154213A publication Critical patent/JP2019154213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Abstract

To make it possible to predict an amount of solar power generation with high accuracy.SOLUTION: For each area, a data acquisition unit 24 acquires an amount of solar power generation at each position in the area as a solar power generation amount distribution. A prediction part 28 predicts the solar power generation distribution in the area that includes a to-be-predicted position after a predetermined time on the basis of the solar power generation amount distribution of each area around the area including the to-be-predicted position and predicts the solar power generation amount at the to-be-predicted position after the predetermined time on the basis of the predicted solar power generation amount distribution.SELECTED DRAWING: Figure 2

Description

本発明は、太陽光発電量予測装置及び太陽光発電量予測システムに関する。   The present invention relates to a photovoltaic power generation amount prediction device and a photovoltaic power generation amount prediction system.

従来より、PV発電量を予測する方法が知られている。例えば、予測対象となる太陽光発電装置の発電量の照合時間帯における予測対象変動パターンと、周辺の複数の発電装置の発電量状況の照合時間帯より前の被照合時間帯における各周辺変動パターンとを照合し、予測対象変動パターンに近似する周辺変動パターンの発電装置を風上の発電装置として特定し、発電装置の周辺変動パターンに基づき、所定時間後の予測対象時間帯に予測対象となる発電装置の予測発電量Wpvを予測する方法が知られている(特許文献1)。この特許文献1に記載の従来技術では、風向きを考慮して、周辺における発電量から、予測対象のPV発電量を予測する。   Conventionally, methods for predicting PV power generation are known. For example, the prediction target fluctuation pattern in the collation time zone of the power generation amount of the photovoltaic power generation device to be forecasted, and each peripheral fluctuation pattern in the collated time zone before the collation time zone of the power generation amount status of the plurality of peripheral power generation devices Is identified as a windward power generator and becomes a prediction target in a prediction target time zone after a predetermined time based on the peripheral fluctuation pattern of the power generator. A method for predicting a predicted power generation amount Wpv of a power generation device is known (Patent Document 1). In the prior art described in Patent Literature 1, the PV power generation amount to be predicted is predicted from the power generation amount in the vicinity in consideration of the wind direction.

また、発電装置の周辺の複数の地点に設置された計測装置から取得した、第一の時間帯についての自然エネルギーの実測値と、当該複数の地点における自然エネルギーの予測値と、に基づいて、当該複数の地点における自然エネルギーの予測値の予測誤差の平均値に関する値を算出して、当該値を発電装置の設置位置における、自然エネルギーの予測値の予測誤差と推定する推定部と、推定部が推定した予測誤差に基づいて、発電装置の設置位置における、第一の時間帯より後の第二の時間帯についての自然エネルギーの予測値を補正する補正部と、補正部が補正した第二の時間帯についての自然エネルギーの予測値と、自然エネルギーと発電量の関係を示す発電装置の発電特性と、に基づいて、第二の時間帯についての発電装置の発電量を予測する発電量予測部と、を備える発電量予測装置が知られている(特許文献2)。   Moreover, based on the measured value of natural energy for the first time zone obtained from the measuring devices installed at a plurality of points around the power generation device, and the predicted value of natural energy at the plurality of points, An estimation unit that calculates a value related to an average value of prediction errors of predicted values of natural energy at the plurality of points, and estimates the value as a prediction error of predicted values of natural energy at the installation position of the power generation device, and an estimation unit Based on the prediction error estimated by, the correction unit for correcting the predicted value of natural energy for the second time zone after the first time zone at the installation position of the power generation device, and the second corrected by the correction unit The power generation amount of the power generation device for the second time zone is determined based on the predicted value of natural energy for the time zone and the power generation characteristics of the power generation device indicating the relationship between the natural energy and power generation amount. Power generation amount prediction apparatus comprising: a power generation amount prediction unit for measuring a is known (Patent Document 2).

特開2013−51326号公報JP 2013-51326 A 特開2016−111822号公報JP 2016-111182 A

しかしながら、従来のPV発電量の予測では、雲の形状などにより、PV発電量が均一でないことを考慮できず、予測精度が悪くなってしまう可能性がある。   However, in the prediction of the conventional PV power generation amount, the fact that the PV power generation amount is not uniform cannot be taken into account due to the shape of the cloud, etc., and the prediction accuracy may deteriorate.

本発明は、上記の事情に鑑みてなされたもので、精度良く太陽光発電量を予測することができる太陽光発電量予測装置及び太陽光発電量予測システムを提供することを目的とする。   This invention is made | formed in view of said situation, and it aims at providing the photovoltaic power generation amount prediction apparatus and photovoltaic power generation amount prediction system which can estimate a photovoltaic power generation amount accurately.

上記の目的を達成するために本発明に係る太陽光発電量予測装置は、エリア毎に、前記エリア内の各位置の太陽光発電量を、太陽光発電量分布として取得する取得部と、予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、予測された太陽光発電量分布に基づいて、前記所定時間後の前記予測対象位置の太陽光発電量を予測する予測部と、を含んで構成されている。   In order to achieve the above object, a photovoltaic power generation amount predicting apparatus according to the present invention obtains, for each area, a photovoltaic power generation amount at each position in the area as a photovoltaic power generation amount distribution, and prediction. Based on the solar power generation amount distribution of each area around the area including the target position, the solar power generation amount distribution of the area including the prediction target position after a predetermined time is predicted, and the predicted solar power generation distribution is obtained. And a prediction unit that predicts the amount of photovoltaic power generation at the prediction target position after the predetermined time.

本発明によれば、取得部が、エリア毎に、前記エリア内の各位置の太陽光発電量を、太陽光発電量分布として取得する。そして、予測部が、予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、予測された太陽光発電量分布に基づいて、前記所定時間後の前記予測対象位置の太陽光発電量を予測する。   According to this invention, an acquisition part acquires the photovoltaic power generation amount of each position in the said area as a photovoltaic power generation amount distribution for every area. Then, the prediction unit predicts the photovoltaic power generation amount distribution in the area including the prediction target position after a predetermined time based on the respective solar power generation amount distributions in the areas around the area including the prediction target position. The amount of photovoltaic power generation at the prediction target position after the predetermined time is predicted based on the distribution of photovoltaic power generation.

このように、予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、所定時間後の前記予測対象位置の太陽光発電量を予測することにより、精度良く太陽光発電量を予測することができる。   Thus, based on the solar power generation amount distribution of each area around the area including the prediction target position, the solar power generation amount distribution of the area including the prediction target position after the predetermined time is predicted, and after the predetermined time By predicting the amount of photovoltaic power generation at the prediction target position, the amount of photovoltaic power generation can be accurately predicted.

以上説明したように、本発明の太陽光発電量予測装置及び太陽光発電量予測システムによれば、太陽光発電量を精度良く予測することができる、という効果が得られる。   As described above, according to the photovoltaic power generation amount prediction device and the photovoltaic power generation amount prediction system of the present invention, the effect that the photovoltaic power generation amount can be predicted with high accuracy is obtained.

本発明の第1の実施の形態に係る太陽光発電量予測システムを示すブロック図である。It is a block diagram which shows the solar energy generation amount prediction system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るサーバを示すブロック図である。It is a block diagram which shows the server which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るサーバにおけるPV発電量予測処理ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the PV electric power generation amount prediction process routine in the server which concerns on the 1st Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1の実施の形態]
<太陽光発電量予測システムのシステム構成>
図1に示すように、本発明の実施の形態に係る太陽光発電量予測システム100は、需要家毎に備えられた、PV発電器10、蓄電池12、計測器14、及び管理装置16と、サーバ20とを備えている。需要家毎の管理装置16とサーバ20は、インターネットなどのネットワーク40を介して相互に接続されている。なお、サーバ20が、太陽光発電量予測装置の一例である。
[First embodiment]
<System configuration of photovoltaic power generation prediction system>
As shown in FIG. 1, the photovoltaic power generation amount prediction system 100 according to the embodiment of the present invention includes a PV generator 10, a storage battery 12, a measuring instrument 14, and a management device 16 provided for each consumer. And a server 20. The management device 16 and the server 20 for each customer are connected to each other via a network 40 such as the Internet. The server 20 is an example of a photovoltaic power generation amount prediction device.

計測器14は、PV発電器10の発電量を計測し、管理装置16へ出力する。管理装置16は、負荷制御部により、需要家が有するPV発電器10及び蓄電池12を含む各種電力機器、及び家電などの負荷を管理している。また、管理装置16は、逐次、計測器14の計測結果を、需要家の識別番号及び計測時刻と共にサーバ20へ送信する。   The measuring instrument 14 measures the power generation amount of the PV generator 10 and outputs it to the management device 16. The management device 16 manages loads of various electric power devices including the PV generator 10 and the storage battery 12, and home appliances, etc., possessed by the consumer by the load control unit. Moreover, the management apparatus 16 transmits the measurement result of the measuring instrument 14 to the server 20 sequentially with a consumer's identification number and measurement time.

サーバ20は、需要家毎の管理装置16から送信されたPV発電量の計測結果に基づいて、現在より所定時間後の予測対象の需要家のPV発電量を予測し、予測対象の需要家の管理装置16へ予測結果を送信する。   Based on the measurement result of the PV power generation amount transmitted from the management device 16 for each consumer, the server 20 predicts the PV power generation amount of the prediction target consumer after a predetermined time from the present time, and The prediction result is transmitted to the management device 16.

図2に示すように、サーバ20は、通信部22と、データ取得部24と、需要家毎の位置情報を記憶している位置情報データベース26と、予測部28とを備えている。なお、予測部28は、予測部及び重み決定部の一例である。   As illustrated in FIG. 2, the server 20 includes a communication unit 22, a data acquisition unit 24, a location information database 26 that stores location information for each customer, and a prediction unit 28. The prediction unit 28 is an example of a prediction unit and a weight determination unit.

位置情報データベース26は、需要家の識別番号の各々に対応して、当該需要家の位置情報を記憶している。   The location information database 26 stores the location information of the customer corresponding to each customer identification number.

データ取得部24は、通信部22により受信した、需要家毎の管理装置16から送信されたPV発電量の計測結果の各々に対し、当該需要家の識別番号を用いて、当該需要家の位置情報を、位置情報データベース26から取得する。データ取得部24は、エリア毎に、当該エリア内の各位置のPV発電量を、PV発電量の分布として取得する。例えば、エリアを分割した各メッシュに対し、当該メッシュ内の各需要家のPV発電量の計測結果及び位置情報に基づいて、当該メッシュのPV発電量を求め、エリア内のPV発電量の分布とする。このとき、エリア内で、PV発電量の計測結果が得られていないメッシュについては、周辺メッシュのPV発電量の計測結果から補間してPV発電量を求めて、当該メッシュのPV発電量とし、当該エリア内のPV発電量の分布とすればよい。   The data acquisition unit 24 uses the identification number of the customer for each PV power generation measurement result transmitted from the management device 16 for each customer received by the communication unit 22, and the location of the customer. Information is acquired from the position information database 26. For each area, the data acquisition unit 24 acquires the PV power generation amount at each position in the area as a distribution of the PV power generation amount. For example, for each mesh obtained by dividing the area, the PV power generation amount of the mesh is obtained based on the measurement result and position information of the PV power generation amount of each customer in the mesh, and the distribution of the PV power generation amount in the area To do. At this time, in the area, the mesh for which the PV power generation amount measurement result is not obtained is interpolated from the PV generation amount measurement result of the surrounding mesh to obtain the PV power generation amount, and the PV power generation amount of the mesh is obtained. What is necessary is just to make distribution of PV power generation amount in the said area.

予測部28は、通信部22により、予測対象の需要家のPV発電器の発電量の予測要求を受け付けると、当該予測対象の需要家を含むエリアと、その周辺エリアとを決定する。例えば、当該予測対象の需要家を含むエリアを、予測対象エリアとして決定し、その予測対象エリアの周辺の複数のエリアを周辺エリアとして決定する。予測部28は、決定された複数の周辺エリアの各々について、当該周辺エリア内のPV発電量の分布を取得する。   When the prediction unit 28 receives a prediction request for the power generation amount of the PV generator of the prediction target consumer by the communication unit 22, the prediction unit 28 determines an area including the prediction target consumer and its surrounding area. For example, an area including the prediction target consumer is determined as a prediction target area, and a plurality of areas around the prediction target area are determined as peripheral areas. The prediction unit 28 acquires the distribution of the PV power generation amount in the peripheral area for each of the determined peripheral areas.

そして、予測部28は、各周辺エリア内のPV発電量分布の時間的変化データに基づいて、現在より所定時間後の、予測対象エリア内のPV発電量の分布を予測する。   Then, the prediction unit 28 predicts the distribution of the PV power generation amount in the prediction target area after a predetermined time from the current time based on the temporal change data of the PV power generation distribution in each peripheral area.

このとき、過去の風向及び風速データ、直前の風向及び風速の変化データ、又は気象情報から得られる予測対象エリアの風向及び風速に基づいて、各周辺エリアに対する重みを決定してもよい。各周辺エリアに対する重みは、風向及び風速の組み合わせ毎に予め学習されているものとする。例えば、風上にある周辺エリアに対する重みが大きく、また、風速が速いほど、離れた周辺エリアに対する重みが大きく、風速が遅いほど、近くの周辺エリアに対する重みが大きくなる。そして、各周辺エリア内のPV発電量の分布を、各周辺エリアに対する重みを用いて合成した結果を、予測対象エリア内のPV発電量の分布として予測する。   At this time, the weights for the surrounding areas may be determined based on the past wind direction and wind speed data, the previous wind direction and wind speed change data, or the wind direction and wind speed of the prediction target area obtained from weather information. The weight for each peripheral area is learned in advance for each combination of wind direction and wind speed. For example, the weight for the peripheral area on the windward is large, the higher the wind speed, the larger the weight for the distant peripheral area, and the slower the wind speed, the greater the weight for the nearby peripheral area. And the result of combining the distribution of the PV power generation amount in each peripheral area using the weight for each peripheral area is predicted as the distribution of the PV power generation amount in the prediction target area.

また、エリア内のPV発電量の分布から、雲の形状を推定し、雲の中心部と周辺部とでは予測の確度が異なるため、雲の形状と確度予測とを組み合わせたものを更に考慮することで、予測対象エリア内のPV発電量の分布を予測するようにしてもよい。   In addition, the cloud shape is estimated from the distribution of PV power generation in the area, and the accuracy of prediction differs between the central part and the peripheral part of the cloud, so further consideration is given to a combination of the cloud shape and the accuracy prediction. Thus, the distribution of the PV power generation amount in the prediction target area may be predicted.

予測部28は、予測された予測対象エリア内のPV発電量の分布から、予測対象エリア内の各需要家の位置情報に応じて、予測対象エリア内の各需要家のPV発電器10の発電量を予測する。   The prediction unit 28 generates power from the PV generator 10 of each consumer in the prediction target area according to the positional information of each consumer in the prediction target area from the distribution of the PV power generation amount in the predicted prediction target area. Predict the amount.

そして、通信部22により、予測対象エリアの各需要家のPV発電器10の発電量の予測結果を、予測対象エリア内の各需要家の管理装置16へ送信する。   And the communication part 22 transmits the prediction result of the electric power generation amount of the PV generator 10 of each consumer of a prediction object area to the management apparatus 16 of each consumer in a prediction object area.

予測対象エリア内の各需要家の管理装置16は、PV発電器10の発電量の予測結果を受信すると、負荷制御部により、予測結果に応じて最適となるように、需要家が有する各種電力機器、及び家電などの負荷を制御する。例えば、制御対象をエアコンや冷蔵庫とする場合には、予測結果に基づいて、PV発電量が低下する前に出力を上げて予め冷やしておき、PV発電量が低下した際には出力を下げることで負荷の平準化を行うことができる。また、充放電制御部により、予測結果に応じて最適となるように、需要家が有する蓄電池12の充放電量を制御する。例えば、予測結果に基づいて、PV発電量が低下する際に、蓄電池12の放電量を増やし、PV発電量が増加する際に、蓄電池12の充電量を増やす。
なお、上記の「最適」として、買電料金最小化、一次エネルギー消費量最小化、CO2排出量最小化、放充電回数最小化などが想定されるが、これらに限定されるものではない。
When the management device 16 of each customer in the prediction target area receives the prediction result of the power generation amount of the PV power generator 10, the load control unit causes various electric powers that the customer has to be optimized according to the prediction result. Control the load of equipment and home appliances. For example, when the control target is an air conditioner or a refrigerator, based on the prediction result, the output is increased and cooled in advance before the PV power generation amount decreases, and the output is decreased when the PV power generation amount decreases. The load can be leveled. In addition, the charge / discharge control unit controls the charge / discharge amount of the storage battery 12 that the consumer has so as to be optimized according to the prediction result. For example, based on the prediction result, when the PV power generation amount decreases, the discharge amount of the storage battery 12 is increased, and when the PV power generation amount increases, the charge amount of the storage battery 12 is increased.
Note that, as the “optimum”, power purchase fee minimization, primary energy consumption minimization, CO2 emission minimization, discharge charge minimization, and the like are assumed, but not limited thereto.

<太陽光発電量予測システム100の動作>
次に、本実施の形態に係る太陽光発電量予測システム100の動作について説明する。
<Operation of Solar Power Generation Prediction System 100>
Next, the operation of the photovoltaic power generation amount prediction system 100 according to the present embodiment will be described.

まず、需要家毎の計測器14は、PV発電器10の発電量を逐次計測して、管理装置16へ出力し、管理装置16が、逐次、計測器14の計測結果を、需要家の識別番号及び計測時刻と共にサーバ20へ送信する。   First, the measuring device 14 for each consumer sequentially measures the power generation amount of the PV power generator 10 and outputs it to the management device 16, and the management device 16 sequentially identifies the measurement result of the measuring device 14 to the consumer. It transmits to the server 20 with a number and measurement time.

このとき、予測対象の需要家のPV発電器10の発電量の予測要求を受け付けると、サーバ20により、図3に示すPV発電量予測処理ルーチンが実行される。   At this time, upon receiving a prediction request for the power generation amount of the PV generator 10 of the consumer to be predicted, the server 20 executes the PV power generation amount prediction processing routine shown in FIG.

まず、ステップS100において、データ取得部24は、通信部22により受信した、需要家毎の管理装置16から送信されたPV発電量の計測結果の各々に対し、当該需要家の識別番号を用いて、当該需要家の位置情報を、位置情報データベース26から取得する。データ取得部24は、各エリアに対し、当該エリア内の各需要家のPV発電量の計測結果及び位置情報に基づいて、当該エリア内のPV発電量の分布を求める。   First, in step S <b> 100, the data acquisition unit 24 uses the identification number of each consumer for each PV power generation measurement result transmitted from the management device 16 for each consumer received by the communication unit 22. The position information of the customer is acquired from the position information database 26. The data acquisition unit 24 obtains the distribution of the PV power generation amount in the area based on the measurement result and the position information of the PV power generation amount of each customer in the area.

そして、当該予測対象の需要家を含む予測対象エリアと、その周辺エリアとを決定し、決定された複数の周辺エリアの各々について、当該周辺エリア内のPV発電量の分布を取得する。   Then, the prediction target area including the prediction target consumer and its peripheral area are determined, and the distribution of the PV power generation amount in the peripheral area is acquired for each of the determined peripheral areas.

ステップS102では、予測部28は、過去データ、直前の変化データ、又は気象情報から得られる予測対象エリアの風向及び風速に基づいて、各周辺エリアに対する重みを決定し、各周辺エリアに対する重みと、各周辺エリア内のPV発電量分布の時間的変化データとに基づいて、現在より所定時間後の、予測対象エリア内のPV発電量の分布を予測する。   In step S102, the prediction unit 28 determines the weight for each peripheral area based on the wind direction and the wind speed of the prediction target area obtained from past data, previous change data, or weather information, and the weight for each peripheral area; Based on the temporal change data of the PV power generation amount distribution in each peripheral area, the distribution of the PV power generation amount in the prediction target area after a predetermined time from the current time is predicted.

ステップS104では、通信部22により、予測対象エリアの各需要家のPV発電器10の発電量の予測結果を、予測対象エリア内の各需要家の管理装置16へ送信して、PV発電量予測処理ルーチンを終了する。   In step S104, the communication unit 22 transmits the prediction result of the power generation amount of the PV generator 10 of each consumer in the prediction target area to the management device 16 of each consumer in the prediction target area, thereby predicting the PV power generation amount. The processing routine ends.

そして、予測対象エリア内の各需要家の管理装置16は、PV発電器10の発電量の予測結果を受信すると、予測結果に応じて最適となるように、需要家が有する各種電力機器、及び家電などの負荷を制御すると共に、需要家が有する蓄電池12の充放電量を制御する。   And the management apparatus 16 of each consumer in a prediction object area receives the prediction result of the electric power generation amount of the PV generator 10, and various electric power equipment which a consumer has so that it may become optimal according to a prediction result, and While controlling loads, such as a household appliance, the charge / discharge amount of the storage battery 12 which a consumer has is controlled.

以上説明したように、本発明の第1の実施の形態に係る太陽光発電量予測システムによれば、予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、所定時間後の前記予測対象位置の太陽光発電量を予測することにより、精度良く太陽光発電量を予測することができる。   As described above, according to the photovoltaic power generation amount prediction system according to the first embodiment of the present invention, the predetermined amount is determined based on the respective photovoltaic power generation amount distributions in the areas around the area including the prediction target position. By predicting the photovoltaic power generation amount distribution in the area including the prediction target position after time and predicting the solar power generation amount at the prediction target position after a predetermined time, the solar power generation amount can be predicted with high accuracy. .

また、多くの情報を収集することで、広範囲かつ確度の高い発電量予測ができる。高価な気象予測を購入することなく、確度の高い発電量予測が可能となる。また、追加の計測機器が不要で、安価に発電量予測ができる。家庭において、PV発電器で自家発電した電力を有効に使用することができ、電力料金を低減できる。PV発電器で発電した電力を家庭内で使用することにより、配電系統への逆潮流を低減し、電圧上昇を軽減できる。   In addition, by collecting a large amount of information, it is possible to predict a power generation amount with a wide range and high accuracy. Accurate power generation prediction is possible without purchasing expensive weather forecasts. Further, no additional measuring device is required, and the power generation amount can be predicted at a low cost. At home, the electric power generated by the PV generator can be used effectively, and the electricity charge can be reduced. By using the electric power generated by the PV generator in the home, the reverse power flow to the distribution system can be reduced and the voltage rise can be reduced.

[第2の実施の形態]
次に、第2の実施の形態に係る太陽光発電量予測システムについて説明する。なお、第2の実施の形態に係る太陽光発電量予測システムは、第1の実施の形態に係る太陽光発電量予測システムと同様の構成となるため、同一符号を付して説明を省略する。
[Second Embodiment]
Next, a photovoltaic power generation amount prediction system according to the second embodiment will be described. In addition, since the photovoltaic power generation amount prediction system according to the second embodiment has the same configuration as the photovoltaic power generation amount prediction system according to the first embodiment, the same reference numerals are given and description thereof is omitted. .

第2の実施の形態では、風向計、風速計を用いて、風上にある周辺エリアのPV発電量分布から、予測対象となるエリアのPV発電量分布を予測している点が、第1の実施の形態と異なっている。   In the second embodiment, the PV power generation distribution in the area to be predicted is predicted from the PV power generation distribution in the surrounding area on the windward using an anemometer and an anemometer. This is different from the embodiment.

第2の実施の形態に係る太陽光発電量予測システム100では、各エリア内に、風向計及び風速計が設けられており、風向計及び風速計は、逐次、計測結果をサーバ20へ送信する。   In the photovoltaic power generation amount prediction system 100 according to the second embodiment, an anemometer and an anemometer are provided in each area, and the anemometer and the anemometer sequentially transmit measurement results to the server 20. .

サーバ20のデータ取得部24は、更に、予測対象の需要家を含む予測対象エリア内に設けられた風向計、風速計から受信した、風向き、風速の計測結果を取得する。なお、データ取得部24は、取得部及び風情報取得部の一例である。   The data acquisition unit 24 of the server 20 further acquires the wind direction and wind speed measurement results received from the anemometer and anemometer provided in the prediction target area including the consumers to be predicted. The data acquisition unit 24 is an example of an acquisition unit and a wind information acquisition unit.

そして、サーバ20の予測部28が、予測対象エリアに対して風上にある各エリアを、風上エリアとして決定する。予測部28は、決定された各風上エリアに対し、当該風上エリア内のPV発電量の分布を取得する。そして、予測部28は、各風上エリア内のPV発電量の分布と、風速の計測結果とに基づいて、現在より所定時間後の、予測対象エリア内のPV発電量の分布を予測する。   Then, the prediction unit 28 of the server 20 determines each area that is upstream from the prediction target area as the windward area. The prediction unit 28 acquires the distribution of the PV power generation amount in the upwind area for each determined upwind area. Then, the prediction unit 28 predicts the distribution of the PV power generation amount in the prediction target area after a predetermined time from the current time, based on the distribution of the PV power generation amount in each windward area and the measurement result of the wind speed.

このとき、風速の計測結果に基づいて、各風上エリアに対する重みを決定する。各風上エリアに対する重みは、風速毎に予め学習されているものとする。例えば、風速が速いほど、離れた風上エリアに対する重みが大きく、風速が遅いほど、近くの風上エリアに対する重みが大きくなる。そして、各風上エリア内のPV発電量の分布を、各風上エリアに対する重みを用いて合成した結果を、予測対象エリア内のPV発電量の分布として予測する。   At this time, the weight for each upwind area is determined based on the measurement result of the wind speed. The weight for each windward area is learned in advance for each wind speed. For example, the faster the wind speed, the greater the weight for a distant upwind area, and the slower the wind speed, the greater the weight for a nearby upwind area. Then, the result of synthesizing the distribution of the PV power generation amount in each windward area using the weight for each windward area is predicted as the distribution of the PV power generation amount in the prediction target area.

予測部28は、予測された予測対象エリア内のPV発電量の分布から、予測対象エリア内の各需要家のPV発電器の発電量を予測する。   The prediction unit 28 predicts the power generation amount of each consumer's PV generator in the prediction target area from the distribution of the predicted PV power generation amount in the prediction target area.

なお、第2の実施の形態に係る太陽光発電量予測システムにおける他の構成及び作用については、第1の実施の形態と同様であるため、説明を省略する。   In addition, about the other structure and effect | action in the solar energy generation amount prediction system which concern on 2nd Embodiment, since it is the same as that of 1st Embodiment, description is abbreviate | omitted.

以上説明したように、本発明の第2の実施の形態に係る太陽光発電量予測システムによれば、予測対象位置を含むエリアの風上のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、所定時間後の前記予測対象位置の太陽光発電量を予測することにより、精度良く太陽光発電量を予測することができる。   As explained above, according to the photovoltaic power generation amount prediction system according to the second embodiment of the present invention, based on the respective photovoltaic power generation amount distributions in the upwind area of the area including the prediction target position, Predicting the amount of photovoltaic power generation in an area including a prediction target position after a predetermined time and predicting the amount of photovoltaic power generation at the prediction target position after a predetermined time can accurately predict the amount of photovoltaic power generation it can.

なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.

例えば、PV発電量の計測器だけでなく、日射計を更に設けてもよい。この場合には、雲による影響とPV表面の汚れや近隣の建物の影などの影響を区別することができ、より正確な発電量予測が可能となる。   For example, not only a PV power generation amount measuring device but also a pyranometer may be provided. In this case, it is possible to distinguish the effects of clouds from the effects of dirt on the PV surface, shadows of neighboring buildings, etc., and more accurate power generation prediction is possible.

また、PV発電量の分布から推測された雲の形状を、過去の雲の動きを格納するデータベースに格納し、予測の演算に用いることで、更に精度の高い予測を行うようにしてもよい。   Further, the cloud shape estimated from the distribution of the PV power generation amount may be stored in a database that stores past cloud movements and used for prediction calculation, so that prediction with higher accuracy may be performed.

また、PV発電量の分布から推測された雲の形状を用いて、天気の変化を検知した際に、洗濯物干しの情報として需要家に配信するようにしてもよい。   Further, when a change in weather is detected using the cloud shape estimated from the distribution of PV power generation amount, it may be distributed to consumers as information on laundry drying.

また、PV発電量の分布から推測された雲の形状を用いて、晴天時間を予測し、洗濯物の乾燥レベルを計算して、洗濯物干しの情報として需要家に配信するようにしてもよい。   Alternatively, the cloud shape estimated from the distribution of the PV power generation amount may be used to predict the clear sky time, calculate the dry level of the laundry, and distribute it to the consumer as laundry drying information.

10 PV発電器
12 蓄電池
14 計測器
16 管理装置
20 サーバ
22 通信部
24 データ取得部
26 位置情報データベース
28 予測部
40 ネットワーク
DESCRIPTION OF SYMBOLS 10 PV generator 12 Storage battery 14 Measuring device 16 Management apparatus 20 Server 22 Communication part 24 Data acquisition part 26 Location information database 28 Prediction part 40 Network

Claims (6)

エリア毎に、前記エリア内の各位置の太陽光発電量を、太陽光発電量分布として取得する取得部と、
予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測し、予測された太陽光発電量分布に基づいて、前記所定時間後の前記予測対象位置の太陽光発電量を予測する予測部と、
を含む太陽光発電量予測装置。
For each area, an acquisition unit that acquires a photovoltaic power generation amount at each position in the area as a solar power generation amount distribution;
Based on the solar power generation amount distribution of each area around the area including the prediction target position, the solar power generation amount distribution of the area including the prediction target position after a predetermined time is predicted, and the predicted solar power generation distribution A prediction unit that predicts the amount of photovoltaic power generation at the prediction target position after the predetermined time,
Photovoltaic power generation prediction device including
風向情報及び風速情報の計測結果を取得する風情報取得部と、
前記取得した風向情報及び風速情報の計測結果に基づいて、予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に対する重みを決定する重み決定部とを更に含み、
前記予測部は、前記決定された予測対象位置を含むエリアの周辺のエリアの各々の太陽光発電量分布に対する重みを用いて、前記所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測する請求項1記載の太陽光発電量予測装置。
A wind information acquisition unit for acquiring measurement results of wind direction information and wind speed information;
A weight determination unit that determines a weight for each solar power generation amount distribution in an area around the area including the prediction target position based on the measurement result of the acquired wind direction information and wind speed information;
The prediction unit uses a weight for each photovoltaic power generation distribution in an area around the area including the determined prediction target position, and uses the weight for the solar power generation distribution in the area including the prediction target position after the predetermined time. The photovoltaic power generation amount prediction apparatus according to claim 1, wherein
請求項1又は2記載の太陽光発電量予測装置と、
需要家毎に設けられた、太陽光発電器の太陽光発電量の計測結果を前記太陽光発電量予測装置へ送信する管理装置とを含む太陽光発電量予測システムであって、
前記太陽光発電量予測装置は、
前記需要家毎の位置情報を記憶する位置情報データベースを更に含み、
前記取得部は、前記需要家毎に設けられた計測器から送信された太陽光発電量の計測結果と、前記需要家毎の位置情報とに基づいて、前記エリア毎に前記太陽光発電量分布を取得する太陽光発電量予測システム。
The photovoltaic power generation amount prediction device according to claim 1 or 2,
A photovoltaic power generation amount prediction system including a management device that is provided for each consumer and transmits a measurement result of the photovoltaic power generation amount of a solar power generator to the photovoltaic power generation amount prediction device,
The photovoltaic power generation amount prediction device
A position information database for storing position information for each consumer;
The said acquisition part is based on the measurement result of the photovoltaic power generation amount transmitted from the measuring instrument provided for every said consumer, and the positional information for every said consumer, The said photovoltaic power generation amount distribution for every said area Get solar power forecasting system.
前記太陽光発電量予測装置は、更に、前記予測対象位置の需要家の前記管理装置へ、前記太陽光発電量の予測結果を送信し、
前記管理装置は、受信した前記太陽光発電量の予測結果に基づいて、負荷を制御する負荷制御部を含む請求項3記載の太陽光発電量予測システム。
The photovoltaic power generation amount prediction device further transmits the prediction result of the photovoltaic power generation amount to the management device of the consumer at the prediction target position,
The said management apparatus is a photovoltaic power generation amount prediction system of Claim 3 containing the load control part which controls load based on the received prediction result of the said photovoltaic power generation amount.
前記太陽光発電量予測装置は、更に、前記予測対象位置の需要家の前記管理装置へ、前記太陽光発電量の予測結果を送信し、
前記管理装置は、受信した前記太陽光発電量の予測結果に基づいて、蓄電池の充放電量を制御する充放電制御部を含む請求項3又は4記載の太陽光発電量予測システム。
The photovoltaic power generation amount prediction device further transmits the prediction result of the photovoltaic power generation amount to the management device of the consumer at the prediction target position,
The said management apparatus is a photovoltaic generation amount prediction system of Claim 3 or 4 containing the charging / discharging control part which controls the charging / discharging amount of a storage battery based on the received prediction result of the said photovoltaic generation amount.
前記予測部は、前記周辺のエリアの各々について、前記取得した前記エリアの太陽光発電量分布に基づいて、前記エリア内で太陽光発電量が得られていない各位置の太陽光発電量を推定し、
前記周辺のエリアの各々についての前記推定された太陽光発電を含む前記エリアの太陽光発電量分布に基づいて、所定時間後の予測対象位置を含むエリアの太陽光発電量分布を予測する請求項1〜請求項5の何れか1項記載の太陽光発電量予測システム。
The prediction unit estimates, for each of the surrounding areas, the photovoltaic power generation amount at each position where the photovoltaic power generation amount is not obtained in the area, based on the acquired photovoltaic power generation amount distribution of the area. And
The solar power generation amount distribution of an area including a prediction target position after a predetermined time is predicted based on the solar power generation amount distribution of the area including the estimated solar power generation for each of the surrounding areas. The photovoltaic power generation amount prediction system according to any one of claims 1 to 5.
JP2018040196A 2018-03-06 2018-03-06 Solar power generation amount prediction device and solar power generation amount prediction system Pending JP2019154213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040196A JP2019154213A (en) 2018-03-06 2018-03-06 Solar power generation amount prediction device and solar power generation amount prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040196A JP2019154213A (en) 2018-03-06 2018-03-06 Solar power generation amount prediction device and solar power generation amount prediction system

Publications (1)

Publication Number Publication Date
JP2019154213A true JP2019154213A (en) 2019-09-12

Family

ID=67947331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040196A Pending JP2019154213A (en) 2018-03-06 2018-03-06 Solar power generation amount prediction device and solar power generation amount prediction system

Country Status (1)

Country Link
JP (1) JP2019154213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403410B2 (en) 2020-08-04 2023-12-22 三菱電機株式会社 Solar power generation output estimation device, solar power generation output estimation method, and solar power generation output estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228141A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp House energy system
JP2013042575A (en) * 2011-08-11 2013-02-28 Sanyo Electric Co Ltd Power generation amount predictor, server, and power generating system
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system
WO2017109970A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Power generation amount calculation device, power generation amount calculation system, power generation amount calculation method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228141A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp House energy system
JP2013042575A (en) * 2011-08-11 2013-02-28 Sanyo Electric Co Ltd Power generation amount predictor, server, and power generating system
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system
WO2017109970A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Power generation amount calculation device, power generation amount calculation system, power generation amount calculation method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403410B2 (en) 2020-08-04 2023-12-22 三菱電機株式会社 Solar power generation output estimation device, solar power generation output estimation method, and solar power generation output estimation program

Similar Documents

Publication Publication Date Title
JP5806132B2 (en) Power generation amount prediction device, power generation amount prediction correction method, and natural energy power generation system
US11085969B2 (en) Electrical energy storage system with battery resistance estimation
JP6402731B2 (en) Electricity supply and demand prediction system, electric power supply and demand prediction method, and electric power supply and demand prediction program
JP5957372B2 (en) Solar radiation amount calculation method and supply power determination method
JP6249895B2 (en) Power control system, method, and power control apparatus
JPWO2017217466A1 (en) Power management system
JP6046938B2 (en) Power supply system
US10211777B2 (en) Photovoltaic power generator output estimation method and device, and power system monitoring device using same
JPWO2019053941A1 (en) Distributed power system
US20180034411A1 (en) Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
JP6042775B2 (en) Control device, program
JP6153651B2 (en) Management server, local weather information generation system, and local weather information generation method
US20190288516A1 (en) System and method for operating a mains power grid
JP2019154213A (en) Solar power generation amount prediction device and solar power generation amount prediction system
US10601225B2 (en) Management device, management system, control method for management device, and control program
JP5969365B2 (en) Power control system
JP5912055B2 (en) Control apparatus and control method
JP5997086B2 (en) Energy management apparatus, energy management system, and energy management method
JP7319838B2 (en) Power management device and power management method
JP6590648B2 (en) Storage battery management device, gateway device, storage battery management system, and program
JP6750392B2 (en) Power management device and power management program
JP2023115693A (en) Program, information processing device, and generating power prediction method
JP2022122687A (en) Charge/discharge control method for charge/discharge element, and charge/discharge control device
CN114467239A (en) System and method for operating an inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222