JP2019153973A - Tuning fork type piezoelectric vibrating piece - Google Patents

Tuning fork type piezoelectric vibrating piece Download PDF

Info

Publication number
JP2019153973A
JP2019153973A JP2018038987A JP2018038987A JP2019153973A JP 2019153973 A JP2019153973 A JP 2019153973A JP 2018038987 A JP2018038987 A JP 2018038987A JP 2018038987 A JP2018038987 A JP 2018038987A JP 2019153973 A JP2019153973 A JP 2019153973A
Authority
JP
Japan
Prior art keywords
vibrating
fork type
type piezoelectric
tuning fork
vibrating piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018038987A
Other languages
Japanese (ja)
Inventor
宏征 石原
Hiromasa Ishihara
宏征 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2018038987A priority Critical patent/JP2019153973A/en
Publication of JP2019153973A publication Critical patent/JP2019153973A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a tuning fork type piezoelectric vibrating piece having good characteristics with a vibrating arm improved in rigidity even if the tuning-fork type piezoelectric vibrating piece becomes ultra-small and a tuning fork type piezoelectric vibrator using the same.SOLUTION: A tuning fork type piezoelectric vibrating piece 2 includes: a base 20; vibrating arms 21, 22, protruding from the base, on which excitation electrodes 25, 26 are formed; and long holes G1, G2 formed on a main surface of the vibrating arms. The long holes have a longitudinal direction along a protruding direction of the vibrating arm and a width direction along a direction orthogonal to the protruding direction of the vibrating arm. Inside the long holes, a part of the excitation electrodes is formed and a bridge portion which is not formed in parallel with any of the longitudinal direction and the width direction is formed.SELECTED DRAWING: Figure 2

Description

本発明は音叉形状からなる圧電振動片と、当該圧電振動片を用いた音叉型圧電振動子に関する。   The present invention relates to a piezoelectric vibrating piece having a tuning fork shape and a tuning fork type piezoelectric vibrator using the piezoelectric vibrating piece.

音叉型圧電振動子等の圧電振動子は基準クロック源として様々な電子機器に用いられている。例えば、表面実装型の音叉型圧電振動子は、基部と当該基部の一端側から同一方向に突出する一対の振動腕を備え、当該一対の振動腕には振動腕を駆動させるための励振電極等が形成された音叉型圧電振動片が絶縁性容器の凹部に収容される。そして、音叉型圧電振動片の基部の他端側が前記容器の凹部の内底面に形成された電極パッド上に、導電性の接合材を介して導電接合され、前記容器の凹部の開口端に平板状の蓋が接合された構成となっている(特許文献1)。   Piezoelectric vibrators such as tuning-fork type piezoelectric vibrators are used in various electronic devices as reference clock sources. For example, a surface-mounted tuning fork type piezoelectric vibrator includes a base and a pair of vibrating arms protruding in the same direction from one end side of the base, and the pair of vibrating arms has excitation electrodes for driving the vibrating arms, etc. The tuning-fork type piezoelectric vibrating piece with the formed is accommodated in the recess of the insulating container. The other end side of the base of the tuning fork type piezoelectric vibrating piece is conductively bonded via an electrically conductive bonding material on an electrode pad formed on the inner bottom surface of the concave portion of the container, and a flat plate is formed on the opening end of the concave portion of the container. It is the structure where the lid | cover of the shape was joined (patent document 1).

近年、通信機器の高性能化や小型化に伴い、音叉型圧電振動片も更なる小型化と特性面の高品質化が求められている。これに対して、音叉型圧電振動片の小型化に伴うCIの増加を抑制するために、振動腕の主面に孔を形成し、当該孔の内部に励振電極を形成することで電界効率を高めることが必要不可欠な構成となっている(特許文献2)。   In recent years, with the improvement in performance and miniaturization of communication devices, tuning fork-type piezoelectric vibrating reeds are required to be further downsized and the quality of their characteristics improved. On the other hand, in order to suppress the increase in CI due to the miniaturization of the tuning fork type piezoelectric vibrating piece, a hole is formed in the main surface of the vibrating arm, and an excitation electrode is formed in the hole to improve the electric field efficiency. It is indispensable to raise (Patent Document 2).

また、音叉型圧電振動片が小型化されると、その小型化に応じて音叉型圧電振動片の振動椀も小さくなり、特に振動椀の長さが比較的短くなることで、基準クロック源として比較的低周波用途(特に、時計等のクロック源として利用される32.768KHz等)に対応することが難しくなっている。これに対して、音叉型圧電振動片の各振動椀には、前記励振電極を有する振動部とは別に、当該振動部の先端で、かつ振動部よりも幅広の錘部を構成することが必要となることがある(特許文献1)。   In addition, when the tuning fork type piezoelectric vibrating piece is downsized, the vibration fork of the tuning fork type piezoelectric vibrating piece is also reduced in accordance with the downsizing. In particular, the length of the vibrating fork is relatively short, so that the reference clock source It has become difficult to cope with relatively low frequency applications (particularly 32.768 KHz used as a clock source for a clock or the like). On the other hand, each vibrating rod of the tuning-fork type piezoelectric vibrating piece needs to have a weight part wider than the vibrating part at the tip of the vibrating part, separately from the vibrating part having the excitation electrode. (Patent Document 1).

WO2014/208251号WO2014 / 208251 特開2003−60482号JP 2003-60482

このように、音叉型圧電振動片も更なる小型化に伴って、振動椀の端部と孔との間に形成された土手幅が従来と比較して細くなり、振動椀の剛性が低下する。特に、錘部を有する音叉型圧電振動片では、振動部と錘部との連結部で剛性が急激に変化するため、振動椀の強度が低下して振動腕折れなどのリスクが高まるといった問題点があった。   As described above, as the tuning fork type piezoelectric vibrating piece is further reduced in size, the width of the bank formed between the end of the vibrating rod and the hole becomes narrower than before, and the rigidity of the vibrating rod is reduced. . In particular, in a tuning fork type piezoelectric vibrating piece having a weight portion, the rigidity changes suddenly at the connecting portion between the vibrating portion and the weight portion, so that the strength of the vibrating rod is reduced and the risk of a broken vibrating arm is increased. was there.

本発明はかかる点に鑑みてなされたものであり、音叉型圧電振動片が超小型になっても振動椀の剛性を高め、良好な特性を有する音叉型圧電振動片を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a tuning fork type piezoelectric vibrating piece having good characteristics by increasing the rigidity of the vibrating rod even when the tuning fork type piezoelectric vibrating piece is miniaturized. To do.

上記目的を達成するために請求項1に係る発明は、基部、上記基部から突出し励振電極が形成された振動腕、上記振動腕の主面に形成された長孔、を備えており、上記長孔は、上記振動腕の突出する方向に沿った長手方向と、上記振動腕の突出する方向に直交する方向に沿った幅方向を具備しており、上記長孔の内部には、上記励振電極の一部が形成され、かつ上記長手方向と幅方向のいずれにも平行に形成されていない架橋部が形成されている。   In order to achieve the above object, an invention according to claim 1 includes a base, a vibrating arm protruding from the base and having an excitation electrode formed therein, and a long hole formed in a main surface of the vibrating arm. The hole has a longitudinal direction along the protruding direction of the vibrating arm and a width direction along a direction orthogonal to the protruding direction of the vibrating arm, and the excitation electrode is disposed inside the elongated hole. Is formed, and a bridging portion that is not formed in parallel in either the longitudinal direction or the width direction is formed.

上記発明によれば、長孔の内部には長手方向と幅方向のいずれにも平行に形成されていない斜め方向の架橋部を構成することで、架橋部が形成されていない長孔の残部の容積を全体として大きく削減することなく、振動椀の幅方向の剛性を高めることができる。加えて長孔とすることで、低周波化に有利な構成となる。   According to the above invention, by forming the cross-linked portion in the oblique direction that is not formed in parallel with either the longitudinal direction or the width direction inside the long hole, the remaining portion of the long hole where the cross-linked portion is not formed The rigidity in the width direction of the vibrating rod can be increased without greatly reducing the volume as a whole. In addition, by using a long hole, the configuration is advantageous for lowering the frequency.

これは、長孔の内部の架橋部を長手方向に沿って構成すると、振動椀の幅方向の剛性不足となりやすく、長孔の容積を減らす構成となる。また、長孔の内部の架橋部を幅方向に沿って構成すると、振動椀が横方向に振れることで励振する音叉型圧電振動片の屈曲振動を妨げやすい構成となるだけでなく、振動椀の幅方向の剛性を高めるためには架橋部の数を増やす必要があり、長孔の容積を減らす構成となりやすい。   This is because if the bridging portion inside the long hole is configured along the longitudinal direction, the rigidity in the width direction of the vibrating rod tends to be insufficient, and the volume of the long hole is reduced. In addition, if the bridging portion inside the elongated hole is configured along the width direction, not only the configuration of the vibrating fork type piezoelectric vibrating piece that is excited when the vibrating rod swings in the lateral direction can be easily prevented, but also the vibration rod In order to increase the rigidity in the width direction, it is necessary to increase the number of bridging portions, which tends to reduce the volume of the long holes.

そこで、本発明のように、長手方向と幅方向のいずれにも平行に形成されていない斜め方向の架橋部を構成することで、音叉型圧電振動片の屈曲振動を妨げにくく、幅方向の強度をより少ない架橋部で補強することができる。斜め方向の架橋部は筋交いとしての機能が高まる。また、架橋部が形成されていない長孔残部の容積を全体として大きく削減されることもないので、長孔残部の内部に形成される励振電極の面積も大きく削減されず、音叉型圧電振動片の励振時の電界効率を低下させることがない。結果として、CIの増加を抑制して良好な特性を確保することができ、振動椀の幅方向の剛性を確実に高めることができる。   Therefore, as in the present invention, by forming an oblique bridge portion that is not formed parallel to either the longitudinal direction or the width direction, it is difficult to prevent bending vibration of the tuning fork type piezoelectric vibrating piece, and the strength in the width direction is reduced. Can be reinforced with fewer cross-linked portions. The function of the cross-linking portion in the diagonal direction as a brace increases. Further, since the volume of the long hole remaining portion where the bridging portion is not formed is not greatly reduced as a whole, the area of the excitation electrode formed inside the long hole remaining portion is not greatly reduced, and the tuning fork type piezoelectric vibrating piece The field efficiency at the time of excitation is not reduced. As a result, it is possible to suppress an increase in CI to ensure good characteristics, and to reliably increase the rigidity in the width direction of the vibrating rod.

また、上述の構成に加えて、上記基部の一端側から同一方向に突出する一対の振動腕を備えており、上記一対の振動腕の各々の主面に長孔と、当該長孔の内部の架橋部とが形成されており、上記各振動椀に形成された長孔と架橋部とが、上記一対の振動腕の間にある仮想中心線に対してお互いに線対称に形成してもよい。   Further, in addition to the above-described configuration, a pair of vibrating arms that protrude in the same direction from one end side of the base portion is provided, and a long hole is formed in each main surface of the pair of vibrating arms, and the inside of the long hole. A bridging portion is formed, and the elongated hole and the bridging portion formed in each of the vibrating rods may be formed symmetrically with respect to a virtual center line between the pair of vibrating arms. .

上記発明によれば、上述の作用効果に加えて、一対の振動腕の長孔と架橋部とが、上記一対の振動腕の間にある仮想中心線に対してお互いに線対称に形成されていることで、励振電極を介して各振動椀にかかる電界が、お互いの振動椀で均一にバランスが保たれ、不要な振動を助長することがない。   According to the above invention, in addition to the above-described effects, the long holes and the bridging portions of the pair of vibrating arms are formed symmetrically with respect to the virtual center line between the pair of vibrating arms. As a result, the electric field applied to each vibration rod through the excitation electrode is uniformly balanced by the mutual vibration rods, and does not promote unnecessary vibration.

また、上述の構成に加えて、上記長孔の内部には、上記架橋部が形成されていない長孔残部が形成されており、上記長孔の長手方向の両端部の長孔残部以外の形状が2等辺三角形状、もしくは2等辺台形状に形成してもよい。 Further, in addition to the above-described configuration, a long hole remaining portion in which the bridge portion is not formed is formed inside the long hole, and a shape other than the long hole remaining portion at both ends in the longitudinal direction of the long hole is formed. May be formed in an isosceles triangular shape or an isosceles trapezoidal shape.

上記発明によれば、上述の作用効果に加えて、長孔の長手方向の両端部の長孔残部以外の形状が2等辺三角形状、もしくは2等辺台形状に形成することで、これらの長孔残部と接する架橋部の長さが同一寸法となり、振動椀の幅方向の剛性バランスが保たれ、かつ振動椀にかかる電界も振動椀の幅方向に均一にバランスが保たれ、不要な振動を助長することがない。   According to the above invention, in addition to the above-described effects, the shape of the long holes other than the long hole remaining portions at both ends in the longitudinal direction is formed into an isosceles triangle shape or an isosceles trapezoidal shape. The length of the bridging part in contact with the remaining part is the same size, the rigidity balance in the width direction of the vibration rod is maintained, and the electric field applied to the vibration rod is evenly balanced in the width direction of the vibration rod, promoting unnecessary vibration There is nothing to do.

また、上述の構成に加えて、上記振動腕の突出端部には幅広の錘部を形成してもよい。   In addition to the above-described configuration, a wide weight portion may be formed at the protruding end portion of the vibrating arm.

上記発明によれば、上述の作用効果に加えて、振動腕の突出端部の幅広の錘部により、音叉型圧電振動片の小型化に伴う低周波化が行え、この錘部が存在することによるさらなる剛性不足にも対応できる。結果として、振動腕折れなどのリスクがなくなる。   According to the above-described invention, in addition to the above-described effects, the wide weight portion of the protruding end portion of the vibrating arm can reduce the frequency associated with downsizing of the tuning-fork type piezoelectric vibrating piece, and this weight portion exists. It can cope with further lack of rigidity due to. As a result, there is no risk of vibration arm breakage.

また、上述の音叉型圧電振動片が、容器の内部に搭載され収容されるとともに気密封止された音叉型圧電振動子に適用することができ、上述と同様の作用効果が音叉型圧電振動子として得られる。   Further, the tuning fork type piezoelectric vibrating piece described above can be applied to a tuning fork type piezoelectric vibrator that is mounted and accommodated inside a container and is hermetically sealed. As obtained.

以上のように本発明によれば、音叉型圧電振動片が超小型になっても振動椀の剛性を高め、良好な特性を有する音叉型圧電振動片を提供することができる。   As described above, according to the present invention, it is possible to provide a tuning-fork type piezoelectric vibrating piece having good characteristics by increasing the rigidity of the vibrating rod even when the tuning-fork type piezoelectric vibrating piece becomes ultra-small.

本発明の実施形態に係る音叉型水晶振動子の模式的な断面図である。1 is a schematic cross-sectional view of a tuning fork type crystal resonator according to an embodiment of the present invention. 本発明の実施形態に係る音叉型水晶振動片の一主面側の模式的な平面図である。FIG. 3 is a schematic plan view of one main surface side of a tuning fork type crystal vibrating piece according to an embodiment of the present invention. 図2の音叉型水晶振動片の他主面側の平面図である。FIG. 3 is a plan view of the other main surface side of the tuning-fork type crystal vibrating piece of FIG. 2. 本発明の他の実施形態に係る音叉型水晶振動片の一主面側の模式的な平面図である。FIG. 6 is a schematic plan view of one main surface side of a tuning fork type crystal vibrating piece according to another embodiment of the present invention.

以下、本発明の実施形態として、音叉型水晶振動片(音叉型圧電振動片)を用いた音叉型水晶振動子(音叉型圧電振動子)を例に挙げ、図面を参照しながら説明する。本実施形態における音叉型水晶振動子(以下、水晶振動子と略)は略直方体状のパッケージ構造からなる表面実装型の水晶振動子である。本実施形態ではその平面視の外形寸法は例えば縦1.6mm、横1.0mmとなっている。なお、水晶振動子の平面視の外形寸法は当該寸法に限定されるものではないが、同寸法以下の超小型の水晶振動子に対して好適である。   Hereinafter, as an embodiment of the present invention, a tuning fork type crystal resonator (tuning fork type piezoelectric resonator) using a tuning fork type crystal resonator element (tuning fork type piezoelectric resonator element) will be described as an example with reference to the drawings. The tuning fork type crystal resonator (hereinafter abbreviated as “crystal resonator”) in the present embodiment is a surface-mount type crystal resonator having a substantially rectangular parallelepiped package structure. In the present embodiment, the external dimensions in plan view are, for example, 1.6 mm in length and 1.0 mm in width. The external dimensions of the crystal resonator in plan view are not limited to the dimensions, but are suitable for an ultra-small crystal resonator having the same size or less.

本発明の実施形態に係る水晶振動子1は、図1に示すように凹部5を有する絶縁材料からなる容器3と、音叉型水晶振動片2(以下、水晶振動片2と略)と、凹部5を封止する平板状の蓋4が主な構成部材となっている。なお、図1では水晶振動片に形成される各種電極の記載は省略している。水晶振動片2は、容器3の凹部5の内部に収容された後、蓋4が凹部5を覆うように容器3の開口端に接合されることによって気密に封止される。ここで容器3と蓋4とは図示しない封止材を介して接合される。   As shown in FIG. 1, a crystal resonator 1 according to an embodiment of the present invention includes a container 3 made of an insulating material having a recess 5, a tuning fork-type crystal vibrating piece 2 (hereinafter abbreviated as a crystal vibrating piece 2), a recess A flat lid 4 for sealing 5 is a main constituent member. In FIG. 1, the description of various electrodes formed on the quartz crystal vibrating piece is omitted. After the quartz crystal vibrating piece 2 is accommodated in the recess 5 of the container 3, the lid 4 is joined to the opening end of the container 3 so as to cover the recess 5, and is hermetically sealed. Here, the container 3 and the lid 4 are joined via a sealing material (not shown).

容器3はアルミナ等のセラミックを主体とした絶縁材料から成る箱状体であり、2枚のセラミックグリーンシートを積層して一体焼成することによって成形されている(図1参照)。容器3は枠状の堤部30の内側に平面視矩形状の凹部5を有している。堤部30の上面には図示しない封止材が平面視で枠状に形成されており、前記接合材は蓋4の外周部分と対応している。   The container 3 is a box-shaped body made of an insulating material mainly composed of ceramic such as alumina, and is formed by laminating two ceramic green sheets and integrally firing them (see FIG. 1). The container 3 has a concave portion 5 having a rectangular shape in plan view inside the frame-shaped bank portion 30. A sealing material (not shown) is formed in a frame shape in plan view on the upper surface of the bank portion 30, and the bonding material corresponds to the outer peripheral portion of the lid 4.

凹部5の内底面301の一短辺側には、水晶振動片2と導電接合される2つの電極パッド6,7(図1では一方のみ図示)が、互いに隙間を空けた状態で並列して形成されている。2つの電極パッド6,7は、図示しない内部配線およびビアを介して容器3の外底面302の4隅に設けられた4つの外部接続端子8(図1では2つのみ図示)のうちの2つの端子と電気的に接続されている。これら2つの電極パッド6,7は互いに異極となっている。   On one short side of the inner bottom surface 301 of the recess 5, two electrode pads 6 and 7 (only one is shown in FIG. 1) conductively joined to the quartz crystal vibrating piece 2 are arranged in parallel with a gap therebetween. Is formed. The two electrode pads 6 and 7 are two of the four external connection terminals 8 (only two are shown in FIG. 1) provided at the four corners of the outer bottom surface 302 of the container 3 through internal wiring and vias (not shown). Is electrically connected to two terminals. These two electrode pads 6 and 7 have different polarities.

本実施形態では2つの電極パッド6,7は、タングステンメタライズ層の上面に金をメッキ等の手法を用いて積層することによって形成されている。なお前記メタライズ層として、タングステンの代わりにモリブデンを用いてもよい。   In the present embodiment, the two electrode pads 6 and 7 are formed by laminating gold on the upper surface of the tungsten metallized layer using a technique such as plating. As the metallized layer, molybdenum may be used instead of tungsten.

電極パッド6,7のタングステン部分はメタライズの最小単位厚みの点から2段に重ね塗りされている。これは、本実施形態では水晶振動子の薄型化を図るために容器3を2層構成としたことによって凹部5の内底面301に段部を形成することができないため、水晶振動片2の搭載後の状態で、水晶振動片の下面(内底面301に対向する面)と前記内底面301との間に或る程度の隙間を確保するためである。   The tungsten portions of the electrode pads 6 and 7 are overlaid in two steps in terms of the minimum unit thickness of metallization. In this embodiment, since the container 3 has a two-layer structure in order to reduce the thickness of the crystal resonator, a step portion cannot be formed on the inner bottom surface 301 of the recess 5. This is to ensure a certain gap between the lower surface (the surface facing the inner bottom surface 301) of the quartz crystal vibrating piece and the inner bottom surface 301 in the later state.

蓋4はコバールを基体とする平面視矩形状の金属性の蓋体であり、当該蓋の表裏面にはニッケルメッキ層が形成されている。また蓋4の容器との接合面側には、前記ニッケルメッキ層の上に金属からなるロウ材が全面に亘って形成されている。本実施形態では前記ロウ材として銀ロウが使用されている。   The lid 4 is a metallic lid body having a rectangular shape in a plan view using Kovar as a base, and nickel plating layers are formed on the front and back surfaces of the lid. Further, a brazing material made of metal is formed on the nickel plating layer over the entire surface of the lid 4 on the side of the joint surface with the container. In this embodiment, silver brazing is used as the brazing material.

次に本実施形態における水晶振動片について図2、図3を参照しながら説明する。なお説明の便宜上、水晶振動片2の対向する2つの主面(2a,2b)のうち、容器に搭載される際に電極パッド6,7に対面する側の主面を裏面2bとし、当該裏面に対向する反対側の主面を表面2aとして説明する。図2は水晶振動片の表面側(2a)から見た平面図を、図3は水晶振動片の裏面側(2b)から見た平面図をそれぞれ表している。   Next, the quartz crystal resonator element according to this embodiment will be described with reference to FIGS. For convenience of explanation, of the two main surfaces (2a, 2b) facing the crystal resonator element 2, the main surface facing the electrode pads 6, 7 when mounted on the container is defined as a back surface 2b. The main surface on the opposite side opposite to the surface 2a will be described as the surface 2a. FIG. 2 is a plan view seen from the front surface side (2a) of the quartz crystal vibrating piece, and FIG. 3 is a plan view seen from the back surface side (2b) of the quartz crystal vibrating piece.

図2、図3に示すように、水晶振動片2は音叉形状であり、基部20と、基部20の一端側201から同一方向に突出する一対の振動腕21,22と、基部の他端側202の一側面から基部20の幅方向(図2、図3の符号Xで示す軸方向における基部の寸法)の一方に向かって突出した突出部24とから成っている。   As shown in FIGS. 2 and 3, the quartz crystal vibrating piece 2 has a tuning fork shape, and includes a base portion 20, a pair of vibrating arms 21 and 22 protruding in the same direction from one end side 201 of the base portion 20, and the other end side of the base portion. The projection portion 24 protrudes from one side surface 202 toward one side in the width direction of the base portion 20 (the size of the base portion in the axial direction indicated by the symbol X in FIGS. 2 and 3).

前記一対の振動腕21,22の各々の先端側には、振動腕21,22の腕幅(振動腕の突出方向に対して直交する方向における腕の寸法)よりも幅広となる幅広部23,23(錘部)が形成されている。幅広部23,23は、振動腕の突出方向に向かって漸次拡幅する拡幅部(符号省略)を介して、振動腕21,22の先端部分と一体で成形されている。前記拡幅部と前記幅広部とは、振動腕と一体で成形されている。なお幅広部23,23の各々の先端側211,221の各隅部は面取り状(C面状)に加工されている。振動腕21,22と拡幅部と幅広部23,23は、対向する一対の主面2a,2bと対向する一対の側面(符号省略)を有している。   A wide portion 23 that is wider than the arm width of the vibrating arms 21 and 22 (the dimension of the arm in a direction orthogonal to the protruding direction of the vibrating arms) is provided on the distal end side of each of the pair of vibrating arms 21 and 22. 23 (weight portion) is formed. The wide portions 23 and 23 are formed integrally with the tip portions of the vibrating arms 21 and 22 through widened portions (reference numerals omitted) that gradually widen in the protruding direction of the vibrating arms. The widened portion and the wide portion are formed integrally with the vibrating arm. In addition, each corner part of the front end side 211,221 of each wide part 23,23 is processed into the chamfering shape (C surface shape). The vibrating arms 21 and 22, the widened portion, and the wide portions 23 and 23 have a pair of side surfaces (reference numerals omitted) facing the pair of opposed main surfaces 2 a and 2 b.

一対の振動腕21,22の各々の表裏主面には、等価直列抵抗値(Crystal Impedance。以下、CI値と略)をより低下させる目的で、長孔が形成されている。より詳しくは、振動椀21の表裏主面に長孔G1が形成され、振動椀22の表裏主面に長孔G2が形成されている。長孔G1,G2は、一対の振動腕21,22の各々の表裏主面の厚み方向を貫通するように形成されており、その一端側が基部20の一端側201の領域まで延長され、その他端側が振動腕と拡幅部との境界に対して振動腕の付け根側に位置して形成されている。長孔G1,G2は、振動腕21,22の突出する方向に沿った長手方向と(図2、図3の符号Yで示す軸方向)、振動腕21,22の突出する方向に直交する方向に沿った幅方向(図2、図3で符号Xで示す軸方向)とを有している。なお、長孔G1,G2が存在する振動椀の領域が振動部を構成している。   Long holes are formed in the front and back main surfaces of each of the pair of vibrating arms 21 and 22 for the purpose of further reducing the equivalent series resistance value (hereinafter referred to as CI value). More specifically, a long hole G1 is formed on the front and back main surfaces of the vibration rod 21, and a long hole G2 is formed on the front and back main surfaces of the vibration rod 22. The long holes G1 and G2 are formed so as to penetrate the thickness direction of the front and back main surfaces of each of the pair of vibrating arms 21 and 22, one end side thereof is extended to the region of the one end side 201 of the base portion 20, and the other end The side is formed on the base side of the vibrating arm with respect to the boundary between the vibrating arm and the widened portion. The long holes G1 and G2 are perpendicular to the longitudinal direction along the direction in which the vibrating arms 21 and 22 project (the axial direction indicated by the symbol Y in FIGS. 2 and 3) and the direction in which the vibrating arms 21 and 22 project. And a width direction (an axial direction indicated by a symbol X in FIGS. 2 and 3). In addition, the area | region of the vibration rod in which the long holes G1 and G2 exist comprises the vibration part.

各振動腕21,22の表裏主面に形成される長孔G1,G2の内部には、長手方向(Y軸方向)と幅方向(X軸方向)のいずれにも平行に形成されていない斜め方向の架橋部G11〜G23が形成されている。以下、各振動腕21,22の表裏主面の各長孔G1,G2の内部構造について、より詳細に説明する。   Inside the long holes G1 and G2 formed on the front and back main surfaces of the vibrating arms 21 and 22, diagonally formed in parallel with neither the longitudinal direction (Y-axis direction) nor the width direction (X-axis direction) Directional bridging portions G11 to G23 are formed. Hereinafter, the internal structure of the long holes G1 and G2 on the front and back main surfaces of the vibrating arms 21 and 22 will be described in more detail.

振動腕21の長孔G1の内部には、長手方向(Y軸方向・振動腕の突出する方向)に対して約30°、あるいは150°で傾斜した3つの架橋部G11,G12,G13が振動椀の先端側からお互いに隣接した状態で形成されている。図2では、例えば、架橋部G11は一定幅の平行四辺形状で長手方向150°で傾斜し、架橋部G12は一定幅の平行四辺形で長手方向30°で傾斜し、架橋部G13は一定幅の平行四辺形で長手方向150°で傾斜するとともに、各架橋部の端部がお互いに隣接する架橋部の端部で接した状態で構成されている。   In the long hole G1 of the vibrating arm 21, three bridging portions G11, G12, and G13 inclined at about 30 ° or 150 ° with respect to the longitudinal direction (the Y-axis direction and the protruding direction of the vibrating arm) vibrate. It is formed in a state adjacent to each other from the tip side of the ridge. In FIG. 2, for example, the bridging portion G11 is a parallelogram having a constant width and is inclined at 150 ° in the longitudinal direction, the bridging portion G12 is a parallelogram having a constant width and is inclined at 30 ° in the longitudinal direction, and the bridging portion G13 is constant in width. The parallelogram is inclined at 150 ° in the longitudinal direction, and the ends of the bridge portions are in contact with the ends of the bridge portions adjacent to each other.

なお、この傾斜角度については、一例であり特に限定されるものではないが、長手方向(Y軸方向・振動腕の突出する方向)に対して約45°より小さい角度で傾斜させるか、あるいは135°よりで大きい角度で傾斜させることで、水晶振動片2の屈曲振動を妨げにくく、幅方向の強度をより少ない架橋部で補強することができる。さらに、各架橋部の形状としても一例であり特に限定されるものではないが、一定幅の平行四辺形状とすることで、振動椀の幅方向の剛性バランスが保たれ、かつ振動椀21にかかる電界も振動椀の幅方向に均一にバランスが保たれ、不要な振動を助長することがない。加えて、各架橋部の数も一例であり特に限定されるものではなく、長孔G1の寸法に応じて調整することができる。   The tilt angle is an example and is not particularly limited. However, the tilt angle is tilted at an angle smaller than about 45 ° with respect to the longitudinal direction (Y-axis direction / projection direction of the vibrating arm) or 135. By inclining at an angle larger than 0 °, it is difficult to prevent bending vibration of the quartz crystal vibrating piece 2 and the strength in the width direction can be reinforced with less bridging portions. Furthermore, the shape of each bridging portion is also an example and is not particularly limited. However, by using a parallelogram shape having a constant width, the rigidity balance in the width direction of the vibration rod is maintained, and the vibration rod 21 is applied. The electric field is also uniformly balanced in the width direction of the vibrating rod and does not promote unnecessary vibration. In addition, the number of each cross-linking portion is also an example and is not particularly limited, and can be adjusted according to the size of the long hole G1.

また、振動腕21の長孔G1の内部には、3つの架橋部G11,G12,G13を除いて、振動椀の先端側から4つの長孔残部G14,G15,G16,G17が形成されている。そして、長孔G1の長手方向の両端部以外の長孔残部G15、G16については2等辺三角形状に形成されている。   In addition, four long hole remaining portions G14, G15, G16, and G17 are formed from the tip side of the vibrating rod except for the three bridging portions G11, G12, and G13 in the long hole G1 of the vibrating arm 21. . And, the long hole remaining portions G15 and G16 other than both ends in the longitudinal direction of the long hole G1 are formed in an isosceles triangle shape.

なお、この振動椀の中央部に形成される長孔残部G15、G16の形状は、各架橋部の配置に依存されるものであるため、各架橋部の端部がお互いに隣接する架橋部の端部で離間した状態で構成されると、その形状は2等辺三角形状ではなく2等辺台形状とすることができる。このように振動椀の中央部に形成される長孔残部G15、G16の形状を2等辺三角形状、もしくは2等辺台形状に形成することで、これらの長孔残部と接する架橋部G11,G12,G13の長さが同一寸法となり、振動椀の幅方向の剛性バランスが保たれ、かつ振動椀21にかかる電界も振動椀の幅方向に均一にバランスが保たれ、不要な振動を助長することがない。   In addition, since the shape of the long hole remaining portions G15 and G16 formed at the central portion of the vibrating rod depends on the arrangement of the bridge portions, the end portions of the bridge portions are adjacent to each other. When configured in a state of being separated at the end, the shape can be an isosceles trapezoid rather than an isosceles triangle. Thus, by forming the shape of the long hole remaining portions G15 and G16 formed in the center portion of the vibrating rod into an isosceles triangle shape or an isosceles trapezoidal shape, the bridging portions G11, G12, The length of G13 becomes the same dimension, the rigidity balance in the width direction of the vibrating rod is maintained, and the electric field applied to the vibrating rod 21 is also uniformly balanced in the width direction of the vibrating rod, thereby promoting unnecessary vibration. Absent.

振動腕22の長孔G2の内部には、長手方向(Y軸方向・振動腕の突出する方向)に対して約30°、あるいは150°で傾斜した3つの架橋部G21,G22,G23が振動椀の先端側からお互いに隣接した状態で形成されている。図2では、例えば、架橋部G21は一定幅の平行四辺形状で長手方向30°で傾斜し、架橋部G22は一定幅の平行四辺形で長手方向150°で傾斜し、架橋部G23は一定幅の平行四辺形で長手方向30°で傾斜するとともに、各架橋部の端部がお互いに隣接する架橋部の端部で接した状態で構成されている。   In the long hole G2 of the vibrating arm 22, three bridging portions G21, G22, and G23 inclined at about 30 ° or 150 ° with respect to the longitudinal direction (the Y-axis direction and the protruding direction of the vibrating arm) vibrate. It is formed in a state adjacent to each other from the tip side of the ridge. In FIG. 2, for example, the bridging portion G21 is a parallelogram having a constant width and is inclined at 30 ° in the longitudinal direction, the bridging portion G22 is a parallelogram having a constant width and is inclined at 150 ° in the longitudinal direction, and the bridging portion G23 is constant in width. The parallelograms are inclined at 30 ° in the longitudinal direction, and the ends of the bridge portions are in contact with the ends of the bridge portions adjacent to each other.

なお、この傾斜角度については、一例であり特に限定されるものではないが、長手方向(Y軸方向・振動腕の突出する方向)に対して約45°より小さい角度で傾斜させるか、あるいは135°よりで大きい角度で傾斜させることで、水晶振動片2の屈曲振動を妨げにくく、幅方向の強度をより少ない架橋部で補強することができる。さらに、各架橋部の形状としても一例であり特に限定されるものではないが、一定幅の平行四辺形状とすることで、振動椀の幅方向の剛性バランスが保たれ、かつ振動椀22にかかる電界も振動椀の幅方向に均一にバランスが保たれ、不要な振動を助長することがない。加えて、各架橋部の数も一例であり特に限定されるものではなく、長孔G2の寸法に応じて調整することができる。   The tilt angle is an example and is not particularly limited. However, the tilt angle is tilted at an angle smaller than about 45 ° with respect to the longitudinal direction (Y-axis direction / projection direction of the vibrating arm) or 135. By inclining at an angle larger than 0 °, it is difficult to prevent bending vibration of the quartz crystal vibrating piece 2 and the strength in the width direction can be reinforced with less bridging portions. Furthermore, the shape of each bridging portion is an example and is not particularly limited. However, by making a parallelogram with a constant width, the rigidity balance in the width direction of the vibrating rod is maintained, and the vibrating rod 22 is applied. The electric field is also uniformly balanced in the width direction of the vibrating rod and does not promote unnecessary vibration. In addition, the number of each cross-linking portion is also an example and is not particularly limited, and can be adjusted according to the size of the long hole G2.

また、振動腕22の長孔G2の内部には、3つの架橋部G21,G22,G23を除いて、振動椀の先端側から4つの長孔残部G24,G25,G26,G27が形成されている。そして、長孔G2の長手方向の両端部以外の長孔残部G25、G26については2等辺三角形状に形成されている。   In addition, four long hole remaining portions G24, G25, G26, and G27 are formed inside the long hole G2 of the vibrating arm 22 from the tip side of the vibrating rod except for the three bridging portions G21, G22, and G23. . The long hole remaining portions G25 and G26 other than the both ends in the longitudinal direction of the long hole G2 are formed in an isosceles triangle shape.

なお、この振動椀の中央部に形成される長孔残部G25、G26の形状は、各架橋部の配置に依存されるものであるため、各架橋部の端部がお互いに隣接する架橋部の端部で離間した状態で構成されると、その形状は2等辺三角形状ではなく2等辺台形状とすることができる。このように振動椀の中央部に形成される長孔残部G25、G26の形状を2等辺三角形状、もしくは2等辺台形状に形成することで、これらの長孔残部と接する架橋部G21,G22,G23の長さが同一寸法となり、振動椀の幅方向の剛性バランスが保たれ、かつ振動椀22にかかる電界も振動椀の幅方向に均一にバランスが保たれ、不要な振動を助長することがない。   Since the shape of the long hole remaining portions G25 and G26 formed in the center portion of the vibrating rod depends on the arrangement of the bridge portions, the end portions of the bridge portions are adjacent to each other. When configured in a state of being separated at the end, the shape can be an isosceles trapezoid rather than an isosceles triangle. Thus, by forming the shape of the long hole remaining portions G25 and G26 formed in the center portion of the vibration rod into an isosceles triangle shape or an isosceles trapezoidal shape, the bridging portions G21, G22, which are in contact with these long hole remaining portions, The length of G23 becomes the same dimension, the rigidity balance in the width direction of the vibrating rod is maintained, and the electric field applied to the vibrating rod 22 is also uniformly balanced in the width direction of the vibrating rod, thereby promoting unnecessary vibration. Absent.

ここで、振動椀21と振動椀22に形成された長孔G1と長孔G2、架橋部G11,G12,G13と架橋部G21,G22,G23、長孔残部G14,G15,G16,G17と長孔残部G24,G25,G26,G27とは、振動腕21と振動椀22の間にある仮想中心線CLを基準として線対称に形成されている。これにより、後述する励振電極25,26を介して振動椀21,22にかかる電界が、お互いの振動椀で均一にバランスが保たれ、不要な振動を助長することがない。   Here, the long hole G1 and the long hole G2 formed in the vibrating rod 21 and the vibrating rod 22, the bridging portions G11, G12, and G13, the bridging portions G21, G22, and G23, and the long hole remaining portions G14, G15, G16, and G17 are long. The hole remaining portions G24, G25, G26, and G27 are formed symmetrically with respect to the virtual center line CL between the vibrating arm 21 and the vibrating rod 22. As a result, the electric field applied to the vibrating bars 21 and 22 via the excitation electrodes 25 and 26 described later is uniformly balanced by the vibrating bars and does not promote unnecessary vibration.

なお、本実施形態では、上記各振動椀の表裏面に形成される各架橋部の部分では、後述するウェットエッチングを施さず、各振動椀の各長孔残部が形成されていない領域(以下、振動椀の他領域とする)と同じ厚みとして構成しているが、図4に示すように、振動椀の他領域より薄く形成した構成としてもよい。   In the present embodiment, in each bridging portion formed on the front and back surfaces of each vibrating rod, the wet etching described later is not performed, and each slot remaining portion of each vibrating rod is not formed (hereinafter, However, as shown in FIG. 4, the thickness may be thinner than that of the other region of the vibration rod.

基部20には、他端側202側が一端側201側よりも基部の幅が狭くなる縮幅部203が形成されている。この縮幅部203の一側面には前述した突出部24が形成されている。この突出部24と基部20とによって平面視では直角に折れ曲がったアルファベットの「L」字状の部位が形成されている。なお、音叉型水晶振動片は本実施形態における形状に限定されるものではない。例えば前記突出部が、基部の一側面だけでなく基部の他側面(前記一側面と対向する側面)から突出した形状、つまり突出部が基部の両外側に各々突出した形状であってもよい。あるいは前記突出部が、基部から両外側に突出した後、振動腕の突出方向に向きを変えて、互いに平行に突出する左右対称の形状であってもよい。また、基部に突出部が形成されていない形状であってもよい。   The base portion 20 is formed with a reduced width portion 203 in which the width of the base portion is narrower on the other end side 202 side than on the one end side 201 side. The protruding portion 24 described above is formed on one side surface of the reduced width portion 203. The projecting portion 24 and the base portion 20 form an alphabet “L” -shaped portion bent at a right angle in a plan view. The tuning fork type crystal vibrating piece is not limited to the shape in the present embodiment. For example, the protruding portion may have a shape protruding not only from one side surface of the base portion but also from the other side surface of the base portion (side surface facing the one side surface), that is, a shape in which the protruding portions protrude from both outer sides of the base portion. Alternatively, the projecting portion may have a bilaterally symmetric shape that projects in parallel to each other by changing the direction in the projecting direction of the vibrating arm after projecting outward from the base. Moreover, the shape in which the protrusion part is not formed in the base may be sufficient.

前述した水晶振動片の外形や長孔は、1枚の水晶ウエハからフォトリソグラフィ技術とウェットエッチングを用いて一括同時に多数個が成形される。   A large number of the above-described quartz vibrating piece external shapes and long holes are simultaneously formed from a single quartz wafer using a photolithographic technique and wet etching.

水晶振動片2には、異電位で構成された第1の励振電極25および第2の励振電極26と、第1の励振電極25と第2の励振電極26の各々から引回し電極(後述)を経由して引き出された引出電極27,28とが形成されている。   The quartz crystal resonator element 2 includes a first excitation electrode 25 and a second excitation electrode 26 configured with different potentials, and a lead electrode (described later) from each of the first excitation electrode 25 and the second excitation electrode 26. The extraction electrodes 27 and 28 extracted via the line are formed.

また、一対の振動腕21,22の表裏主面に形成される第1および第2の励振電極25,26の一部は、一対の振動腕21,22の長孔G1,G2の内部の全体に及んで形成されている。前記長孔を形成することにより、水晶振動片を小型化しても一対の振動腕21,22の電界効率が高まり、良好なCI値を得ることができる。なお、一対の振動腕の長孔G1,G2の内部の一部の領域だけに、第1および第2の励振電極だけが形成されていてもよい。   In addition, a part of the first and second excitation electrodes 25 and 26 formed on the front and back main surfaces of the pair of vibrating arms 21 and 22 is entirely inside the long holes G1 and G2 of the pair of vibrating arms 21 and 22. Is formed. By forming the long hole, the electric field efficiency of the pair of vibrating arms 21 and 22 is increased even when the quartz vibrating piece is downsized, and a good CI value can be obtained. Note that only the first and second excitation electrodes may be formed only in a partial region inside the long holes G1 and G2 of the pair of vibrating arms.

第1の励振電極25は、一方の振動腕21の表裏主面と、引回し電極(符号省略)を介して他方の振動腕22の外側面と内側面とに形成されている。同様に第2の励振電極26は、他方の振動腕22の表裏主面と、引回し電極(符号省略)を介して一方の振動腕21の外側面と内側面とに形成されている。   The first excitation electrode 25 is formed on the front and back main surfaces of one vibrating arm 21 and on the outer side surface and inner side surface of the other vibrating arm 22 via a lead electrode (reference numeral omitted). Similarly, the second excitation electrode 26 is formed on the front and back main surfaces of the other vibrating arm 22 and on the outer side surface and inner side surface of one vibrating arm 21 via a routing electrode (not shown).

引出電極27,28は基部20および突出部24(裏面2bのみ)に形成されている。基部20に形成された引出電極27により、他方の振動腕22の外側面と内側面の各々に形成された第1の励振電極25と,引回し電極(符号省略)を経由して、一方の振動腕21の表裏主面に形成された第1の励振電極25と接続されている。同様に、基部20に形成された引出電極28により、一方の振動腕21の外側面と内側面の各々に形成された第2の励振電極26と,引回し電極(符号省略)を経由して、他方の振動腕22の表裏主面に形成された第2の励振電極26と接続されている。   The extraction electrodes 27 and 28 are formed on the base 20 and the protrusion 24 (only the back surface 2b). With the extraction electrode 27 formed on the base portion 20, the first excitation electrode 25 formed on each of the outer surface and the inner surface of the other vibrating arm 22 and the routing electrode (reference numeral omitted) A first excitation electrode 25 formed on the front and back main surfaces of the vibrating arm 21 is connected. Similarly, the extraction electrode 28 formed on the base 20 passes through the second excitation electrode 26 formed on each of the outer side surface and the inner side surface of one vibrating arm 21 and the routing electrode (not shown). The second vibrating electrode 22 is connected to a second excitation electrode 26 formed on the front and back main surfaces of the other vibrating arm 22.

引出電極27,28は、水晶振動片の表面2aにおいては基部20の一端側201から縮幅部203まで引き出されている。一方、水晶振動片の裏面2bにおいては他端側202および突出部24の先端側まで引き出されている。そして図3に示すように、水晶振動片の裏面2bにおける基部20の他端側202の領域と突出部24の先端側の各領域とは、容器3の電極パッド6,7と各々電気機械的に接続される接続電極271,281となっている。   The lead electrodes 27 and 28 are drawn from the one end side 201 of the base portion 20 to the reduced width portion 203 on the surface 2a of the quartz crystal vibrating piece. On the other hand, the back surface 2 b of the quartz crystal vibrating piece is drawn out to the other end side 202 and the tip end side of the protruding portion 24. As shown in FIG. 3, the region on the other end side 202 of the base portion 20 and the region on the tip end side of the projecting portion 24 on the back surface 2 b of the quartz crystal vibrating piece are respectively connected to the electrode pads 6 and 7 of the container 3. The connection electrodes 271 and 281 are connected to each other.

図3に示すように、2つの接続電極271,281の各々の上面には、導電性の接合材S,Sが各々形成されている。本実施形態では接合材Sは、電解めっき法によって形成されためっきバンプとなっている。そして水晶振動片2と電極パッド6,7との導電接合は、FCB法(Flip Chip Bonding)によって行われている。   As shown in FIG. 3, conductive bonding materials S and S are formed on the upper surfaces of the two connection electrodes 271 and 281, respectively. In the present embodiment, the bonding material S is a plating bump formed by an electrolytic plating method. The conductive bonding between the crystal vibrating piece 2 and the electrode pads 6 and 7 is performed by the FCB method (Flip Chip Bonding).

幅広部23,23を構成する一対の主面と一対の側面の全ての面には、前述した引回し電極が各々形成されている。本実施形態において引回し電極は、幅広部23の全周と、振動腕21,22の拡幅部寄りの部位の全周(一対の主面と一対の側面)とに形成されている。   The above-described routing electrodes are formed on all of the pair of main surfaces and the pair of side surfaces constituting the wide portions 23, 23, respectively. In the present embodiment, the routing electrode is formed on the entire circumference of the wide portion 23 and the entire circumference (a pair of main surfaces and a pair of side surfaces) of the portion near the widened portion of the vibrating arms 21 and 22.

前述した第1および第2の励振電極25,26や引出電極27,28、引回し電極(符号省略)は、水晶基材上にクロム(Cr)層が形成され、このクロム層の上に金(Au)層が積層された層構成となっている。なお前記各種電極の層構成は、クロム層の上に金層が形成された層構成に限らず、他の層構成であってもよい。   In the first and second excitation electrodes 25 and 26, the extraction electrodes 27 and 28, and the routing electrodes (not shown) described above, a chromium (Cr) layer is formed on a quartz base material, and a gold layer is formed on the chromium layer. It has a layer structure in which (Au) layers are stacked. The layer configuration of the various electrodes is not limited to a layer configuration in which a gold layer is formed on a chromium layer, but may be other layer configurations.

第1および第2の励振電極と引出電極や引回し電極は、真空蒸着法やスパッタリング等によって水晶ウエハの主面全体に成膜された後、フォトリソグラフィ技術とメタルエッチングによって所望のパターンに一括同時に成形されている。   The first and second excitation electrodes, the extraction electrode, and the drawing electrode are formed on the entire main surface of the quartz wafer by vacuum deposition or sputtering, and then simultaneously formed into a desired pattern by photolithography and metal etching. Molded.

図2に示すように本発明の実施形態では、幅広部23を構成する面のうち一主面のみ(表面2a)に周波数調整用金属膜W(周波数調整用錘)が形成されている。この周波数調整用金属膜Wの質量を、レーザービームやイオンビーム等のビーム照射によって削減することによって水晶振動片2の周波数が微調整される。なお周波数調整用金属膜Wは幅広部23,23の主面における引回し電極よりも、平面視における面積が一回り小さく形成されている。   As shown in FIG. 2, in the embodiment of the present invention, the frequency adjusting metal film W (frequency adjusting weight) is formed on only one main surface (surface 2 a) of the surfaces constituting the wide portion 23. By reducing the mass of the frequency adjusting metal film W by irradiation with a beam such as a laser beam or an ion beam, the frequency of the quartz crystal vibrating piece 2 is finely adjusted. Note that the frequency adjusting metal film W is formed so that the area in plan view is slightly smaller than the routing electrodes on the main surfaces of the wide portions 23 and 23.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

音叉型圧電振動片および音叉型圧電振動子の量産に適用できる。   It can be applied to mass production of tuning fork type piezoelectric vibrating pieces and tuning fork type piezoelectric vibrators.

1 音叉型水晶振動子
2 音叉型水晶振動片
20 基部
21,22 振動腕
23 幅広部
24 突出部
25,26 励振電極
27,28 引出電極
3 容器
G1,G2 長孔
G11,G12,G13 架橋部
G21,G22,G23 架橋部
DESCRIPTION OF SYMBOLS 1 Tuning fork type crystal resonator 2 Tuning fork type crystal vibrating piece 20 Base part 21, 22 Vibrating arm 23 Wide part 24 Projection part 25, 26 Excitation electrode 27, 28 Extraction electrode 3 Container G1, G2 Long hole G11, G12, G13 Bridging part G21 , G22, G23 Cross-linking part

Claims (1)

基部、
上記基部から突出し励振電極が形成された振動腕、
上記振動腕の主面に形成された長孔、
を備えており、
上記長孔は、上記振動腕の突出する方向に沿った長手方向と、上記振動腕の突出する方向に直交する方向に沿った幅方向を具備しており、
上記長孔の内部には、上記励振電極の一部が形成され、かつ上記長手方向と幅方向のいずれにも平行に形成されていない架橋部が形成されている、
ことを特徴とする音叉型圧電振動片。
base,
A vibrating arm protruding from the base and having an excitation electrode;
A long hole formed in the main surface of the vibrating arm,
With
The long hole has a longitudinal direction along a direction in which the vibrating arm protrudes and a width direction along a direction orthogonal to the direction in which the vibrating arm protrudes,
Inside the long hole, a part of the excitation electrode is formed, and a bridging portion that is not formed in parallel in either the longitudinal direction or the width direction is formed.
A tuning-fork type piezoelectric vibrating piece characterized by the above.
JP2018038987A 2018-03-05 2018-03-05 Tuning fork type piezoelectric vibrating piece Pending JP2019153973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038987A JP2019153973A (en) 2018-03-05 2018-03-05 Tuning fork type piezoelectric vibrating piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038987A JP2019153973A (en) 2018-03-05 2018-03-05 Tuning fork type piezoelectric vibrating piece

Publications (1)

Publication Number Publication Date
JP2019153973A true JP2019153973A (en) 2019-09-12

Family

ID=67947171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038987A Pending JP2019153973A (en) 2018-03-05 2018-03-05 Tuning fork type piezoelectric vibrating piece

Country Status (1)

Country Link
JP (1) JP2019153973A (en)

Similar Documents

Publication Publication Date Title
WO2010035714A1 (en) Tuning-fork-type piezoelectric vibrating piece and tuning-fork-type piezoelectric vibrating device
US9590588B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
WO2012115239A1 (en) Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator
JP6252209B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP4548012B2 (en) Piezoelectric vibration device
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP5988125B1 (en) Quartz crystal resonator and crystal oscillation device
JP2018006901A (en) Crystal diaphragm, and crystal vibration device
CN105827212B (en) Piezoelectric vibrating piece and piezoelectric vibrator
WO2014097945A1 (en) Tuning-fork-type quartz vibrating piece
JP2019153973A (en) Tuning fork type piezoelectric vibrating piece
CN110235363B (en) Tuning fork type piezoelectric resonator element and tuning fork type piezoelectric resonator using the same
JP2008154181A (en) Piezoelectric vibration piece, and piezoelectric vibration device
JP6295835B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP2020065223A (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using tuning fork type piezoelectric vibrating piece
JP2019145896A (en) Tuning-fork type piezoelectric oscillation piece and tuning-fork type piezoelectric oscillator using the same
JP5159820B2 (en) Crystal oscillator
JP7380067B2 (en) A tuning fork type piezoelectric vibrating piece and a tuning fork type piezoelectric vibrator using the tuning fork type piezoelectric vibrating piece
JP6476752B2 (en) Method for manufacturing piezoelectric device
JP7342733B2 (en) piezoelectric device
JP2018006902A (en) Crystal filter plate, and crystal filter
JP4706609B2 (en) Piezoelectric vibration device
JP2017200065A (en) Piezoelectric vibrator
JP2017157934A (en) Tuning-fork piezoelectric vibration piece and piezoelectric device using tuning-fork piezoelectric vibration piece
JP2018037896A (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using tuning fork type piezoelectric vibrating piece