JP2019153550A - Alkaline battery electrode - Google Patents

Alkaline battery electrode Download PDF

Info

Publication number
JP2019153550A
JP2019153550A JP2018039868A JP2018039868A JP2019153550A JP 2019153550 A JP2019153550 A JP 2019153550A JP 2018039868 A JP2018039868 A JP 2018039868A JP 2018039868 A JP2018039868 A JP 2018039868A JP 2019153550 A JP2019153550 A JP 2019153550A
Authority
JP
Japan
Prior art keywords
particles
electrode
storage battery
alkaline storage
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018039868A
Other languages
Japanese (ja)
Other versions
JP7006384B2 (en
Inventor
佳史 大田
Yoshifumi Ota
佳史 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018039868A priority Critical patent/JP7006384B2/en
Publication of JP2019153550A publication Critical patent/JP2019153550A/en
Application granted granted Critical
Publication of JP7006384B2 publication Critical patent/JP7006384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To reduce internal resistance of an alkaline storage battery.SOLUTION: An alkaline storage battery electrode includes at least a substrate 1, first particles 11, and second particles 12. The substrate 1 supports the first particles 11 and the second particles 12. The first particles 11 include electrode active material. The second particles 12 include at least one selected from a group consisting of an organic compound having an acidic functional group and an amphoteric metal.SELECTED DRAWING: Figure 3

Description

本開示はアルカリ蓄電池用電極に関する。   The present disclosure relates to an electrode for an alkaline storage battery.

特開2003−229131号公報(特許文献1)は、アルカリ蓄電池用電極(以下「電極」と略記され得る)にニオブ化合物等を添加することを開示している。   Japanese Patent Laying-Open No. 2003-229131 (Patent Document 1) discloses that a niobium compound or the like is added to an electrode for an alkaline storage battery (hereinafter, abbreviated as “electrode”).

特開2003−229131号公報JP 2003-229131 A

例えば車載用途等の高出力用途では、高出力を得るために薄型電極が使用されている。一般に薄型電極は、電極活物質を含むペーストが基材に塗工され、乾燥されることにより製造されている。ペーストの塗工により製造された薄型電極は、その表面が平滑であり、表面積が小さいと考えられる。そのため電極活物質とアルカリ電解液との接触面積が小さいと考えられる。すなわち有効反応面積が小さいと考えられる。   For example, in high output applications such as in-vehicle applications, thin electrodes are used to obtain high output. Generally, a thin electrode is manufactured by applying a paste containing an electrode active material to a substrate and drying it. The thin electrode manufactured by applying the paste is considered to have a smooth surface and a small surface area. Therefore, it is considered that the contact area between the electrode active material and the alkaline electrolyte is small. That is, it is considered that the effective reaction area is small.

本開示の目的はアルカリ蓄電池の内部抵抗を低減することである。   The purpose of this disclosure is to reduce the internal resistance of alkaline storage batteries.

以下本開示の技術的構成および作用効果が説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により特許請求の範囲が限定されるべきではない。   The technical configuration and operational effects of the present disclosure will be described below. However, the mechanism of action of the present disclosure includes estimation. The scope of the claims should not be limited by the correctness of the action mechanism.

本開示のアルカリ蓄電池用電極は基材、第1粒子および第2粒子を少なくとも含む。基材は第1粒子および第2粒子を担持している。第1粒子は電極活物質を含む。第2粒子は、酸性官能基を有する有機化合物と、両性金属とからなる群より選択される少なくとも1種を含む。   The alkaline storage battery electrode of the present disclosure includes at least a base material, first particles, and second particles. The base material carries the first particles and the second particles. The first particles include an electrode active material. The second particles include at least one selected from the group consisting of an organic compound having an acidic functional group and an amphoteric metal.

本開示の第2粒子はいわば造孔剤である。第2粒子は、酸性官能基を有する有機化合物と、両性金属とからなる群より選択される少なくとも1種を含む。これらの物質はいずれもアルカリ電解液に溶解し得ると考えられる。   The second particles of the present disclosure are so-called pore formers. The second particles include at least one selected from the group consisting of an organic compound having an acidic functional group and an amphoteric metal. Any of these substances can be dissolved in an alkaline electrolyte.

アルカリ蓄電池の製造時、アルカリ蓄電池内にアルカリ電解液が注入される。第2粒子がアルカリ電解液と接触することにより、第2粒子の少なくとも一部がアルカリ電解液に溶解すると考えられる。第2粒子の少なくとも一部が溶解することにより、電極内に開気孔が形成されると考えられる。これにより第1粒子に含まれる電極活物質と、アルカリ電解液との接触面積が増大すると考えられる。すなわち有効反応面積が増大すると考えられる。有効反応面積の増大により、アルカリ蓄電池の内部抵抗が低減することが期待される。   During the production of the alkaline storage battery, an alkaline electrolyte is injected into the alkaline storage battery. It is considered that at least a part of the second particles is dissolved in the alkaline electrolyte by contacting the second particles with the alkaline electrolyte. It is considered that open pores are formed in the electrode by dissolving at least part of the second particles. This is thought to increase the contact area between the electrode active material contained in the first particles and the alkaline electrolyte. That is, the effective reaction area is considered to increase. An increase in the effective reaction area is expected to reduce the internal resistance of the alkaline storage battery.

図1は本実施形態のアルカリ蓄電池用電極の構成を示す第1概念図である。FIG. 1 is a first conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment. 図2は本実施形態のアルカリ蓄電池用電極の構成を示す第2概念図である。FIG. 2 is a second conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment. 図3は本実施形態のアルカリ蓄電池用電極の構成を示す第3概念図である。FIG. 3 is a third conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment. 図4は第2粒子の体積比率と内部抵抗との関係の一例を示すグラフである。FIG. 4 is a graph showing an example of the relationship between the volume ratio of the second particles and the internal resistance.

以下本開示の実施形態(本明細書では「本実施形態」とも記される)が説明される。ただし以下の説明は特許請求の範囲を限定するものではない。例えば以下ではニッケル水素蓄電池が説明される。ただしニッケル水素蓄電池は本実施形態のアルカリ蓄電池の一例に過ぎない。本実施形態のアルカリ蓄電池は例えばニッケル亜鉛蓄電池等であってもよい。また以下では正極が説明される。ただし正極は本実施形態の電極の一例に過ぎない。本実施形態の電極は負極であってもよい。   Hereinafter, an embodiment of the present disclosure (also referred to as “this embodiment” in the present specification) will be described. However, the following description does not limit the scope of the claims. For example, a nickel metal hydride storage battery will be described below. However, the nickel metal hydride storage battery is only an example of the alkaline storage battery of this embodiment. The alkaline storage battery of this embodiment may be, for example, a nickel zinc storage battery. Moreover, a positive electrode is demonstrated below. However, the positive electrode is only an example of the electrode of this embodiment. The electrode of this embodiment may be a negative electrode.

<アルカリ蓄電池用電極>
図1は本実施形態のアルカリ蓄電池用電極の構成を示す第1概念図である。
電極10はシート状である。電極10は電池仕様に応じて任意の平面形状を有し得る。電極10の平面形状は例えば帯状等であってもよい。電極10は薄型電極であり得る。電極10は例えば5μm以上100μm以下の厚さを有してもよい。
<Alkaline battery electrode>
FIG. 1 is a first conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment.
The electrode 10 has a sheet shape. The electrode 10 may have an arbitrary planar shape depending on battery specifications. The planar shape of the electrode 10 may be, for example, a belt shape. The electrode 10 can be a thin electrode. The electrode 10 may have a thickness of 5 μm to 100 μm, for example.

図2は本実施形態のアルカリ蓄電池用電極の構成を示す第2概念図である。
図2には電極10内の一部が概念的に示されている。電極10は基材1、第1粒子11および第2粒子12を少なくとも含む。
FIG. 2 is a second conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment.
FIG. 2 conceptually shows a part of the electrode 10. The electrode 10 includes at least a substrate 1, first particles 11, and second particles 12.

電極10は例えばバインダ等をさらに含んでもよい。バインダは特に限定されるべきではない。バインダは例えばカルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)等であってもよい。バインダの含量は100質量部の電極活物質に対して、例えば0.1質量部以上10質量部以下であってもよい。   The electrode 10 may further include, for example, a binder. The binder should not be particularly limited. The binder may be, for example, carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), or the like. The binder content may be, for example, 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the electrode active material.

《基材》
基材1の外形は例えばシート状である。基材1は第1粒子11および第2粒子12を担持している。図2の基材1は多孔質金属材料である。多孔質金属材料はスポンジ状であってもよい。多孔質金属材料は三次元網目構造を有してもよい。基材1は集電体としても機能し得る。基材1は例えばニッケル(Ni)製であってもよい。ただし基材1は多孔質金属材料に限定されるべきではない。基材1は例えば金属箔(例えばNi箔、Niメッキ鋼箔等)、穿孔金属板等であってもよい。
"Base material"
The external shape of the base material 1 is a sheet form, for example. The substrate 1 carries the first particles 11 and the second particles 12. The substrate 1 in FIG. 2 is a porous metal material. The porous metal material may be sponge-like. The porous metal material may have a three-dimensional network structure. The substrate 1 can also function as a current collector. The substrate 1 may be made of, for example, nickel (Ni). However, the base material 1 should not be limited to a porous metal material. The substrate 1 may be, for example, a metal foil (for example, Ni foil, Ni-plated steel foil, etc.), a perforated metal plate, or the like.

《第1粒子》
第1粒子11は電極活物質を含む。本実施形態の電極活物質は水酸化ニッケル〔Ni(OH)2〕およびオキシ水酸化ニッケル〔NiO(OH)〕からなる群より選択される少なくとも1種である。第1粒子11は実質的に電極活物質のみからなる粒子であってもよい。第1粒子11は例えば導電材等をさらに含んでもよい。導電材は電極活物質の表面を被覆していてもよい。導電材は例えばコバルト酸化物等であってもよい。
<First particle>
The first particles 11 include an electrode active material. The electrode active material of this embodiment is at least one selected from the group consisting of nickel hydroxide [Ni (OH) 2 ] and nickel oxyhydroxide [NiO (OH)]. The first particles 11 may be particles that are substantially composed only of an electrode active material. The first particles 11 may further include, for example, a conductive material. The conductive material may cover the surface of the electrode active material. The conductive material may be, for example, cobalt oxide.

《第2粒子》
図3は本実施形態のアルカリ蓄電池用電極の構成を示す第3概念図である。
図3にはアルカリ蓄電池内での状態(すなわち電極10にアルカリ電解液が浸透した後の状態)が概念的に示されている。第2粒子12は、酸性官能基を有する有機化合物と、両性金属とからなる群より選択される少なくとも1種を含む。これらの物質はいずれもアルカリ電解液に溶解し得ると考えられる。アルカリ電解液は例えば水酸化カリウム(KOH)水溶液等であってもよい。
<< second particle >>
FIG. 3 is a third conceptual diagram showing the configuration of the alkaline storage battery electrode of the present embodiment.
FIG. 3 conceptually shows a state in the alkaline storage battery (that is, a state after the alkaline electrolyte has permeated the electrode 10). The second particles 12 include at least one selected from the group consisting of an organic compound having an acidic functional group and an amphoteric metal. Any of these substances can be dissolved in an alkaline electrolyte. The alkaline electrolyte may be, for example, an aqueous potassium hydroxide (KOH) solution.

アルカリ蓄電池内において、アルカリ電解液が電極10に浸透することにより、アルカリ電解液と第2粒子12とが接触することになると考えられる。アルカリ電解液と第2粒子12とが接触することにより、第2粒子12の少なくとも一部がアルカリ電解液に溶解すると考えられる。これにより電極10内に開気孔が形成され、有効反応面積が増大すると考えられる。図3において点線で囲まれた部分は、第2粒子12が溶解した部分に相当する。有効反応面積の増大によりアルカリ蓄電池の内部抵抗が低減することが期待される。加えてアルカリ蓄電池の充放電効率が向上することも期待される。   It is considered that the alkaline electrolyte and the second particles 12 come into contact with each other when the alkaline electrolyte penetrates into the electrode 10 in the alkaline storage battery. It is considered that at least a part of the second particles 12 is dissolved in the alkaline electrolyte by the contact between the alkaline electrolyte and the second particles 12. As a result, open pores are formed in the electrode 10 and the effective reaction area is considered to increase. A portion surrounded by a dotted line in FIG. 3 corresponds to a portion where the second particles 12 are dissolved. An increase in the effective reaction area is expected to reduce the internal resistance of the alkaline storage battery. In addition, the charge / discharge efficiency of the alkaline storage battery is also expected to improve.

第2粒子12のうちアルカリ電解液と接触しないものは、電極10内に残存することになる。第2粒子12の一部が電極10内に残存することにより、電極強度の低下が抑制されることが期待される。   The second particles 12 that do not come into contact with the alkaline electrolyte remain in the electrode 10. It is expected that a decrease in electrode strength is suppressed when a part of the second particles 12 remains in the electrode 10.

さらに、これらの物質は中性の水には溶解し難いと考えられる。したがって水を溶媒として第1粒子および第2粒子を含むペーストを形成することが可能であると考えられる。ペーストの塗工、乾燥時には第2粒子12が溶解し難いため、安定して電極10を製造することができると考えられる。   In addition, these substances are unlikely to dissolve in neutral water. Therefore, it is considered possible to form a paste containing the first particles and the second particles using water as a solvent. It is considered that the electrode 10 can be manufactured stably because the second particles 12 are difficult to dissolve when the paste is applied and dried.

酸性官能基は例えばフェノール性ヒドロキシ基、カルボキシ基、スルホ基等であってもよい。有機化合物は複数個の酸性官能基を有していてもよい。有機化合物は複数種の酸性官能基を有していてもよい。酸性官能基を有する有機化合物は、例えばフェノール、2−ナフトール等であってもよい。両性金属は例えばアルミニウム(Al)、亜鉛(Zn)等であってもよい。第2粒子12は、例えばフェノール、2−ナフトール、AlおよびZnからなる群より選択される少なくとも1種を含んでもよい。   The acidic functional group may be, for example, a phenolic hydroxy group, a carboxy group, a sulfo group, or the like. The organic compound may have a plurality of acidic functional groups. The organic compound may have multiple types of acidic functional groups. The organic compound having an acidic functional group may be, for example, phenol or 2-naphthol. The amphoteric metal may be aluminum (Al), zinc (Zn), or the like. The second particles 12 may include at least one selected from the group consisting of phenol, 2-naphthol, Al, and Zn, for example.

第2粒子12のサイズにより、電極10内に形成される開気孔のサイズが調整され得る。第1粒子11のサイズに対する第2粒子12のサイズの比(以下「サイズ比」とも記される)は、例えば0.5以上1.5以下であってもよい。サイズ比が0.5以上であることにより、内部抵抗の低減効果が大きくなることが期待される。好適サイズの開気孔が形成されるためと考えられる。サイズ比が1.5以下であることにより、内部抵抗の低減効果が大きくなることが期待される。第1粒子11同士の電気的接触(すなわち導電ネットワーク)が適度に保たれるためと考えられる。   The size of the open pores formed in the electrode 10 can be adjusted according to the size of the second particles 12. The ratio of the size of the second particles 12 to the size of the first particles 11 (hereinafter also referred to as “size ratio”) may be, for example, 0.5 or more and 1.5 or less. When the size ratio is 0.5 or more, the effect of reducing internal resistance is expected to increase. This is probably because open pores of a suitable size are formed. When the size ratio is 1.5 or less, the effect of reducing internal resistance is expected to increase. It is considered that the electrical contact (that is, the conductive network) between the first particles 11 is maintained appropriately.

例えば第1粒子11のD50に対する第2粒子12のD50の比が0.5以上1.5以下であってもよい。「D50」は体積基準の粒度分布において微粒側からの積算粒子体積が全粒子体積の50%になる粒径を示す。D50は例えばレーザ回折式粒度分布測定装置等により測定され得る。   For example, the ratio of D50 of the second particle 12 to D50 of the first particle 11 may be 0.5 or more and 1.5 or less. “D50” indicates the particle size at which the cumulative particle volume from the fine particle side is 50% of the total particle volume in the volume-based particle size distribution. D50 can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.

第2粒子12の体積比率により、電極10の多孔度が調整され得る。多孔度が高くなることは、有効反応面積の増大を意味すると考えられる。第1粒子11および第2粒子12の合計に対して、第2粒子12は例えば20%以上80%以下の体積比率を有してもよい。第2粒子12の体積比率が20%以上であることにより、内部抵抗の低減効果が大きくなることが期待される。好適サイズの開気孔が形成されるためと考えられる。第2粒子12の体積比率が80%以下であることにより、内部抵抗の低減効果が大きくなることが期待される。第1粒子11同士の電気的接触が適度に保たれるためと考えられる。第2粒子12は例えば31%以上35%以下の体積比率を有してもよい。   The porosity of the electrode 10 can be adjusted by the volume ratio of the second particles 12. Higher porosity is thought to mean an increase in effective reaction area. For example, the second particles 12 may have a volume ratio of 20% to 80% with respect to the total of the first particles 11 and the second particles 12. When the volume ratio of the second particles 12 is 20% or more, it is expected that the effect of reducing the internal resistance is increased. This is probably because open pores of a suitable size are formed. When the volume ratio of the second particles 12 is 80% or less, it is expected that the effect of reducing internal resistance is increased. It is considered that the electrical contact between the first particles 11 is kept moderate. The second particles 12 may have a volume ratio of 31% to 35%, for example.

以下本開示の実施例が説明される。ただし以下の説明は特許請求の範囲を限定するものではない。   Examples of the present disclosure are described below. However, the following description does not limit the scope of the claims.

以下の構成を有する電極10(6水準)がそれぞれ製造された。
第1粒子:水酸化ニッケル
第2粒子:2−ナフトール
サイズ比=1.0
第2粒子の体積比率=31〜35%(6水準)
Electrodes 10 (six levels) having the following configurations were manufactured.
First particle: Nickel hydroxide Second particle: 2-naphthol Size ratio = 1.0
Volume ratio of second particles = 31 to 35% (6 levels)

各電極10を含むニッケル水素蓄電池がそれぞれ製造された。各ニッケル水素蓄電池の内部抵抗(直流内部抵抗,DC−IR)がそれぞれ測定された。   Nickel metal hydride storage batteries including the respective electrodes 10 were manufactured. The internal resistance (DC internal resistance, DC-IR) of each nickel metal hydride storage battery was measured.

図4は第2粒子の体積比率と内部抵抗との関係の一例を示すグラフである。
第2粒子12の体積比率が31%以上35%以下の範囲において、第2粒子12の体積比率と内部抵抗との間に線形相関が認められる。すなわち第2粒子12の体積比率が高くなる程、内部抵抗が低減する傾向が認められる。第2粒子12の体積比率が高くなる程、第2粒子12の溶解に伴う有効反応面積の増大幅が大きくなるためと考えられる。
FIG. 4 is a graph showing an example of the relationship between the volume ratio of the second particles and the internal resistance.
When the volume ratio of the second particles 12 is in the range of 31% to 35%, a linear correlation is observed between the volume ratio of the second particles 12 and the internal resistance. That is, it is recognized that the internal resistance tends to decrease as the volume ratio of the second particles 12 increases. It is considered that as the volume ratio of the second particles 12 is increased, the increase width of the effective reaction area accompanying the dissolution of the second particles 12 is increased.

本開示の実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲の記載によって確定される技術的範囲は、特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含む。   Embodiments and examples of the present disclosure are illustrative in all respects and not restrictive. The technical scope defined by the description of the claims includes all modifications within the meaning and scope equivalent to the description of the claims.

1 基材、10 電極、11 第1粒子、12 第2粒子。   1 base material, 10 electrode, 11 1st particle, 12 2nd particle.

Claims (1)

基材、第1粒子および第2粒子を少なくとも含み、
前記基材は前記第1粒子および前記第2粒子を担持しており、
前記第1粒子は電極活物質を含み、
前記第2粒子は、酸性官能基を有する有機化合物と、両性金属とからなる群より選択される少なくとも1種を含む、
アルカリ蓄電池用電極。
Comprising at least a substrate, first particles and second particles;
The base material carries the first particles and the second particles,
The first particles include an electrode active material,
The second particles include at least one selected from the group consisting of an organic compound having an acidic functional group and an amphoteric metal.
Alkaline battery electrode.
JP2018039868A 2018-03-06 2018-03-06 Electrode for alkaline storage battery Active JP7006384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018039868A JP7006384B2 (en) 2018-03-06 2018-03-06 Electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039868A JP7006384B2 (en) 2018-03-06 2018-03-06 Electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2019153550A true JP2019153550A (en) 2019-09-12
JP7006384B2 JP7006384B2 (en) 2022-02-10

Family

ID=67946886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039868A Active JP7006384B2 (en) 2018-03-06 2018-03-06 Electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP7006384B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343098A (en) * 1992-06-04 1993-12-24 Matsushita Electric Ind Co Ltd Sealed alkaline battery
JPH11238507A (en) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2009105001A (en) * 2007-10-25 2009-05-14 Jsr Corp Composition for nickel electrode of alkaline battery and alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343098A (en) * 1992-06-04 1993-12-24 Matsushita Electric Ind Co Ltd Sealed alkaline battery
JPH11238507A (en) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2009105001A (en) * 2007-10-25 2009-05-14 Jsr Corp Composition for nickel electrode of alkaline battery and alkaline battery

Also Published As

Publication number Publication date
JP7006384B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP6352884B2 (en) Anode material for metal-air secondary battery, metal-air secondary battery comprising the same, and method for producing anode material for metal-air secondary battery
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
JP7167903B2 (en) zinc secondary battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
CN108550800B (en) Composite electrode and battery
CN103700895B (en) Nickel-hydrogen accumulator
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP7006384B2 (en) Electrode for alkaline storage battery
CN111755757B (en) Method for manufacturing nickel-zinc battery
JP6145635B2 (en) Method for manufacturing electrode for lithium ion capacitor
JP2011249238A5 (en)
JP2017004614A (en) Electrode for air-metal battery, and air-metal battery
JP2020170652A (en) Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery
JP2020123535A (en) Negative electrode for all solid state battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP6371162B2 (en) Electrode and battery constructed using the same
KR101622092B1 (en) Cathode Active Material for Metal-Air Cell and Metal-Air Cell Comprising The Same
JP2019145446A (en) Nickel hydrogen battery
KR102111288B1 (en) Positive electrode and alkaline secondary battery including the same
US11404745B2 (en) Separator for batteries
JP2022048597A (en) Secondary battery
JP2017183079A (en) Method for manufacturing lithium ion secondary battery
JP3944887B2 (en) Alkaline zinc storage battery
JP3994155B2 (en) Secondary battery formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R151 Written notification of patent or utility model registration

Ref document number: 7006384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151